## A PERMUTATION REPRESENTATION OF THE GROUP OF THE BITANGENTS

W. L. Edae

1. The group $\Gamma$ of the bitangents has been studied in two recent papers ([3] and [4]). It was represented in [4] as a subgroup of index 2 of the group of symmetries of a regular polytope in Euclidean space of dimension 6, in [3] as the group of automorphisms of a non-singular quadric $Q$ in the finite projective space [6] over $F$-the Galois Field $G F(2)$. The culmination of [4] is the compilation, for the first time, of the complete table of characters of $\Gamma$, and Frame uses this table to suggest possible degrees for permutation representations. Such representations, of degrees $28,36,63,135,288$ are patent once the geometry of $Q$ is known; but Frame, having observed that there is a combination of the characters that satisfies the several conditions known to be necessary, had proposed also 120 as a possible degree. As there is no guarantee that the set of necessary conditions is sufficient, and as no representation of $\Gamma$ of degree 120 seems yet to have appeared in the literature, a description is here submitted of one that is incorporated with the geometry of $Q$.
$Q$ consists, as explained in [3], of 63 points $m$; 315 lines $g$ (all three points on a $g$ being $m$ ) lie on $Q$, while through each $g$ pass three planes $d$ lying wholly on $Q$ (in that all seven points in $d$ are $m$, and all seven lines in $d$ are $g$ ). These three $d$ form the complete intersection of $Q$ with $E$, the polar [4] of $g$.

There are, and it is intended to construct them, 120 figures $\mathscr{F}$; each $\mathscr{F}$ includes all $63 m$ together with $63 d$, one $d$ being associated with each $m$ -having $m$ for its focus as one may say. Those $g$ in $d$ that pass through its focus may be called rays; all three $d$ containing a ray belong to $\mathscr{F}$, their foci being those three $m$ that constitute the ray, so that, there being three rays in each of $63 d$, there are 63 rays in $\mathscr{F}$. The plane of any two intersecting rays is on $Q$, and the third line therein through the intersection is a ray too. None of the $72 d$ extraneous to $\mathscr{F}$ includes a ray; of those $d$ that pass through a $g$ which is not a ray only one belongs to $\mathscr{F}$, the other two being extraneous to $\mathscr{F}$.

Although such a figure as $\mathscr{F}$ may not have been previously described it has been encountered, so to say, by implication, being obtainable when $Q$ is regarded as a section of a ruled quadric $S$ in [7]; one has then only to take, on S, those points that are autoconjugate (i.e. incident with their corresponding solids) in a certain triality. That such points make up a prime section of $S$ is known (see 5.2.2 in [5]), and that there are 63 of
them accords with putting $\kappa=\lambda=2$ in 8.2 .4 of [5]; 8.2.6 then says that, of 63 m , 32 lie outside the tangent prime $T_{0}$ to $Q$ at a given point $m_{0}$ while 8.2 .5 says that there are 63 rays, or "fixed lines" in Tits' phraseology.
2. Let $\delta, \delta^{\prime}$ be any two of the 135 planes on $Q$ that are skew to one another; they span a [5] $C$ and, being skew, belong to opposite systems on $\mathscr{K}$, the Klein section of $Q$ by $C$.

Through any line $g$ of $\delta$ passes another plane on $\mathscr{K}$ which, belonging to the opposite system to $\delta$, is in the same system as $\delta^{\prime}$ and so meets $\delta^{\prime}$ at a point $m^{\prime}$; moreover, the points $m^{\prime}$ so arising from $g$ in $\delta$ concurrent at $m$ lie on $g^{\prime}$, the line of intersection of $\delta^{\prime}$ with the tangent space [ $\left.\delta g^{\prime}\right]$ of $\mathscr{K}$ at $m$ The plane, other than $\delta^{\prime}$, on $\mathscr{K}$ that contains $g^{\prime}$ is [ $\mathrm{mg}^{\prime}$ ]. So there is set up a correlation between $\delta$ and $\delta^{\prime}$; each point of either is correlative to a line of the other.

If $m$ in $\delta$ and $m^{\prime}$ in $\delta^{\prime}$ each lie on the line correlative to the other their join is on $\mathscr{K}$. There are 21 such joins; through each point $m$ of $\delta$ there pass three, lying in the plane joining $m$ to its correlative $g^{\prime}$, and likewise there pass three coplanar joins through each point $m^{\prime}$ of $\delta^{\prime}$. Since $\mathscr{K}$ consists of $35 m$ there are 21, which may be labelled temporarily as points $\mu$, that lie neither in $\delta$ nor in $\delta^{\prime}$; through each $\mu$ passes one transversal to $\delta$ and $\delta^{\prime}$; these 21 lines, one through each $\mu$, are the joins $\mathrm{mm}^{\prime}$ of points each on the line correlative to the other.

Through each point on $\mathscr{K}$ pass nine lines lying on $\mathscr{K}$; if $m$ is in $\delta$ three of them lie in $\delta$ while another three join $m$ to the points on its correlative $g^{\prime}$; there remain three others, so that $21 g$ on $\mathscr{K}$ meet $\delta$ in points and are skew to $\delta^{\prime}$. Another 21 meet $\delta^{\prime}$ in points and are skew to $\delta$. There are also among the $105 g$ on $\mathscr{K}$ seven in $\delta$, seven in $\delta^{\prime}, 21$ transversal to $\delta$ and $\delta^{\prime}$; there remain 28 , which may be labelled $g^{*}$, skew to both $\delta$ and $\delta^{\prime}$. These $28 g^{*}$ may be identified as follows. Take any $g$ in $\delta$; the solid that joins it to any $g^{\prime}$ through its correlative $m^{\prime}$ in $\delta^{\prime}$ meets $\mathscr{K}$ in two planes through $m m^{\prime}, m$ being that point on $g$ to which $g^{\prime}$ is correlative. But there are four lines $g^{\prime}$ in $\delta^{\prime}$ that do not contain $m^{\prime}$; then the solid [ $\left.g g^{\prime}\right]$ meets $\mathscr{K}$ in a hyperboloid whereon the regulus that includes $g$ and $g^{\prime}$ is completed by $g^{*}$. As there are seven $g$ in $\delta$, and four $g^{\prime}$ in $\delta^{\prime}$ not containing the correlative $m$, the $28 g^{*}$ are accounted for.

There being three $\mu$ on each $g^{*}$, but only $21 \mu$ in all, one expects there to be four $g^{*}$ through each $\mu$; this is so. For let the transversal from $\mu$ to $\delta, \delta^{\prime}$ meet $\delta$ in $m, \delta^{\prime}$ in $m^{\prime}$; through $m$, and in $\delta$, are lines $g_{1}, g_{2}$ other than the correlative $g$ to $m^{\prime}$; through $m^{\prime}$, and in $\delta^{\prime}$, are lines $g_{1}{ }^{\prime}, g_{2}{ }^{\prime}$ other than the correlative $g^{\prime}$ to $m$; each solid

$$
\left[g_{1} g_{1}^{\prime}\right], \quad\left[g_{1} g_{2}^{\prime}\right], \quad\left[g_{2} g_{1}^{\prime}\right], \quad\left[g_{2} g_{2}^{\prime}\right]
$$

meets $\mathscr{K}$ in a hyperboloid whereon a regulus is completed by a $g^{*}$ through $\mu$.
3. Take, now, one of these $g^{*}$ : the transversals from its three $\mu$ to $\delta, \delta^{\prime}$ form a regulus whose complement includes $g$ in $\delta$ and $g^{\prime}$ in $\delta^{\prime}$, neither $g$ nor $g^{\prime}$ being correlative to any point on the other. The correlative $m$ in $\delta$ of $g^{\prime}$ is conjugate to every point of $g$ and, by the defining property of the correlation, to every point of $g^{\prime}$; so, likewise, is the correlative $m^{\prime}$ in $\delta^{\prime}$ of $g$. Hence the polar plane $j_{0}([3], \S 6)$ of $\left[g g^{\prime}\right]$ with respect to $Q$ contains both $m$ and $m^{\prime}$; there is one remaining point $m^{*}$ of $Q$ in $j_{0}$, and it lies outside $C$-for to suppose that it belonged to $C$ would put the whole of $j_{0}$ in $C$, whereas the kernel of $Q$, which is in $j_{0}$, is outside $C$. Now there are $63-35=28$ points $m^{*}$ on $Q$ that are not on $\mathscr{K}$; thus each $m^{*}$ is linked to a $g^{*}$, and $m^{*} g^{*}$ is a plane $d$ on $Q$.

There are three planes on $Q$ through any line thereon; if this line is a transversal $m \mu m^{\prime}$ from one of the $21 \mu$ to $\delta$ and $\delta^{\prime}$ two of these planes are on $\mathscr{K}$, while the third contains a quadrangle $m_{1}{ }^{*} m_{2}{ }^{*} m_{3}{ }^{*} m_{4}{ }^{*}$ with its diagonal points at $m, \mu, m^{\prime}$. The tangent prime to $Q$ at any vertex of this quadrangle contains $m \mu m^{\prime}$ and meets $\delta, \delta^{\prime}$ in lines belonging to a regulus completed by $g^{*}$ through $\mu$. Thus four concurrent $g^{*}$ are linked with coplanar $m^{*}$ whose plane, containing the transversal to $\delta$ and $\delta^{\prime}$ from the point of concurrence, lies on $Q$ but not on $\mathscr{K}$.
4. Choose now, from among the $315 g$ on $Q$, the 21 transversals of $\delta, \delta^{\prime}$ and those, three through each $m^{*}$, that join $m^{*}$ to those $\mu$ on the $g^{*}$ that is linked with it. Each such join contains two $m^{*}$, the $g^{*}$ that are linked therewith both passing through $\mu$; hence, under this second heading, the number of $g$ selected is $\frac{1}{2}(28 \times 3)=42$. So $63 g$ are chosen: call them rays. Through each $m$ on $Q$ pass three rays, and they are coplanar. If $m$ is $m^{*}$ this is manifest from the prescription of choice, as it is too if $m$ is in $\delta$ or $\delta^{\prime}$. If $m$ is $\mu$ the rays are, say, $m_{1}{ }^{*} \mu m_{2}^{*}, m_{3}{ }^{*} \mu m_{4}^{*}, m \mu m^{\prime}$ and lie in that $d$ through $m \mu m^{\prime}$ that is not on $\mathscr{K}$. So $63 d$ are chosen from among the 135 on $Q$; each contains three concurrent rays. Call the $m$ wherein the rays concur the focus of $d$.

Through any $g$ there pass three $d$; if $g$ is a ray these $d$ are those having the $m$ on the ray for foci. The points of $d$ other than its focus $m$ are foci of those other $d$ which belong to $\mathscr{F}$ and contain $m$; if $d, d^{\prime}$ in $\mathscr{F}$ are such that the focus of $d^{\prime}$ is in $d$ then the focus of $d$ is in $d^{\prime}$. Whenever two rays meet the third line through their intersection and lying in their plane is a ray too. It is these $63 d$, with the 63 rays and foci, that constitute the figure $\mathscr{F}$.

Each $d$ in $\mathscr{F}$ contains, as well as three concurrent rays, a quadrilateral of $g$ that are not rays; thus, by four in each of $63 d$, the $315-63=252 g$ that are not rays are accounted for. Through each such $g$ pass two planes on $Q$ in addition to $d$, but they are extraneous to $\mathscr{F}$. The $135-63=72$ extraneous planes may be labelled $\delta$; the planes above denominated by $\delta$ and $\delta^{\prime}$ are in this category. No $g$ in $\delta$ is a ray and only one of the planes
on $Q$ that pass through it belongs to $\mathscr{F}$ whereas, were $g$ a ray, all three would do so.
5. Label the $m$ in any of the $72 \delta$ by

$$
\begin{equation*}
1,2,3,4,5,6,7: \tag{I}
\end{equation*}
$$

they lie on $g$ that can be taken as

$$
156,246,345,147,257,367,123 .
$$

Through each such $g$ there is a single $d$ belonging to $\mathscr{F}$; label the foci of these $d$, none of which can lie in $\delta$, respectively

$$
1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}
$$

Then those $d$ whose foci are in $\delta$ join its points to the respective triads

$$
1^{\prime} 4^{\prime} 7^{\prime}, 2^{\prime} 5^{\prime} 7^{\prime}, 3^{\prime} 6^{\prime} 7^{\prime}, 2^{\prime} 3^{\prime} 4^{\prime}, 1^{\prime} 3^{\prime} 5^{\prime}, 1^{\prime} 2^{\prime} 6^{\prime}, 4^{\prime} 5^{\prime} 6^{\prime}
$$

Thus the join of every pair of points $I^{\prime}$ is on $Q$ and, there being no solid on $Q$, the points $\mathrm{I}^{\prime}$ lie in a plane $\delta^{\prime}$ whose lines consist of the triads $\mathrm{II}^{\prime}$.

Each of the $72 \delta$ has, it is now clear, a twin $\delta^{\prime}$ coupled with it by $\mathscr{F}$. 'The correlation between $\delta$ and $\delta^{\prime}$ is shown by I and II' or, alternatively, by I' and II. Those $d$ that pass one through each line of $\delta^{\prime}$ have for their foci the points of $\delta$ correlative to these lines; if $d$ passes, say, through $1^{\prime} 3^{\prime} 5^{\prime}$ its focus is the point 5 common to those $d$ whose foci are $1^{\prime}, 3^{\prime}, 5^{\prime}$.

Since, by the construction in $\S 4, \delta$ and $\delta^{\prime}$ determine $\mathscr{F}$ uniquely there are $x / 36$ figures $\mathscr{F}$ where $x$ is the number of pairs of skew planes on $Q$. To calculate $x$ note, in the first place (using $d$ now to signify a plane on $Q$ whether it be in $\mathscr{F}$ or extraneous thereto), that each $d$ is met in lines by 14 others, two passing through each $g$ in $d$. Note next, to ascertain how many $d$ meet a given $d_{0}$ in points only, chat the $15 d$ through a point $m$ of $d_{0}$ project, from $m$, the figure of 15 g in [4] passing three by three through 15 points ([2], §§13-15). Since that on's of these $15 g$ that lies in $d_{0}$ meets six others among these $g$ it is skew $t^{\prime}$ ) eight whose joins to $m$ therefore meet $d_{0}$ at $m$ only; hence there are, through any of the seven $m$ in $d_{0}$, eight $d$ that meet $d_{0}$ only at $m$. Wherefore the number of $d$ skew to $d_{0}$ is

$$
135-1-14-56=64
$$

and there are $\frac{1}{2}(135 \times 64) / 36=120$ figures $\mathscr{F}$. They afford a permutation representation, of degree 120 , of the group of the bitangents.
6. The $120 \mathscr{F}$ are permuted transitively by $\Gamma$. For the $C$ are certainly so permuted, each having a stabiliser isomorphic to the symmetric group $\mathscr{S}_{8}$, and the transitivity of $\Gamma$ on the $\mathscr{F}$ will follow from that of this stabiliser on pairs of skew planes on the section $\mathscr{K}$ of $Q$ by $C$. If $\mathscr{K}$ is regarded as mapping the lines of a solid $\Sigma$ the stabiliser of $C$ in $\Gamma$ is put in isomorphism
with the group of collineations and correlations in $\Sigma(c f .[1], \S \S 18,19 ; \Gamma$ is there used to denote the group of $\frac{1}{2} .8$ ! collineations isomorphic to $\mathscr{A}_{8}$ ). The required transitivity is consequent upon that of the whole group in $\Sigma$ on non-incident points and planes.

## References.

1. W. L. Edge, "The geometry of the linear fractional group LF(4, 2) ", Proc. London Math. Soc. (3), 4 (1954), 317-342.
2. -_, "Quadrics over $G F(2)$ and their relevance for the cubic surface group ", Canadian J. of Math., 11 (1959), 625-645.
3. ——, "A setting for the group of the bitangents ", Proc. London Math. Soc. (3), 10 (1960), 583-603.
4. J. S. Frame, "The classes and representations of the groups of 27 lines and 28 bitangents ", Annali di Mat. (4), 32 (1951), 83-119.
5. J. Tits, " Sur la trialité et cortains groupes qui s'en deduisent ", Institut des hautes études scientifiques: Publications mathénatiques No. 2 (1959).

Mathematical Institute, 16 Chambers Street, Edinburgh, 1.

