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Motivation

non-algebraic Kähler: K3, tori, contain no complex curves.

Among all complex non-Kähler surfaces only three types of Inoue
surfaces have no curves, assuming standard conjecture.

All Hopf manifolds contains at least one ellipric curve.

It is natural to study the existence of complex curves in a non-Kähler
manifold.

Any deformation of the Iwasawa manifold, which is a 3-dimensional
complex parallizable nilmanifold, possesses a complex curve.

Main result A general twistor deformation of a hypercomplex nilmanifold
admits no complex curves.
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Nilmanifolds

A nilmanifold N is a compact manifold which admits a transitive action
of a nilpotent Lie group G .

Theorem (Maltsev): Any nilmanifold N is diffeomorphic to a quotient
of a connected simply connected nilpotent Lie group G by a cocompact
lattice Γ: N ∼= Γ\G .

Remark: We consider left action of a lattice Γ on G and G acts on the

nilmanifold Γ\G from the right.
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Relations with Lie algebras

Let g be a Lie algebra. Define g0 := g, gk := [g; gk−1], k ∈ Z>0. Then

g0 ⊃ g1 ⊃ · · ·

is called the lower central series of g. A Lie algebra g is called
nilpotent if gk = 0 for some k ∈ Z>0.

A connected, simply connected, nilpotent Lie group G admits a
co-compact lattice if and only if the Lie algebra of G has integer
structure constants relative to some chosen basis.
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Geometry of nilmanifolds

In smooth category any nilmanifold Γ\G is diffeomorphic to an iterated
tower of toric bundles:

Γ\G −→ G/Z

Γ/(Z ∩ Γ)
−→ · · · −→ pt,

where Z be the center of G .

Example: Let g = ⟨x , y , z , t⟩ be a Lie algebra with the only relation
[x , y ] = z and a complex structure Ix = y , Iz = t. Kodaira–Thurston
surface is a complex surface which admits a principal fibration over an
elliptic curve with elliptic fibers:

0−→ ⟨t, z⟩ −→ ⟨x , y , t, z⟩ −→ ⟨x , y⟩ −→ 0

The complex geometry of nilmanifolds is much vaster. It is not always
possible to choose toric bundles to be holomorphic.

5 / 13



Geometry of nilmanifolds

In smooth category any nilmanifold Γ\G is diffeomorphic to an iterated
tower of toric bundles:

Γ\G −→ G/Z

Γ/(Z ∩ Γ)
−→ · · · −→ pt,

where Z be the center of G .

Example: Let g = ⟨x , y , z , t⟩ be a Lie algebra with the only relation
[x , y ] = z and a complex structure Ix = y , Iz = t. Kodaira–Thurston
surface is a complex surface which admits a principal fibration over an
elliptic curve with elliptic fibers:

0−→ ⟨t, z⟩ −→ ⟨x , y , t, z⟩ −→ ⟨x , y⟩ −→ 0

The complex geometry of nilmanifolds is much vaster. It is not always
possible to choose toric bundles to be holomorphic.

5 / 13



Geometry of nilmanifolds

In smooth category any nilmanifold Γ\G is diffeomorphic to an iterated
tower of toric bundles:

Γ\G −→ G/Z

Γ/(Z ∩ Γ)
−→ · · · −→ pt,

where Z be the center of G .

Example: Let g = ⟨x , y , z , t⟩ be a Lie algebra with the only relation
[x , y ] = z and a complex structure Ix = y , Iz = t. Kodaira–Thurston
surface is a complex surface which admits a principal fibration over an
elliptic curve with elliptic fibers:

0−→ ⟨t, z⟩ −→ ⟨x , y , t, z⟩ −→ ⟨x , y⟩ −→ 0

The complex geometry of nilmanifolds is much vaster. It is not always
possible to choose toric bundles to be holomorphic.

5 / 13



Complex nilmanifolds

Let G be a Lie group, g = Lie(G ). Every X ∈ g defines the
left-invariant vector field X L on G and X 7→ X L ∈ TeG is an
isomorphism of Lie algebras.

Let I ∈ End(g) be an almost complex structure on a Lie algebra,
g⊗ C = g1,0 ⊕ g0,1 the eigenspace decomposition. It induces a
left-invariant almost complex structure I L on G .

The almost complex structure I L is integrable iff g1,0 is a Lie subalgebra
of g⊗ C.

A complex nilmanifold is a pair (N, I ), where N = Γ\G and I an
integrable left-invariant almost complex structure on G .

A left-invariant complex structure I on G makes G into a complex manifold but

in general not into a complex Lie group. A Lie group G is a complex Lie group

iff g1,0 is an ideal of g⊗ C.
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Hypercomplex nilmanifolds

Let H be the algebra of quaternions generated by I , J and K , which
satisfy

I 2 = J2 = K 2 = −Id, IJ = −JI = K .

A manifold X is called almost hypercomplex if the algebra H acts on
TX . It is called hypercomplex if every complex structure on X induced
from H is integrable.

Let G be a nilpotent Lie group with a left-invariant hypercomplex
structure I , J,K and Γ ⊂ G a cocompact lattice. Then the quadruple
(N = Γ\G , I , J,K ) is called a hypercomplex nilmanifold.
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Twistors

Consider the product N × CP1, where N is a hypercomplex manifold.
The twistor space Tw(N) of the hypercomplex manifold N is N × CP1

with the complex structure is defined as follows.

For any point (n, L) ∈ N × CP1 the complex structure on Tw(N) is L on
TN and the standard complex structure ICP1 on TCP1. This almost
complex structure is integrable. The space Tw(N) equipped with the
canonical holomorphic projection π : Tw(N)−→ CP1.
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Curves in nilmanifolds

Theorem: Let (N, I , J,K ) be a hypercomplex nilmanifold and assume
that corresponding Lie algebra is H-solvable. Then there are no complex
curves in the general fiber of the holomorphic twistor projection
π : Tw(N)−→ CP1.
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Cohomology of a nilmanifolds

The Chevalley–Eilenberg differential d : g∗ −→ Λ2g∗ extends to the
complex

0−→ g∗ −→ Λ2g∗ −→ · · · −→ Λng∗ −→ 0

by the Leibniz rule: d(α ∧ β) = dα ∧ β + (−1)α̃α ∧ dβ, α, β ∈ g∗ and
n = dimR g.

Theorem (Nomizu): Let N be a nilmanifold and (Λ∗g∗, d) its
Chevalley–Eilenberg complex. The natural inclusion of the complex of the
left-invariant differential forms Ωinv (G ) on the nilpotent Lie group G into
the de Rham algebra on the nilmanifold Ω(N) is a quasi-isomorphism.

The homology H∗(N,R) ≈ H∗(Γ,R), hence by the theorem of Nomizu
H∗(Γ,R) ≈ H∗(g,R). Pickel showed that H∗(Γ,Q) ≈ H∗(g,Q) as well.
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Positive bivectors

The elements of the space Λ1,1g ⊂ Λ2g are called (1,1)-bivectors. A
non-zero real bivector ξ ∈ Λ1,1g is called positive if for any nonzero
α ∈ Λ1g∗ one has ξ(α, Iα) ≥ 0.

A complex curve CI in a complex manifold (N, I ) is a 1-dimensional
compact complex subvariety.

Let CI ⊂ N be a complex curve in a complex nilmanifold (N, I ) and
ω ∈ Λ2g∗ a two-form. We identify Λ2g∗ with the space of left-invariant
2-forms on the Lie group G , which descends to the space of 2-forms
Λ2(N) on the nilmanifold N = Γ\G .

Consider a functional ξ on the space of 2-forms Λ2g∗:

ξ(ω) :=

∫
CI

ω.

Since the homology H∗(N) = H∗(g) by the theorem of Nomizu a complex
curve CL corresponds to the bivector ξ.
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H-solvable Lie algebra

Let (g, I , J,K ) be a hypercomplex structure on a nilpotent Lie algebra.
For any subspace h ⊂ g, denote by Hh the space h+ Ih+ Jh+ Kh.

Define inductively H-invariant Lie subalgebras: gHi := H[gHi−1, g
H
i−1],

where
gH1 = H[g, g] = [g, g] + I [g, g] + J[g, g] + K [g, g].

The algebra g is called H-solvable if this sequence terminates.

Such a filtration corresponds to an iterated hypercomplex toric bundle.
Clearly, this holds iff gHi−1 ⊊ gHi for any i ∈ Z>0.

Examples: Abelian complex structures, the quaternionic double of the
Kodaira surface (non-abelian).
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Foliation

Let Σi be a left-invariant foliation in a Lie group G generated by the
subalgebra gHi for each i ∈ Z>0 and denote by Lx,i−1 the leaf of the
corresponding foliation.

Theorem: Let CL be a complex curve in a complex nilmanifold (N, L),
where L ∈ CP1 is a generic complex structure. Suppose that CL is
tangent to the foliation Σi−1. Then it is also tangent to Σi .

Corollary-Theorem: Let (N, I , J,K ) be a hypercomplex nilmanifold and
assume that corresponding Lie algebra is H-solvable. Then there are no
complex curves in the general fiber of the holomorphic twistor projection
π : Tw(N)−→ CP1.
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