m Yujiro Kawamata

The proof of theorem 2 is obt:

ined from the following

Tugorem 3: Let [:X Y be a surjective morphism of non-singular
projective varieties with connected fibers, D a divisor with normal crossing on
Y. such that:

(1) When we write Yy = Y ~ Dand Xy = [(Yo), the restriction fo = fly,is
smooth,

(2) The local monodromies around D acting on R"f ,Cx, are unipotent,
where n = dim X ~ dim

Then, the sheaf f Ky is locally free and semi-pos

ive.

DEFINITION:  Let 7:V =X be a vector bundle over X. V is said to be
semi-positive, if for any morphism ¢:C = X from any curve C and for any
quotient line bundle Q of ¢*V, we have deg Q =0,

Fact I (Fujita): Let V beasemi-positive vector bundle on X andlet L bean
4lmplc line bundle on X. Then V@ L is an ample vector bundle.

Fact2(Kodaira): Let ¥ bea non-singular projective variety and let L be an
ample line bundle on Y. If x(Y) = dim Y, then there exists a positive integer m
such that HY(Y, mK ~ L) #0.

The proof of theorem 3 uses the main result of Schmid: Variation of
Hodge structures, Inv. Math. 22
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CANONICAL 3-FOLDS

Miles Reid

It seems to me that one
cannot get a good view
of the sky carrying a
platter on one’s head.
Ssu-Ma Chien

§-. Introduction

This is a report on the theory of canonical models of 3-folds of fg.
general type, aiming to generalise both the theory of Du Val surface
singularities and some theoretical aspects of the global theory of canonical
models of surfaces. The heart of the approach is the definition of canonical
singularities, which generalises the adjunction-theoretic charactes
Du Val singularities.

The introductory §0 discusses some of the ways in which canonical
3 fold singularities differ from canonical surface singularities - these are the
ts which any eventual theory will have to cover. §1 discusses some of
the formal consequences of the definition of canonical singularities. §2
outlines a theory which gives some hold on the classification of canonical
singularities. §3 and §4 describe important classes of canonical singularities
which can be tackled by means of the toric geometry of Mumford and Kempf;
this is a key technique in algebraic geometry which extends the range of
computability in a spectacular way, and I refer to Danilov(iS] for an
extremely attractive treatment.

contains in_passin nplicit list of singulari
reasonably be called * “imple cllptc- 3fold singularities
s a formula for the plurigenera of 3-folds of f.g. gencral
type, independent of the preceding partial classification of canonical sin-
gularities. §6 contains remarks and further problems arising out of the
prcccdmg sections.

n acknowledgement, I must plead guilty to shameless exploitation of
my research student Nick Shepherd-Barron; several of the key ideas in
this paper originated with him, and in particular the beautiful connection
between rational Gorenstein 3-fold singularities and clliptic Gorenstein
surface singularities (Theorem 2.6) was prompted by his determined and
original attempts to prove Theorem 2.2

which can

s

m
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' All varieties and maps are defined over the complex ground field (1) Adjunction-theoretic. P € X isanormal i such that if

k=C. A linguistic novelty introduced here is a free lincar system to mean s € wyis alocal generator, then for any resolution [+ Y = X, s € wy. thatis, s

a linear system free from fixed components and base points. remains regular on {~' P when considered as a differential on Y (in other words,
P € X is a rational Gorenstein point).

(1) Inductive. P € X is normal, and for any chain X, — - - = Xo= X of

Contents. lengthn =0, in which s,: X, = X,_y is the blow-up of the maximal ideal my, for

some closed point P,€ X;, X, has at most isolated double points; (in

50. Du Val singularities . . . I particular, P € X is a hypersurface double point, and the tangent cone is a
i §1. Definition of canonical singularities . . 26 plane conic, which may be irreducible, a line pair, or a double line).
ti i m This is in fact a powerful algorithmic method for determining whether
53 Taric and cution sinplic 1 = givea sngulurty s 2 Du Yl po
£4. Hypersurface singularites and quasi-homogeneity 2% (I11) Quotient singularities. P € X is isomorphic 1o a quotient singularity
8. The plurigenus formula . . . 0 A[G, where G C SL(2,k) is a finite group.
§6. Open problems and concluding remarks . - . 05 (IV) Quasi-homogeneous hypersurfaces. P € X is_isomorphic to an
References Ce 309 isolated hypersurface singularity 0€ X C A® defined by f(x)=0. with [
quasi-homogeneous with respect o some weighting a, with
§0. Du Val singularities a(x\?x;) =3 atx)-a()>0.
Dernrmion (0.1): A (non-singular, projective) variety V of dimension n is of

J.g. general type if the canonical ring R(V)=@H"(v.m@") is finitely
generated over k, and of the maximum transcendence degree n+ 1. In this
case X = Proj R(V) is birationally equivalent to V, and is called the
canonical model of V.

In this section X will be called a canonical variety, or PEX a
canonical singularity, if X is the canonical model of some V' (compare
Definition 1.1 and Proposition 1.2, (II)). The question studied here is this:
what do canonical 3-folds look like? Global properties will be considered in
§5, but most of the paper will be concerned with the local question, or the
study of canonical 3-fold singularitics.

T

For surfaces it is well known that any canonical singularity is analy-
tically isomorphic to a Du Val singularity, that is to the hypersurface
singularity in A’ defined by one of the following polynomial equations

Table (0.2) u

Apx+yi+z fornzl;
D, x?+ylz+ 2" forn =4;
Egxi+y+2

Xyyz .
Xyt

Turorem (03): The following are 4 characterisations of Du Val sin-
gularities

(For example, x*+ y'42* is quasi-homogencous of weight 1, where
atyn) =1i+i>1)

The four sections 1-4 of this paper correspond to the four parts of this
theorem, and are concerned with trying to generalise the statements o
higher dimension; the fact that all four characterisations lead to the same
surface singularities is however a miracle which we cannot hope to see
continue in the higher-dimensional case. The four characterisations in the
theorem go back in the main to Du Val [1), although the first invariably
appears in Artin’s dual cohomological form R'f+0y =0 (see [2] and (3);
see also Durfee (5]

The following is a list of the difficulties of classifying canonical
singularities; these arise as much from known properties of canonical
3-folds as from technicalities of proof.

REMARK (0.4)
() It is quite inadequate (o restrict attention to hypersurface sin-
gularities; indeed, the quotient singularities X = A/G, with G C SL(3, k)
e examples of Gorenstein canonical points having embedding dimension
dim Ty, = dim m,/m, arbitr: . In fact “typical” examples of 3-fold
rational Gorenstein points are given by the affine cone over a del Pezzo
surfa

ce.

(ii) The Weil divisor class Ky need not be a Cartier divisor: formally
we know that rKy must be an ample Cartier divisor for some r = I. I define
the smallest such r to be the index of X; there are canonical quotient




276 Miles Reid
singularities, first discovered by Shepherd-Barron, having arbitrary index
(83).

ere is a cyclic covering trick (Corollary 1.9) which reduces canoni-
cal singularities of local index r>1 to the r=1 case. It is therefore
Sufficient for some purposes to concentrate on the case that w is locally
free.

(iiiy Canonical 3-folds have in general 1-dimensional singular loci; in
fact it seems to me perverse to distinguish isolated singularitics, since even
in very simple cases non-isolated singularities will unavoidably appear in
the course of resolving isolated singularitics.

(iv) As a technical difficulty, there is no very simple reason why
canonical singularitics should be Cohen-Macaulay in higher dimensions';
the 3-fold case has recently been settled by Shepherd-Barron (361,

(v) Even for hypersurface singularities the simple and elegant in-
ductive criterion (II) above cannot extend as such to the higher dimen-
sional case. For example consider the two hypersurface singularities

Xyttt
and k=lixt+y +2410=0.

These are weighted cones over del Pezzo surfaces of degree k, and are
casily seen to be canonical (Proposition 4.5). However, on blowing up the
maximal ideal of the origin in the first we get a non-normal variety; and in
the second we get @ normal 3-fold having a curve of singularities whose
surface sections are simple ell \eularities. Thus the blow-up need not
be canonical, so that an inductive criterion analogous to (I1) must be more
complicated

§1. Definition of canonical singulat

The appendix to this scction deals with Weil divisors and divisorial
sheaves on a a normal variety X, and introduces the divisorial sheaves
w§1'= Ox(rKx) of regular r-differentials on X.

I have written this paper consistently using the language of the
sheaves o rather than the equivalent language of Weil divisors Kx; the
reader who wishes (o translate some of the definitions or arguments back
into the language of Weil divisors will benefit immensely from the exercise.

Derirmion (L1): A quasi-projective variety X is said to have canonical
singularities if it is normal, and if the following 2 conditions hold:

(i) for some integer r= 1 0 is locally free;

(i) for some resolution f: ¥ — X, and r as in (), few§’ = w¥"

Observe that these conditions are local on X; if they hold in &

"This has been proved in all dimensions by O. Gabber and R. Elkik.
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neighbourhood of P € X, I will say that X is canonical at P, or that P € X
is « canonical singularity; the smallest r for which (i) holds at P is called
the index of PE

If furthermore X is projective and

(i) W is ample,
then X is said to be a canonical variety.

ProrosiTION (1.2):
€X is a canonical singularity if and only if for some integer
= 1wy is generated by a section s € 0¥, such that s € " for a resolution
f: Y =X that is, the r-differential s, when considered as a rational r-
differential on Y, remains regular on a neighbourhood of f~'P.
(ID) X is a canonical variety if and only if it is the canonical model of a
variety of f.g. general type.

REMARK (1.3): Assuming (), (ii) is equivalent to
() lc;(r every proper birational morphism f: ¥ - X, and every s =1,
=0

In particular, canonical singularities satisfy “Kempf's condition”
fawy = wy for a resolution f: ¥ > X, 50 that according to Kempf's duality
argument ([6], p. 44), canonical singularities are rational if and only if they
are Cohen-Macaulay. However, not all rational singularities are canonical,
since (ii') is stronger than Kempf’s condition

Question (1.4) Does (ii)) imply ()?'

To emphasize that the condition in (1) of Proposition 1.2 is readily
calculable once we know a resolution, let me give two examples, which
give a foretaste of results of §3 and §4.

Example (1.5) () Let X CA™" be a hypersurface with an ordinary k-fold
point at the origin 0; then 0€ X is canonical if and only if k = n.

(i) Let X = A"lpu, where gy is the cyclic group of k-th roots of 1,
acting by € (xi,..., %) > (exi,...,€x,); X is isomorphic to the affine
cone over the k-fold Veronese embed P~ then X is canonical if and
only if k = n, and its index is the denominator of nlk.

Computation. (i) Let X be given by f={(xs..... %) =0, s0 that wy is
generated by

been answered negatively by Pinkham; the counter-cxample is one of a type of
studied by Laufer (351,
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A typical picce of the blow-up of A" has coordinates Yo..... 3 With

o= Yo, % = yoy and in this picce the non-singular proper transform X" is
1

gven by ['=y5feye) =0 In tems of the generator

STt S

)e wy we have s = yi L, QED.

(i) Among the coordinate functions on X I pick out the

. N . n i "
monomials uy=xb, ;= xi-x; let = with a and b coprime positive

integers. Write

S=(xa o Adx)* = (const) GUh LA,
this is a rational differential on X having no zeroes or poles, and is thus a
generator of w{.

This cone also becomes non-singular after a single blow-up; coor-
dinates on a typical piece of X' are vy,..., U, With 4, = vy, U= v,0. Since
duy n A du, =vf™(dv, A -+ Adp,) we have

s =(const) - v - (dvy A -+ AdR)",

where a = a(n — 1)~ b(k— 1) = b - a. Thus s remains regular on X" if and

only if b= a, thatis k= n. .E.D.
The proofs of Remark 1.3, of (I) and of the “only if"" part of (II) in

Proposition 1.2 are purely formal, and are left to the reader as interesting

exercises.

PROOF OF “IF~ PART OF (D):  Let V be a variety of f.g. general type. There
exists an r such that the graded ring

R(V)" = @ HAV,o$")
is generated by its elements of the least degree r. Blowing up the base locus
of [rKy| on V, I may assume that

|rKv|=|D|+F,

with F fixed and |D| free.

Let @ = @uxy: V- X be the morphism defined by [DJ; [ will show that
@(F) has no components of codimension 1, so that for some open S
S0 X having complement of codimension =2, @p: ¢(X%)3 X, provi-

n

&

ding an isomorphism of Ox(1) with w% over X°. Thus w§) = Ox(
o’ so that X is canonical. There only remains to prove the following
assertion.

Lemma (1.6):  For every component I of F, ¢o(I') has codimension 22
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Proor:  Write n = dim V. By hypothesis, for every m >0,
H(Oy(mD + ) —> H(Or(mD + )

is the zero map. An easy argument using the Leray spectral sequence for
o shows that h'(Gy(mD)), and with it h(Gr(mD +I) is bounded by
(const)m™?; thus the Titaka dimension k(I Dr) S n =2, QE.D.

The remainder of this section is devoted to some easy but important
formal consequences of the definition of canonical singularities.

ProposiTion (17): Suppose that : ¥ = X is a proper morphism, with X

and Y normal varieties, and suppose that @ is etale in codimension 1 on Y.

Then

(1) if X has canonical singularities, so does Y.

Suppose furthermore that wy is locally free; then
(I1) if Y has canonical singularities, so does X.

Proor:  Form a commutative diagram

with f and g resolutions. Then if s € w{ is a generator, 50 is ¢*s €

For (I) note that if £*s is regular on X then g*(¢*s) = §*f*s is regular on Y.
(11) follows by computing v,(s) for v, a valuation of k(X) in terms of a

valuation vy of k(Y) lying over v,, and having ramification index :

0,(5) =L uCets) — e = 1; e
thus if r=1 and Y is canonical, then v5(¢*s)Z 0, so that the integer
v,(5) 0.

Remark (18): In fact X is canonical if and only if, for every r such that
@ is locally free, generated by 1, say, vs(f) = r(e = 1) for every valuation v
of k(Y), where e is the ramification index of vs in the field extension
K(Y)/K(X). This criterion s of course useless in practice, since one has no
hope of finding every relevant valuation v without first resolving X.

‘A consequence of (II) is that all Gorenstein quotient singularities are
canonical. From (I) we get a cyclic covering trick', which reduces the study
of canonical singularities with r> 1 to the r = 1 case.

Coroviay (1.9): Let P € X beacanonical point of index r; then there exists
a finite cover Y — X which is Galois with group ZIr, and which is etale in

Due independently to J. Wahl.
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codimension 1, such that Y is canonical with wy locally free; the con.
struction is defined locally and uniquely determined up to local analytic
isomorphism.

ProoF: By means of a local generator, identify w§ with Gy, and define in
the obvious way an algebra structure on of = Oy@wi'® - Dw§™; the
finite Zfr-cover ¥ = Specxst X is unramified in codimension 1 because
Wf'@wl!>wlg™! is an isomorphism in codimension 1; Y is therefore
non-singular in codimension 1, and is normal because each of the sheaves
wit!is divisorial, so that s saturated in the sense of (iv) of Proposition 2
of the Appendix. QE.D.

Example (1.10). The Galois tower

Al
N TS X =AY,
S~ Wy

(where the actions of the s, are as in Example 1.5, (il)) shows that a group
action which splits as a direct sum, and such that each factor has canonical
quotient, need not have canonical quotient. Furthermore, since both X and
A'fs have the same index 2, the hypothesis made before (II) in Proposition
1.6 cannot be replaced by “index X = index Y.

Problem (1.11). §2 will give some ideas towards the classification of
canonical 3-fold singularities of index 1; together with Corollary 1.9 this
puts an upper bound on the problem of classification of singularities of any
index r, which can be obtained as quotients of index 1 singularities by a
cyclic group p, whose representation on wy is faithful. However, I have no
very precise idea as to when such a quotient Y/u, will be canonical, apart
from Remark 1.8 and the useful examples in §3.

Canonical varieties satisfy a trivial but important compatibility with
taking hyperplane sections. The reader will excuse the following rather
obscene digression.

LEMMA (1.12) (Scidenberg): ~ Let X C P be a quasi-projecifve scheme over
any field. If X satisfies Serre’s condition S, then so does its general
hyperplane section; if X is a normal variety then so is its general hyperplane
section.

Proor: Let
ZCXxpN

n/\n )

X B
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be the incidence relation Z = {(x, k)| x € h}. p,: Z = X isa P¥"'-fibre bundle,
so that X satisfies S, implies Z satisfies S,. If n € P¥ is the generic point then
the generic fibre Z, of py is also S, because the local rings of Z, are particular
local rings of Z: I conclude by E.G.A. IV, Proposition (9.9.2), (viii). For the
final part one uses Serre’s criterion for normality and the trivial Bertini
theorem.

TueorEM (1.13): If X has canonical singularities then so has its general
hyperplane section

PROOF: Return 1o the incidence diagram (***) above. Since py is a P¥~'-
fibre bundle, Z is canonical; the general hyperplane section Y of X is the
general fibre of py: Z—BY. Now let f: Z — Z be any resolution; the general
fibre ¥ of g =p,f is a resolution of ¥ (by Bertini's theorem), and Y is
canorical by standard adjunction considerations.

CoroLLARY (1.14):  Let X be a 3-fold with canonical singularities. Then
with the exception of at most a finite number of *dissident™ points P € X, every
point has an analytic neighbourhood which is (non-singular or) isomorphic
t0 a Du Val surface singularity X A'.

The point is just that the Du Val singularities have no mod

The results of §5 on global properties of canonical 3-folds are con-
sequences of this result, and do not depend on the attempts to classify
canonical 3-fold singularities in §§2-4.

Appendix to §1; Weil divisors, divisorial sheaves and !

‘This section is intended to be complementary to Hartshorne's book
116 and I11.7.
i-projective variety defined over a field k, and let k(X)
be its function field. Until further notice X is assumed normal. A prime
divisor of X is an irreducible subvariety of codimension 1.

Tueorewm (1): () For every prime divisor I' the local ring Oy is a discrete
valuation ring, with valuation v: k(X)>Z U{~=};

(i) Ox = N\ Oy, in the following 2 senses:

(a) forall P € X, Oxp = ﬂ Oxri

() forallopen U C X, I'(U,0x)= N 0.

PROOF: (8], p. 124.

Sections of Oy are thus rational functions f & k(X) which are regular
along each prime divisor; this is an algebraic form of Hartog’s lemma.

Let # be a coherent sheaf of Oy-modules which is torsion-free and of
rank 1. The generic stalk $@k(X) is a l-dimensional vector space over




282 Miles Reid

Kk(X), 50 that choosing a basis identifics & with a subsheaf of the constant
sheaf k(X).

ProosiTion (2):  Equivalent conditions:

(i) % = %**, where for a sheaf of Ox-modules %, $* denotes the dual
F* = Home, (%, 0x);

(ii) %= 0\ Zr in the sense of (ii) above;

(iii) Ass(k(X)/) = (Prime divisors of X);

(iv) for every inclusion £ C AL where ALis a torsion-free Ox-module and
Supp(4t/%) has codimension =2, £ = M;

(v) if X°C X is a non-singular open subvariety such that X\X° has
codimension =2, then %o is invertible, and = (%), where | denotes
the inclusion.

PROOF:  [7], §4, no. 2, Theorem 2.

A sheaf satisfying these conditions is called divisorial; a Weil divisor
is defined as a formal sum D =S nT', with I" prime divisors, nr €Z, and
almost all ;= 0. If D is a Weil diisor, the subsheaf 0x(D)C k(X) is
defined by

T (U, 0D = {f € k(X) | ur(N) = = nr for all '€ U).

Exactly as for Cartier divisors one has:

Tueorem (3):  The correspondence D s Ox(D) defines a bijection
[w:n di \ors} N { divisorial sub-
on X sheaves & C k(X).

Jrex o,
ProoF: [7], §1, no. 3, Theorem 2.

LEMMA (4 Let P € X, and let D be a Weil divisor on X. Then equivalent
condition
(i) Ox(D) is invertible at P;
(ii) there exists an f € k(X) such that vr(f)=
divisor I with P €T;
there exists a neighbourhood U of P, andy a section
§ € (U, Ox(D)) such that s generates Ox(D) over an open subset V.C U
with codimension (U\V)Z2.

np for every prime

Proor: Trivial

Such a divisor D is called principal at P, or a Cartier divisor at P.
Locally one can always choose 4 Cartier divisor E = D, so that Ox(D) has
an expression Ux(D) = Fr-p. Ox(E) as a product of a divisorial ideal sheal
Fe.p with an invertible sheaf Ox(E); this holds globally if, as here, X is
assumed to be quasi-projective.
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REMARK (5): It may well happen that Ox(D)@0x (D) # Ox (D + Dy); the
Jeft-hand side may have torsion, and it may not map onto the right-hand
side either: let X be the quadric cone X = (x = yz =0)C A’, and let D be
the line (x=y=0); then Ox(~D)=9p and Ox(~ D)IROx(~D)=h,
which is clearly not the same as the principal ideal y - Ox = 2o

It will however always be true that

(Ox(D)® Ox(D)** = Ox(Dy + D),
and this process of taking the product, and then the double dual, is similar
to the procedure of taking the “symbolic power” of a prime ideal in the
theory of primary decomposition.

In the remainder of this appendix 1 will show how to define a divisorial
sheaf wy = Ox(Kx), and set ol = Ox(rKy) = (@f)**.

Suppose now that X C P is an irreducible n-dimensional variety, not
necessarily normal. Set

wx = EXUEH(Ox 0p),
where wpv = Q% = Opv(— N — 1); compare [9), p. 1.
Now let X°C X denote the non-singular locus.
PROPOSITION (6):  @x|X° = 2%IX".

Proor: 9], p. 14 (the two sides can be calculated by means of an identical
adjunction procedure).

Turorem (7):  wy is a torsion-free sheaf of rank 1, satisfying the saturation
condition (iv) of Proposition 2; in particular, if X is normal, wx is a
divisorial sheaf.

PROOF (compare (9], p. 8): (a) wx has rank 1 at the generic point, according (o
Proposition 6.
(b) wx is torsion-free; for if & C wy is a torsion part, dim(Supp F) =
-1, 50 that H*(%) = 0, and hence dually Hom(%, wx) =0, so that # =0.
(©) Let wx C %, with dim(Supp Flwx) = n - 2; then H*"(Flox) = 0,and
hence H"(wy) = H*($)= k. By duality | obtain a'non-zero element of
Hom(%, wx), which provides a splitting of the exact sequence

O uf s F—rFlox—0,

and since & was supposed torsion free, Fux = QED.

COROLLARY (8): Suppose that X is normal then
wx = (230 = julwy) = 2x = Ox(Kx),

where G) j: X" X is the inclusion of the smooth locus, or more generally
of any smooth part of X having complement of codimension Z2;
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(ii) £y is the sheaf of Zariski differentials regular in codimension 1 (see
[10), Proposition 8.7):

(U, ) = {s € Dix,| s € 2% for all prime divisors I'C U};

and (iii) Ky is the Weil divisor class corresponding 10 the sheaf wy under
Theorem 3 above, or the class constructed below.

For each prime divisor I' of X the stalk 0% is the Oxr-module
generated by sr=dx, A -+ A dxa, where x, is any local parameter of Ox,
and xa...., %, € Oy are elements whose residues in k(') form a separat-
ing transcendence basis. Thus for any rational differential s € Qfx, there is
2 unique integer vr(s) such that

s = (unit)  xir - sy,

and the divisor of s is the finite sum
©)=3 o)

then Kx ~(s).

As a coda to this appendix I include two remarks on the non-normal

ase.

Firstly, the structure sheaf Oy has a natural saturation in the sense of
condition (iv), Proposition 2, consisting of rational functions f € k(X)
which belong to Oy in codimension 1 it is natural to call this the Syisation,
$:(0x),

Ox C $x(6x) C O,

since Sx(X) = Spec(Sx(0x)) = X is the unique finite morphism which is an
isomorphism in codimension 1, and such that S,(X) satisfies Serre’s con-
dition 5. A consequence of Theorem 7 is that wy is an Sy(0x)-module and
coincides with 7ywsgx. Thus in discussing wy there is little loss of
generality in assuming that X

Secondly, there is a sense in which the computation of wc for a curve
C in terms of Rosenlicht differentials (see [11], p. 76) determines wx on any
quasi-projective variety. To be precise, X has a linear section which is a
reduced curve C (Lemma 1.12), and such that at each point P €C the
equations X, .., X,; of the lincar section C C X form a regular sequence.
In a neighbourhood of P € X one can then construct an isomorphism

ax @000 (_)

denoted s—> Resc(ﬁ)‘

and constructed as follows: let X = X, D X, 4D -+ D X, = C be the chain
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of local divisors defined in turn by Xi,...,X,i; each Xi is a Cartier
divisor in X, locally defined by x,., = 0. Then the construction of 9}, p. 7
provides a “residue” isomorphism

ox(Xi)@0x_ —>wx
which can be fitted together into an isomorphism

Resc: wx(D)®0c—wc,

where D is the Cartier divisor defined by Xi* ;... X,.i. (*) is then

obtained by composing this with wy - wx(D), given by s It is then
xi

easily seen that wx is uniquely determined as the sheaf of rational
differentials on X whose residue (in the sense of (*)) belongs to wc for
every sufficiently general section C.

§2. Inductive treatment of 3-fold rational Gorenstein points

DerNTION (2.1): A point P € X of a 3-fold is called a compound Du Val
point if for some section H through P, P € H is a Du Val singularity
Equivalently, P € X is DV if it is locally analytically isomorphic to the
hypersurface singularity given by

frig=
where f€klx,yz] is one of the polynomials
g €k[x,y, 2, 1] is arbitrary.

A ¢DV point point may be isolated or otherwise. It will be shown
below that it must be canonical.

As pointed out in Remark 0.4 (v), the blow-up of a canonical 3-fold
point need not be normal, and if it is normal need not be canonical
However, if f: Y =X is any proper birational morphism with ¥ normal
*wx then Y is also canonical (this

ed in Table 0.2, and

an casy consequence of Proposi
Frux = wr(=4) (or Ky = {*Kx +4), with 4 = A(f)=0 a Weil divisor, the
discrepancy of f; a prime divisor of f'p which occurs in 4 with strictly
positive coefficient is called discrepant, and one not occuring in 4 is called
crepant.

Tnkore (22): If P € X is a canonical point of index | which is not cDV
then there exists a proper birational morphism f: Y = X with
() f is crepant, that is f*ax = @y, and

(i) P contains at least one prime divisor of Y.

This theorem will be proved here using the fact [36] that PEX is
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Cohen-Macatlay; on the other hand, Shepherd-Barron (who gave a proof
under extra conditions) points out that the result implies that P € X s
Cohen-Macaulay, using the Grauert and Riemenschneider vanishing
theorem [27).

The fact that the inductive process must terminate follows from this easy
result:

LemMA (23): Let P € X be a canonical point of index 1; as f: Y = X runs
through all proper birational morphisms to X, the number of crepant prime
divisors of Y is bounded.

ProoF: Let 7: X > X be some resolution; then by Hironaka's resolution
theorem every ¥ — X can be house

' X\
X v Y
R X
under a blow-up X of X. Every crepant prime divisor of ¥ must then lic
under a crepant prime divisor of X. But the exceptional divisors of the
blow-ups in XX are certainly discrepant, so that the crepant prime
divisors of ¥ can be mapped injectively to those of the fixed X. QE.D.
Recall that a variety X is called Gorenstein if it is Cohen-Macaulay
and the sheaf wy is locally free. I will assume from now on (see [36]) that my
index 1 point P € X is Cohen-Macaulay; this assumption will always be used
in the form that a hyperplane section H through P having an isolated

igularity is normal. To say that P € X is Cohen-Macaulay and canonical of
index 1 is equivalent to saying that P € X is rational Gorenstein.

DEFINITION (2.4): A Gorenstein point P € X of an n-dimensional variety
X is rational (rcsnccllvcly ellptic) if for a resolution f: ¥ =X we have
fawy = wy (respectively - wy, where my is the ideal of P).
(This. i cquivalent via duality to the cohomological assertion
R*'f, 0y =0 (respectively, is a I-dimensional k-vector space at
It is convenient to make intrinsic (and generalise slightly) the notion of
“a general hyperplane section through P:

DEFINITION (2.5):  Let (xp, mp) be the local ring of a point P € X of a
k-scheme, and let VCm, be a finite-dimensional k-vector space which
maps onto my/m} (equivalently, by Nakayama's lemma, V generates the
Oxp-ideal my); by a general hyperplane section through P is meant the
subscheme H C X, defined in a suitable open neighbourhood X, of P by
the ideal Oy -v, where v € V is a sufficiently general element (that is, v is a
k-point of a certain dense Zariksi open U C V)

Canonical 3-folds 287

THEOREM (2.6): (I) If P €X is a rational Gorenstein point (with n =
dim X 22) then for a general hyperplane section H through P, P € H is
elliptic or rational Gorenstein;

(I1) if there exists a hyperplane section H through P such that P € H is
rational Gorenstein then P € X is rational Gorenstein; in particular cDV
points are canonical.

ProOF:  The fact that the Cohen-Macaulay condition passes to and from a
hyperplane section is obvious; the fact that wy is locally free if and only if
wy is locally free follows from the residue isomorphism

wx(H)Q0n — wp,

S0 that if wy is generated by s at P, wy is generated by kes,,(h where

h €0y is the local equation of H.

For (I), let o: X, X be the blow-up of P €X, and let g: ¥ - X, be
any resolution; by construction of the blow-up mp -0y, is an invertible
sheaf of ideals and the same continues to hold for Y, so that my -0y =
0y(~ E). Under these conditions the Cartier divisor E on Y is called the
Strong geometric fundamental cycle of the resolution f =g o Y

As the hyperplanc section H through P runs through any linear
system whose local equations generate my, f*H = L+ E, where L runs
through a lincar system on Y which is free near f'P. Thus by Bertini's
theorem a general L is a resolution of the corresponding P € H.

fH=L+ECY
|r
H c X

Since X is canonical, the generator s € wx remains regular on Y3 &

generates the sheaf wy(H). At any point of Y, h factorises as h=¢"e,

where

alocal equation for L, and e one for E. Thus if a € mxs, 4 = 57,
and since a vanishes along E, % is a regular section of wy(L). It follows
that for any clement @ € myz, the product &+ Resy (£) of @ with a
generator of wy remains regular on L, @ - Resy (l') Res, (“ )Em, Thus
e - on C fawn C QED.
(I1) follows (rom one of the main results of Elkik [14], Theorem 4, p

146, once I observe that X is a flat deformation of the variety H X
which has rational singularities.
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LEMMA 27):  Let X be an affine variety, and H a hyperplane section of X ;

then there exists a flat family X~ A' having fibres X, =X if 1%0, and
0= H XA,

PROOF: If X C A is given by the ideal I = I(X)C K(T,...., Ty], with H
the hyperplane T 70 let @: k(Ty,..., Tu]=>K[S,,..., Su.i] be given by
TS, for is N +=> SySwais it is then easy to check that the ideal
JCKIS,,..., Sl gm:mled by @(I) defines a variety X C AN, with a
morphism to A' given by Sy.,, having the required property.
It seems worthwhile to illustrate Theorem 2.6 with a summary of the
imensional cases.

Table (2.8):

rational Gor.

elliptic Gor.

node or cus
Laufer-Reid

non-sing. point
Du Val point
this paper

Theorem 2.6 is extremely strong, due to the fact that elliptic Goren-
stein surface singularities form an extremely well-defined and tightly con-
lass of singularities: see [13], where they are called “minimally
or my unpublished manuscript (12]. The following is a summary
of some results of[!z] 1nd [13]; (see especially (13], Theorem 3.13, p. 1270
and Theorem 3.15, p.

PROPOSITION (2.9):  One can attach a natural number k =-Z2%, k=1 to
each elliptic Gorenstein surface point P € S, in such a way that

() if k=2 then k = multy S;

Gi) if k=3 then k = minimal embedding dimensi mplm; if
k=3 then the blow-up S, of (the reduced point) P in S is a normal
surface huung only Du Val singularities.

)/ then P €S is isomorphic to a hypersurface given by
x4 gy, z) 0, with f a sum of monomials y*z* of degree a +b = 4; if a is the
weighting a(x) =2, a(y) = a(z) = | then the a-blow-up (see §4) S, S is a
normal surface having only Du Val points.

If k=1 then P €S is given by x*+y*+f(y, 2), where f is a sum of
monomials yz* with a =4 and z* with a = 6; if a is the weighting a(x)=
2, a(2)=1 then the a-blow-up S, is a normal surface having at
most | Du Val point.

The given blow-up o: 5, S has the following effect on the canonical
sheaf: ws, ~ 20, where Z,is the geomric fundamental eycl for o
that is. Z, is a Cartier divisor, and for k=2 my -0, 2), so that Z,
is the strong geometric fundamental cycle. If k =1 then there is a point
QEZ,, non-singular on Z, and on S, such that mp-Gs,=m}N Iz,=
- 2)
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The assertions about the weighted blow-up of the k =2 or k = 1 points
are not in (12] or [13); morally they should be proved by relating the
weighting a 10 the higher adjunction ideals 4, C G (that is, the ideals 5,
such that fyw§" = 4, w§", where f: ¥ = is a resolution), and proving
general results about the “relative canonical model” Projs(@®J,). However,
as a practical alternative they can be proved case-by-case by performing
the a-blow-up on each of the k =2 or k = 1 points, listed in [12] or [13], p.
1290; this amounts to making a projective transformation, one affine piece
of which is given by setting

and deleting the unwanted factor 2" or 2* from the resulting equation. For
e k=2 points can also be described as the ordinary blow-up
followed by normalisation.
The assertions about the canonical sheaf and the fundamental cycles
follow casily from similar results for the minimal resolution (see [12],
and compare [13], Lemma 3.12, p. 1268).

4,

CoroLLARY (2.10): To a rational Gorenstein 3-fold point P € X one can
attach a natural number k=0 such that
1 [the general section H through

k=0esPEXisacDV point s (15 K00 Val point P € H.
: the general section H through P has an elliptic Gorenstein point
P € H with invariant k. In particular,

) if k=2 then k = multy X ;

Gi) if k =3 then k+1 = minimal embedding dimension = dim mg/m’}.

If k=2 then PEX is isomorphic to a hypersurface given by
x4 (y,2,8) = 0, with { a sum of monomials of degree =4; if k = 1 then P € X
is given by x*+ v+ f(y, z,£) = 0, where f = yf\(z,1)+ fx(z, 1) and f, (respec-
tively f,) is a sum of monomials 2°1° of degree a+b =4 (respectively Z6).

The next result is a precise form of Theorem 2.2.

THEOREM (2.11): Let P € X be a rational Gorenstein point with invariant
k=1, and let o: X,~ X be defined as follows: if k=3, o: X,>X is the
blow-up of (the reduced point) P. If k =2 or 1, choose coordinates so that
P € X is the hypersurface point in A* given by an equation as in the last
sentence of Corollary 2.10; let a be the weighting

k=2 alx)=2,a(y)=a@@)=al)=1

k a(x)=3,a(y)=2,a(z)=a(n)=1

or

and let o: X,~ X be the a-blow-up (see §4).
hen X, is normal and Cohen-Macaulay, and o*wy = wy, so that X,
is again rational Gorenstein.
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The blow-up X, ~ X has a geometric fundamental cycle E; which
tier divisor; in case k =2, E, is a strong fundamental cycle, because

ates the blow-up of my. If k=1 the reader can check by writing
down the equations of the a-blow-up that E, is still a Cartier divisor,
although now only a weak geometric fundamental cycle (that is,

is a sufficiently general section through P then
o*H = H, + E,, where H, is a Cartier divisor, and the restriction o: H,~ H
is the standard blow-up of the elliptic Gorenstein point P € H referred to
in Proposition 2.9. Because H, is relatively very ample and is itself normal
(by Proposition 2.9) it follows that X, is normal except possibly at a finite
number of points. I now want to prove that X, is Cohen-Macaulay at each
point of Ey; this is obvious for the k=2 or I points, since X, remains a
hypersurface. For k=3, P € X is a Gorenstein point having embedding
dimension k+ 1 and multiplicity k: it follows from the main result of Sally
(20] that the tangent cone E; is Cohen-Macaulay, and hence so is X;.

The assertion o*wy = wy, is now a simple consequence of the last
paragraph of Proposition 2.9 and the technique of proof used in () of
Theorem 2.6. The equation h € m, of the general section H through P
splits locally on X, as h=h, - e, where h, defines H,, and e defines E,.
Now Hy~ H is the standard blow-up, and the restriction to H, of the cycle
E, is the fundamental cycle referred to in Proposition 2.9. Now let s € wy

be a local generator near P; the generator Resy (h)e i, when considered
as a rational differential on H,, generates wy,(Z)), according to Proposition

29. Thus by the adjunction formula - must generate wy(Z;+ H) in a

neighbourhood of Hy; but Z,+ H, = o* H is the divisor defined on X, by h,
50 that s must generate wy, in a neighbourhood of H,. Since Hy meets
every component of o~'P, s can have no zeroes on X,, proving the
theorem.

CoroLLARY (2.12): If X is a 3-fold with rational Gorenstein singularities
then there exists a partial resolution f: Y —X which is proper and bira-
non«l such tha

() f is crepant, f*wy = wy;
(i) Y has only cDV mgummm.

1 do not wish at present to go into the various interesting questions
concerned with resolving cDV points: for many purposes it seems natural
10 leave them alone! However, merely the existence of a crepant ¥ =X
with Y having only hypersurface singularities implies that the local in-
0t (~c;- 4) defined in §5 is zero for P € X rational Gorenstein (sce
Corollary 5.6).
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ProrosiTiON (2.13):  Let P €X be a rational Gorenstein point with in-
variant k= 1; let T = Txp be the projectivised tangent cone if k=3, or the
a-tangent cone if k =2 or 1. Then T is a (generalised) del Pezzo surface, in
the sense that it satisfies the following host of conditions:

(i) Tis a 2-dimensional Gorenstein scheme;

(i) the dual invertible sheaf to wr is ample, w} = Or(1);

(iii) h'(Or(m))=0 for all m, and

ifm<0

KOOz (m)) = m -
1k(7) form=0;

) form the graded ring R = R(T. %) = & H(Or(m));
then if k = 3 Ris generated by its elements of degree . If k =2 (respectively
k=1) ther
R =kx, y,z.0)If
where x, y, z, t and { have the weights 2, 1, 1, 1 and 4 (respectively 3,2, 1,1
d 6).

(v) the reduced irreducible components of T are projectively normal
ces of degree a—1 or a in P*, and in particular are either rational or
elliptic ruled surfaces.

Sketch proof. The affine tangent cone remains Gorenstein according to
Sally [20]; then T is Gorenstein with o or some m, as follows
from the main theorem of Goto and Watanabe [22). The fact that m = —1
then follows from the adjunction formula: T C Xi, with Ox(T)®0r =
0r(-1), and wx, = 0*wx, 50 that wx,®0r = Or

‘The remaining assertions depend on similar assertions for the tangent
cone to an elliptic Gorenstein surface singularity, which follow by con-
sidering the minimal resolution, as in [12] or [13]; in particular it is easily
seen that every component of the projectivised tangent cone to an ellip
Gorenstein point normal rational or elliptic curve, or a nodal or
cuspidal rational curve embedded normally. QE.D.

COROLLARY (2.14): Let P € X be a rational Gorenstein point; then there
exists a resolution f: Y - X such that {' P is a union of rational and ruled
surfaces.

For the partial resolution f: ¥ - X of Corollary 2.12, /' P is a union of
rational and elliptic ruled surfaces by (v) of Proposition 2.13; but Sing ¥ may
contain curves of positive genus above P.

§3. Toric and quotient singularities

In this section I review some notions of toric geometry, and give criteria
for toric varieties to be canonical; for more details of the definitions and
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properties of differentials on to ieties see (15]. Toric methods have
appeared implicitly in the last section in the form of weighted blow-ups,
and they will play a crucial part in §4; a more immediate aim is the proof of
the following result, which was suggested by some examples of Shepherd-
Barron, who also proved the theorem in a particular case.

Tueorem (.1): Let G C GL(n, k) be a finite group acling lumarly on A",
Suppose that G has no quasi-reflections, so that the map A" ~>A"G = X is
etale in codimension 1. en X is canonical if and only if [nr every element
£€G of order r, and € any primitive rth root of 1, the diagonal form of the
action of g is

g1 x;—— €, such that 0= ¢, <r,
with % a,

r

X is Gorenstein if and only if 3 mod r, in which case

REMARK (3.2 0
n 1.7, (I1). (This is a theorem of

it is already canonical by Propos
Watanabe and Khinich, [31] and [32)).

By Remark 1.7, the condition for X to be canonical can be expressed
in terms of the ramification of valuations vs in the field_extension
K(A™/k(X); standard ramification theory (see for example (7], p. 284,
together with the fact that the ramification group must be cyclic in
characteristic 0) then reduces the condition to the cyclic subgroup R,, C G.
Thus for the proof of Theorem 3.1, which I defer to the end of this section
(Theorem 3.9), I can assume that G is an Abelian group acting diagonally.

et M =2, and for m =(m,,...,m,) € M write x" for the monomial
x™ =Tx[* € k[A"). The action of a diagonal group G on A" is given by a
homomorphism

a: G— Hom(M, Gy),
so that g € G acts as x™ > a,(m) - x™. The invariant monomials are x*, with
m & M. where M C M is the sublattice of finite index

M:nKem,cM.

Let ch. be the first quadrant 20 for each i). Then A" =
Spec k[or N M), and X = Spec k[o' N M] with A" X corresponding to the
inclusion of the exponent semigroups o N M C o N M.

Quotients A"/G by an Abelian group acting without quasi-reflections
correspond precisely to simplicial toric varieties: if o C My is a rational
n,ml cone, then there exists a unique overlattice M D M such that
L), with {¢} a basis of M, and such that the following con-

ition holds
forevery i, M =M+ Z- ¢ ®

this condition corresponds o the fact that G has no quasi-reflections.
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Now let M be any lattice of rank n, and let o C My be a cone spanning
My set X =Spec k[oNM]. X contains a big torus, TCX, with
T = Spec k[M]=G3. For every wall 7C , o — 7 is the half-space of My
containing o and bounded by 7, and the corresponding variety X' =
Spec k[( - 7) N M] is isomorphic to A'x G, with T C X" C X. The com-
plement X\T is a union of prime divisors I, and the generic point of I'
corresponds to the last remaining coordinate hyperplane in X* = A'X G
Thus to check the regularity of a dlﬁ:renlml on X it is sufficient to know it
on T, and to check at cach prime X',

For {m,,....,m,}CMa

tial

dxm
M-®Z m
does not depend on the choice of {m,,...,m,}, and is a generator of the
Or-module wr.
LemMa (3.3): x"s"€ I(X, w¥) if and only if for every 1€ Walls() we
have

mer-Int(o—1)N M).

Proor: If I set M, = Span(r) N M, and let m, € (o — ) N M be a comple-
mentary clement, then the semigroup (o — ) 1 M decomposes as (m) X Mx.
The discrete valuation ring Oxr, then has x™ as a local parameter, and
x™ is a unit for m € M,. Thus taking a basis m, ..., m, of My, I can write

QED.

rineNM)= N reInt(e - 1) N M);
. 1-Tnt(e N M) = Int(@) N M. Let A C k[ N M) be the
m € r-Int(e N M). Then the map

note that for r =
ideal generated by x’

A — (X, 0¥
given by X" — xs*
is an isomorphism. Compare Danilov [15], §4.

CorOLLARY (3.4): w§! s locally free if and only if the semigroup ideal
r-Int(e N M)C o N M is principal.
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f.) be any basic cone with o'Do; then

A", and has a birational morphism X"~ X defined by
the inclusion 7 ) M C ¢” N M. A resolution /: ¥ = X can be made by glucing
together such affine constructions as o” runs through a fan of cones (sce
(15), 11, §8). Since for a basic cone o' =(fi,...,fu), r-Intlo’ N M) is the
principal ideal generated by r(f+ -+ - +£,), I get the following result.

CoroLLARY (35): X satisfies the condition
if, for every r= 1, and for every basic cone o’

) of Remark 1.3 if and only
1o fa) With o' Do we

r-Int(e N M)C r-Int(o’ N M) = r(fy+ -+ + f,) + o' A M.

f this amounts to Int(e'N M) C Int(o’ N M), which is
ally satisfied, the next result follows.

tri

Cmmu ARY (3.6): If X is toric then for every proper birational morphism

> X, fawy = wx. In particular if X is Gorenstein then it is canonical.

Tms 4150 follows from the fact that toric varieties are Cohen-Macau-

r.\ysé[‘u] §3) and rational ((15), §8) by using Kempf's duality argument (6],
p. 50).

Now assume that o is simplicial', and let M C M = Z* be the overlat-
tice in which o becomes basic, o = (e, ..., ,), with {&} a basis of M and
condition (*) satisfied. .

Lemwa 3.7): w§ is locally free if and only if r(e,+ -+, € M.
PROOF: o has walls 7, given by m, =0. Furthermore, according to (*) cach
Int((o ~ ;) N M) contains an element ¢ +2 ae;; by adding an element of
701 M I can even assume that each 4,2 N for any chosen N €Z, 50 that
for each i, r-Int(o N M) contains a vector re; +2 b If m=Sme is a
generator for the ideal rInt(o N M) it follows that each m, = r; the
equality the other way is trivial, so that the only possible single gcncralor
of r-Int(c N M) is r(e,+ - +e,). Q.E.D.

! The general case is covered by the following result, kindly communicated by Danilov.
THEOREM: Let M bea lattice, o C My a cone, and set X = Spec klo N M), Let N be the dual
tatice, 30d & C Ny he dul con; it 1-SkG fo the et of prmitive @ € 51N such that
7= (a =0 is a wall of .

s iocatly e torsome ifand onlyif there exists f & Mg such that, considering f a5
a linear map f: N Q.

fr-se

(1) X is canonical if and only if furthermore
oo 1.
The proof s similar to that of 3.7-39.
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CoroLLary (3.8):  Suppose that wY' is locally free; then X is canonical if
and only if, for every basic cone o' = (fi,.. ... f) D o, with {f}} a basis of M,
we have

(et He)=(fit - +f)ET"

PrOOF: The condition in Corollary 3.5 can be rewritten

Mot +e)toNMCr(fi+: - +f)+o' M QED.

Now let N = M* be the lattice dual to M; N consists of linear forms
a(m)= qm,, with ¢, €Q and a(m)EZ for every m € M. Dual to o we
have the positive quadrant & = {a | ;= 0 for each i}.

The following criterion is equivalent to Theorem 3.1 for Abelian G.

Theorem (.9 X is canonical if and only if for every non-zero a €
GON we haveale,+--+e)=3q Z 1.

Of course this condition need only be tested on primi
cube,

e a in the unit

PROOF: Given any primitive vector a € ¢ (N, I can extend it to a basis
f1,....f% of N lying in . The dual basis f,, ..., f, spans a basic cone

o', and every such basic cone o arises in this way. But e~ fi €0’
is the assertion that for each i we have f}(Ze—2f)=0; that is,
e+ +e)zl QED.

ExAMpLE (3.10): The “Shepherd-Barron node™ X, = A’lu,, where p € s,
acts by
-

(x, 3, 2)—>(px, py, p""'2),

£ acts with eigenvalues e"

is a canonical singularity of index r; for p =
et and k+k+(r-kzr

These singularities nclually occur as the only singularities of a general
weighted hypersurface (1,1,r—1,r,7); (see [17) for the tech-
niques needed o justify this memnn) Tlm is a zfold with canonical
singularities, and wx = Ox(k), with k =dri~dr=3r=1; if k21, X is a
canonical 3-fold; we have

=dr(r= O)KIP(r= 1) = dk’lr,
and since k = ~ 1 mod r, the invariant K defined in §5 is a rational number
which can have arbitrary denominator.

ProBLEM (3.11):  Give necessary and sufficient combinatorial conditions
ona sequence of integers (by,. -, bi: @, . - dssns) fOr the general weighted

Considered independently by J. Wal.
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complete intersection

X 0 C (@1 Ginir)
to have canonical singularities. This condition might resemble (***) in

Theorem 4.5,

§4. Hypersurfaces and quasi-homogeneity

Let XCA" be a hypersurface, P € X, and let x,,...,x, be analytic
coordinates on A" around P; near P, X C A" is given by an equation
g=gx

1 will use the following notations: M = 2, with {e} the natural basis;
meM Lurrs\pond~ t0, and is sometimes identified with, the monomial x™,
wit he first quadrant is o C Ma, N is the dual lattice to M,
GCNa is the dual firt quadrant, For m=3meEM and a=
(@n....4) € No, a(m)=X mg. 1 will abuse the notation by writing
a(x™) = a(m) for a monomial ", and extend the definition of a o the
whole of K[xi,.....x,] by setting, for ¢ =% g

n1g;=mr(a4m)|a,,su)

For example, if « = e¥ then a(g)=1 if and only if g vanishes along the
coordinate hyperplane x; =0 to multiplicity 1.

THEOREM (4.1): The following is a necessary condition for X to have
canonical singularities:

forall PEX,

for all analytic coordinates x,
() | forall a €3N No, with a# ge?,

a(%) S .- al@)>0.

. X, around P,

Itis Mlcn useful to make an obvious normalisation, and (o assume that
fonally assume without warning that ¢, = - - 2 q,

CONJECTURE (4.2):  The condition (*) in Theorem 4.1 is also sufficient,
that is

[ there exist analytic coordinates.

PEXis }mmm exists o € G (\No, a# e¥, withale,+ -+ +e) =1,
non-rational

| such that a(g)

The condition certainly implies that X is “naively canonical” in the
sense that X has multiplicity mult, X < 7 along every subvariety ¥ C X of
r (for any r =2); for at a general point of Y, ¥ can

dimension dim Y = n -
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Lot o
be given by x,= - - = x, =0, and setting a = (e + -+ ¢%), the condition

a(g)< 1 holds if and only if multy X <
The next result is a feeble Appmxlmn\vun to Conjecture 4.2.

PropOSITION (4.3):  The hypersurface X C A" defined by g = 3, xt' =

a canonical singularity at 0 if and only if 3 o

The proofs of Theorem 4.1 and Proposition 4.3 are both based on the
notion of weighted blow-up, which is a particular case of the toric mor
phism defined by a subdivision of a fan (see [15], §5). Let a €6 N Nq And
let d be the least denominator of a, so that da € N. For cach i =
(later for clarity I will take i = 1) o; C Mg denotes the cone

0 for each j# i}.

o, ={m | a(m)=0, and m;
If a=e* then o;=0, so that the construction will be trivial. Set Z =
Spec k{, N M], and let ¢,: Z — A" be the birational map corresponding to
MM Co,NM;for i = 1=n, the ¢ glue together into a projective mor-
phism : Z = A", the a-blow-up of A"

It is easy to give a toric description of the weighted projective space
P(a), and to check that Z is none other than the normalised graph of the
rational map A" —— P(a) which makes A"\(0} into a G -bundle

Write E C Z for the exceptional locus E = ¢™0 (¢: E —P(a) is a finite
coven): in Z,, E\= EN s the stratum of Zy corresponding to the wall

79C ¢, given by a =0 (see [15], §2.5). If mo€ M is such that da(mq) = |

then x™ is a local parameter of the discrete valuation ring Oz, and
ve(x)) = date). Note that the reduced E is not necessarily a Cartier divisor,
although in Z,, x, is a local equation for da(x)): Ei.

7 contains 2 kinds of coordinate hyperplanes: the proper transforms
(x = 0)C A", which is Z\Z, and E itself; the intersection () Z; = Zg is a

neighbourhood of the generic point of E, and any monomial x™ with
a(m) =0 becomes a unit when restricted to Z,

Now let da(g) = ¢, and suppose that X is irreducible and not con-
tained in any coordinate hyperplane of A" if 1 write g = (x™)°g’ then g’ is
unit in O, and defines the proper transform X" of X in Z,

©*X = X"+ cE.

X" will in general not be a Cartier divisor on the whole of Z.

PrOOF OF Theorem 4.1: | will assume thal a(e,+---+e)=1 but

" The method of e with respect o
o e vens of Koushirenko{S8] sompare (371, Thearem 3.1
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a(g) I, thatis ¢ = d, and deduce that X is not canonical. Let s be the usual
basis of wy (as in §3). so thal e is based by x,...x,s @
t=g " x..x s generates wa(X). If I show that ¢*t has E as a polc on Z
when considered as a rational section of w,(X"), then X is not canonical;
indeed. 1 will be of the form 1 =1u- v, where u € wp(X") is a
v €07 has a zero along E. The Poincaré residue of ¢ is then a product of
Resyu, which bases wy by the adjunction formula (i9]. p. 7). and the
restriction of v™!, where v € Ox. is a non-unit; note that this argument does
not assume that X' is normal

w is generated near E by x™- s, so that x,...x, - s, considered as a
differential on Z, has divisor of zeroes ¢E, where ¢ = da(x,...x,)~ 1=
d-1; hence it generates w,(~eE), and ¢*f generates w,(¢*X — eE) =

wz(X"+ (¢ = €)E). Under the hypothesis ¢ = d,
c-e=c—(d-1)>0,
showing that ¢*f has a pole QED.

1
a
up as above. It will follow from Lemma 4.4 below that X" has the following
two v

(i) X" is norn

(i) there exists a resolution £: ¥ = X" with fuwy = wx

In view of (i) and the computation in the proof of Theorem 4.1, the
generator of wy, which is the Poincaré residue of 1, lifts to a regular
differential on X'. Combining this with (ii), X is canonical. It remains to
prove the following result

PROOF OF PROPOSITION 4.3 Let a = 3, — e%, and carry out the a-blow-

LeMMA (44): X' is toroidal.

PROOF For each j# 1 (for clarity I will later take j = 2), write
= by, and a,= G,

with b, and c, coprime integers
i%xf1, which is a coordinate function on Z;. On Z,, X" is

1t follows that at each point of X’ one of the z, is non-zero. say =% 0.

Let Zi. ={P € Z,[ ;7 0}, and X3 = X' Z,1 be a typical piece of X';
then there is a decomposition M = M, X My, with M, the 1-dimensional
lattice by (~bs.¢:.0.....0). and M: a complementary lattice, which
induces a decomposition

Z12=Gax Y
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with Y the toric variety corresponding to o (1 My 2, is the coordinate in
G Now X3C Z,, is given by the equation

SN

and since on this picce z; never vanishes it follows that the restriction of
the second projection Z,,~ Y is an etale morphism X; > QED.
There is no doubt that Conjecture 4.2 is true, at least in the case n = 4
Here are two (related) ideas for its pmof Firstly one can make a list
hierarchical order) of all g which satisfy (*), and show that this list s
the inductive property analogous to I)\c(\rcm 26. Indeed, it is casily seen
that for any g satisfying (*) and not defining a cDV point, one of the

.1, 1), and leads to a variety X' which again has only
ities: to prove the conjecture one has to show that for
singularities of X' are either cDV points or points
oceurring earlier in the list. Although this is a perfectly feasible program, I
have only scratched the surface; apart from the fact that the effort
involved in making the list seems to be about 10 times that required for the
nalogous lists of elliptic surface singularities (see the tables in [12] and
(13]), a more serious difficulty is that there do not seem to be any checks to
climinate errors—in the surface case the equations of the singularities and
the shape of the resolution (a configuration of curves on a non-singular
surface) both it into nicely controllable hierarchical patterns.

The second possible proof of Conjecture 4.2 is to try to prove directly
that in making the appropriate a-blow-up X' X, condition (*) for X
implies (*) for X'; for some fixed set of coordinates on X, and the
coordinates on X' resulting from the toric description of the a-blow-up,
ths is trivial. What is therefore required is some theoretical understanding
of which analytic changes of coordinates on X' are relevant to (*), and
which of these come from changes of coordinates on X.

1 conclude this section with a discussion of the combinatoric condition
in (). This condition is formally similar to the numerical condition for
stability of a hypersurface X CP" of given degree under the action of
PGL(n) (see (23], pp. 48 and 80, and also [24]). As in that theory, it should
be possible, for combinatorial reasons, to write down a finite set {aj}ic; of
@ €6 N N with ae,+ - +¢,) = 1 which have the same effect as all a.
that is:

forall « € G N\ N with a(e,+ -+ e,)
%) L there exists an i € I such that
amz13amz1joraimeonn

For n=2 and 3 this blessé
A={,

purpose is accomplished by the sets

o
1D L DG DU, 1,0k

and
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this explains the significance of these weightings for surface rational and
elliptic singularities; the first component of A is casily characterised as the

set of solutions of 3 H

Tueorem (4.5):  For n =4, the following set A, satisfies (**)

ALU{(@1, 405, 0)| (@1, 02 9D € A,
{a €N No|ale+ - +e)=1, and (***) holds},

where (***) is the condition

A,
where A}

(reny [ Jor cach i thereis @ monomial .. 1. with a(x? - r) 1,
with a,€Z, a,2 2, and with r; a monomial of degree = 1;
and for each j not all of these are divisible by x;

In terms of the geometry of the lattice, (***) means that the tetra-
hedron (a = 1)N o C M, es” x¢ or x¥x;

The idea of the proof is that if y € & (1 Nq also has y(e,+ -+ +e) = 1,
and if there are no monomials with a(x )= 1 and with ¥(r) <1, then I
can replace @ by a'=(1=A)a + Ay (with small A), and have
13a(mz1; ©
as A increases we eventually acquire a new monomial xf-r with a'(xfr) = 1,
¥(r)< 1. Repeating this with a different y satisfying y(xtr)=1. we
eventually get an o still satisfying (0), but now forced to have an assort-
ment of solutions of a'(xf*-r)=1 for certain very restricted r, which
forces a’ to have a solution with deg(r) = 1

Alis a finite set, since the a; satisfy

1
PEEDIS
and for each solution of this inequality (essentially a finite se) there are at
most 4 (=256) hyperplanes in My spanned by some choice of the
monomials x?: or xfux, one for each i; some of these hyperplanes will of
course fail to pass through (1,1, 1,1). A% seems to be quite large, with
(apparently) 95 clements.

a(m;

=1, and hence

For a € A} I can write a = %Uu, by, by, b, with b, EZ and d the least

common denominator of the g; = bi/d; the condition on « guarantees that a
sufficiently general hypersurface

Xy CP(bi bay by b)), @ € AL
has singularities “not much worse™ than those of P itself (sce (7).
and ensures that X, is a K3 surface with at worst Du Val points. A
should thus also provide a complete list of all weighted hypersurfaces
which are K3 surfaces; these can be constructed from a non-singular K3
surface S, together with a rational divisor class h €PicS®Q, by a
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construction due to Demazure [25]. These projective surfaces have cor-

respon
which correspond to *
Thus Conjecture 4.

simple elliptic™ 3-fold singularities

ing affine cones, the general weighted hypersurface of weight a,

implies that one of the beautiful features of the

hierarchy of surface singularities carries over in some form to higher

dimensions: lurking on the fringe of the rational singul
simple elliptic ones.

Examples (4.6): $(21,14,6,1; 42, 1,1, : 421, 14,4,3); %(7,4,2,

s there are

n.

X CP(21,14,6, 1) has Du Val points Aq, A, and A, at the transverse

intersection of X with the 1-dimensional singular strata of P. On
resolution, 1 defines the following divisor (all the components are
non-singular with self-intersection —2):

—a

the K3
rational

X,CP(2,1,1,1) is a divisor in the cone on the Veronese P, having a

simple node at the vertex; this example occurs in Saint-Donat 26).

I have included the last two examples to show that things can get quite

complicated: the hypersurface X C P(21, 14,4,3) given by x*+y
207+ 1" has the following singularities:

1X Ag
2x A,\ transverse intersections of singularities of
IX A,
and an A, point at (0,0,1,0). The corresponding desingularis:
Demazure divisor
13
27/84, 16

26/84

12\ e

22/84 116 16
T4

S+ yr'+

P

n and
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§5. The plurigenus formula
Let X be a canonical 3-fold of index r. The fact that w is ample, together

with the easy Corollary 1.14, allows us to construct a resolution f: Y =
satisfying the following two mild cond

Derinirion (5.1): A resolution f:Y »X is O-minimal if f*o{=
w§(-4,), with 4, =0 a divisor on Y such that f(4,)C X is a finite set.

DEFINITION (5.2): A resolution f: Y =X is elegant if for s =1,...,r—1
(hence for all 5) the subsheaf f'w§! = Im f*w{'C wP" is invertible

REMARK (5.3): For a torsion-free sheaf # on X, ' = f* F[Torsion is the
sheaf denoted Fof by Grauert and Riemenschneider (27), p. 267), who
pointed out that in general torsion turns up in taking the sheaf-of-0-module
theoretical f*, defined by setting the stalk (f*#)r = Fr®oy,, Ove for
PE Y. There is of course no problem in taking f* if % is locally free.

For an elegant resolution, it follows that f'w§'= w$"(~4,) for each
n 20, with 4,20 of the form

B, =ma, + 4,

where n=mr+i 0<i=r-1
Since w{ is invertible and ample, W% = W@ (@")®" is generated
by its global sections for all sufficiently large m; the same is therefore true
"w{f"*, so that elegance is equivalent to demanding that for all
euﬂicmnxly large n
InKy|=1Dy] + 4y,
with 4, fixed and |D,| free.

PROPOSITION (5.4): X has an elegant 0-minimal resolution f: Y - X.

Proor: Both of these conditions are very easy to satisfy. Firstly, in order
that ¥ be elegant it is necessary and suffcient that ¥ dominates cach of
the blow-ups of the rial sheaves w§ for i=1,...,r—1. By the
blowaup of @ divisorial sheaf  is intended the following: express
£=0x(D) in the form Ox(D) = Jx-p- Ox(E), where o,(E) is invertible,
and J.p is a divisorial idcal sheaf (as in the Appendix to § 1); the blow-up
of & is the blow-up of the sheaf of ideals Fe-p, which 5 abuiously
independent of the choice of D and E. Since each of the w is invertible
outside finitely many dissident points of X, the condition that Y dominates the
blow-up of each of them does not affect zero-minimality.

A O-minimal resolution can be obtained by any sequence of steps
Y =X, +=Xy=X which leads to a non-singular ¥, such that each
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step s Xi1— X; satisfies one of the following two conditions:
(i) 5 is an isomorphism above all but a finite number of points of X
(i) s,is the blow-up with centre C; C Sing X; areduced curve C; which lies
over a I-dimensional component of the singular locus of X. In case (i) s; is
necessarily a blow-up of a curve of singularities which is senerically
(Du Val point) x A'; s; will be crepant (Definition 2.1) outside a finite number
of points of X; QED.

TueoreM (3.5):  The following formula for the plurigenera of Y holds for
all n=1mod r, n =2, and for all suficiently large n:

P,(Y) = Py(X) =T3¢ @n = Diln = 1) = @r = Dx(0x) + €(n). )
Here ((n) €Q is lincar with periodic_adjustments, and K} € Q are in-
variants of X defined by their appearance in (); K is also determined by
P Kk = (rKy)’, where the right-hand side makes sense because rKy is a
Cartier diisor.

It has already been pointed out in Example 3.10 that K can have
arbitrary denominator. Further information on the invariants appearing in
(). and a discussion of its significance, will be given after the proof.

Proor: If r|n then f'w§f! = f*wX" is the inverse image of an ample sheaf
under a birational morphism, and so is quasi-positive ((27), p. 265); if n >0
then as already observed f'w§! is generated by its global sections, and
taking n bigger still it defines a birational map. Thus by the vanishing
theorem of Grauert and Riemenschneider (271, p. 273),

H(Y, f'0%'Quy) =0

for all p >0, and for all n with r| n or n>0.

Thus P,(Y) = x(Y, [0 ®wy), which can be computed by the
Hirzebruch-Riemann-Roch formula. Let n=mr+i, with 0=i=r-1
Thus

Ppy= X = wlch(D) - TA(X)]

- K,[(H n*%nu%v’) (1 +%c‘+r'2m+(-,\+%mz) ]

where the Chern classes are those of Y, and

D =mf*(rKx) + (i + DKy - 4. m
This will simplify to (*), using

o =-Ky, @

33 61627 X(0)) = X(0x), @
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(fHrKx)) - 8 @
and
Ky = fX(rKx) + 4,3 ©

here (3) holds because X is Cohen-Macaulay (36), and so R'f 40y = 0 for
>0, and (4) because f(4))C X is a finite set for each i

Thus

Pi=iD 'lK,D’+l‘7dD+T‘2r,I)< i ©
Using (5),

D=(n+1)Ky-ma, -4, o

5o that the last two terms in (6) are

1 1 1 » 1
36D +5ze16:= ~ 2420+ Dx(G) ~ pylmesd, + 2] ®)

The first three terms can be rewritten using (5) and (7) in terms of f*(rKx)

and the 4:
1
Hn(znf Ky)(D~Ky)
= ol + 1f*rK = rAsH@n + Df*rKs 27, = 4}
x{nf*rKx —rd;— 4} ©
= n s 1+ K~ i A2r8 A A

the final equality has involved (4).
(6), (8) and (9) imply (*), together with the following formula for €(n):

(224 Saia,+has),

¥l
where n = mr+i,0 i =r—1.In particular, if r | n,

fn+ Il=|']i"l(~r14,!,

so that %(=c24,) i the linear part of .

The fact that P, is an integer implies varies congruences modulo 121
on the invariants appearing in (*). In particular, the denominator of KX
divides r. -

The divisors 4, (for i = 1,. . ., P) occur naturally as unions of connected
components 4,(P) with f(4,(P)) = P, lying over finitely many points P € X.
A consequence of their appearance in the formula (¥) for the birationally
invariant plurigenera of Y is the following result
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CoroLLary (5.6 The quantities = c;A(P) and
f(m,~m§~%am,+$m3)tm (fori=1,....r=1)

are invariants of the canonical singularity P € X, independent of the resolu-
tion f: Y = X.

A similar argument based on calculating H*(Ox(n H) @ w %), where H
is an ample divisor and n,> n,>0, and using the birational invariance of
logarithmic differentials, proves Corollary 5.6 for a local canonical sin-
gularity P € X, without assuming that P € X is isomorphic to a point of a
global canonical variety.

It is obvious that for a hypersurface rational point the single invariant
—¢,4=0; and Corollary 2.12 implies that this continues to hold for all
rational Gorenstein 3-fold points.

Prosiem (5.7): (i) For a canonical point P € X of index 7, relate the
invariants of Corollary 5.6 to the following numerical functions of the
Oxp-modules w:

(a) the Hilbert functions H(n, i) = dim, w¥/m}w{;

(®) the lengths r(i,j) and s(i,j) of the kernels and cokernels of
Y@ ¥ Wi

(ii) Calculate these invariants for the quotient singularities A’/p; (it's
quite likely that these are representative of all index r points).
Fopological interpretation?
(@iv) Is it true that €(n) = 0?

§6. Open problems and concluding remarks

6.1. Is the canonical ring finitely generated?

Wilson has shown that on a non-singular 3-fold V with k(V) # — =, Ky is
ample if and only if KyC >0 for every curve C C V. On the other hand we
have the adjunction formula

KyC +deg Nuc =2p,(C) =2, *
where Ny is the normal sheaf; by the Riemann-Roch theorem

h(Nyie) = h'(Nye) = = K\ C.

ation theory, if KyC <0, C should then move in a positive-
al family; C will thus lic in a surface F, which it would be highly
desirable! to contract by a birational modification of V. The techniques for

"The possibility of carrying out this contraction has been proved by S. Mori in a precise form;
ely. this s as yet only the first

generation.
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such modifications have been pioneered by Kulikov [28], and simpl
Persson and Pinkham [29),

fied by

62. Now suppose that KyC = 0; the following remark is partly suggested
by a conversation with Bom| : if Ky is ample on V\C, but Oc(Kv) €
Pic C is not a torsion class, then R(V) is not finitely generated. Compare
Zariski (30], p. 562

Consecture: If Ky is ample on V\C and KyC =0 then p,C = 0.

For S a surface of general type, p,C = 1 implies that KsC > 0 (without
using minimal models). Using the index theorem and minimal models,
KC = V/C?, 50 that the first term in (*) cannot be too small.

6.3. The adjunction sequence.

The following is a local version of the problem of finitc generation
1 2 ¥ — X is a resolution of a variety X (suppose either that X is normal,
or that wy is invertible), define the adjunction sequence 0 be the sequence
of subsheaves f,w§" C Wil if wy is invertible, frw§" = 9, o, where 5,
is the n-th higher adjunction ideal.

Problem. s the Ox-algebra @ fw$" finitely generated?
iy

This is equivalent to knowing that the ring R(Y, f*Ox(k)®@wy) is f.g.
for k0. If this is true then

Proj R(Y, f*0x(k)@wy) = Projx (§ fswF) > X
s called the relative canonical model of Y, or the canonical blow-up of X.

64. For simple types of hypersurface singularities one expects the
sequence of ideals {%,} to be defined by weighting conditions as in §4. The
following conjecture would extend to 3-fold hypersurface singularities the
most fundamental properties of elliptic surface singularities:

ConsecTurE: Let 0€ X CA” be an elliptic singularity (Definition 2.4);
then there exist coordinates x; on A%, and an a € A’ (Theorem 4.5) which is
uniquely determined by any of the following statements:

(i) a(g)=1: where g is the defining equation of X

(i) 9o = {/e Ox ‘«m; '3'] where d is the least denominator of a3

(i) the a-blow-up X,—X is a variety with canonical singularities
along f'0.

6.5. The varieties of f.g. gencral type for which the canonical model is
Cohen-Macaulay have the following property: after making a cycli
of degree r ramified in a general clement of [mrKl, m 0, one can make a

cover

Canonical 3-folds 307

birational modification W such that W has only cDV points and [nKy]|
free for all n > 0; in particular, KyC 0 for every curve CC W.

66, One does not expect 1o gel a unique minimal non-singular model of a
3-fold; instead, one could ask for a class of “nice resolutions™ of the
canonical model X. One might hope to index nice resolutions by some kind
of combinatorial data, an ising canonical points as

(for example hypersurfaces) in toric varieties might be a first step in this
direction. However, one should not merely restrict to complete inter-
Sections in toric varieties, since this would exclude many interesting
varieties which are Weil divisors but not Cartier divisors—the weighted
blow-up of a hypersurface is a case in point. The following is a rather
vague hope.

ConscTure:  Every canonical singularity is isomorphic to a toric section
P € X C A, defined by an ideal Iy with a(A)>a(lx) for a class of weight-
ings a.

Here a toric section (quasi-complete intersection in a toric space) i
irreducible subvariety X C A of codimension 7, such that r equations
fu.ooof, define X outside the coordinate hyperplanes
XNT=(f =, =0)CT. The notion of weighting awaits clarification

67. The simplest kind of normal 3-fold singularity which is not Cohen-
Macaulay would be a fake cDV point P € X, thatis a point P € X for whicha
general section H through P has a non-normal isolated singularity P € H,
whose normalisation P € S is a Du Val point; the existence of such points is
related to the deformation theory of P € H.

ConsecTurE: Let P €S be a Du Val point, and let P € H be an isolated
singularity with Gy p C sy of finite codimension. Then any deformation of
1 arises from deforming the normalisation S or from moving Oy inside
s as a subvector space of fixed codimension. In particular H is not a
section of a normal 3-fold.

For cxample, the simplest such P& H, H = Spec klx’. &', y.xy]
ned by pinching out the vector (x* ) C A?) is rigi

There is now some evidence for this conjecture: by [36] a fake cDV/
Singularity cannot be canonical; as kindly pointed out by Jonathan Wahl,
Mumford's Theorem in 1V of [39] shows that a fake <DV point cannot be
isolated. However, the deformation theory is much harder to deal with

(obta

68. One can continue Theorem 2.6 (1) to the assertion that if a Gorenstein
point P € X satisfies m oy, then the general section P € H will
Satisfy my - oy C fawi. By an induction this can be chased down to the
curve section: if P € X is a rational Gorenstein point of an n-fold then the
general curve section through P, P € C say, satisfies



! ([
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mptcs,

where € = [6¢: Oc] is the conductor. In this context Theorem 2.11 is partly

explained by Shepherd-Barron's remark that if P € C is a Gorenstein

curve point such that m}C %, then either m} w or PEC is a very
special curve such as the plane curve given by (x’+y" =0,n =5

69. The reader will have observed that despite my ideological commit-
ment to replacing the cohomological arguments involving RYf.’s by ad-
junction-theoretic argument, 1 have basely betrayed my principles in the
proof of (II) of Theorem 2.6. I would like to know if a proof of this result
could be given on the lines of the proof of (1)

6.10. The combinatorics involved in resolving a rational Gorenstein 3-fold
point as in §2 deserves further study. It is easily seen that on blowing up a
point with invariant k =3 the invariant of any resulting point is at most k.
Thus the resolution of these singularities consist of trees of del Pezzo
surfaces. It is not clear as yet if there are any restrictions of the branching
of these trees, say arising from some kind of index theorem.

6.11. The existence of canonical 3-folds of arbitrary index means that there
can be no bound # such that the canonical ring of every 3-fold of f.g. type
is generated by clements of degree < n; it is not clear whether K can be
arbitrarily small, although it becomes fairly small for some complete inter-
sections (see Problem 3.11). Most probably there should exist some bound
depending only on  such that for every canonical 3-fold of index r [mrKy|
is very ample. See (18], [19] and [41]

6.12. This problem is suggested by 1 remark of Beauville's: if wy is ample
on a non-singular 3-fold X then it is a consequence of Yau's inequalities
3] that

x(0x) = Scier sdet<0.
CONJECTURE:  Let X be a canonical 3-fold with Gorenstein singularities,

and let f:Y =X be a O-minimal resolution. Then c(Y) is quasi-positive
in the sense that for every prime divisor I'C Y

oY) Fz0.

with equality if and only if dim f(I')

This might be a consequence of some kind of index theorem for
3-folds.
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BIRATIONAL GEOMETRY OF ALGEBRAIC THREEFOLDS

Kenji Ueno

In the present notes, by an algebraic variety V we mean that V is an ir-
reducible complete algebraic variety defined over the complex number
field C. A non-singular algebraic variety is called an algebraic manifold. A
compact complex manifold M is called a Moishezon manifold, if we have
tr. deg C(M) = dim M, where C(M) is the meromorphic function field of M.
A Moishezon manifold has the structure of a proper smooth algebraic
space over C and it is bimeromorphically equivalent to a projective
manifold. Hence from the view point of the birational gcometry, we need
not distinguish Moishezon manifolds from algebraic manifolds.

Let D be a Cartier divisor (a line bundle) on a normal algebraic variety
V. If the complete linear system [mD) is not empty, we can define a rational
mapping @np: V- P associated with the complete linear system
|mD]. The D-dimension k(D, V) is defined by

<, if [mD] = § for all positive integer

(D, V)= | max dim @,5(V), otherwise.

Let V be an algebraic manifold and Ky a canonical divisor (the canonical
line bundle) of V. Then k(Ky, V) is called the Kodaira dimension of V and
is written as (V). The Kodaira dimension is a birational invariant. Hence
for a singular algebraic variety V, the Kodaira dimension k(V) of V i
defined as K= «(V*) where V* is a non-singular model of V.
By definition x(V) =~ if and only if Pa(V)= %V, mKy) =0 for all
= Land (V) = 0 and only f P, (V) =1 forall m = 1 and there exicts a
positive integer my such that Pn(V) = 1. Moreover x(V)>0 if and only if
there exists a positive integer m such that P,(V)=2.
Using the notion of Kodaira dimension, we can classify all n-dimen-
sional algebraic varieties into n +2 classes. When , the detailed study
of these 4 classes was done by Italian algebraic geometers more than sixty

years ago. Recently we obtained several important structure theorems on
algebraic threefolds. In the present notes we shall briefly review these
results and discuss some important unsolved problems.
In §1 we shall discuss differences t.qwecn algebraic surfaces and
The

algebraic manifolds of dimension n main results on the




