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ABSTRACT

Let G be a finite subgroup of GL(3, ). Then G acts on . It is well
known that €3/G is Gorenstein if and only if G € SL(3, €). In chapter one, we
sketch the classification of finite subgroups of SL(3, €). We include two more types
(3) and (K) which were usually missed in the work of many mathematicians. In
chapter 2, we give general method to find invariant polynomials and their relations
of finite subgroups of GL(3, (). The method is in practice substantially better than
the classical method due to Neorther. In chapter 3, we recall some properties of
quotient varieties and prove that €3/G has isolated singularities if and only if G
is abelian and 1 is not an eigenvalue of g in G. We also apply the method in

chapter 2 to find minimal generators of ring of invariant polynomials as well as their

relations.

Key words and phrases.
quotient singularities, isolated singularities, finite subgroups of SL(3, (),

invariant polynomials, minimal generators of invariants and their relations.
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CHAPTER 0
INTRODUCTION

Let G be a finite subgroup of GL(n, (). Then G actson (®. The
quotient variety ("/G was studied by Chevalley [Ch] Shephard and Todd [Sh—To]
in algebraic setting. However the first one who studied this was H. Cartan [Car].
He proved among other things that the singularities of €*/G are normal. In
particular, the singular set of €"/G is at least codimension two in €®/G or at

most dimension n — 2. Prill [Pr] later also made a substantial contribution in the

subject. He showed that in order to study ("/G, it suffices to consider small
subgroup G of GL(n, (), i.e., G contains no element which has an eigenvalue 1
of multiplicity n—1. In this article, we are interested in the case that €*/G is
Gorenstein, i.e., the dualizing sheaf of (*/G is trivial. We were told that
physicists are interested in those three dimensional quotient singularities which
admit a desingularization whose canonical bundle is trivial. As a first step, we have
to understand three dimensional quotient singularities which are Gorenstein. By a
theorem of Khinich [Kh] and Watanabe [Wa)], we know that €"/G is Gorenstein if
and only if G C SL(n, (). If G is a finite subgroup of SL(2, (), then the quotient
(/G has only isolated singularity and it must be a rational double point.
Conversely every rational double point is analytically isomorphic to such an isolated
quotient singularity. There are five types of these singularities. Four of them
correspond to nonabelian subgroup of SL(2, €). These were studied by Brieskorn
[Br], Riemenschneider [Ril] and others. For three dimensional quotient singularity,
the singular set is of dimension either 0 or 1. Unlike the two dimensional case,
our following result says that for three dimensional quotient singularity €3/G, we

can get isolated singularity only if G is abelian.

Received by the editor July 2, 1991, and in revised form June 10, 1992.
Research partially supported by N.S.F. grant and National Science Council.
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Theorem A Let G C SL(3, ) be a small subgroup. Then €*/G has an isolated
singularity if and only if G is abelian and 1 is not an eigenvalue of g for every
nontrivial element g in G.

In view of Proposition 6 and Theorem 2 of [Pr], the classification of three
dimensional Gorenstein quotient singularities corresponds to the classification of
small finite subgroup of SL(3, C) up to linear equivalence. The latter was done by
Blichfeldt [BI1] in 1917 and Miller—Blichfeldt—Dickson [Mi—B}--Di] in 1916. 10
types of finite subgroups of SL(3, €) (A)—(I) and (L) (see the following list) were

obtained. Let

100 010 111
s=lowo T=|00 1], v=—=>11} v
00 o 100 Tl (R

€00 11 o a0o
0e€0 P= l wwl, Q=100 bj.

1
00 ew Tl 0co

where abc=-1, w= e27ri/3, S =
(A) Diagonal abelian groups.
(B) Group isomorphic to transitive finite subgroups of GL(2, €).
(C) Group generated by (A)and T.
(D) Group generated by (C) and Q.
(E) Group of order 108 generated by S, T, V.
(F) Group of order 216 generated by (E) and P = UVU™,
(G) Hessian group of order 648 generated by (E) and U.
(H) Simple group of order 60 isomorphic to alternating group As.

(I) Simple group of order 168 isomorphic to permutation group generated
by (1234567), (142)(356), (12)(35).

GORENSTEIN QUOTIENT SINGULARITIES

(L) Group G of order 1080 its quotient G/F isomorphic to alternating
group Ag, where F = {I,W,W?} is the center of SL(3, (),
I = identity and

w0O0 )
W= 0w0,w=e2m/3.
0 0 w

Although the classification of finite subgroups of PGL(3, €) and their
minimal realizations in SL(3, () was given in [Bl1] and [Mi—BI-Di], except for a
finite number of experts in finite group theory, people usually have a wrong
impression that (A),...,(L) are all finite subgroups of SL(3, () because the works of
[Bl1] and [Mi—BI-Di] were not presented clearly enough or perhaps there is a
generation gap. This can be seen, for example, in the work of Watanabe and
Rotillon [Wa—Ro]. Their classification is incomplete because they missed two
hypersurface singularities which correspond to the following two groups (J) and (K).
In order to obtain a complete classification up to conjugation, we actually need to
distinguish two further types (see [BI3, p.325]).

(J) Group of order 180 generated by (H) and F.

(K) Group of order 504 generated by (I) and F.

Because of this reason, we shall sketch the proof of classification of finite subgroups
in SL(3, €) in chapter 1.
Let S = ([x,...,x,]. The subalgebra

s¢ = {feS, f(g(x)) =1(x) forall ge G}

is finitely generated and contains a minimal set of homogeneous polynomials f,,....f,

which generate it as a (—algebra, i.e., any invariant is a polynomial in f,,....f,. f;'s
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are called the minimal generators of 5%, We have the following homomorphism of
rings :

o:R=Clyp- nl—S= Clxy-e %)

where R and S are polynomial rings and #(F) = F(f,,....fy) € S for all
F(yy,-¥s) € Cyypyy)- Then Imé = ¢, Let K be the kernel of ¢, then K is
an ideal of C[y,,....y,] and S€ © ([y;----yy)/K. The minimal generators of K are
called relations of §®. The main purpose of this article is to find a set of minimal
generators of ¢ and their relations for groups (A)—(L). Geometrically the number
k of the minimal generators of ¢ is the minimal embedding dimension of the
quotient variety into complex Euclidean space. The relations of ¢ are the
equations which define the image of the quotient variety in ¢k as affine algebraic
variety.

It is classically known that the set of generators of S® can be obtained by

averaging over G all monomials

by, b2 _ bn
xl X2 .-.xn

of total degree 1213 b, < g where g is the order of G (see Noether [No}). However
i=1

this method in actual computation is practically useless when the order of the group
is large even with the aid of computer. The following Theorem B is substantially
better than Noether's theorem because in almost all the examples that we

encounter, it reduces the computation drastically.

Theorem B : Let H be a subgroup of G and {fj,...f;} be a set of minimal

generators of s Let G =Ha,UHa,U..UHay, where s=|G|/|H|, a;€G,

GORENSTEIN QUOTIENT SINGULARITIES

i=1,.s. Then (3 £ + .4 @t 19, 3
= Liuiy8s 1ofe e+ (L e, 1di(deg f;) < |G|, forma
1=

set of generators of S

In 1897, Molien [Mo] made an important progress in invariant theory. He

showed that the number of linearly independent homogeneous invariants of G of

degree d is the coefficient of A4 in the expansion of

1 1

A)=— %
¢(A) =— rec GeU(I=XT)
where g = |G| and I is the identity of G. We call ¢()\) the Molien series of G.
By Noether normalization theorem, Quillen solution to Serre conjecture and a result

of Hochster and Eagen [Ho—Ea], one can easily see that S¢ can be written as a
direct sum

(1.1) S% = Clfyyenrfy] © Clfyenn ), ... ® €y, f, g,

where f;, g; are homogeneous invariants of G and f; are algebraically

independent. So Molien series of G is

by by
o 14204+
(1.2) o(A) = =291y (129 (1A

where d, b; are the degrees of f;, g; respectively. This will play an important
role in finding a set of minimal generators of invariants and their relations.

For any a€ S¢, a can be written as po(fysesfy) + Py(fpoofp)gy + - +
Py(fys--,fo)g, where p;(fy,....f,) are polynomialsin f),....f,. This is called the basic

form of a. The invariants f,,...,{,, g,....8; are called basic invariants of s€, (1.1)

is called a basic decomposition of s¢ and (1.2) is called a basic series of G. Of

course, we have
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{f),-»fy} € {minimal generators} C {basic invariants}.

Now let {f;,....f,, &8} be a set of basic invariants of S¢ in which £y sfs
g.,-E,} being a set of minimal generators of S t <k and {fy,....f,}
algebraically independent. Let A = {g;g;:1<i1<t,i<j< k}} - {gy----8} and
b(a) be a basic formof a, a€ S, Then {a—b(a) : a € A} generates K (see p.4)
for g, being a polynomial in g,,....g,, t+1<m<k. Let B = fa€ A:ahasno
factor a' € A—{a}}. Then {a—b(a):a € B} are relations of st

We give a complete description of finding invariants and their relations for
types (A)—(D) and we shall only consider the case that (B) is isomorphic to
transitive small groups of GL(2, C) (see section 1.2(B)). For types (E)<L), we are
able to write down all the invariants and their relations explicitly. In fact, for types
(F)—~(L), the number of the minimal generators of s¢ s precisely 4. So the
quotient varieties of these groups are hypersurface in C%. Therefore we know
apriori that there is only one relation of the minimal generators for these groups.
Type (A) was treated also by MacWilliams—Mallows—Sloan [Mac—Mal-S$l,
pp.800—801). They only consider finding invariants, but our result is simpler than
they got. The special case of type (C) for (A) being a diagonal cyclic group was
treated by Maschke [Ma2] independently. Rotillon [Ro] treated the cases (E), (F)
and (G) independently. However her result in case (E), second relation ([Ro],
Theorem 1, p.346) is wrong. The invariants and relations of (H) and (I) were found
by Klein (1884) [K1, pp.236—243] and Weber (1899) [We, pp.518-529] (also see
Gordan (1880) [Go]) respectively. Their methods are long and complicated and are
difficult to comprehend. The cases (J), (K) and (L) are new except the fundamental

invariants for (L) are given in [Mi—BI-Di, §125]. (J) and (K) are needed in order to

fill the gap of [Wa—Ro]. The most difficult one is type (L), its invariants take a few

GORENSTEIN QUOTIENT SINGULARITIES

pages long to write down. We had a hard time to find their relation. It took us
more than 3 months even with the aid of computer. However the final relation is

quite simple. We summarize some of the results in the following table.

Theorem C: Let G be a finite subgroup of SL(3, ). Then we have

Type of G| Minimal embedding Equations of €3/G
dimension of (3/G

(©) ; [9yi—12y§+>'?ys-y?y4 =0
432y2-y3+2y3-36y,y,
+3y1y,-36y,y3 =0

(F) 4 dy§-144y,y5+1728y,y,
~(y3-432y3-3y,y,+36y,y,)2 = 0

(@) 4 4y3-9y3y3+6y3y 2592y 1y3y -3
+864y3y3+6912y3y,-186624yty, = 0

(H) 4 y3+1728y3-y3-720y,y3y,

+80y3y,y3—64y3(5y3—y,y3)? = 0

0y 4 Yi-y3+88y3y,y5-1008y,y3y;
—1088y1y3y5+256y y;—1728y]
+60032y3y3-22016ySy3+2048y%y, = 0

@) 4 yi-yslys+1728y3-720y3y,

+80y,y3-64y3(5y%-y,)% = 0
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(X) 4 Y4¥3(y3+88y,y,—1008y1y,
—1088y2y,y ,+256y3y —1728y]
+60032y3y;—22016y3y3+2048y,y3) = 0

(L) 4 459165024y3—25509168y3—(236196
+26244/151)y2y3+1889568(1+/15i)y2ydy,
+(8503056—2834352y151)y2y,y3

—(891+243/15i)y 4y 153468910151 )y,y 3y,
+(360612—5151615i)y,y%y2+(192456
+21384151)y 3y }y3-3569184(1+y151)y,yoy4
—(7558272—2519424151)y,y3
—2426112(1+y151)ysy,+(7978176

+886464y151)y5y]—(3297168—471024151)y5y3

+(78768-1312804/151)y5y’+(26928
+7344T51)y3y3—(1560—40y15i ) y2y!
+17(1—/151)y,y3® =

We have used the REDUCE program [He] to perform the following
computations :

1. The relations for types (G), (H), (I), (L).

2. The Molien series for all types.

3. The invariants for types (H), (I), (L).
Since the groups of types (H), (I) and (L) are isomorphic to permutation groups,

CALEY program [Can] helps us compute the conjugacy classes of these groups.

With these results ready, we use REDUCE program to calculate the Molien series of

these groups.

GORENSTEIN QUOTIENT SINGULARITIES 9

In Chapter 1, we sketch the classification of finite subgroups of SL(3, €).
We include two more types (J) and (K) which are not found in [BI1] and
[Mi—BI-Di]. In Chapter 3, we recall some properties of quotient varieties and prove
Theorem A. In Chapter 2, we give general method to find invariant polynomials
and their relations of finite subgroups of GL(n, €). In particular Theorem B is
proved. In Chapter 3, we apply the method developed in Chapter 2 to find minimal
generators of S¢ for G being a finite subgroup of SL(3, (). In particular
Theorem C is proved.

The first author would like to thank University of Pisa and Johns Hopkins
University for their warm hospitality while the final version of the paper was
written. We would like to thank in particular Professor F. Catanese for suggesting

the proof of Theorem 20.




CHAPTER I
CLASSIFICATION OF FINITE SUBGROUPS OF SL(3, €)

In this chapter we basically follow the work of Blichfeldt [Bl1] and
Miller—Blichfelt—Dickson [Mi—BI-Di] to give a complete classification of SL(3, €).
He obtained 10 types of finite subgroups of SL(3, () (A)—T) and (L); in view of
[B13, p.325], in order to obtain a complete classification up to conjugation we
distinguish two further types (J) and (K).

1.1 Definitions
1. Any finite subgroup G of GL(n, () is called a linear group in n

variables. Any element of G is called a matrix or linear transformation or

transformation of G.

2. Ifithe n variables of a group G can be separated into two or more setsg
(either directly or after a suitable change of variables), such that the variables of
any one set are transformed by all the transformations of G into linear functions of
the variables of that set only, we say that G is intransitive, If such a division is
not possible, the group is transitive. The different sets into which the variables of
an intransitive group may be separated are called its sets of intransitivity.

3. A linear group in n variables is said to be reducible when, after a
suitable choice of variables x,...,x,, a certain number of these (say Xy Xgyen X
m < n) are transformed into linear functions of themselves by all the
transformations of the group. We shall say that the m variables XypereXp
constitute a reduced set of the group. A irreducible group is a group in which no
such choice of variables is possible.

4. A transitive group G, in which the variables (either directly or after a

suitable choice of new variables) can be separated into two or more sets Y,,...,Y,
523 Y

10
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such that the variables of each set are transformed into linear functions of the
variables of the same set or into linear functions of the variables of a different set, is
said to be imprimitive. If such division is not possible, the group is primitive. The
sets Yy,...,Y) are called sets of imprimitivity.

The determination of the linear groups in SL(3, €) up to conjugation is

based on the following classification:

intransitive

Linear groups of SL(3, () [ imprimitive

transitive
primitive
having normal intransitive subgroups

having normal imprimitive subgroups
Primitive groups )
having normal primitive subgroups

which are simple

1.2 Intransitive and imprimitive groups

We first discuss intransitive groups. There are two types of intransitive
groups:
(A) Diagonal abelian groups. i.e., each element has the form of
a 00
0 20], afy=1L
0 0 ~

(B) Groups isomorphic to transitive linear groups of GL(2,(). i.e., each

element has the form of

o o

00
a b, afad-—bc)=1
c d

For this type, we shall only consider the case that
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ab) . ad—be=a? ; where 7, ¢, as in (B1) and
cd ;

10 0 ¥v2 00 2 0 0
forms a small group! in GL(2, () in the following discussion (cf. Prill [Pr, Y,=10 i 0], 1;=—-ﬁl—- 0 ¢ & =_%... 0 1+i —1+i |,
Proposition 6, p.380]). According to the classification of small groups of GL(2, () 0 0 i 0 G G 0 1+ 14
which were listed in the Riemenschneider's paper [Ril, p.38], the type (B) now can : (27i)/8

and (g=e . Note that |T,| = 24m.
be divided further in the following: :
' Let T'= (¢}, 7', ') where 7' asin (Bl) and
(B1) The dihedral groups Dy,q where 1 <q <n and (n,q) =1, :
ted b :
general y ¥ = [ i o0 ], = s gs] [1+1 ~1+i
(Bla) ¥y, 7, fopy if m=n—q=1mod?2, 0 —i 1/‘2 G & I+ 14
(B1b) ¥, T08,y, if m=0mod2,
where then T'= (¢}, ') for 7" = n'¢in'! also T' = (¥}, S') where
100 1 00 .2 ;
) G 00 (¢ @) _1f~1+i -1+
we=10 ¢o |, r=}o 0 il g=f0 ¢ o} “ale o 54, it
00 ¢ 0 i 0 00 ¢ 8 08
. i 'V — 2 L 1)2Q12 LI
and Ck=e(2m)/k- Note that |Dayq| = 4mq and (m,q) = 1. for S'= 92 and 5'= (¥,)?8'2. T' is the tetrahedral group of SL(2,€) and
13 T : 5 ''= -1, —
Let D} = (Y3, ') where T'/F' isomorphic to the alternating group A, where F' = {(1, 1), (-1, -1)} the
center of SL(2, (). Aselementsin T'/F'=~A,, wehave 5" = (123),
Yoq = Coq O ] r=[01 _. ¥; = (12)(34). Notethat T'=T, so |T'| =24.
0 C{,(‘] io ‘

(B3) The octahedral groups O, generated by ¢, 7, n, and ¢,, where

then D] is a dihedral group of SL(2, (). Note that D! = Dg,1,q so |D'| = 4q.
4 1= Dot 0 [Dg] =4q (m6) =1 and 7, 5, gy, asin (B2a) and

(B2) The tetrahedral groups T, generated by
(B2a) ¥, 7, 0, dop, if m=1,5mod6,

0 0 v 0 0
(B2b) #y, 7, 0ggy, if m=3mods6, : Ve = !

Gs Ao+ o
o a Zlo o 1

[ R e B

1 A linear group G C GL(n,() issmallifno Te G has 1 asan .
and (g= e2™M)/8 Note that |O,] = 48m. Let O'= (¢, 7', ') where 7', 7
eigenvalue of multiplicity precisely (n —1). o
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as in (B2) and

(. (s O =_1___ 1+i 0]
% ‘os <§] ﬂl 0 14

then O'= (¢4, S') where S' asin (B2) for S' =72 and 7' = n'(¢})2n',
7' = (¥§)*S'2. O' is the octahedral group of SL(2,C) and O'/F' isomorphic to
the symmetric group S, where F' = {(1, 1), (-1, -1)} the center of SL(2, (). As
elements in O'/F'~S,, wehave 5" = (123), ¥; = (1324). Notethat O'= 0, so
|0'| = 48.

(B4) The icosahedral groups 1, generated by o, Q, 0 and ¢,, where
(m,30) = 1 and ¢, asin (Bla) and

0 O 1 0 0 1/50 0
o=00 1|, a=[o ¢ o o= 0 e,

o1 o) loo g 0 3Q (ot

and (5= 2[5 Note that |Ip] = 120m.
Let I'= (o', ', 0') where

a.=[0 —1], Q.=lc‘; 0 ] o = L[ GG cg—gg]
1 U BAG-G ¢

then I' = (U', Q', 0o') where

U' — 0 1 ]
-1 0
for U' = 0'2¢". I' is the icosahedral group of SL(2, () and I'/F' isomorphic to
the alternating group Ay where F' = {(1, 1), (-1, —1)} the center of SL(2, 0).

As elements in I'/F' ~ Ag, we have U" = (14)(23), " = (12345), o' = (12)(34).
Note that I' =1, so |I'| = 120.
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We next discuss imprimitive groups.
Theorem 1 Let G be an imprimitive linear group in n variables.
These may be chosen in such a manner that they break up into a certain number of
sets of imprimitivity Y,,...,Y, of m variables each (n = km), permuted
according to a transitive permutation group K on k letters, homomorphic with
G. That subgroup of G with corresponds to the subgroup of K leaving one letter
unaltered, say Y, is primitive as far as the m variables of the set Y, are
concerned.
If m=1, k=n, then G is said to have the monomial form or to be a
monomial group.
Proof  We refer to Theorem 9 of [Mi—BI-Di, p.229).
The imprimitive groups of SL(3, () are all monomial by Theorem 1. There
are two types:
(C) A group generated by (A) which is neither identity nor the center F of
SL(3, €) and a transformation Q which permutes the variables in the order

(x4 Xy, X3). By suitable choice of variables, we may replace Q by T where

0
Q=10
¢

(=T I -]

0 010
b|, abc=1, T={|0 0 1
0 100

for P'QP = T, where

1 00
P=—1 {0 bc o
“lo o0 ¢

(D) A group generated by (A), T of (C) and the transformation
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=</
I
o o e

00
0 b, abc=-l.
c 0

In fact, the case (D) can be divided into two subcases :

(D1) G = ((A) # identity or center of SL(3, C), T, R).

(D2) G = ((A) = identity or center of SL(3, (), T, R, (a,b,c) # (d,d,d)).
For if (a,b,c) = (d,d,d) then using new variable y, = x; + X, + x; and Theorem 5
below, (D2) will be intransitive.

Note The center of SL(3,() is F = {I,W,W?} where I is the identity of
SL(3, €) and

w 0 0 .
W=}|0 w 0], w=e(2m)/3.
0 0 w

Diagonal entries of the diagonal matrix are called multipliers of the matrix, if
they are equal, the matrix is called scalar matrix or scalar. Sometimes we write the

diagonal matrix with multipliers ay,...,a, as (a,...,a,).

1.3 marks on the invariants of the grou and (D

Interpreting x,, X,, X; as homogeneous coordinates of the projective plane,
the triangle whose sides are x, =0, x, = 0, X3 = 0 is transformed into itself by
the operators of (C) and (D); in other words, xp,x; is an invariant of these groups.

Assuming the existence of other invariant triangles, say

(1) (8%, + 29%; + agxg)(byx; + byx, + baxg)(e;x; + ¢, + C3X;) = 0,

We operate successively by the transformations of (A) and by T. Observing that

@, 8, 7 cannot all be equal for every transformation of (A), as otherwise (C) would
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be intransitive, we find by examining the various possibilities that (1) could not be

distinct from x;x,x; = 0 unless (A) is the particular group generated by the

transformations

S1 = (11 w, “)2), 52 = (U, W, w); W= e(2m)/3

There are then four invariant triangles for (C), namely:
XXpXg = 0;
(2) (X1 + X + Ox3)(x, + Wiy + WPO)(x, + WPxy + whs) =0,
(6=1, w, or J?).

In the case of (D), these four triangles will be invariant if the group is

generated by S,, S,, T and R, the latter now having the form

-1 0 0
R=]0 0-1
0-1 0

either directly or after multiplication by suitable powers of S; and S,.

Lemma 2 A linear group G having a normal abelian subgroup H
whose elements are not all scalar matrices is either intransitive or imprimitive.

Proof We refer to Lemma of [BI1, p.79].

Theorem 3 A linear group whose order is the power of a prime number
can be written as a monomial group by a suitable choice of variables x,,x,,...,X;

that is, its transformations have the form:

2 1
Xg = AgXy

where s and t run through the numbers 1,2,...,n though not necessarily in the

Same order.
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Proof  We refer to Theorem 2 of [Bl1, p.80].

Corollary 4 A linear group in n variables whose order is the power of a
prime greater than n is abelian.

Proof  We refer to Corollary of [Bl1, p.81].

Theorem 5 A reducible group G is intransitive, and a reduced set
becomes a set of intransitivity.

Proof  We refer to Theorem 6 of (Mi—BI-Dj, p.211].
14  Groups having normal intransitive subgroups

A group having a normal subgroup of type (A) whose elements are not all
scalars is intransitive or imprimtive (by Lemma 2), and a group having a normal
subgroup of type (B) is intransitive. Forlet V be any transformation of such
group, and T any transformation of (B). Then VTV = T, belong to (B), and if
weput (x,)T; = ax,, (x))V =y, wehave (y)T = (y)VIT,V = o(x,)V = ay.
This show that y = 0 is an invariant straight line for (B). But X, = 0 is the only
such line, and therefore y = (x,)V = kx,, k = constant. The group in question is
therefore reducible and hence intransitive (by Theorem 5).

For groups having normal subgroup of type (A) whose elements are all
scalars only, that is the center of SL(3, C), we will discuss in section 1.7.
1.5  Primitive groups having normal imprimitive subgroups

We now consider a group G containing a normal subgroup of type (C) or
(D). These types leave invariant triangle x,x,x3 = 0, and if this is the only one,
we could prove (see section 1.4) that G would also transform this triangle into
itself. But then G would not be primitive. We therefore assume that there are
four invariant triangles for (C) and (D), permuted among themselves by the
transformations of G. Let us denote the triangles by t, t,, t3, t4, in order as they
are listed in (2).

We now associate with each transformation of G a permutation on the
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letters t,, ty, ts, t,, indicating the manner in which the transformation permutes
the corresponding triangles. We thus obtain a permutation group K on four letters
which is homomorphic to G, and the normal subgroup (C) or (D) corresponds to
the identity of K. None of the four letters could be left unchanged by every
permutation of K. For the corresponding triangle would be invariant under G;

and bringing this triangle into form x,x,x; = 0 by a suitable choice of new
variables, G would not be primitive. Moreover, no transformation can interchange
two of the triangles and leave the other two fixed, as may be verified directly.

Under these conditions we find the following possible forms for K:

(E') id, (t;t5)(tsts); (Other two types {id, (t;t3)(tst)}, {id, (t1t4)(tat3)}
are conjugate to each other.)

(F') id, (tyty)(tats)s (titad(tats), (bytg)ltaty);

(G") the alternating group on four letters, generated by (tt,)(t3ts) and
(tatsty)-

We note that if a given transformation V permutes the triangles in a
certain manner, then any transformation V' which permutes them in the same
manner can be written in the form V' = XV, X € (D). For, V'V must leave
fixed each triangle.

By direct application we verify that the transformations U, vV, uvut

permute the triangles in the following manner: (tytsts), (bit2)(tate)s (tite)(tats).

where
€00
U=10 ¢ 0 |, e =u,
00 ew
)
111 1110’2
—_1 UVUl=—|1 w w |
Y ﬁij}f’ ‘/:"rwlw
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Accordingly, since all the groups required contain a transformation corresponding to
(tyt5)(t3t4), every such group must contain a transformation XV, X belonging to
(D). Hence,if G contains (D) as a subgroup, it also contains V. If, however, (©)
were a subgroup of G, but not (D), then either V is contained in G, or else XV,
where X is a transformation contained in (D) but not in (C). In this event X
may be written X,R, where X, belong to (C). Hence, finally, either V or RV
belongs to G. However, V2= (RV)2=R. Thus R, and therefore also V, are
contained in G in any case.

Again, if G contains a transformation corresponding to (t,tst,) or
(tit4)(tat3), such a transformation can be written XU or XUVU?, X belonging
to (D). Hence, since G contains (D) as we have Just seen, it will contain either U
or UVU™ in the cases considered. We therefore have the following types:

(E) Group of order 108 generated by Sy, T,of (C) and V of (3).

(F) Group of order 216 generated by S, T,V and UVU™ of (3).

(G) Group of order 648 generated by S, T,V and U of (3).

These groups are all primitive, and they all contain (D) as a normal
subgroup (in fact (C) < (D) a (E) < (F) 4 (G)). The group (G) is called the Hessian
group.

1.6 Primitive groups which are simple

Theorem 6  No prime p > 7 can divide the order of 3 primitive linear
group G in SL(3, C).

Proof The process consists in showing that, if the order g of G
contains a prime factor p > 7, then G is not primitive. We subdivide this process
into four parts as follows: 1° proving the existence of an equation F — 0, where F

is a certain sum of roots of unity; 2° giving a method for transforming such an

E
i

oo e S s
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equation into a congruence (mod p); 3° applying this method to the equation

F=0; 4° deriving an abelian normal subgroups P of order pk.
1° G contains an element S of order of p- We choose such variables that

S has the diagonal form

S=(a, 00, 03); A=0ab=0f=1 oma=1 :

Two cases arise: two of them are equal, say a; = @, or they are all distinct. They
cannot all be equal, since af =1 and o} =1 imply a; =1 whereas S isnot the
identity. Of the two cases we shall treat the latter only: the method would be the
same in the former case (the congruence (10) would here be of the first degree in p),
and the result as stated in Theorem 6 would be the same.

Let V be any element of order p in G:
a; by ¢
V= la, by ¢},
ag by ¢
We form the products VS, VS?, VS#. Their characteristics (i.e. sum of the
eigenvalues) and that of V will be denoted by [VS], [VS?, [VSH), and [V]

respectively and we have

[VS] = a,0+ by + C303,
4)
[VS?] = ayad+ byad + 303,

[VSH) = a,0f+ bydh + cs0s.

and

s e B ot
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vV 11 1

VS] o & o
(5) =0.

Vs7 & & &
[Vs$H] of o o

Expansion and division by (o; — ay)(ay — a3)(a3 — o) gives us
(6) [VSH] + K[V] + L[VS] + M[VS?] =0,

K, L, M being certain polynomials in @, @, a3, with the general term of the type
a?aBaf. Since @, ay, ay are powers of a primitive pth root of unity a, the
quantities K, L, M are certain sums of powers of . Moreover, the characteristics
[V], [VS], [VS?, [VSH] are each the sum of three roots of unity. Therefore (6) is an
equation of finite sums of roots of unity. By the Kronecker's Theorem (see

[Mi—BI1-Di, p.240]), (6) can be written as the form

(7) Al+a+@+.+a”)+B1+8+F+..+ ﬂq-lj
+CA+ 7+ P+ + ) +..=0,

A, B, C, ... being certain sums of roots of unity; , g, 7, ... primitive roots of
unity of the equations x® =1, x%=1,x" =1, ... respectively; and p, q,1, ...
different prime numbers.

The coefficients A, B, C, ... may be put into certain standard forms. Thus,

any root of unity ¢ # 1 occurring in any of these sums will be assumed to be

resolved into factors of prime—power orders: € = €,€4¢€,..., the root of unity €

being of order p”, ¢, of order q", etc.
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To illustrate, let i be a root of unity of order 4 and 7 a root of unity of

order 9 (i.e. 7° = w, whas order 3), and let p =2, q=3. Then the standard form

for the expression

(8) (w=1)(1-1) + (Pw—P+H)(1+wtu?)
would be
[wHEDILHED)] + [P PH] (L4 wtoP).

2° We shall now make certain changes in the values of the roots of unity in
the equation (7). First we put 0 for every root of unity €, €4, €, ... whose order
is divisible by the square of a prime, leaving undisturbed the roots of unity whose
orders are not divisible by such a square, as a, @ ..., B, ... the quantities A, B, ...
are thereby changed into certain sums A', B, .... The equation (7) is still true, the
vanishing sums 1+a+a?+...+0P", etc., not having been affected.

Next we put 0 in place of q—2 of the roots of unity 4, #,...,0%%, and -1

for the remaining root of unity, thus changing B'(1+4+/+...+6%") into

- B'(140+0+...4+(-1)), for example, so that this product still remains equal to zero.

Similarly, we put 0 in place of r—2 of the roots of unity 7, 7%, ..., "', and —1
for the remaining root of unity, and so on. Proceeding thus, we shall ultimately

change (7) into an equation of the form
A"(1+a+d+.+0P1) =0,

where A" is a polynomial in ¢
Finally, we put 1 in the place of every root of unity @ o, ..., &*'. The
left—hand member may then no longer vanish, but will in any event hecome:a

multiple of p.

e R alas vt op

pon s Byt s
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The final value of the expression (8) would be (w+1)(1+1) =2 or 0,
according as w is replaced by 0 or —1.

Notation 1 Any expression N which is a sum of roots of unity, changed
in the manner described above, shall denoted by N;',.

3° We shall now study the effect of these changed upon the lefi—hand
member of (6). Each of the characteristics [VS], [VS?], [VSH], being the sum of
three (unknown) roots of unity, will finally become one of the seven numbers 0, £1,
+2, +3, whereas [V], being the sum of three roots of unity of order 1 or p (cf.

1°), will become 3. The left—hand member of (6) will thus take the form
(9) [VSH); + 3Kp, + Li[VS]) + M, [vsy:,

and this number is a multiple of p (by 20).

By (5),
al (1'2 (13
- - 2 .2 a2
K= Gra)a-a)a=ay|® o |,

o oy of

1 1 1
1 2 2
L= N
(o) ay-a5)(ag—a,) | 41 oy ofl,

o oy of
11 1

_ -1
M = ta—a)(a-ag)ag=ay) | %t %2 @3-

o oy o

The values Ko, L;,, M;, may be obtained by treating them as indeterminates ».

[=§ =]

Thus, by 1'Hopital's Rule we find

Kp=- %(u—l)(ﬂ—2), Lp = w(p-2), My=- %ﬂ(u—l),
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and if we substitute in (9) and multiple by p—1 we obtain the congruence:
(10) [VSH]3 = sp® +tp + v (mod p),

8, t, v being certain integers, the same for all values of I

We finally substitute in succession #=0,12..p—1 in the right—hand
member of (10). The remainders (mod p) should all lie between =3 and +3
inclusive, the interval of the value of [VS”];,. Now, each of these seven remainders
can correspond to at most two different values of p less than p, if s and t are
not both = 0 (mod p), by the theory of such congruences. Hence, there will
correspond to the seven remainders at most 14 different values of 4, sothat p is
Dot greater than 14 unless s=t = 0. Trying p = 13 and p = 11, choosing for
8,1, v the different possible sets of number < p (the problem can be simplified by
special devices)! we find that in no case can the remainders all be contained in the
sets 0, #1, +2, +3, unless s=t=0. We haveshown s=t=0 mod p for p>1.

Therefore, we get

-
(VST = v (mod p).
In particular,

[VS], = v =[V], =3 (mod p),

\
! Since au+b runs through the p values 0,1,2,....,p —1 (mod p) when x

does, we may substitute this expression for g in the right—hand member of (10)

and select constants a, b so that this member takes a simple form. For instance, if
P =11, the right—hand member of (10) may be reduced by this substitution to one
of the forms #p’+c; i; ¢; according as s£0; 8=0,t#0;8=t =0 (mod p). When

P =13 we get the forms #u’+c, +24%+¢; j; c.

IR . O T e S s
e e R DU WSRO -
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from which it follows that [VS];, = 3. Again, from this equation we deduce that the

roots of unity of [VS] are of order 1 or p. For, if the order of one of these roots
of unity were divisible by the square of 3 prime, or by a prime different from p,

then the changes indicated in 2° could be made at the outset in such a way that 0

or ~1 would take the place of this root of unity. But then

[VS][', would be one of
the numbers 0, £1, +2, 3.
4° Accordingly, the product VS of any two transformation both of order p

is a transformation of order p or 1. The totality of such tr.

ansformations in G,
together with 1 (identity matrix)

» will therefore form agroup P. The order of this
group must be a power of P, since it contains no transformations whose order

differs from p and 1. Moreover

this subgroup is abelian (by Corollary 4), and therefore G ig intransitive or
imprimitive (by Lemma 2). Q.E.D.

Notation 2 A quantity N, which is the sum of 3 certain number of roots

of unity, in which every root of unity €p is replaced by 1, but in which none of
the other changes indicated in 2° of Theo

rem 6 are carried out, wi)j denoted by N P
If N=0, then Np = 0 (mod p).

For example, let

N = [wH-D)]1+(-1)] + ["'5+(—1)wz+i](l+w+u?) =0
in (8), then

Np = (w+1)(141) + (r‘+w’+1)(1+w+w2) = 2(w+1) = 0 (mod 2).

Notation3  Sometimes, we write the order of linear group G as gg

where ¢ =3 or | according to G containing the center of SL(3, ¢

) or not
respectively.
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7 H 2
Th If a grOUp G (X)nta.ins a tra.lleOI‘ma.tlon S Of Ol‘der p
eorem
p # 3 or ¢ ( — 3) p beillg a plillle > 2, then thele iS a IlOII]la.l Subgroup I{P
( ) p p 3 .
i y == i S S . AIly
y y y 1
tl'a.ll p f owin,

congruence :

(11) V] = [VT], (mod p),

V being any transformation of G.

h p =2 thegroup G contains a normal subgroup Hp if the
In the case p = s .
°® will belong to H; alsoif §= (1,1, i), in which case
order of S is p3 and SP wi .
§? will belong to H,,. N
Proof If p> 2, wewrite S in diagonal form, and construct
" ’ i entries in
ducts VS, VS2. VR, where R denotes SP. Assuming that the three
products VS, VS VR,

i j tO 6) .
the dlagOH w (0) () 1

[VR] + K[V] + L[VS] + M[VS] = 0
= So
= = od and K, =-1 (mod p)
By 3° of Theorem 6, we have L,=M,=0 (mod p) p
[VR], - Vlp=0 (mod p).

ithin G. They generate a
Now consider all the conjugates R;,...,R, to R within . Ze
= for i = 1,2,...,)h, sin
normal subgroup Hp, and [VR], = [V], (mod p) fo i
R, = A'RA = A-1SPA = (A'SA)P and A'SA and S have the same order,
e sformation T in H, satisfies the congruence
some A € G. Moreover, any tran

W
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For instance, let T = R,R,, and we have

[VRllp = [V]p’ [(VRI)R‘Z]p = [(VRI)]p (mOd p)'
Hence,

[VT], = [VR,Ry), = [VR,], = [V],,

Finally, in the case the order of S is 8 (= 2%), we construct [V] [VS]
[VS? and [VSY. For S = (-1,1, 1), we construct

(VI 1 1
[VS] -1 i|. QED.
VS?] 1

1.6.1 The normal group Hp

The order of this group is a power of p. For if its order contained a prime
factor q, q #p, there would be a transformation of order q in H

, say T.
Then, by (11), we have ’

[Ti), = (IT9], = [1] = 3 (mod p).

Hence, let .3, be entries of diagonal of T (after choose a suitable variab]
es

making T a diagonal matrix), we have a¥+@++ = 3 (mod p), and theref
- ) Teiore

(12) 3 a‘i(ai+ﬂi+75)sag ol
=1 =1

We may assume a,8,7 are not all equal (otherwise p#3 and 3a=3 (mod )
= p

L X

these imply a=1 and q = 1). Hence, the left~hand sum is

[2q, if a€{B,7};
q, if ag {8}
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for
g . [0, featp
alp =
=1 q, if a=4

The right—hand sum is

3q, if a=1;
0, if a#l

It follows that the congruence is impossible except when p=2, and {a€ {7}
and a#1} or {ag {#7} and o= 1}. Substituting g3 and 773 for @ in(12)
we get similar results. Collecting these, we have p = 2 and {e=f and 7=1
and a#1}. Since afy=1, wehave ¢>=1 and =1, then a=1, a
contradiction.

The order of Hp is accordingly a power of p, and the group is monomial
(by Theorem 3). The possibility G = H, i8 accordingly untenable if G is
primitive.

Corollary 8 No primitive simple group can contain a transformation S
of order p?, if p>3; or p’¢, if p=3; or P if p=2; or p?if §=(-1,i,i)
and p = 2.

Proof This follows from the Theorem 7 and above argument. Q.E.D.

Theorem 9 No primitive simple group can contain a transformation S of
prime order p, p > 3, which has at most two distinct multipliers.

Proof  Let S = (a, &), &), & # ap and assume first that p = 7 (Note
p > 7 can not happen, by Theorem 6). This transformation leaves invariant a point
(x, = X, = 0) and every straight line L = {(x;,Xp,X3)|ax,+b%, = 0} through it.
This will also be the case with any other transformation S' conjugate to S (for

they have the same eigenvalues). Therefore, the line joining the two invariant
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points is invariant for both S and S'. If now the variables be changed so that the
common invariant lineis y, = 0, the group generated by S and S' will be
reducible and therefore intransitive, by Theorem 5, breaking up into a group in one
variable (y,) and one in two variables (¥2 ¥3)- But, there being no primitive or
imprimitive linear groups in two variables generated by two transformations of
order 7, it follows that S and S' are commutative.

Accordingly, all the conjugates to S are mutually commutative and
generate an abelian group, which must be normal in G, and the latter cannot be

primitive by Lemma 2.

Next,let p=5. If S and S' are not commutative, they generate the

icosahedral group, in the variables y,, y,. This contains a transformation of order 3

whose multipliers are w, «?, and a scalar matrix whose multipliers are -1, —1.
The product of these two transformations, as a transformation in the variables Yo
Y2, ¥3, Can be written in the canonical form T = (1, ~w, ~«?). But such a
transformation is excluded by the next theorem (put S, =T?= (

S, =T3=(1,-1,-1)). Q.E.D.

19 wz, OJ) and

Theorem 10 No primitive simple group can contain 3 transformation S
of order pq, where p and q are different prime numbers, and S, = SP has three
distinct multipliers, while S, = S9 has at least two.

Proof Let S be written in diagonal form and assume S, = (q,, o, )
and S, = (B, B,, B;) (Note a; are qth roots of unity while ; are pth roots of

unity). As in proof of Theorem 6, we get the equation
[Vl 1 1 1
[VS)] B By Bs

VS]] o o o
VSl of & &}

b
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then
B, By Bs 11 1
M|y & o —[VSy|ey @ a3
G 4G A4 4 G 9
1 1 1 1 1 1
+[VS]|B By B3 —[vS%|B, By B3| =0
4 o5 o o & 0

. . he
After putting unity for every root of unity of order p¥, the equation becomes t

congruence :
{[v]p_[VSZIp}(01_02)(0‘2_03)(&3—“1) =0 (mod p)

which can be changed into the following :
{[V],—[VSylp}a® = 0 (mod p)
after multiplying by a suitable factor, since

27 g o
(0r—0g)(@y—0g) (a5—n) = y2p05(1 = Fi)(l - Ez;)(l _?3),

a05 =1 and o
. . x9-1 _
(1—€)(1—€)- - - (1—-€%") = ,l(lnf T =@

where ¢ is a primitive qth root of unity.
Hence finally, [VS,] p= [V]p (mod p), and the argument of Theorem 7 shows

that G has an imprimitive normal subgroup H,, containing S,. Q.E.D.
Corollary 11 No primitive simple group can contain a transformation of

: 2 2
order 35, 15¢, 21¢, 10 or 14 (If S, representing respectively S7. 836, S3¢, S2, or S?,

has not three distinct multipliers, Theorem 9 applies). In fact, if primitive group G
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contains a transformation of order 35, 15¢, 214, 10 or 14 then G contai
2 ntains an

imprimitive normal subgroup.

1.6.2 The Sylow subgroups

Theorem 12 i
If the group G contains a transformation S of order 5 and

one T ororder 7: i.e.. j
er 7; i.e., if the order of G is divisible by 35, then G will j
transformation of order 35. contain a

Proof  We refer to Theorem 6 or (B2, p.565]
Theorem 13

(a) A grou X
group of order 3¢ must contain a transformation of order 32¢

of order 22 having the form (-1,i, 1)
Proof

(a) We refer to Exercise 4 of [Mi-BI-Dj, p 233]

(b) We refer to Exercise 3 of [Mi-BI-Di, p 232

Theorem 14 Ifali
a linear group G has 5 transformation S of order 5 (
or

i W, 3
;) aﬂd a trmsformatlon T whOSe multipliers are e € f‘d2 h
y & y €re ¢

bas one of order 45 (=9-5) (or 63 (=97) T et
Proof  We refer to Theorem 7 of [BI2, p.566]
Consider now a primitive simple group G of order g If Gn
. as a subgroup

H of order 52 or 72 i i
r 5°or 7%, then H is abelian. If H is cyclic, then H has 3

transformation of order 52 or 72 violati
or 7¢ violating Corollary 8. If H js Dot cyclic, then H
, then

has a :
transformation of order 5 or 7, which has at most two distinct muylt;
violating T S ) e e multipliers
g Theorem 9. Again, if g is divisible by 35, we have a transt,
ormation of

this y- i i O
order b Theorem 12 wolatlng Corollary 11. Thus g isa fact 7
oo rof 5 or 7 but
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Next if G has a subgroup K of order 3%¢ (¢ = 1), then K is abelian. If
K is cyclic, then violating Corollary 8. If K is not cyclic then it must contain 8
elements of order 3. When we attempt to construct group K, we find that K will

have a normal subgroup consisting the center of SL(3. C).

Finally, G can not have a subgroup of order 24, otherwise violating

Corollary 8 by Theorem 13(b).

Collecting our results, we find that g is a factor of one of the numbers

93.3.5 (= 120), 2%.3-7 (= 168).

Now, all simple groups whose orders do not exceed the largest of these

numbers have been listed. There are two possibilities :
g =60, 168.

(H) Group of order 60 is isomorphic to the alternating group Ag It

generated by

100 -1 0 0
S = (12345) = |0 o], U=(14)(23)=| 0 0 -1},
00 ¢ 0-1 0
111
T=(12)(34) =2 s t],
2 t s

where €= e(27ﬁ)/5, s=e+é= %(‘1"1/5—), t=etet= %(—1+./5).
(1) Group of order 168 is isomorphic to the permutation group generated by
(1234567), (142)(356), and (12)(35). It generated by
B

S = (1234567) = |0
0

o = O

00 01
#ol, T=(142)(356)= |0 0
0 g LB

G A e
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-8 F-F g

R = (12)(35) =L[ﬂ?—ﬂ5 B-4° ﬂ"—zz ,

N opp pp g

where = e(2ﬁ)/7.

Blichf i
ichfeldt [BI2, p.571] incorrectly gave T = (124)(365) instead of (142)(356)
for the stabilizer G, of v in (I), where |

v = (3F-26-23+3/-3, 34435, =3°+56*+5F-3+8) € €3,

is {I, R, S°TRS?, S’TRS®} which corresponding to :

. {{id, (12)(35), (245)(376), (254)(367)}, if T = (124)(365);
{id, (12)(35), (1523)(47), (1325)(47)}, if T = (142)(356)

the former is not a subgroup.

.7 P imiti g E iG __‘ —g\. DL g! Q 1 !
mlt] € grou ha.v m nOl‘ma.l lntransiti ve Sub oups OOIlti d
I Il ' nue

Now we consider the primiti
primitive group G of order
8 = g¢ having the center

— 2
F = {LLW,W?} of SL(3, () as a normal subgroup only, where ¢=3 and h
) = g is the

order of quotient group G/F. The quotient group G/F (existing as b:
an abstract

” .
group) must be simple. As the same argument in section 1.6.2, we ha th
6.2, ve the same

restrictions for factors 5, 7, and 2 of g. Next by Theorem 13 (a),if G n
s 1 as a

subgroup of order 3*¢, then it must contain a transformation of orde 32

violating Corollary 8. If now G hasa subgroup of order 334 (p= 3)r th ’ :

subgroup K of order 3’4 which is abelian. If K is cyclic, then violz;.t;inen e

Corollary 8 again. If K is not cyclic, then it must contain a tra.nsformatiin of type
y

T — 3 - . . .
(¢ € €u?), where € = w. Then if 8, is divisible by 5 or 7 at the same ti
ime,
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we would have a transformation of order 45 (= 15-3 =15¢) or 63 (=21-3=219)

by Theorem 14 violating Corollary 11.

Collecting our results, we find that g isa factor of one of the numbers

93.33 (= 216), 2%-3%.5 (= 360), 23.32.7 (= 504).

There are four possibilities :
g =60, 168, 360, 504.

There can be no group in three variables isomorphic with the simple group of
order 504. For, this has an abelian subgroup of order 8, formed of 7 distinct
transformations of order 2 and the identity (see [Col, p.312]). Attempting to write
this subgroup in diagonal form, we find it impossible as a group in three variables.

(J) Group of order 180 (= 3-60) generated by F and the group (H).

(K) Group of order 504 (= 3-168) generated by F and the group (I).

(L) Group G of order 1080 (= 3-360) generated by S, U, T of (H) and

1 A A
v=—1—2,\z s t},
Blan, t s

whe %= zlf('l +I5i), A = %(_1—,/1_51), s and t are the same in the entries of

T.
As elements in G/F = Ag, we have 5= (12345), U = (14)(23),
T =(12)(34), V= (14)(56).
1.8 Primitive groups having normal primitive subgroups
A possible subgroup H, is monomial (see section 1.6.1). We have already

determined the primitive groups containing a normal subgroup of this type; it is
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therefore unnecessary to consider the groups containing the subgroup H. Hence,

the orders of the groups still to be examined must be factor of the numbers

23.33¢, 23.32.5¢, 23.32.7¢ (all ¢ = 3),
as we have seen.

The group (L) has already a maximum order. If the primitive group has a
normal subgroup (J) or (K), then it contains the center of SL(3, €) as a normal
intransitive subgroup only. This case has discussed in section 1.7. A primitive

group G containing normal subgroup (H) must be of order 2%a.31sb. 5 Now, (H)

has exactly 10 subgroups of order 3, say {H,,....H,o}. Since (H) is a normal

subgroup of G, G acts on {H,,..H,;} by conjugation. It is easy to check that

(H) actson {H,,...,H,} transitively. Let G, ={TeG| TH,T"'=H,} then
|G/Gy| = 10. Hence |Gy| = |G|/10 = 2!2.31+b_ Cpogge H,

= {id, (123), (132)}
as elements in (H)

~ A;. G, actson H, by conjugation. Observe that

(23)(45) € (H) isin G, which sends (123) to (132). Thus the orbit of G,

containing (123) is precisely {(123), (132)}. The stabilizer of V = (123) has order

|G;[/2 = 22-3"P. Therefore, if a >0, G contains a transformation of order 2
commutative with V or order 3. But this would imply a group H, by Theorem

10. Again (H) has exactly 6 subgroups of order 5, say {K,,....K¢}. Since (H)isa

~-Kg} by conjugation. It is easy to check
that (H) acts on {K,,...,.K¢} transitively. Let G,={TeG | TK,T = K,} then
|G/G,| = 6. Hence |G,| = |G|/6 = 21+2.3b.

normal subgroup of G, G actson {K,,

5. G actson K, by conjugation.

The cardinal number of the orbit of G, containing V #1 in K, is denoted by

|O,|. If |O,| #3, then the order of the stabilizer of V has factor 3b. If

|Oy| =3 then there exists a V' # 1€ K, such that |Oyvi| = 1. Thus the order of

SsmE——— S
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the stabilizer of V' has factor 3b t0o. Therefore, if b >0, we would findin G a
transformation S of order 3 commutative with a transformation in K; of order 5,
which likewise would imply a group H, by Theorem 10, if S ¢ F, where F is the
center of SL(3,C). If SeF,then G= -

Similarly, a primitive group G having a normal subgroup (1) should be of
order 23.31+b.7. Now, (I) has exactly 8 subgroups of order 7, say {H,,...,Hg}-
Since (I) is a normal subgroup of G, G actson {Hy,...,Hg} by conjugation. It is
easy to check that (I) acts on {H,,....Hg} transitively. Let "
G,={TeG | THT"' = H,} then |G/G,| =8 Hence |G,| = |G|/8=3""-T.
Choose H, = (S = (1234567)) as elements in (1) ~ ((1234567),(142)(356);(22)(35)).
G, actson H, by conjugation. Observe that (235)(476) = ((142)(356)) S e(I) |
isin G, whichsends S to S2 = (1357246). Thus the orbit of G, containing S is
precisely {S,52,5%}. The stabilizer of S has order |G,|/3 = 3°-7. Therefore, if

b> 0, wewould findin G a transformation V of order 3 commutative with a
L

i 10, if
transformation S of order 7. But this would imply a group H, by Theorem 10, i
V¢F. If VeF then G = (K).
There remain the groups (E), (F), (G). Now, any larger group would
permutes among themselves the four triangles which form an invariant system for

these groups. But this was just the condition under which the three given groups

were determined. Hence no new types result.

et T TR DR N e SR T




CHAPTER II
THE INVARIANT POLYNOMIALS AND THEIR RELATIONS
OF LINEAR GROUPS OF SL(3, €)

Let G be a linear group (i.e. finite subgroup) of GL(n, () and
S = ([x,,... ial ri ,
[xy--X,) be a polynomial ring. The action of G on S is defined to be

(x4 )T = f 3 5
1erXp) (izlalixiv"viilanixi)v
where feS, T = (aij) €G.
feS is an invariant (polynomial) of G if

fT=f forall TeG.

C]earl Py i i i
y 1 f a.nd g are nvariants 80 are f+g and fg' therefore the i i
l 3 y lnvana-nts Of

is a C-algebra). Moreov
3 . er’ fT G
main problem of invariant theory [We, Ch 11 A] XTEG © Thefm

G form aring S° (in fact S°

is to determine a set
. of
polynomials f,,....f, which generate S€.

Let 3 k ini f S o a nim se‘ ()I
{f ...,f } be a set Of mlnlmal genelatOrS (0) ) i e Ini i al
invar]ants Such tha-t any i i i i . ’I’ are
mvariant 1Sa polynomial in f
etk i Ca-lled the

minimal generators of S¢, th
, then we have substitution h
omomorphism of rin
gs :

¢: C[yh---,yk] — 8

. I G - a]
w]th m ¢s = S whe]e (: YI*"'vyk] 18a pOlyIlOlni li]lg a]l(l ¢(F) = F(f
1

seeesfy ) €
for all F(y,,....f;) € C[y,,....y,]. Let K be the kernel of é, ves

then K isani
G 5 an ideal of
[¥1se¥i] and S ~ [y,,...,y,J/K. The minimal generators of K are called

38

<o e T

e ——

D T S
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relations of S®. The second main problem of invariant theory [We, Ch. II, C] is to

determine generators for the ideal of relations on the f's.

2.1 Theorems

Theorem 15 (Noether) ¢ has a set of generators consisting of not more
than (8;%) invariants, of degree not exceeding g, where g is the order of G.
Furthermore, this set of generators can be obtained by taking the average over G
of all monomials

b, b b
1, 2...x B
Xy Xg Xy

of total degree ¥3_, b; < &

Proof  We refer to [No].

For a large g, weuse the following theorem to find a set of generators of sC.

Theorem 16  Let H be a subgroup of G and {fy,...f} beasetof
minimal generators of g Let G=Ha UHaU:---U Ha,, where 8 = |G|/IH]1,

d d d d L
a,€G, i=1,.,5. Then (£t -fag + oot (f;' - £")ag i§1 d;(deg f;) < |G,

form a set of generators of s@.
Proof Let H= {h,,....,h,} and given any monomial g, = x:"- . .x:n
H 4 .
with deg g, = D1, b; < |Gl Then &= P ghi€S" 0 g =1f' A with
deg g, = dy(deg f)+ = & d (deg ;) < |G| for deg g, = deg g, < |G|. Now
D 82 = izt gh; + D0 ghiay + o+ Dl Bihiag = By + B3 oot B € BY,
Thus by Noether's theorem % is generated by g; + gs2, + -+ 822 itk
T
T d;(degf;) < |G|. QE.D.
i=1
Note If H is a normal subgroup of G and {f,,....f;} is aset of minimal

generators of s then f;a is a polynomial in f;,...f, forany a€G, 1<i<r. In
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fact, for any he H, (fa)h = fi(ah) = fi(h'a) = f,a for some h'e H. For this case,
the computations of S€ become simple.

In order to find the relations of S¢

» We introduce the concept of basic
invariants.

Theorem 17 There always exist n algebraically independent invariants

(.
of S”, in other words, the transcendence degree trd S¢ of S€ over € is n.

Proof  Forany feS = C[x},-..x,] the polynomial
h(X) = I (X —T) = X5 + g X8 +. ..+ a; has coefficients a; which are
symmetric functions of {fT | T € G} where g=|G|.

Thus a; € S° by Cayley's
theorem. Since h(f)

=0 this implies that S is an algebraic extension of S¢, so
trd ¢ = trd S = n. QED.
Theorem 18 dim $¢ = p,
G i, . . .
Proof S” igan mntegral domain which is 3 finitely generated C—algebra

by Theorem 15. From the theorem of algebraic geometry (e.g., Hartshorne [Ha,

Theorem 1.8A.(a), p.6]), the dimension (Krull dimension) of S¢ ig equal to trd S°.

Thus dim S = n by Theorem 17. Q.E.D.
Theorem 19 (Molien)  The number of linearly independent homogeneous

invariants of G of degree d is the coefficient of A4 in the N

=1
PN = e T =T

where I is the identity of G. We call #(A) the Molien series of G.

Proof We refer to [Mo].

Our aim is to find n algebraically independent homogeneous invariants

f),-..fn and k > 0 homogeneous invariants 818 Such that S® can be written

v
%

S R ST T

T ek

' a1
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as a direct sum

®- - -0 ([fy,....{ 18
(13) S = C[f,y-.-ofo) © Clfp-oful8s | A

impli linearl
Let d..b; be the degrees of f;,g; then (13) implies that the number of ki y
. v i f solutions
independent homogeneous invariants of degree d is the number O
(845-424) Of
ad, + - +ad, +by=4,

ald1+"'+andn+b1=d’

a d 4 o + a d + b E= d
£ = p {
f()I Wl[] h a > 0 h 0 1. “Ie (:()eﬂ l(:le]l‘ ()I Ad m ‘]le ex ansion O
C i ) y 1.Cey

1+Abl+ “v +,\bk

s LA (1= AR (1 - A

which must therefore be Molien series ¢(A)- f |
For any a€S’, acan be written as po(fy---fn) + py(fys-ofn)81 +

or ) I
where ynomials i s called the

+ pulfypeesfn)gy Wher p;(fy--ofa) ar€ polynomials in f,,....f,. This is cal
a-'ik et ic invariants of S°.

basic form of a. The invariants £y ofoBrr-o B 8T€ called basic inv

i : G

iti F 4) is called a basic series of G. Of
(13) is called a basic decomposition of S~ and (14) is

course, wé want

{£1--fn} € {minimal generators} C {basic invariants}.
AN

ie,
The following theorem 20 is classical and well—known. See for examp

i i illen’ tion to Serre
[HO—Ea p1036). We shall present a simple proof by using Qillen’s soluti

conjecture.
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Th&)lenl 20 l or ally ll"ea,l TO! h a baSlC

Proof Suppose th 63
P at 5" is generated by homogeneous polynomials

£1(x)--»faei(X) as a C-algebra. Define
¢y ypud — S= C[xy,....x,)

by #(F) = F(f,,..
(fifai) €8 forall F(y,,....yp) € Clyyyenyps]. Then Img = S°

L an
et K be the kernel of ¢ Then K is an ideal of [[y y ] d ‘
D) p+k.

R_—C[yl_. Yo /K2 G«
oY ekl /K 2§70 Si im 8% = y
- nce dim S n, by the Noether normalization

theorem (cf. [At—
(cf. [At-Mac]), we may assume without loss of generality that R ‘i
is

gr over A = C y ,...,yn]. NIOIe()Ver, by a Iesu].t Of {H()"Ea. S
n“e a.l \' 1 P 18

(:()]lell—l\/la(laulay. We ma.y assume flllthel tha.t fl . ’fll 153 regular q .
e sequence. S()

R is a finite modul
ule flat over €[y,,....,y,] = A (cf. p.154 of [Fi]). Therefore R_ i
’ is
m

“a‘ over A fOI’ an maXlIIla.l ldeal m 1n A (Cf. p.116 Of |BO ). B t th m
u en It 18

cf. p.107 of [Bo}). In vi
the local characterization of projective module (cf. p.138 of [ ol Inewef
. p.138 o

oiecti .
projective over A for all maximal ideal m in A (

. o Bo]), we kn
- . ) ow that R
projective over A. By Quillen's solution to Serre conjecture, R is f;

» R is free over A.

Q.E.D.
Note

1. Basic decomposition (13) ee -
means that S¢ j '
is a fr ([f,,....f,]-module with

basis 1’ 81>---8k-
2. We know that a basic series of G can be obtained from a b,
a basic

decomposition of st H i
. However, it is not always true th i
at a basic decompositi
position can

be obtai ic seri
obtained from a basic series of G. This is shown by the following exampl
ple :

o
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Let G be a cyclic group of order 7 with a generator :

10 0 .
0 ¢o C=e(2m)/7-
o0 ¢

The basic series is
VI U L o P

PR s L LA

1+ X
=M= 1 = 1 -

A basic decomposition exists corresponding to the first equation, namely,

§¢ = Clx,y" 288 (y2) Cxy2];

but there is no basic decomposition corresponding to the second equation.

the conjugacy classes of G, then the computation of Molien

for det(I—MA) = det(1—AB) if A and B being in

3. If we know
series of G becomes simple,

the same conjugacy class of G.

Now let {f---sfp:81r-8} €3 set of basic invariants of $¢ in which

} being a set of minimal generators of SG, t <k and {f;,....fs}

{fl,..‘,fn,gp"'agt
(g | 1 €1 <t 1<i ¢k~ {Bri} and

algebraically independent. Let A=
mof a, a€ ¢ Then {a—b(a) | a€ A} generates K (see

b(a) bea basic for
38 for g being a polynormial in BBy £+ 1<M S ke Lt Bl Al

has no a factor a' € A —{a}}, then {a—b(a) | a€B} are relations of s°.

2.2 The invariants of group type (A)

Let G bea group of type (A), then G is the product of cyclic groups :

G=G1xG2x...xGm
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by 'he fundalnenta.l theOrem fOl‘ ﬁnlte abehan grOUpS. G’l 18 geuet a'ted b) a
dla’g n i (C] ’ C C ) .
0 al ﬂlattlx 3 IR 0{ degl‘ee gi’ fOl‘ 1= 1, ,m a.lld a +a I
i1 i2 i3

=0 (mod g;) and ¢; bein N
i g a primitive g;th root of uni
the order of G. : unity. Clearly, g,g," g, =8

Since G iS dia. on \' \Y
g al, the avera, (4) by.c,d
ge over G i i i
f a mOnOmla.l X y Z 18 aga.]n a

monomial. Furthermore, a monomial xPycz¢ js j i i
Yy is invariant if and only if

(1)
ab +apc+a;3d=0(modg,), i=1,.m

Let
by, by, by be smallest positive integers such that Xt

by by : .
- ,¥ % z ° are invariants,

ailbl = ai2b2 = a. b =0
3030 (mod g;), i=1,..m
y e s 1 Ofccurse 1<
The: < , 1 <b,,b,bs <g.
n any solution (€1,a,c5) Of T [ 1:02,03 £ &

(C],CQ,C:;) = (dl’d‘l’ds) + (bl[l’b2£27b3£3)s

h T <d, i — y
dl < bi’ li n negatlve m g > 1 2 3 TO ev l thll
where 0 on te er, 1 3 &y Do ery solu i

(dl,dQ,d ) it.h < y
3 w 0 di < bi thele COIreSpondS the inva.l’iant X Z Let
i . these
monom a,l I)e (:a.lled gl""’gk’ Of degl'ees rl,...,rk. Then a set Of b i
as1C inva.l‘ia.nts

consists of th ; .

e 3 algebraically independent monomials x"! be by
& il s Z 2
818y~ So the Molien series (basic series) of G is together with

p) = — LA 4 g
(1 = API)(1 — Ab2)(1 - \b3) |

The se ini i
t Of m]nlmal generators 18 COntained in the set Of baSiC .]IV W (:h
' 1 ariants h'
nec&sarll have d i i l
y eg]ees < g accor dlng to N%thel's theolem After d'

minimal generators, the relations can be found by the method descr;
paragraph of section 2.1. e e

PSS C o, e o P e o e St

e
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Note  The above argument are true for every finite abelian subgroup of
GL(n, €). This was treated also by MacWilliams—Mallows—Sloan [Mac—Ma-$l,

5.800-801]. They only consider finding invariants, but they gave xE, y8, 28
instead of X, y°%,2
Example Let
¢ o 0 G 0 0
a=(fo wof |0 &° ) =
0 0 ¢ 0 0 C%

(271)/n

of order 24. Then G = G, x G, where G, being a cyclic group generated by the
first generator of G, while Gy generated by the second one. Now 6, 4, 12 are
smallest positive integers such that x%, y% 212 in g% Next we want to find i, i k

with 0<i<6, 0¢j<4 0<k<12 such that

i+ 3j+2k =0 (mod6).

This implies that

k = -5i — 6m;

where ¢ and m are integers.

So we have
— v =z
f1=x61 L=y, f3—z‘2’
_ — 42,6 = xiz4 = 5
g =Xyz G2 =Y 2» Bg= X%, 84 = X'z
gs = X2y222 = g%y
56=x3y323=g‘°{,

g = xy2' = 818y
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gs = X°yz’ = gg3,

go = x%y2° = g8,
b0 = X150 = g,

— youd il — 3
gu = Xy’ = glgy

in which fj, f,, f; are algebraically independent and f,, f,, f,, g, 8, 83, 84 minimal
1 122 13> O1) B2 B3 b4 nim

generators and f ic i
o f9, 13, 845,84y basic invariants. Thus the Molien series is

¢()‘)= 1+/\3+/\6+2/\8+/\9+,\10+2/\11+ 134 3164 119
A O T —

The relations are

g1 = 383
gigy = 284
g8 = figs
g =6,
8283 = 8184
8284 = f38},
gg =fig4
838 = fif3,
gi = f385.

| C'onclusmn : 8% = Clf},f,13,81,82,83,84] which is a free Cf,,f,,f,]-module
w:h basis 1, g, 8y, B3, Bar B B B182s Ei83 Ei84s B1B4» 8384 Also,
S” ~ ([y .y Y3 Y Y5 ¥eY7l/K where y; are indeterminates and K is an id
generated by Y3 — y,¥e, Y35 = Yo¥7» Yi¥6 — YiVsr Y3 — YoV3s YsVe — ¥ -
Ya¥% ¥ — Y1¥7 Ye¥7 — ¥i¥3 and y3 —ysys. v
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2.3 The invariants of group type (B)

Let G be a group of type (B), we shall only consider the case that G 18
isomorphic to a transitive small group of GL(2, C) (see section 1.2 (B)).

2.3.1 The invariants of dihedral groups Dn.q
(a) Let G=Dnya= <Yy T2 where m=1n—q=1 (mod 2), 1 <4

<mn, (ng)=1 and

10 0 100 G20 0
w‘Zq: 0 CQq 0 N T= 0 0 i 5 ¢2m= 0 Cm 0 y
00 (o 0i0 0 0 Gm

and ¢, = e(Q“i)/k
Let G, = <ty> then 1, 2q are smallest positive integers such that X, y°%
z2%in g2, Now we want to find £, k with 0¢ £ k<2q such that £—k=0 (mod

2q). This implies ¢ =k (mod 2q)- Therefore, %2 has a set of minimal generators :

x, y29, 229, yz. Let G, = <t then G, = Gy UGy for |G,| =4q. Now

X7 = x, yor= 1%, 229r = (—1)%%9, (yz)T = —¥2- Thus S¢1 is generated by x
and (Yzq)j(zm)k(yz)l + [(y2q)j(22q)k(yz)t]7' where 0 < (20)j + (20)k +2¢< 4t and
0<£<2q—1 by Theorem 16 and since (yz)*% = (y29)(229). The results are

f,=x,

fp=y"+ (-1)%*

£, = y%2,

f, = ya(y? + (D2,

fy =yt + 29 = 20

f =y =1

TR
f,=y2 = 2, fevenand 2< (<$2q—2,
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fy = (y2)lly2e + (=1) T 20
g 284L¢
‘ hrete fy0s = Wy 296 = wiy;
f2f37 , leven, : f,06 = fa f4¢t23 =14
. %l f where w= eaﬁ)/ 3 so g% is generated by f, and fif'éf'é + (flf‘éfg)% + (f{f;‘t{})d’%
3 ) £odd.
! where 0¢<j+ 4k + 40< 24. The minimal generators of ¢ are
So $% has ini :
a set of minimal generators : f,, f,, f;, f, and we have , h, =1},
h, =3
(16) 2= .
1= + 4(—1 q+1pg+t
oy + 4(-1)gh by =5,
Now G=G, UG 9 =1
¢ is generated b l -114?2:; Gibon U -~ UGygfy' for |G| = 4mq. Therefore, n
ed by Y2 3(fif36515) 65, where 0 <j+ (2q)k + 4¢+ (2q + 2)t < 4 1 g = fify,
and t = 0,1 (by Theorem 16 and (16))_ q < 4mq . g3 = ﬁf&

o
I
_—
I8

ple  Let m=3,q=2 then G = Dsy=<y,,7
|G| = 24 where oTilg> I ’ Bs = flfé’
4 = f,f,f
1 g6 = 112!
vy=10 i 0o, r=|0 0 i 0 6 g7=f2f§.
_ » $%6=10 (g 0 ]
‘ 00 010 0 ()6 ‘ 6 ]. The Molien series of G is
and <6 _ e(2m)/6 Cﬁ 3 Therefore, S’ = (»[hphz7h33517g‘2»g3’g4’g5’gﬁ7g7 .
Let G, =< ! L3NS 3ATHANZEBNISH3AE A
! ¥5,7> then from above S%1 has a set of minimal generato ’ o= W
T8
fl =X,
f,=y* +z* Let gg= g2, 8o = 8182 B10 = g,83 Bu = Bi8e B2 T 2185 813 = 8186 B1a = 1t
fa= y222 g5 = 8187 816 = 5(25’ 817 = glg%, then hy, by, hg, 81y - B17 are basic invariants

G
f, = yz(y* — 2% of .
The relations aré

and we have £2 =f3f, —4f3. N _
i3 —4f3 Now G =G UG ¢U G4 and glg, = hoi3 — 4h,g,, gi8s = g5 — 4hags,

f — u,'lf 2 _ . 9
1% v fids = uly ] g8y = hoBs — 4hggy, g18s = haBs — 4h;gs,

f,0¢ = 2 — .
206 = wPly, D8 = uhy; g386 = hags — 4hsBes gl =hogr — 8hyg} — 16h3,

gig7 = hohg — 4h,g7, g = higs
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883 =higs, g, = h;h,,

88 =hig;,  gygs= h,g} + 4h;h;,
887 =8 g5 = hg;,

838¢ = hyg] + 4hh,, 8385 = hyhg,
838 = higr,  gyg; = hyg,,
8=l gg=gl

8486 = hygs, g8, = hygs,
8=hegs, g = hyg,

887 = hygs,  geg, = hyg,,

88 = hyh,hy, 8 = hyg? + 4h3.

6 ;
S” is a free (fhy,hy,hgl-module with basis 1, g,

g2’ gS’ g47 85, gﬁv g ) 52’ g g i
8183 8184) B85 8186 8, 8187, 2, £,82 and SC Tk

z C[Y1$YZvy31y4ay5’YGvY7)y&y91 le]/K

where y; are indeterminates and K is an ideal generated
e

i by ¥iVs — ya¥e + 4ygys
: Y2¥9 + 4ysy;, yivs — Y3¥7 + 4ygys,
Y4~ Ya¥io + 8yay + 16y3, y2y,,

2. s |
Ya¥6 = Y3 + 4y3y6, yiy ¥2

Y9~ Yo¥s + 4ys3y,,
~ Y3 + dyay,g, y2 ~

Yi¥7 Ys¥s “Y1Yo ¥5¥7 —
Y1¥2 ¥5Y8 = ¥1¥100 Ys¥9‘¥1¥2“4y15’3v Y5Y10‘Yg» y% 7

’ T Ve YeVr —y,y3 —dy,y
Y6Ys = Y1¥3 YeYq VY10 YeY10~ Y3, Y%“Y'z)’s’ -

Y1¥8 = Y3, Yyo —
o » 179 ™ Yo¥er Y7¥10 — Yo¥ s
Y8~ ¥3¥er Ya¥o = Ya¥s, Ya¥10 = Ya¥e, Yayio — Ya¥7 ¥ )y

(b) Let G = Dn,q = <¢-Zq,'r0¢4m
1<q<mn(nq) =1 and

TYi¥a¥s and i, —yoy? —4y2.

> where m=n—q50(mod2)

100)(G2o o 3
~ ) G0 0
rog, =10 0 i 0 (o J: ()m()
0 0 $m 0

<m+1
i oo .
Galo
1 0 o
V=10 G0 [, ¢ =el27)/k
00 (2q
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Let G, = <¢j> then by section 2.3.1 (a), s®1 has a set of minimal

generators

Nowlet A=r0g,, then G=G,UGAU -+ UGA™ for |G| = 4mg. Thus
S¢ is generated by Zgﬂal(f{flgfgfﬁ)As where 0<j+ (2q)k + (2q)f + 2t < 4mq and
0 <t < 2q—1 (by Theorem 16 and since {39 = f,f;).

Example Let m=2,q=3 then G=Ds3= <{j70¢> and

|G| =24 where
1 00)(¢6G°0 0 = 4
rogg=|0 0 il]o ¢ of=[0o o g
0 i 0jJ{0 0 (g 0 G o
10 0 :
=10 ¢ O | Ck=e(2n)/k
00 ¢

Let G, = <%s> then from above S®2 has a set of minimal generators :
f=x0=y5f;=251,=yz let A=Tody and G, = <y, A? = (-1,-,-)>
then G, = G, U GyA? for |G| = 12. Now f,A? = -, ,A2 = ), {;A? =,
f,A? = —,. Thus 581 is generated by f{f'z‘fgfﬁ + (fif'z‘fgf}‘)Az where 0 < j + 6k + 6£

L 21<12 and 0<t <5 by Theorem 16 and since f§ = ffy. The minimal

G
generators of S ! are
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Fy=ff=2"
Fo= =,
Fg = f,f, = xy5,

Fg = f,f; = xz8,

F; = ff, = xyz,

Fg=f,f, = y72,

Fy = f,f, = yz'.
Now G=G,UGA for |G| =24 and FiA =-F, F)A =—F,, F;A =-F
FA=-F, FA =Fg, FA =F,, F:A=-—F,FAA=F ¥

enerated by Y2 F’i a; o FoA = Fy  Thus s€ is
g ed by 2;_,F;! + (23?=1Fj1),\ where 0 < 2a,

+ 122, + 1225 + da, + 7a, +

Tag + 3a; + 8ag + 8a4 < 24 and 0<a <5 by Theorem 16 and since F§ = F,F
F6 = 3.

The minimal generator of S° are
hy = F2 = x4,
hy = F2 = yiz4,
hy=Fy—~Fy=y"2 52
g1 = F\F; = xdyz,
8 = F7 = x%y%2,
83 = F5 + Fg = x(y%+25),
g4 = F,F; = xy323,
8s = Fg + Fy = yz(y®+25),
8 = F\F; — F\Fg = x3(y8—),
87 = F\Fg — F\Fg = x%yz(y5—9),
8s = FoFs — F ,Fg = xy*2(y5—29),
8 = F,Fg — F,Fg = y%3(y5—25).
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Therefore, S¢ = C[hy, hy, hy, &, &2, > &4» Bs» B» 87> 8s» Bel- The Molien series of
G is

#A) = LEASHASH2AT-HABH NS4 MO A 1 A124 A 1349144 Q154 M4 A2
= (=M (1-A%)(1—A) :

Let g0 = .85 &1y = B85 B12 = 83 813 = B3Bs: Bra = g, 815 = 8,83, then hy, hy,

hy, gy, Eg» -+, 815 are basic invariants of SS.

The relations are

g% =hyg), 88 = hss

g8 = i85, 8184 = hyhy,

£:8 = higr, 88 = higs

8:8s = D8y, 818 = DB

g.83 = hyhggs + 4higgs, g3 =hiby,
8283 = B85 Bafa = DBy

£,86 = higs,  E287 = DiBos

£o8s = DB, B280 = o8y,

g28% = hogl, 8384 = B

g:86 = hihy, 8387 = hagy

€385 = D38y B3Bo = Ny

g3 = hyge + 4hyg,gs, 8385 = hgy + 4ha8ags,
g:8% = hygg + 4hJgs,  gF = hygy,
8485 = hogy, 8486 = NiBor

8487 = holg,  B48s = hoBy,

848 = Doy, 8586 = habn

587 = h3gy, 8585 = haBe

838 = bohy, g3 = hygy + 4higs,
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8= hgd - 4hihogy, gy = hg385 — 4h;hog,,
Be8s = higf —4hih,  gogy = gg2 — ahdg,
g = h,g3 - 4h;h3, 878s = 8,83 — 4hlg,,
878y = hag} — 4hig,, g3 = hyg2 — g,
8so = hygas — 4hlg,, g3 = hyg? —4nj.
S€ is a free C[hy,hy,h J-module with basis L, 1) 82 83> 84> 85, &gy &> 8s> 89>
s> B2t €5 &ak €5, 8188 and S = Cly,, vo0 v3, ¥ ¥, Y Y Yo Yoo Yion Yo

Yiol/K where ¥; are indeterminates and K is an ideal generated by y2—y,y,
% ¢

Ya¥s = Y1¥7, Ya¥6 — YV1¥s, Ya¥7 — Y1Y2 Ya¥o ~ Yi¥10) Ya¥10 — YY1 YV — YiVior Ya¥12 —
Yo¥o VY8~ YaYa¥o ~ Y8V ¥ Y8~ Yi¥ VoY~ Ya¥e, Vatr — oy, Ys¥o = ¥i¥up

YoV10 TV Yo¥uu = Yo¥or Va¥1a = Ya¥uor Y8Y3 — VoY Ye¥r ~ V¥ Ye¥o — Ya¥s

Yo10 ™ Ya¥ar Yo uu = Ya¥s: Ye¥ 12 = Ya¥ns Y2 = Ya¥o — 47,475, yiyg Ya¥10 — 4Y5¥sYs»
Yo¥3 — Y3¥u ~ 4y3ye ¥ — Ya¥ss ¥Y2¥8 = Yo¥e» Y7V — Y120 Y1310 = Yo¥or Y2¥11 ~ Yo 100
Y12 T a¥uo Yoo = Yol Ya¥10 = Ya¥ss Ya¥us = YoV, YeVia ~ Yo, Y8 — YoV

— 4y3ye, v3 - Yive + 4Y1Y9Ys» Yo¥ 1o — Y1Ye¥s + 4Y1Y9¥7, yoyy, —-ywyi+ 4y,y3,

Yo¥iz = Ya¥s + 4¥3¥e Yo — vi¥3 + 4y, viyy —y OB+ 4534 yioria — yyy?

*+ 435 Y~ YoV + 493%5, VY10 — Yavevs + 4ydy, and A To

The rest of this section, for each element

T= 3 a’(ab—cd):]

o o
a o o

0
a
¢
in G (=T, Oyorl,), welet

[0

and G'={T' | TeG}. Clearly, T'e GL(2, () and G' is a transitive small
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group of GL(2, €) isomorphic to G. Also, let F' = {J = (1, 1), (-1,-1)} bethe
center of SL(2, C).
Definitions
1. Let fe€ C[y,z], the Hessian of f is defined to be

i i

H(f) =
0 i [
&R

2. Let f, g€ ([y,z], the Jacobian of f, g is defined to be

o &
ty=| ¥ -

* o

Facts

1. If f is an invariant then so is the Hessian of f and

deg H(f) = 2(deg f — 2).
2. If f, g are invariants then so is the Jacobian of f, g and-

deg J(f,g) = deg f + deg g — 2.

2.3.2 The invariants of tetrahedral groups Ty
(a) Let G =T, = <¥T,N¢p,> where m=1,5 (mod 6) and

10 0 200 12 0 0
ve=l0 i of n==]0 ¢ G|=30 1+ -1+]
0 0 —i 210 ¢ & 0 1+ 1-i
100 (3 0 0 i
2xi)/k
T= 00i,¢?m=[0 Com O ka=e( )/
0i 0 0 0 (py




56 STEPHEN S—T. YAU AND YUNG YU

Let Gy = <4,,™> then G, = D3,5. From section 2.3.1 (a), S%2 has a set

of minimal : 4zt y2g2
generators : x, y*+2%, y22?, yz(y*—2%). Let G, = <¢,,7,p> then S

b -
as a set of minimal generators : x and a set of minimal generators of Sci € (fy, z].

Gy _
Also, §°2 = ([y*+2% y2.2, yz(y*~z%)]. As elements in G}/F'~ A,, we have
ST=(123), ¥} = (12)(34) where §' = 7% and G} = <Y,7.0'> = <y},S'> for
LU ) - 4y
™ =7'Y;n'! and o = (93)?S'2. The Molien series of G; is

ﬂ»=§@0h¢«an=—rjﬂ%ﬁmr
where 1 B -
) = e + TS * TS+ e
= et(J= + et(J= + = .
Let " 4 ]

f = ya(y*—*).

Since f;n' = f,, f, is an invariant of degree 6 of G|.

1 The Hessian of f, is H(f,) of
degree 8. Let f2=—%H(f1) then

fo =y + 28 + 14y424.

The Jacobian of f,f, is J(f, f,) of 1
v fy (f, f,) of degree 12. Let f =3J(f,, f,) then

fy = 33y'z*(y*+2%) — (y124212).

G! T
So S”1 has a set of minimal generators : f), f5, f; and we have £2=1—108f¢
=L- 1

(&
Thus §™ has a set of minimal generator : x, £, 1, 13
Now G =G;UGfpnU -+ UG43;! for |G,| =24 and |G| = 24m
G . j - .
Therefore, S™ is generated by Eg;é(xlf’l‘fgfg)dagm where 0 < j+ 6k + 8¢+ 19t <

24m and t =0, 1 (by Theorem 16 and since f2=f} — 108£%).
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Example Let m=1 then G =T, = <{,7,0,¢,> = <¢,7,n> for
¢, = ¥ and |G| = 24. The Molien series of G is

A2
#(A) = (1—)\)(1:\6)(1—”) :

From above, st = C[x,f;,f5,f5] and the relation is
£ = f3 — 108f}.

S® is a free C[x,f,,f,]-modue with basis 1, f; and S° =~ €ly,,y,.yy4l/(L)

where y; are indeterminates and L =y} — ¥3 + 108y3.

(b) Let G =T, = <#,7,100g,> where m=3 (mod 6) and

V20 0)(Sn 0 O V2n 0 0
mom=-1|0 ¢ G0 G 0 |=20 G amt|
Zlog allo o ¢ Lo gt gia
100 100 '
vo=lo i of r=fo 0 if ¢=e?®/k
0 0 —i 0 i 0

Let G, = <9, 7> then G,= D3,2. From section 2.3.1 (a), S€1 has a set of
minimal generators : f, = x, f = y* + 24, f3 = y%2% f, = yz(y*~2*). Now let
A = o¢, then G=G,UGAU - UGA¥! for |G| =8 and |G| =24m.
Thus S° is generated by SEG(H{A4E)A® where 0 < j+ 4k + 4£+ 6t < 24m and

t=0,1 (by Theorem 16 and since f} = f3f; —4f3).

2.3.3 The invariants of octahedral groups On
Let G = O, = <ty,7,7,¢p,> where (m,6) =1 and
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100 . 2 0 0 100
Yg=10 (5 0 =v‘?01+10,r=00i,
00 ¢ 0 0 1+ 0io0
v 0 0 .
1 ) l2 0 o G o oo
G Gg| =30 1+i—1+i], ¢,,=]0 Com O
0 ¢ & 0 1+i 14 0 0 ¢
m.

Let G, = <y, 7,7> then as elements in Gi/F' ~S,, we have §" = (123)
YL = (1324) where S' = p? ang Gi=<¥pm'0'> = <y S'> for ¢ = 7' (v)’n'?
and 7' = (14)*S'2. The Molien series of Gj is

800 = HBO)+,(-3) = gt tAS

where

6

=1 1
HO = 71 a=my + dmrey + g
8
+ Y 3
TT-NHS7) + TS 2

Let Gy = <y,7,> where ¢, = ¥ then G} = G}
|Gi| =48. Let

UGy for |Gy =24 and

g = y8 + 2% + 14yt
then g, is an invariant of G, by section 2.3.2 (a). Since gv=g,g i
8~ B1» & 18an

invariant of degree 8 of G}. The Hessian of 8 is H(g,) of degree 12. Let

1
82 = gapgi(8,) then
8 = ¥z (y® + 28 ~ 2y2*).

The Jacobian of g, g, is J .
g1 & (g1, 8) of degree 18. Let 83 = 769(81 8,) then
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g5 = yz(y'® —2'%) — 34y%°(y* - 2°).

So S®1 has a set of minimal generators : g, g, g and we have g = g,g} — 108g3.

Thus S®1 has a set of minimal generators : X, g&, &, 83-

Now G = G, UGpygU -+ UGl for |G,| =48 and |G| = 48m.
Therefore, S® is generated by Xg;é(xjg'{gfgg)cbgm where 0 < j+ 8k + 12{+ 18t <
48m and t = 0,1 (by Theorem 16 and since g3 = g,83 — 108g3).

Example Let m =1 then G = 0, = <tg,7,0,$;> = <¥,T,7> for
¢, = ¥4 and |G| = 48. The Molien series of G is

A8
¢(A) = (1_,\)(%i,\8)(1_)\12) s

From above, S® = ([x,g,,€,,8;] and the relation is

g3 = g, — 108g3.

S€ is a free (|x,g,,&,]-module with basis 1, g3 and € ~ Cly,,y2¥ayal/(L)
where y, are indeterminates and L = yj — yay3 + 108y3.

2.34 The invariants of icosahedral groups In

Let G = I, = <0,Q,0,0y,> where (m,30)=1 and

5 0 0 (m 0 O
=Llo ¢¢ &Gl bw=|0 Cm 0}
Blo g-¢ ¢ 0 0 Gy

1 0 0 1 0
o=lo ol a=]o¢ o] ¢=e®k

01 0 0 0 ¢

Let G, = <Q>. Then 1, 5 are smallest positive integers such that x, y5, x5

in S%4. Now we want to find j, k with 0 < j, k <5 such that 3j+ 2k = 0 (mod 5).
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100 g 2 0 o0 1 00
¢8= 0 Cs 0 =ﬂ— 0 l+i 0 y T = 0 0 i ,

00 ¢ 0 0 14 0io0
2 0o 2 0 o G2 o oo

p=-L|o ¢ |1 " o
s C3 =31 0 1+i-1+i], $m=]0 (p 0
0 ¢ ¢ 0 1+i 1 0 0 ¢
m.

and ¢, = e(2T)/K

Let G, = <¢g,r,7> then as elements in Gi/F'~S,, wehave §" = (123)
¥ = (1324) where S' = 52 ang Gi=<¥hr'0'>= <4 S'> for 7 = 7' (9!
' ’ B ’
and 7' = (¥4)*S'2. The Molien series of G, is

60) = (BN +8,(-\)) = 1+A18
1— 1-A1
where

—_ 1
¢‘“)‘ﬁ[m+m§7m+a&uw%wm
8
6 3
T AR * TSy

Let G2= <1/)417’y7]> where ¢4 = 1/;% then G; . Gé
|G| = 48. Let

UGsg for |Gyl =24 and

81 =%+ 28 4 14y4t
then g, is an invariant of G; by section 2.3.2 (a). Since 8k =g, g is
. . 8 = 81 6 18an
invariant of degree 8 of G}. The Hessian of 8 is H(g;) of degree 12. Let

1
82 = gapgt(8)) then

8 = y2*(y® + 28 — 2y%29),

The Jacobian of g, g, is J f 1
8i» 82 (81, 8) of degree 18. Let &3 = m-’(gp g,) then
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g3 = yz(y'® — ') — 34y>2%(y® — 2°).

So S has a set of minimal generators : g, g,, g; and we have g3 = g,g? —108g3.
Thus S% has a set of minimal generators : X, g,, g, &5

Now G =G, UG gy, U - UG,¢h:! for |G,| =48 and |G| = 48m.
Therefore, S¢ is generated by m;é(xjg}gfgg)@m where 0 < j + 8k + 12£+ 18t <
48m and t = 0,1 (by Theorem 16 and since g3 = g,g; — 108g3).

Example Let m =1 then G = 0, = <4, 7,1¢p> = <¥g,7,7> for
¢, = ¢4 and |G| = 48. The Molien series of G is

A8
#(A) = (l_x)(}i,\s)(l_,\lz) .

From above, s¢ = C[x,8;,82,83] and the relation is

g3 = 8,87 — 108g3.

S® is a free ([x,g,,8,]-module with basis 1, g; and s€ ~ Cly¥er¥aydl/(L)
where y; are indeterminates and L = yj —ysy3 + 108y3.

2.3.4 The invariants of icosahedral groups I

Let G = I, = <0,0,0,¢p,> where (m30) =1 and

5 0 0 $m 0 0
o="210 ¢ &Gl bm=]0 G 0}
Blo ag ot 0 0 G
1 0 0 1 00
o=fo 0|, a=]o¢ of ¢=ek
01 0 0 0 ¢

Let G, = <0>. Then 1, 5 are smallest positive integers such that x, y%, x°

in S%. Now we want to find j, k with 0 < j, k < 5 such that 3j + 2k = 0 (mod 5).
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This implies k = j (mod 5). Therefore, S4 has a set of minimal generators :

fi=xf,=y5 f;= 251, = yz and f; =1y Let Gy= <0,0%> then
G3=G, UG for |G3| = 10. Note that o2 = (1,-1,~1). Now f,0? =1
= %3

fo0? = —f,, f,02 = ~f5, f40* = f,. Thus %3 g generated by f, f, and

b
B33 + (B5) 0> where 0 < 54 + 5b £ 10 by Theorem 16. The results are
=1,
& =13,
83 =hf;=f;

G v
So 5”3 has a set of minimal generators : f, f,, g, g, and f10 8.8, Let
J 4 = B8

UGgo for |Gy| = 20. Now fa—fl,f4o=-—f

Thus §% i generated by f, and faghes + (f2gbeS)o where

0<2a+10b
+10c <20 and 0<a<9 by Theorem 16 and since f}°=g g The

Gy = <Q,0> then Gy =G,

810 = 8y, 80 = g,.

minimal generators of S%2 are f, and
h =f,
b, =g +g,,
hy = 1,(g, ~ gy).

G,
Thus S 2 = c[h“hz,hsl. Let Gl = <Q,U,0> then as Elements i G /Fl

have U7 = (14)(23), ' = (12345), T = (12)(34) where 1

G} =<0 0> = <U".Q'.0'>. The Molien series of G is

* Ag, we

= 0% and

BN) = AV 4y(-A)) = - LEAY

where

=1l 1 12
() 6[et— + IR + g
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Now G} = G} U G}o' U GY0'Q") U G(0'Q'2) U GY(0''3) U G}(0'Q'4). So an

invariant of degree 12 of Gj is
A = ya(y'° + 11y%° - 219)

for h3+h3o'+h3(0'Q')+h3(0'2'2)+h}(0'Q'3)+h3(0'Q'?) = —yz(y10 + 11y%2° - 210).

The Hessian of A is H(A) of degree 20. Let B =—T%TH(A) then

B = y20 4 220 — 228y575(y'0 — 210) + 494y10710,

The Jacobian of A, B is J(A, B) of degree 30. Let C = —%J(A, B) then

C = y30 4 730 4 522y525(y20 — 2%0) + 10005y'%2!0(y! + 21).

So S has a set of minimal generators : A, B, C and we have C? = B3 + 1728A5.
Thus S¢ has a set of minimal generators : x, A, B, C.

Now G = G, UG;dp U -+ UG43 for |G| =120 and |G| = 120m.
Therefore, S is generated by T2- (xJAkB‘c‘)%m where 0 ¢ j+ 12k + 20¢ + 30¢
<120m and t = 0, 1 (by Theorem 16 and since C2 = B3 + 1728A%).

Example Let m=1 then G =1, = <0,Q2,0,¢,> = <0,02,0> for

¢, = 0* and |G| = 120. The Molien series of G is

1430

¢(A) = =X =)

From above, S® = C[x,A,B,C] and the relation is
C? = B3 + 1728A5.

S¢ is a free ([x,A,B]-module with basis 1, C and S® = Clyryaysyd/(L)

where y; are indeterminates and L = y3 — y3 — 1728y3.
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24 The invariants of group type (C)

Let G be a group of type (C)
H and

T=

-_o O

10
0 1].
00

In this case, we can find a normal diagonal abelian subgroup H'
G=H'UHTUH'T2. To prove this, we may assume
a, 0 ¢

H=< 0 a0 >’ Aaa3 = 1,
00 ay

for H is a direct product of cyclic groups.
Claim If G=<HT> then G = H'UH'T U H'T?
a, 0 0 a0 0

00 a3} Lo o a

Proof Let
3,0 0 30 0
A=10 2, 0|, B=TAT*= a; 0
0 0 a 0 0 a
a3 0 0
C=T'AT=|0¢ 3, 0|, H'=<AB>.
0 0 a

Since ajaja; =1,C = (AB), so CeH'. Therefore, TH'T! = i
and G=H'UH'TUH'T. QE.D.

,1.e., generated by a nontrivial diagonal abelian group

of G such that

and H' 4 G, where

ie. H'aQ
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To find invariants of this group, we find the invariants of H' first (see

section 2.2), then Theorem 16 applied.

Note  The special case of (C) for H being a diagonal cyclic group was
treated by Maschke [Ma2] independently.

Example Let G = «<S§,T>, where

O -
1}, w= 6(2’")/3.
0

(= R

1 0 0 0
S=]0 w 0}, T=]0
0 0 1
Let H'= <S,TST" = (w, o, 1)>, then G = H'UH'T UH'T? and H' «G.
Moreover, G = {W3SPT¢ | 0 < a,b,c <2} for TS = WST, so [G| = 27, where
W= (v, w, w).
First we find S Since 3 is the smallest positive integer such that x3, y3,

2 in S". Now we want to find i, j, k, with 0 <i,j,k <3 such that

j+2k=0 (mod 3),
i+2j=0 (mod3).

This implies that i= j= k (mod 3). Thus S" = €[x®y% 2% xyzl.

Next, since x3T = y3, y°T = 28, 23T = x3, (xyz)T = xyz, S is generated
by xyz and (x3)i(y}P(2)* + ()T + ((3)(y*)i(z%)*)T? where
0<3i+3j+3k<27.

So the minimal generator of ¢ are

f, = xyz,
fp=x3+y}+ 28
f, = x3y3 + y323 4+ 23x3,

A=t -l = (Fy) @)




64 STEPHEN S.—T. YAU AND YUNG YU

Therefore, S® = ([f,f5,f3,A]. The Molien series of G is

9
o) =

So the relation is
A2 = 1883,f, — 4833 — 4f} + B35~ 2718,

Thus S isafree C[f,f,f;]-module with basis 1, A and
S~ C[yy,¥9,¥3:¥4l/(L) where ¥; are indeterminates and

L=yi—18ylyys + aylyd + ay3 —y3y2 + 27y8.

2.5 The invariants of group type (D)

Let G be a group of type (D), i.e., generated by H of type (A), T of type
(C) and

a 00
R=10 0 b|, abe=-1.
0 coO
Since
a¥ 0 9 a?s1 g 0
R®*=10 (be)* 0 | and R®= 0 0 bScst
0 0 (be) 0 bSlcs o

the order of R should be even. Let |R| = 2s, then a2 — (bc)s = 1.

To find SG, first let G, = <H, T> and find S%1 (see section 2.4). Next

1» then apply Theorem 16.
Example Let G=<S, T, R> where

construct the cosets of G over G

100 01 0
s=]o wol| T=]0o0 1]
0 0 o 10 0
-1 0 0
R=]0 0-1|, w=e2m/3
0-1 0
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Let G, =<S,T> then G=G,UG,R and G, <G. In fact,
G = {WaSPT°Rd | 0 < a,b,c <2, 0<d <1} for RS = §?R, RT = TR, so
|G| = 54, where W = (w, w, w).

From example of section 2.4, S®1 has a set of minimal generators

f, = xyz,

f=x3+y3+ 23,

f; = x3y3 + y¥2% + 2%,

A= (x3 -y (y® —23)(28 —x3).

Now f,R = —f,, f,R = —f,, f;R = f;, AR = A. Thus S° is generated by 3, A,
and fifs + (fjf*)R where 0 < 3j+ 3k <54 and 0<j<5 by Theorem 16 and since
A? = 1863%,f, — 4£33 — 4f3 + {2f7 — 2713. The minimal generators of S¢ are f;, A
and

&a=1

g2 = hify,

g =1

So S = ([f,, g, 83, & Al- The Molien series of G is

o()) =

Thus the relations are

1404294018
A .

8 = 88y
A? = 18g,8,f5— 48:8,83 — 413 + 55 — 2783
S® is a free ([f,,g,,g5]—module with basis 1, g;, A, g,A and
S€ ~ Cly,,¥2¥3 Y4 Ysl/K where y; areindeterminates and K is an ideal generated

3 2
by y3—yoys and y2 —18y,y,y, + 4ypyay, + 4y} — yiys + 27y3.
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2.6 The invariants of group (E)
Let G be the group (E), i.e., generated by S, T, and V where

100 010
S=10 w 0}, T=10 0 1},
0 0 100
111
V=L1 w uP, w:e(zm)/3
Nl P ow

Let G, = <S,T,R> where R = V2 as in the example of section 2.5, then
G=G,UG,V and G, <G. Infact, G = {Wagbreyd |0<ab,c<2,0<¢d<3}
for VS=TV,VT =§%, so |G| = 108, where W = (w, w, w).

From example of section 2.5, 61 has a set of minimal generators

& =1,

g = fify,

g =10,

f3 = Xgy3+ ya25 + 23%s,

A= (x3- ya)ys — z4)(23 — X3),

where f; = xyz, f, = x3 4+ y% + 23.

Now
£V =4, - 31f),
Y
f,V = vé—l_(fz + 6f,),
f3V=“§(—9fa+f%+3f1f2+9ff)=‘§15(931+3g2+g3_9f3)’
AV = A,

So
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gV =@H)V=>V)>?=- 717(951 — 68, + 83),
gV = (E5)V = (V)(E,V) = — 5(-18g; + 38, + 83),
g2V = BV = (,V)? = — 5(36g, + 128, + g3).

Thus S® is generated by A and g}g‘z‘ggfg + (g{g',‘ggf'_.'})v where 0 < 6j + 6k + 6£
+6m < 108 and k =0, 1 (by Theorem 16 and since g5 = g,83)-
The minimal generators of ¢ are A and

h, = 18g, + 6g; — 83

hy = g3 — 12f3,

hy = 27g7 - 8,83,

h, = 18g,8, — 38,83 — 8283

Thus S® = C[h,, hy, hy, hy, A]. The Molien series of G is

1+A%4 212402
$(A) = 128 2(I-ATZ)'

So the relations are

(17) 9h2 = 12h3 — h?hy + hih,,
432A? = h2 — 2h? + 36h;h, — 3h3h; + 36h,h,.

$¢ is a free C[hy,hy,hg—module with basis 1, hy, A, h,A and
S® ~ C[y,,y2:3V4Vsl/K where y; areindeterminates and K is an ideal generated
by 9y2—12y2 + yly;—¥iy, and 432y} -y} + 2y} — 36y,y, + 3yly, — 36y,ys.

2.7 The invariants of group (F)
Let G be the group (F), i.e., generated S,T,V, and P = UVU™ where

100 010 111
s=lo wol, T=]oo 1], v=1]1 v &,
00 100 ‘/:Slwzw
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€ 00 11 &
U=|0co], P=L]1 o o ! w=e(2ﬁ)/3, &=
0 0 ew 3 w1l w

Let G,=<S,T,V> then G=G,UG,P for P2 = §2V? anq |G| = 216, thus
G,<G. So G={WaSbT°VdP°|0$a,b,c52,05d53,05e51}
W = (v, w, w).

where

From section 2.6, S°1 has a set of minimal generators

A = (523,
hy = 18g, + 6g, — g3,

hy = gy — 12f;,

hy = 278} — gop5,

hy = 18g,8, — 3g,g; — 8283

where g, =}, & = fify, 8 = B, f) = xyz, 1, = x%4y3+5, , = xdy4yigd 4230,
Now

AU=A, AUt =4,

iU=1, fUul=f;

LU =u), LU= o,

f3U=ofy, £U= oA

aU=g, gU'=g;

8U =gy,  gU! = wgy

8U = uwgy  gU7 = oPgy

together‘with the equalities of gV, g,V, g,V, f3V and AV in section 2.6, we have

1
&P =~ ?7(951 — 6ugy + u’g;),
8P =- %ﬂ-(—ISg, + 3ugy + o?g,),
8P = — 5(36g, + 12ug, + Wg,),
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f4P = ’%1(981 + 3ugy + w'gy — 9uy),

AP = A.
Thus

h,P = —h,,

hyP = hy,

hyP = hy,

hyP = (b} — 9h,).
So S® is generated by A, hy, hy and hjhk + (hjhk)P where 0 < 6j + 12k < 216
and k = 0, 1 (by Theorem 16 and (17)). The minimal generators of ¢ are A, h,,
h; and

d=hi
Therefore S® = ([hy, hy, A, d]. The Molien series of G is

,\12 /\24
#(A) = (1_,\6§~{1_,\t)(1_,\12)~

So the relation is
(18) 4¢3 — 144h,d? + 1728h3d = (hj — 432A% — 3h,d + 36h,hg)?.

S¢ is a free C[hyhy,Al-module with basis 1, d, d and ¢ ~ Cly,.y;.y5.y4)/(L)
where y; are indeterminates and L = 4y} — 144y,y% + 1728y,y, — (y} — 432y}
—3yyy4 + 36y1y)"

2.8 The invariants of gr G

Let G be the group (G), i.e., generated by S, T, V, U where

100 010 11 1

s=fo wol T=loo 1| v=-L)1 o
6 0 100 ‘[‘31 w
0

U=|0 ¢ 0|, w=e(2"i)/3, e =P
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Let G, = <S,T,V,P> where P = UVU" a3 in the section 2.7, then G = G,UG,U
UG,U? for US=W? and |G| =648. So G = {WasbTevdpeyf | g < abc< 2
0<¢d<3,0<e<1,0¢f<2} and G; 4G for UPU“=W2SV3P,U2P_U';,=;/ ,
UVU? = P, U2VU2 = W2SV3pP, UTU = S’T, UTU2 = ST, where W = (w a:w)
From section 2.7, S has a set of minimal generators o

A = (xy%)(y’—23)(2x3),
hy = gy — 126,

hy = 27g} - 8,85,

d=hi = (18, + 6g, — g;)*

where g, = - _
==t g =01, = xys, fy=x34y3+2%, £, = x3y34y3842%3

Now
&aU=g, gUl=g
&U =g, gU=ug,
83U = ugy,  g3U% = gy
f3U = ofy, U2 = o2
AU=4A, AU=A;

bU = why,  hyU2 = uPhy;

h3U =h;,  hyU% = hy;

dU = o*d + (12-12u)h,;,  dU? = wd + (12-12w)h,,

G. ) '
Thus §is generated by A, hy and hid* + (hJA“)U + (bja")U2 where 0 < 6 +

12k <648 and 0 < k < 2 (by Theorem 16 and (18)). The minimal generators of S¢

are A, hy and b, = h, b, = hyd — 12h,h,.

G
So S” = ([A,hy,b;,b,]. The Molien series of G is

#(A) = - 1+/\18+,\361—
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Thus the relation is

4b3 = 9b2b, — 6b,b? + 2592b,b, A% + b} — 864bA? — 6912b,h3 + 186624b,A*.

s© is a free €[A,hg,b,]-module with basis 1, by, bj and S€ » €[y, ¥ ¥a¥al/(L)
where y; are indeterminates and L = 4y} — 9y,y2 + 6y3y, — 2592y3ysy, — ¥3
+ 864y2y2 + 6912y3y; — 186624yys.

Note  Rotillon [Ro] also treated the cases (E), (F), (G) independently,
but her result in case (E), second relation ([Ro, Theorem 1, p-346]) is wrong.

The groups (H)—(L) are isomorphic to permutation groups, so the conjugacy
classes of those groups can be found easily. Thus we compute the Molien series

first, then use them to find a set of minimal generators of invariants.

Definitions
1. Let fe [x,y,z], the Hessian of f is defined to be

i of  2f
7wy O
HO = | 5 5% 0
@i 2 Pf
Tox By 027

2. Let f,g € C[x,y,2], the bordered Hessian of f, g is defined to be

02f g 92f g(g
XTI xdy Oxoz

g2f 9 o9 gyg
BH(f,g) = W& HT HE .
i o02f of ng

Tadx Wby HT
2 % & 0

3. Let fgh € ([x,y,z], the Jacobian of f, g, h is defined to be
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SRS

af
i
J(,gh) = % %
of
%

Facts

L. If { is an invariant then so ig the Hessian of f and
deg H(f) = 3(deg f - 2).

2. If f, g are invariants then so is the bordered Hessian of f, g and
deg BH(f,g) = 2(deg f — 2) + 2(deg g — 1).

3. If f,g,h areinvariants then so i3 the Jacobian of f, g, h and

deg J(f,g,h) = deg f + degg + degh —3.

The invariants and relations of (H) and (I) were found by Klein (1884)

(K1, pp.236-243] and Weber (1809) [We, pp.518-529] (also see Gordan (1880) [Go])

respectively. Their methods are long and complicated and are difficult to
comprehend.

2.9 The invariants of group (H)

Let G be the group (H), i.e., isomorphic to the alternating group A.. It
5

generated by
100

-1 0 o
S=(12345)= |0 ¢t 0|, U=(14)23)=] o 0-1],
0 0 ¢ 0-1 0

111

T=012)34)=-2 5 ¢|

"52 t s

where ¢ = e(2ﬁ)/5, s=e+ 8=

1
(-1B),t =€+ ¢t = %(—1+£).
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We have |G| =60 and G = {U?S%,SPTU?S® | 0<a<1,0<b<4}. The

Molien series of G is

15 20
ﬂ*)=6%[mﬁn+am%%$+m%m+mﬁ+m]

_ 14 A15
= TR 1—AO) (1=

Let G, = <S>. Then 1, 5 are smallest positive integers such that x, y%, 2% in
$2. Now we want to find £ k with 0 < £ k <5 such that 4¢+k = 0 (mod 5).
This implies £ = k (mod 5). Therefore, %2 has a set of minimal generators :
fi=x,f,=y% =25 f, = yz and f; = fyfs. Let G, = <5,U> then

G, = G,UG,U for |G,| =10. Now f,U = —f, U = —f5, U = -, f,U =1,
Thus S® is generated by f, and f35f5 + (BBf5)U where 0<a+ 5b + 5c <10

(by Theorem 16). The minimal generators of €1 are f, and

gl = f{a

=01

g; = fi(fy + f3)-

Now G = G,UG,TUG,(TS)UG,(TS?)U G,(TS®) U G,(TS*). Soan
invariant of degree 2 of G is

b, =x%+yz

for g, + T + 8,(TS) + g,(TS?) + £)(TS?) + g(TS*) = 2(x* + yz) and an
invariant of degree 6 of G is

h, = 8x%yz — 2x%y %% — x(y5+2°) + y2

for b= g + g5T + Eo(TS) + g5(TS?) + g4(TS?) + g5(TSY) = 5a(16x3— 120x*yz

+ 90x2y?z? + 21xy® + 21xz% — 5y323) and 16h3 — 22 3 = 21(8x*yz — 2x%y2? — xy® —
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xz° + y’2). The bordered Hessian of h,, h; is BH(h,h,) of degree 10. Let
hy = — 55(256h% — BH(hy,h,) — 480h%h,) then

hy = 320x%y%22 — 160x%y323 + 20x%y%z* + 6y5z5
—4x(y® + 2%)(32x* — 20x%yz + 5y%2%) + y10 4 710,
The Jacobi i 1
e Jacobian of hy, hy, hy is J(hyh;,hy) of degree 15. Let hy = 153 (hy,hy,hy)
then
h, = (y% - 2%)[-1024x!° + 3840x8yz — 3840x6y222 + 1200x*y%23 — 100x2y*z*
+ 10+ 21 + 2955 + x(y® + 25)(352xt — 160x%yz + 10y%2)].
So S% = [h, hy, hy, by,

The relation is
2 5 3
(19) B = —~1728h; + hi + 720h;h3h, — 80h3h,h2 + 64h3(5h3 — hyhy)2.

G .

S” is a free €[hy,hy,h ]-module with basis 1, h, and ¢ o Uy yyayayd/ (L)

where y,; are indeterminates and L = yi+ 1728y5 — y3 — T20y,y3y,
— 64y¥(5y3 — y.y9)~

2.10 The invariants of group (I)
Let G be the group (I), i.e., isomorphic to the permutation group generated
by (1234567), (142)(356), (12)(35). It generated by

+ 80y¥y2y§

B0 o 01
S=(1234567) = |0 A 0|, T=(142)356)=]0 o
00 g 10
g-8 -5 pps
R=(12)(35) =1| 6 pp5 pp|,
s pp pp

0
Ly,
0

where g = e(2”i)/7,
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We have |G| =168 and G = {T2SPSPT®RS® | 0<a<2,0<b<6}. The

Molien series of G is

1 1 24 .24 . 56
¢(’\)='1_6§[mt =)t det(T-xS) T det(I-AS3) * det(I-XTSY)
42 21
+ Fet(1-aRSe) * 'det(I—XSITQRSS)]

_ 1421 .
= [T=MI=XE)(1-M%)

. Q6
Let G, = <S>. Then 7 is the smallest positive integer such that x7,y7,2" in S"2

Now we want to find j, k, £ with 0<jkt(<7 such that j+2k+4¢= 0 (mod 7).

2
Therefore S¥2 has a set of minimal generators : xyz, xy3, y28, zx3, Xy?, y*2?, 2%
By, y5z, %, ', y7, 2. Let G, = <S5,T> then G, = G, U G,T U G,T? for

|G,| = 21. The Molien series of G, is

' 3 7 7
¢G1(A>=%[aaa%:m+aaa%—757+m+m+m]

o 1EABASEAN
T I M) (1A

Now
xyz + (xyz)T + (xyz)T2 = 3xyz,
xy® + (xy)T + (xy¥)T? = xy® + yz* + zx3,
y? + (Cy)T + (x3y?)T? = x3* + y3z2 + 2%,
By + (YT + (Fy)T? = Cy + y%2 + 2%,

X+ XT + xXT2=x"+y" +2".

Thus SS! has a set of minimal generators : xyz, xy® + yz% + 2x3,
K3y + y322 + 252, By + ¥z + 2%, X +yT + 7.
Let

a=xy’ + yz% + 2x3.
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Since aR = a, a is an invariant of degree 4 of G. The Hessian of a is H(a) of
degree 6. Let b= ¢iH(a) then

b = 5x%y2% — xSy — y5; _ ;5.

The bordered Hessi i
ssian of a, b is BH(a,b) of degree 14. Let c=%BH(a,b) then

c=xM 4 yldy g4 34%xyz2 — 9507594, + 375Lx8y24
+ 18(xTy"+y 27 +27x7) — 126Ex8y573

where Sxiykzl = yigh,€ | ikl i
Yz =xy'z + ylzf%%" + zlx“y[. The Jacobian of a, b, ¢ is J(a,b,c) of

1
degree 21. Let d = 149(2,b,c) then

d = x2 21 2
X7 4 YT+ 2% - Thxi8ya? 4 917vi6ye, _ 308215y 254
-—57)(7 14, 07,14 7 14y -
(xTy " 4yTald g7y ) = 289(x4y7 e +214x7T) + 4018%x!3y573
+ 637%x!12y3,6 1,,.9
Y°2° + 1638%x'yz® — 6279%x11y8,2 4 7007%x10y 65
— 10010%x%*2® + 10296x7y757.

Gordan [Go, p. i
( [Go, p.372] incorrectly gave the coefficient of x7y7;7

in d as 3432 instead
of 10296). So S = ([a,b,c,d].

The relation is

20 2 _ 3
(20) d* = ¢? - 88a%bc? + 1008abc + 1088a4h% 256a’c

+ 1728b7 — 60032a3b5 + 22016a5h3 — 20482,

G .
S is a free ([a,b,c]~module with basis 1, d and S€ = Cly,y,y5y./(L)
= DI 3 4

where y; are indeterminates and [, — vi-vi+ 88y3y,y3 — 1008y vty
V73

~ 1088y1y3y; + 256yly, — 1728y7 + 60032y3y5

2.11 The invariants of group (J)

Let G be the group (J) then IG|

— 22016yy3 + 2048y3y,.

=180 and G = G, x G, where G, is
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the group (H) and G, is the center of SL(3, (), i.e., G, = {L,W,W?} where
W= (0, 0, w) and w=e2™/3 Clearly, G,<G and G = G,UG,W UG,W>.

From section 2.9, $%1 has a set of minimal generators h;, i =1,2,3,4. Now

h,W = «?h;, hW?=uh;
h,W = hy, h,W? = hy;
hyW = why, hyW? = oPhy;
h,W=h, hW=h,

Thus S® is generated by h,, h, and hjh% + (hjb§)W + (hh§)W? where
0<2j+ 10k < 180 and 0 < k < 2 (by Theorem 16 and (19)). The minimal

generators of S® are hy, h, and a, = h}, a, =hhy

So S® = €[h,,h,,a,,3,]. The Molien series of G is
14+A124 224
80 = 386, (V) + g (&) + 9 (PN) = Xy =ATS)

where ¢Gl(/\) is the Molien series of G,.

Thus the relation is
al= a,(hi + 172803 — 720hga, + 80h2a.§ - 64a,(5h§—a,)2).

S% is a free C[hy,h,,a,]~module with basis 1, a,, a3 and S = €[y,,y,.¥3./(L)
where y; are indeterminates and L = y§ — y3(y3 + 1728y} — 720y}y, + 80y,y}
— 64y3(5y7 — ¥4)*)-
2.12 The invariants of group (K

Let G be the group (K) then |G| =504 and G = G, x G, where G, is
the group (I) and G, is the center of SL(3, C),i.e., G, = {I,W,W?} where
W = (www) and w=e2™/3, Clearly, G, 4G and G = G, U G,W U G,W?2.
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From section 2.10, S%1 has a set of minimal generators a, b, ¢, d. Now

aW =uwa, aW?=(?a;
bW=>0b, bW!=p;
W = u’c, cW?=u
dW =d, dw?=4.

Thus S® is generated by b,d and aick + (alc")W + (alckyW? where 0 < 4j +

14k <504 and 0 <k <2 (by Theorem 16 and (20)). The minimal generators of S®
are b, d and b, = a3, b, = ac.

So S° = €[b,d,by,b,]. The Molien series of G is

8N = 508, () + 8¢ (4) + 6, () = (T (C1oX P2 (1=

where ¢, ()) is the Molien series of G,.
1

Thus the relation is

b3 = b,(d® + 88b,b, — 1008b*b, — 1088b%b,b, + 256b2b, — 17287
+ 60032b%b, — 22016b%b7 + 2048bb3).
S is a free €[b,d,b,]~module with basis 1, by, b2

6
and §% ~ c[yvy273'3’)'4]/(1‘)
where y; are indeterminates and L = y3 - y,(y2 + 88y3y, — 1008yy,

— 1088y}yay, + 256yfy, — 1728y] + 60032yly, — 22016y%y2 + 2048y,y3).

2.13 The invariants of group (L)

Let G be the group (L) then |G| = 1080 and G/F is isomorphic to the

alternating group Ag where F is the center of SL(3, (). 1t generated by
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100 10 0
s=|0 e¢o], u=|o0o o-1],
00 ¢ 0-1 0
111 1M A
r=2l2 s t|, v=2Lf2r s t],
2t s 20, t 8

i 1

where ¢ = e(27")/5, s=eE+ 8= %(—I—JS), t=€+ ¢t = 5(—1+\/5),

A= %(—1+‘/1_5i), A= }I(—l—ﬁ?)'i). As elements in G/F ~ Ag, we have

T = (1234567), U = (14)(23), T = (12)(34), V = (14)(56).

We have G = {USPWe,SPTUSSPWE,SPVUSSWC,SPTUSPVUSSPWe | 0 < a

(27)/3 In fact

<1,0<¢b < 4,0<c<2} where W= (vww) and w=¢ g ,

W = (VS4)(S2TUSVSTUS?)!. The Molien series of G is

$(2) = ';1;(4’1('\) + $i(wh) + ¢4(w*A)) = TREI—ATI=AD)

where
1 1 72 + 72 + 40
$(A) = 355 [a_et(I—XI) + Fet(1=35) + det(1-3S7) T det{I-ASTV)
45 40 + 90 ] )
+ FEAUSY) + deI-ASPTS?) T det(I-ASTUSHVUS)

3
Let G, = <S,U, T> then G=G,UG,VU G,(VS) U G4(VS?) U G,(VS?)

U G,(VS*%). Note that G, is the group (H) of order 60. From section 2.9,

by = x? + yz, hy = 8x%yz — 2x%y%? — x(y° + 2°) + y323 are invariants of G,. Let
¢, = 10(by + BV + hy(VS) + hy(VS?) + hy(VS?) + by(VSH) = (5 + 13/T5i)xs

+ (375 + 15/T5i)x4yz — (75 — 45151 )x%y%? — (45 — 3/T5i)xy® — (45 — 3/T5i)x2*
+ (50 + 104T51)y%2 and c, = 29%h3 + b3V + hY(VS) + BY(VS?) + b(VS?)

+ KI(VS) = (80 + 16yI5i)x® + (600 — 120yT5i)x*yz + (150 + 90V5i)x’y’s?

— (45 — 21yTBi)xy® — (45 — 21/TBi)xz® + (125 — 5vIBi)y*2. Let A = 3(Te,~¢;)
then
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A= (=3 + 5/I50)x® + (135 + 15/T5i)xyz —(45 — 15/15i)x%y?z2
—~18xy® - 18x2° + (15 + 5151 )x3y3

which is an invariant of degree 6 of G. The Hessian of A is H(A) of degree 12.
Let

1
B= mH(A)

The bordered Hessian of A, B is BH(A,B) of degree 30. Let

_ 1
C= 1458008 H(A,B).

The Jacobian of A, B, C is J(A,B,C) of degree 45. Let

D = g3d(AB,C).

Since the invariants B,C,D take a few Pages long to write down, we don't want to
give them explicitly here. So S¢ — ([A, B, C, D].

The relation is

459165024D? = 25509168C3 + (236196-+26244/T5i)C2AS

— 1889568(1+151)C2A%B — (8503056—2834352,15i)C2AB?

+ (8914243/15i)CA10 4 (5346-8910/15i)CASB

—~ (36012-51516,T5i)CASB? — (192456+21384,151)CA*B3

+ 3569184(1+y15i)CA2B* + (7558272-2519424/15)CBS

+ 2426112(1+y15i)B7A — (7978176 +88646415i)BA3

+ (3297168—471024,/151)B5AS5 — (78768—1312804T5i)B*A7

~ (26928+7344yT50)BA° + (156040, T5)B2AM — 17(1—/15i)BA®.
S

G .
is a free €[A,B,C]~module with basis 1, D and S° ~ Cy1y2y3.y4/(L)
where y; are indeterminates and

L=
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459165204y3 — 25509168y — (236196+26244151)y3y}

+ 1889568(1+y15i)y3yly, + (8503056—2834352VT51)y3y,y3
— (891+243/15i )y,yi® — (5346-8910yT5i)y5yly,

+ (360612-51516yT51)y;ySy3 + (192456+21384yT51)y,yiy3
— 3569184(1+T5i)y;ylys — (7558272-2519424v15i )y 3

— 2426112(1+yT5i)yhy, + (7978176+886464VT51)y5y}

— (3297168—471024T51)y3y} + (78768—131280V151)y3y]

V211 H 13‘
+ (26928+7344/151)y3y} — (1560—40yT5i)y3y}' + 17(1—I5i)y,y;

We have used the REDUCE program [He] to perform the following

computations.

1. The relations for types (G), (H), (I), (L).

2. The Molien series for all types.

3. The invariants for types (H), (I), (L).
Since the groups of types (H), (I), (L) are isomorphic to permutation groups,

CALEY program [Can] helps us compute the conjugacy classes of these groups.

With these results ready, we use REDUCE program to calculate the Molien series of

these groups.
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CHAPTER 3

GORENSTEIN QUOTIENT SINGULARITIES IN DIMENSION THREE

We first recall some results of H. Cartan [Car]. Given a finite subgroup G
of the complex linear group GL(n, €). The analytic space €*/G is defined as
follows :

(i) A point of €"/G is an orbit of G acting on the complex n—dimensional

vector space C". The space €"/G has the quotient topology.

(i) Let 7:€" —(€"/G assign to each point its orbit. A continuous

function f on an open set U c €"/G is "analytic" if for is analytic

on Y(U).
In [Car], Cartan proved that the space €°/G is a normal analytic variety, with the
analytic functions given by (ii).

Let S = ([x,,....x,]. By Theorem 15, the subalgebra S° is finitely
generated. Let f,,...f, be a minimal set of homogeneous polynomials in ¢ which

G
generate S” as a (-algebra. The vector (f,,...,f,) is a C—generic point of an affine

algebraic subvariety V,, of €*. Themap ¢: (" — V,, defined by
W2) = (fi(z), - - fi(2)), zeC™

is constant on orbits of G. Define ¢: (*/G — V. by requiring that

e Lv cex

T
¢/
l'I/G

be commutative. Then Cartan [Car] showed that ¢ is a biholomorphic map.

The relations of S° defined in chapter 2 are precisely the defining equations of this
affine algebraic subvariety V. of C~.
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g€ G is called a quasi—reflection if it has 1 as an eigenvalue of multiplicity
precisely n—1. A group G € GL(n, €) is small if it contains no quasi—reflection
elements. A classical theorem of Shephard and Todd [Sh—To] and Chevalley [Ch]
says that V G is smooth if and only if G is generated by quasi—reflections. An
important observation of Prill [Pr] says that : for every finite group G ¢ GL(n, €),
there exists a small subgroup G' € GL(n, €) such that V, is biholomorphically
equivalent to Vé. Therefore, in order to study C"/G, it suffices to consider small
subgroup G of GL(n, (). The following lemmas are quite standard (cf. [Kh], [Wa]
for a proof).
Lemma?2l Let G C GL(n, () be a small subgroup, and let S={ze(":g(z)=2
for some g # I}. Then the singular locus of V, is S/G.
Lemma 22 (Khinich and Watanabe) V. is Gorenstein if and only if G € SL(n, ().

The following Theorem is a surprising result of the classification theorem in
chapter 1.
Theorem 23 Three dimensional Gorenstein quotient singularity Vg is isolated
if and only if G is an abelian subgroup of SL(3,() and 1 isnot an eigenvalue of
g for every nontrivial element g in G.

In view of the classification theorem of finite subgroups in SL(3, () and
lemma 22 that the finite subgroups (B)—~L) listed in chapter 1 give nonisolated
quotient singularities. For finite subgroups (C)—(L) this is clear because all these

groups contain the element

0
T=]0
1

[T =T
[— T -}

which has 1 as eigenvalue. By Lemma 21, finite subgroups (C)—(L) listed in
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chapter 1 give nonisolated quotient singularities.
Group (B) is isomorphic to transitive linear groups of GL(2, €), i.e., each

element has the form of

,  a(ad —bc) = 1.

oa

1l
o o
[ I - ]
A O o

Clearly eigenvalue of [ 2. 3 ]

subgroup { [ 2‘ 3

is also an eigenvalue of g Observe that if the

J tad —be = a“} € GL(2, €) is not small, then of course 1 is an
eigenvalue of a nontrivial element of G. On the other hand if {[ 2 3 ] :ad —be
= a“} is small, then we have the complete list (B, )—(

B,) as shown in chapter 1. In

both cases (By)—(B,) contain a nontrivial element which has 1 ag eigenvalue. In

view of Lemma 21, our proof is completed. Q.E.D.

Finally, by the previous discussion, we can Summarize some of the results of chapter

2 in the following Theorem.

Theorem 24 Let G be finite subgroup of SL(3, (). Then we have

Type of G| Minimal embedding

dimension of (3/G
Seintsabuivi i

Equations of (3/G

(E) : [93’3—12Y§+Y?y3-y¥y4 =0
432)’%‘}’3‘}'2){?*36}’ 1Ys
+3yfy2—36y2y3 =0

(F) 4 4y3-144y,y2+1728y 2¥a

~(yiH432y3-3y,y,+36y,y,)2 = 0

(H)

M

()

(K)

(L)
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4y3-9y5y3+6y3y —2592y7ysy 4 V3
+864y2y2+6912y3y,—186624y1y; = 0

y3+1728y3-y3-720y,y3y,
+80y2y,y3—64y3(5y5-¥1ys)® = 0

y-y3+88yly,yi-1008y,y3y3
—1088yfyfy+256y1y;—1728y]
+60032y2y5-22016y5y3+2048y 3y, = 0

yi-Yolyd+ 17283720y,
+80y1y2—64y 3(5y %—y 4)2] =0

yi-y4(y3+88y5y,—1008y1y,
—1088y2y,y ,+256y3y 1728y}
+60032y3y,-22016y3y3+2048y,y3) = 0

459165024y3—25509168y3—(236196
+26244y/151)y2y5+1889568(1-+v15i1)y3yiy,

+(8503056—2834352y15i )yly,y3
—(891+243/151)y,y10—{(5346-8910y15i)y3y}y,
+(360612—51516y151)y,ySys+(192456
+21384/151)y,y y3—3569184(1+y15i)yayly)
—{(7558272—2519424y/151)y,y3
—2426112(1+y15i)yhy,+(7978176
+8864644/151)ySy3—(3297168—471024415i)y3y}
+(78768—131280y151)y4y +(26928
+7344/15i)y3y]—(1560—40/151)y3y}"
+17(1—/15i)y,y1* = 0
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