A PERMUTATION REPRESENTATION OF THE GROUP OF THE BITANGENTS

W. L. Edge

1. The group Γ of the bitangents has been studied in two recent papers It was represented in [4] as a subgroup of index 2 of the ([3] and [4]).group of symmetries of a regular polytope in Euclidean space of dimension 6, in [3] as the group of automorphisms of a non-singular quadric Qin the finite projective space [6] over F—the Galois Field GF(2). The culmination of [4] is the compilation, for the first time, of the complete table of characters of Γ , and Frame uses this table to suggest possible degrees for permutation representations. Such representations, of degrees 28, 36, 63, 135, 288 are patent once the geometry of Q is known; but Frame, having observed that there is a combination of the characters that satisfies the several conditions known to be necessary, had proposed also 120 as a possible degree. As there is no guarantee that the set of necessary conditions is sufficient, and as no representation of Γ of degree 120 seems yet to have appeared in the literature, a description is here submitted of one that is incorporated with the geometry of Q.

Q consists, as explained in [3], of 63 points m; 315 lines g (all three points on a g being m) lie on Q, while through each g pass three planes d lying wholly on Q (in that all seven points in d are m, and all seven lines in d are g). These three d form the complete intersection of Q with E, the polar [4] of g.

There are, and it is intended to construct them, 120 figures \mathscr{F} ; each \mathscr{F} includes all 63 *m* together with 63 *d*, one *d* being associated with each *m*—having *m* for its *focus* as one may say. Those *g* in *d* that pass through its focus may be called *rays*; all three *d* containing a ray belong to \mathscr{F} , their foci being those three *m* that constitute the ray, so that, there being three rays in each of 63 *d*, there are 63 rays in \mathscr{F} . The plane of any two intersecting rays is on *Q*, and the third line therein through the intersection is a ray too. None of the 72 *d* extraneous to \mathscr{F} includes a ray; of those *d* that pass through a *g* which is not a ray only one belongs to \mathscr{F} , the other two being extraneous to \mathscr{F} .

Although such a figure as \mathscr{F} may not have been previously described it has been encountered, so to say, by implication, being obtainable when Q is regarded as a section of a ruled quadric S in [7]; one has then only to take, on S, those points that are autoconjugate (*i.e.* incident with their corresponding solids) in a certain triality. That such points make up a prime section of S is known (see 5.2.2 in [5]), and that there are 63 of

Received 17 June, 1960.

A PERMUTATION REPRESENTATION OF THE GROUP OF THE BITANGENTS 341

them accords with putting $\kappa = \lambda = 2$ in 8.2.4 of [5]; 8.2.6 then says that, of 63 m, 32 lie outside the tangent prime T_0 to Q at a given point m_0 while 8.2.5 says that there are 63 rays, or "fixed lines" in Tits' phraseology.

2. Let δ , δ' be any two of the 135 planes on Q that are skew to one another; they span a [5] C and, being skew, belong to opposite systems on \mathcal{K} , the Klein section of Q by C.

Through any line g of δ passes another plane on \mathscr{K} which, belonging to the opposite system to δ , is in the same system as δ' and so meets δ' at a point m'; moreover, the points m' so arising from g in δ concurrent at mlie on g', the line of intersection of δ' with the tangent space $[\delta g']$ of \mathscr{K} at mThe plane, other than δ' , on \mathscr{K} that contains g' is [mg']. So there is set up a correlation between δ and δ' ; each point of either is correlative to a line of the other.

If m in δ and m' in δ' each lie on the line correlative to the other their join is on \mathscr{K} . There are 21 such joins; through each point m of δ there pass three, lying in the plane joining m to its correlative g', and likewise there pass three coplanar joins through each point m' of δ' . Since \mathscr{K} consists of 35 m there are 21, which may be labelled temporarily as points μ , that lie neither in δ nor in δ' ; through each μ passes one transversal to δ and δ' ; these 21 lines, one through each μ , are the joins mm' of points each on the line correlative to the other.

Through each point on \mathscr{K} pass nine lines lying on \mathscr{K} ; if m is in δ three of them lie in δ while another three join m to the points on its correlative g'; there remain three others, so that 21 g on \mathscr{K} meet δ in points and are skew to δ' . Another 21 meet δ' in points and are skew to δ . There are also among the 105 g on \mathscr{K} seven in δ , seven in δ' , 21 transversal to δ and δ' ; there remain 28, which may be labelled g^* , skew to both δ and δ' . These 28 g^* may be identified as follows. Take any g in δ ; the solid that joins it to any g' through its correlative m' in δ' meets \mathscr{K} in two planes through mm', m being that point on g to which g' is correlative. But there are four lines g' in δ' that do not contain m'; then the solid [gg'] meets \mathscr{K} in a hyperboloid whereon the regulus that includes g and g' is completed by g^* . As there are seven g in δ , and four g' in δ' not containing the correlative m, the 28 g^* are accounted for.

There being three μ on each g^* , but only 21 μ in all, one expects there to be four g^* through each μ ; this is so. For let the transversal from μ to δ , δ' meet δ in m, δ' in m'; through m, and in δ , are lines g_1, g_2 other than the correlative g to m'; through m', and in δ' , are lines g_1', g_2' other than the correlative g' to m; each solid

$$[g_1g_1'], [g_1g_2'], [g_2g_1'], [g_2g_2']$$

meets \mathscr{K} in a hyperboloid whereon a regulus is completed by a g^* through μ .

3. Take, now, one of these g^* : the transversals from its three μ to δ , δ' form a regulus whose complement includes g in δ and g' in δ' , neither g nor g' being correlative to any point on the other. The correlative m in δ of g' is conjugate to every point of g and, by the defining property of the correlation, to every point of g'; so, likewise, is the correlative m' in δ' of g. Hence the polar plane j_0 ([3], §6) of [gg'] with respect to Q contains both m and m'; there is one remaining point m^* of Q in j_0 , and it lies outside C—for to suppose that it belonged to C would put the whole of j_0 in C, whereas the kernel of Q, which is in j_0 , is outside C. Now there are 63-35=28 points m^* on Q that are not on \mathcal{K} ; thus each m^* is linked to a g^* , and m^*g^* is a plane d on Q.

There are three planes on Q through any line thereon; if this line is a transversal $m\mu m'$ from one of the 21 μ to δ and δ' two of these planes are on \mathscr{K} , while the third contains a quadrangle $m_1^*m_2^*m_3^*m_4^*$ with its diagonal points at m, μ, m' . The tangent prime to Q at any vertex of this quadrangle contains $m\mu m'$ and meets δ, δ' in lines belonging to a regulus completed by g^* through μ . Thus four concurrent g^* are linked with coplanar m^* whose plane, containing the transversal to δ and δ' from the point of concurrence, lies on Q but not on \mathscr{K} .

4. Choose now, from among the 315 g on Q, the 21 transversals of δ , δ' and those, three through each m^* , that join m^* to those μ on the g^* that is linked with it. Each such join contains two m^* , the g^* that are linked therewith both passing through μ ; hence, under this second heading, the number of g selected is $\frac{1}{2}(28 \times 3) = 42$. So 63 g are chosen : call them rays. Through each m on Q pass three rays, and they are coplanar. If m is m^* this is manifest from the prescription of choice, as it is too if m is in δ or δ' . If m is μ the rays are, say, $m_1^* \mu m_2^*$, $m_3^* \mu m_4^*$, $m\mu m'$ and lie in that d through $m\mu m'$ that is not on \mathscr{K} . So 63 d are chosen from among the 135 on Q; each contains three concurrent rays. Call the m wherein the rays concur the focus of d.

Through any g there pass three d; if g is a ray these d are those having the m on the ray for foci. The points of d other than its focus m are foci of those other d which belong to \mathscr{F} and contain m; if d, d' in \mathscr{F} are such that the focus of d' is in d then the focus of d is in d'. Whenever two rays meet the third line through their intersection and lying in their plane is a ray too. It is these 63 d, with the 63 rays and foci, that constitute the figure \mathscr{F} .

Each d in \mathscr{F} contains, as well as three concurrent rays, a quadrilateral of g that are not rays; thus, by four in each of 63 d, the 315-63=252 gthat are not rays are accounted for. Through each such g pass two planes on Q in addition to d, but they are extraneous to \mathscr{F} . The 135-63=72extraneous planes may be labelled δ ; the planes above denominated by δ and δ' are in this category. No g in δ is a ray and only one of the planes on Q that pass through it belongs to \mathcal{F} whereas, were g a ray, all three would do so.

5. Label the *m* in any of the 72 δ by

they lie on g that can be taken as

Through each such g there is a single d belonging to \mathscr{F} ; label the foci of these d, none of which can lie in δ , respectively

Then those d whose foci are in δ join its points to the respective triads

Thus the join of every pair of points I' is on Q and, there being no solid on Q, the points I' lie in a plane δ' whose lines consist of the triads II'.

Each of the 72 δ has, it is now clear, a twin δ' coupled with it by \mathscr{F} . The correlation between δ and δ' is shown by I and II' or, alternatively, by I' and II. Those *d* that pass one through each line of δ' have for their foci the points of δ correlative to these lines; if *d* passes, say, through 1' 3' 5' its focus is the point 5 common to those *d* whose foci are 1', 3', 5'.

Since, by the construction in §4, δ and δ' determine \mathscr{F} uniquely there are x/36 figures \mathscr{F} where x is the number of pairs of skew planes on Q. To calculate x note, in the first place (using d now to signify a plane on Qwhether it be in \mathscr{F} or extraneous thereto), that each d is met in lines by 14 others, two passing through each g in d. Note next, to ascertain how many d meet a given d_0 in points only, that the 15 d through a point mof d_0 project, from m, the figure of 15 g in [4] passing three by three through 15 points ([2], §§13-15). Since that one of these 15 g that lies in d_0 meets six others among these g it is skew to eight whose joins to m therefore meet d_0 at m only; hence there are, through any of the seven m in d_0 , eight d that meet d_0 only at m. Wherefore the number of d skew to d_0 is

$$135 - 1 - 14 - 56 = 64$$

and there are $\frac{1}{2}(135 \times 64)/36 = 120$ figures \mathscr{F} . They afford a permutation representation, of degree 120, of the group of the bitangents.

6. The 120 \mathscr{F} are permuted transitively by Γ . For the *C* are certainly so permuted, each having a stabiliser isomorphic to the symmetric group \mathscr{S}_{s} , and the transitivity of Γ on the \mathscr{F} will follow from that of this stabiliser on pairs of skew planes on the section \mathscr{K} of *Q* by *C*. If \mathscr{K} is regarded as mapping the lines of a solid Σ the stabiliser of *C* in Γ is put in isomorphism with the group of collineations and correlations in Σ (cf. [1], §§18, 19; Γ is there used to denote the group of $\frac{1}{2}$. S! collineations isomorphic to \mathscr{A}_8). The required transitivity is consequent upon that of the whole group in Σ on non-incident points and planes.

References.

- W. L. Edge, "The geometry of the linear fractional group LF(4, 2)", Proc. London Math. Soc. (3), 4 (1954), 317-342.
- 2. ——, "Quadrics over GF(2) and their relevance for the cubic surface group", Canadian J. of Math., 11 (1959), 625-645.
-, "A sotting for the group of the bitangents", Proc. London Math. Soc. (3), 10 (1960), 583-603.
- 4. J. S. Frame, "The classes and representations of the groups of 27 lines and 28 bitangents", Annali di Mat. (4), 32 (1951), 83-119.
- 5. J. Tits, "Sur la trialité et cortains groupes qui s'en deduisent ", Institut des hautes études scientifiques : Publications mathématiques No. 2 (1959).

Mathematical Institute,

16 Chambers Street, Edinburgh, 1.