Global bi-Lipschitz classification of semialgebraic surfaces

José Edson Sampaio

Departamento de Matemática
Universidade Federal do Ceará
December 12, 2023

Outline

(1) Introduction and motivation
(2) Global classification of semialgebraic surfaces
(3) Consequences

- Classification of Nash surfaces
- Classification of minimal surfaces with finite total curvature
- Classification of complex algebraic curves
- One-point compactification
(4) Inner distance is conical
(5) Outer Lipschitz geometry: local vs. global
- Applications to the Ahern-Rudin's results

Initial considerations

Initial considerations

(1) The results presented here are in the articles:

Initial considerations

(1) The results presented here are in the articles:
(1) Alexandre Fernandes and E. S. Global bi-Lipschitz classification of semialgebraic surfaces. Accepted for publication in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (2022).

Initial considerations

(1) The results presented here are in the articles:
(1) Alexandre Fernandes and E. S. Global bi-Lipschitz classification of semialgebraic surfaces. Accepted for publication in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (2022).
(2) Local vs. global Lipschitz geometry. Submitted for publication (2023). arXiv:2305.11830 [math.MG].

Initial considerations

(1) The results presented here are in the articles:
(1) Alexandre Fernandes and E. S. Global bi-Lipschitz classification of semialgebraic surfaces. Accepted for publication in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (2022).
(2) Local vs. global Lipschitz geometry. Submitted for publication (2023). arXiv:2305.11830 [math.MG].
(2) You can find these articles and others on my ResearchGate's webpage: https://www.researchgate.net/profile/Jose-Edson-Sampaio

Initial considerations

(1) The results presented here are in the articles:
(1) Alexandre Fernandes and E. S. Global bi-Lipschitz classification of semialgebraic surfaces. Accepted for publication in Annali della Scuola Normale Superiore di Pisa, Classe di Scienze (2022).
(2) Local vs. global Lipschitz geometry. Submitted for publication (2023). arXiv:2305.11830 [math.MG].
(2) You can find these articles and others on my ResearchGate's webpage: https://www.researchgate.net/profile/Jose-Edson-Sampaio
(3) And on my homepage:
https://sites.google.com/mat.ufc.br/edsonsampaio/

Outline

(1) Introduction and motivation
(2) Global classification of semialgebraic surfaces
(3) Consequences

- Classification of Nash surfaces
- Classification of minimal surfaces with finite total curvature
- Classification of complex algebraic curves
- One-point compactification
(4) Inner distance is conical
(5) Outer Lipschitz geometry: local vs. global
- Applications to the Ahern-Rudin's results

Goals

Goals

- In the first part of this talk, we consider semialgebraic surfaces S in \mathbb{R}^{n} (with isolated singularities) equipped with the inner distance $d_{S, i n n}\left(x_{1}, x_{2}\right)=\inf \left\{\right.$ length $(\gamma): \gamma$ is a path on S connecting $\left.x_{1}, x_{2} \in S\right\}$ and we classify those surfaces up to bi-Lipschitz homeomorphisms with respect to the inner distance, the so-called inner lipeomorphims.

Goals

- In the first part of this talk, we consider semialgebraic surfaces S in \mathbb{R}^{n} (with isolated singularities) equipped with the inner distance $d_{S, i n n}\left(x_{1}, x_{2}\right)=\inf \left\{\right.$ length $(\gamma): \gamma$ is a path on S connecting $\left.x_{1}, x_{2} \in S\right\}$ and we classify those surfaces up to bi-Lipschitz homeomorphisms with respect to the inner distance, the so-called inner lipeomorphims.
- For example, associated to each Nash surface S, we present a list of symbols, $\theta_{S} \in\{-1,1\}, g_{S} \in \mathbb{N} \cup\{0\}, e_{S} \in \mathbb{N} \cup\{0\}$ and $\beta_{1}, \ldots, \beta_{e_{S}}$, where $\beta_{i}^{\prime} \mathrm{s}(\leq 1)$ are rational numbers associated to the ends of S; which determines S up to inner lipeomorphisms.

Goals

- In the first part of this talk, we consider semialgebraic surfaces S in \mathbb{R}^{n} (with isolated singularities) equipped with the inner distance $d_{S, i n n}\left(x_{1}, x_{2}\right)=\inf \left\{\right.$ length $(\gamma): \gamma$ is a path on S connecting $\left.x_{1}, x_{2} \in S\right\}$ and we classify those surfaces up to bi-Lipschitz homeomorphisms with respect to the inner distance, the so-called inner lipeomorphims.
- For example, associated to each Nash surface S, we present a list of symbols, $\theta_{S} \in\{-1,1\}, g_{S} \in \mathbb{N} \cup\{0\}, e_{S} \in \mathbb{N} \cup\{0\}$ and $\beta_{1}, \ldots, \beta_{e_{S}}$, where $\beta_{i}^{\prime} \mathrm{s}(\leq 1)$ are rational numbers associated to the ends of S; which determines S up to inner lipeomorphisms.
- Present several relations between Local and global Lipschitz geometry.

Classification of smooth compact surfaces

Theorem

Let X and Y be two connected smooth (without boundary) compact surfaces. Then the following statements are equivalent:
(1) X and Y are homeomorphic;
(2) X and Y are diffeomorphic;
(3) X and Y are inner lipeomorphic;
(4) $\theta(X)=\theta(Y)$ and $g(X)=g(Y)$,

Classification of smooth compact surfaces

Theorem

Let X and Y be two connected smooth (maybe with boundary) compact surfaces. Then the following statements are equivalent:
(1) X and Y are homeomorphic;
(2) X and Y are diffeomorphic;
(3) X and Y are inner lipeomorphic;
(4) $\theta(X)=\theta(Y), g(X)=g(Y)$ and X and Y have the number of boundary components.

Non-compact surfaces

Example

Let $X=\mathbb{R}^{2}, Y=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}=1\right\}$ and
$Z=\left\{(x, y, z) \in \mathbb{R}^{3} ; z=x^{2}+y^{2}\right\}$.
a) $\theta(X)=\theta(Y), g(X)=g(Y)$, but X and Y are not homeomorphic;
(b) X and Z are diffeomorphic, but they are not inner lipeomorphic;

Non-smooth surfaces

Example

Let $Y=\left\{(x, y, z) \in \mathbb{R}^{3} ;\left(x^{2}+\frac{9}{2} y^{2}+z^{2}-1\right)^{3}-x^{2} z^{3}-\frac{9}{200} y^{2} z^{3}=0\right\}$ and $X=\mathbb{S}^{2}$. Then X and Y are homeomorphic, but they are not inner lipeomorphic.

Figure: The heart surface and the sphere

Local classification of surfaces

Theorem of Birbrair

Given the germ of a semialgebraic set, (X, a), with isolated singularity and connected link, there is a unique rational number $\beta \geq 1$ such that (X, a) is inner homeomorphic to the germ at $0 \in \mathbb{R}^{3}$ of the β-horn

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2 \beta} \text { and } z \geq 0\right\}
$$

Preliminary invariants I

Definition

Let $X \subset \mathbb{R}^{n}$ be a semialgebraic surface with isolated inner Lipschitz singularities. Let us consider the following symbols:

Preliminary invariants I

Definition

Let $X \subset \mathbb{R}^{n}$ be a semialgebraic surface with isolated inner Lipschitz singularities. Let us consider the following symbols:
i) For $p \in \operatorname{Sing}_{\text {inLip }}(X), \ell(X, p)$ denotes the number of connected components of the link of X at p;

Preliminary invariants I

Definition

Let $X \subset \mathbb{R}^{n}$ be a semialgebraic surface with isolated inner Lipschitz singularities. Let us consider the following symbols:
i) For $p \in \operatorname{Sing}_{i n L i p}(X), \ell(X, p)$ denotes the number of connected components of the link of X at p;
ii) We can consider a sufficient large radius $R>0$ (and $\rho=1 / R)$ such that

$$
X^{\prime}=(X \cap \overline{B(0, R)}) \backslash\left\{B\left(x_{1}, \rho\right) \cup \cdots \cup B\left(x_{s}, \rho\right)\right\}
$$

is a topological surface with boundary and its topological type does not depend on R. Thus, we define

$$
\theta(X)=\left\{\begin{aligned}
1, & \text { if } X^{\prime} \text { is orientable } \\
-1, & \text { if } X^{\prime} \text { is not orientable. }
\end{aligned}\right.
$$

Preliminary invariants II

Definition

Preliminary invariants II

Definition

iii) $g(X)$ is the genus of X^{\prime};

Preliminary invariants II

Definition

iii) $g(X)$ is the genus of X^{\prime};
iv) For each $p \in X$, there is $r>0$ such that

$$
X \cap B(p, r)=\bigcup_{i=1}^{\ell(X, p)} X_{i}
$$

and each X_{i} is a topological surface. Let β_{i} be the horn exponent of X_{i} at p (given by Theorem of Birbrair). By reordering the indices, if necessary, we assume that $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{\ell(X, p)}$. In this way, we define $\beta(X, p)=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{\ell(X, p)}\right)$.

Preliminary invariants III

Preliminary invariants III

Theorem (Fernandes and S. (2022))

Given an end E of X (i.e., a connected component of $X \backslash B(0, R)$), there is a unique rational number $0 \leq \beta \leq 1$ such that E is inner lipeomorphic to the β-tube

$$
P_{\beta}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2 \beta} \text { and } z \geq a>0\right\} .
$$

Preliminary invariants III

Theorem (Fernandes and S. (2022))

Given an end E of X (i.e., a connected component of $X \backslash B(0, R)$), there is a unique rational number $0 \leq \beta \leq 1$ such that E is inner lipeomorphic to the β-tube

$$
P_{\beta}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2 \beta} \text { and } z \geq a>0\right\} .
$$

Definition

v) $e(X)$ is the number of ends of X, and if $E_{1}, \ldots, E_{e(X)}$ are the ends of X, then denote by β_{i}, the tube exponent of E_{i}, the only rational number smaller than or equal to 1 such that E_{i} is a β_{i}-tube. By reordering the indices, if necessary, we assume that
$\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{e(X)}$. In this way, we define
$\beta(X, \infty)=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{e(X)}\right)$.

The invariant

The invariant

Definition (Inner Lipschitz code)

Let $X \subset \mathbb{R}^{n}$ be a semialgebraic surface with isolated inner Lipschitz singularities. If $\operatorname{Reg}_{\text {inLip }}(X)$ is a connected set, then the collection of symbols

$$
\left\{\theta(X), g(X), \beta(X, \infty),\{\beta(X, p)\}_{p \in \operatorname{Sing}_{i n L i p}(X)}\right\}
$$

is called the inner Lipschitz code of X and we denote it by $\operatorname{Code}_{\text {inLip }}(X)$.

The invariant

Definition (Inner Lipschitz code)

Let $X \subset \mathbb{R}^{n}$ be a semialgebraic surface with isolated inner Lipschitz singularities. If $\operatorname{Reg}_{\text {inLip }}(X)$ is a connected set, then the collection of symbols

$$
\left\{\theta(X), g(X), \beta(X, \infty),\{\beta(X, p)\}_{p \in \operatorname{Sing}_{i n L i p}(X)}\right\}
$$

is called the inner Lipschitz code of X and we denote it by $\operatorname{Code}_{\text {inLip }}(X)$.

Remark

We can also define $\operatorname{Code}_{\text {inLip }}(X)$ when $\operatorname{Reg}_{\text {inLip }}(X)$ is not connected, but we will not consider this case in our talk.

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;
b) Unbounded Moebius band

$$
\left\{(x, y, u, v) \in \mathbb{R}^{4}: x^{2}+y^{2}=1,\left(u^{2}-v^{2}\right) y=2 u v x\right\}:\{-1,0,1, \emptyset\}
$$

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;
b) Unbounded Moebius band

$$
\left\{(x, y, u, v) \in \mathbb{R}^{4}: x^{2}+y^{2}=1,\left(u^{2}-v^{2}\right) y=2 u v x\right\}:\{-1,0,1, \emptyset\}
$$

c) Global β-horn in $\mathbb{R}^{3} ; \beta \geq 1$: $\{1,0,1,\{\beta\}\}$;

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;
b) Unbounded Moebius band

$$
\left\{(x, y, u, v) \in \mathbb{R}^{4}: x^{2}+y^{2}=1,\left(u^{2}-v^{2}\right) y=2 u v x\right\}:\{-1,0,1, \emptyset\}
$$

c) Global β-horn in $\mathbb{R}^{3} ; \beta \geq 1$: $\{1,0,1,\{\beta\}\}$;
d) $\left\{(z, w) \in \mathbb{C}^{2}: z^{2}=w(w-a)(w-b)\right\} ; a, b \neq 0$ and $a \neq b$: $\{1,1,(1,1,1), \emptyset\}$;

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;
b) Unbounded Moebius band

$$
\left\{(x, y, u, v) \in \mathbb{R}^{4}: x^{2}+y^{2}=1,\left(u^{2}-v^{2}\right) y=2 u v x\right\}:\{-1,0,1, \emptyset\}
$$

c) Global β-horn in $\mathbb{R}^{3} ; \beta \geq 1$: $\{1,0,1,\{\beta\}\}$;
d) $\left\{(z, w) \in \mathbb{C}^{2}: z^{2}=w(w-a)(w-b)\right\} ; a, b \neq 0$ and $a \neq b$:
$\{1,1,(1,1,1), \emptyset\}$;
e) Plane: $\{1,0,1, \emptyset\}$

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;
b) Unbounded Moebius band

$$
\left\{(x, y, u, v) \in \mathbb{R}^{4}: x^{2}+y^{2}=1,\left(u^{2}-v^{2}\right) y=2 u v x\right\}:\{-1,0,1, \emptyset\}
$$

c) Global β-horn in $\mathbb{R}^{3} ; \beta \geq 1$: $\{1,0,1,\{\beta\}\}$;
d) $\left\{(z, w) \in \mathbb{C}^{2}: z^{2}=w(w-a)(w-b)\right\} ; a, b \neq 0$ and $a \neq b$:
$\{1,1,(1,1,1), \emptyset\}$;
e) Plane: $\{1,0,1, \emptyset\}$
f) Paraboloid in $\mathbb{R}^{3}:\{1,0,1 / 2, \emptyset\}$

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;
b) Unbounded Moebius band

$$
\left\{(x, y, u, v) \in \mathbb{R}^{4}: x^{2}+y^{2}=1,\left(u^{2}-v^{2}\right) y=2 u v x\right\}:\{-1,0,1, \emptyset\}
$$

c) Global β-horn in $\mathbb{R}^{3} ; \beta \geq 1$: $\{1,0,1,\{\beta\}\}$;
d) $\left\{(z, w) \in \mathbb{C}^{2}: z^{2}=w(w-a)(w-b)\right\} ; a, b \neq 0$ and $a \neq b$:
$\{1,1,(1,1,1), \emptyset\}$;
e) Plane: $\{1,0,1, \emptyset\}$
f) Paraboloid in $\mathbb{R}^{3}:\{1,0,1 / 2, \emptyset\}$
g) Torus: $\{1,1, \emptyset, \emptyset\}$

Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic topological surfaces.
a) Right cylinder: $\{1,0,(0,0), \emptyset\}$;
b) Unbounded Moebius band

$$
\left\{(x, y, u, v) \in \mathbb{R}^{4}: x^{2}+y^{2}=1,\left(u^{2}-v^{2}\right) y=2 u v x\right\}:\{-1,0,1, \emptyset\}
$$

c) Global β-horn in $\mathbb{R}^{3} ; \beta \geq 1$: $\{1,0,1,\{\beta\}\}$;
d) $\left\{(z, w) \in \mathbb{C}^{2}: z^{2}=w(w-a)(w-b)\right\} ; a, b \neq 0$ and $a \neq b$:
$\{1,1,(1,1,1), \emptyset\}$;
e) Plane: $\{1,0,1, \emptyset\}$
f) Paraboloid in $\mathbb{R}^{3}:\{1,0,1 / 2, \emptyset\}$
g) Torus: $\{1,1, \emptyset, \emptyset\}$
h) Klein bottle: $\{-1,1, \emptyset, \emptyset\}$

Outline

(1) Introduction and motivation

(2) Global classification of semialgebraic surfaces
(3) Consequences

- Classification of Nash surfaces
- Classification of minimal surfaces with finite total curvature
- Classification of complex algebraic curves
- One-point compactification

4 Inner distance is conical
(5) Outer Lipschitz geometry: local vs. global

- Applications to the Ahern-Rudin's results

Global classification of semialgebraic surfaces

Global classification of semialgebraic surfaces

Theorem (Fernandes and S. (2022))
Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be semialgebraic surfaces with isolated inner Lipschitz singularities. Then, X and Y are inner lipeomorphic if, and only if, their inner Lipschitz code are equal.

Outline

(1) Introduction and motivation

(2) Global classification of semialgebraic surfaces

(3) Consequences

- Classification of Nash surfaces
- Classification of minimal surfaces with finite total curvature
- Classification of complex algebraic curves
- One-point compactification
(4) Inner distance is conical
(5) Outer Lipschitz geometry: local vs. global
- Applications to the Ahern-Rudin's results

Nash surfaces

Figure: An oriented Nash surface with 5 ends and genus 4.

Classification of compact semialgebraic surfaces

Classification of compact semialgebraic surfaces

Theorem (Fernandes and S. (2022))

Let $N_{1}, N_{2} \subset \mathbb{R}^{n}$ be two Nash surfaces. Then, the following statements are equivalent:
(1) N_{1} and N_{2} are homeomorphic and $\beta\left(N_{1}, \infty\right)=\beta\left(N_{2}, \infty\right)$;
(2) N_{1} and N_{2} are diffeomorphic and $\beta\left(N_{1}, \infty\right)=\beta\left(N_{2}, \infty\right)$;
(3) N_{1} and N_{2} are inner lipeomorphic;
(4) $\theta\left(N_{1}\right)=\theta\left(N_{2}\right), g\left(N_{1}\right)=g\left(N_{2}\right)$ and $\beta\left(N_{1}, \infty\right)=\beta\left(N_{2}, \infty\right)$.

Normal forms

Normal forms

- For $\theta \in\{-1,1\}$ and $g \in \mathbb{N}$, let $N(\theta, g) \subset \mathbb{R}^{5}$ be a compact Nash surface such that $\theta(N(\theta, g))=\theta$ and $g(N(\theta, g))=g$;

Normal forms

- For $\theta \in\{-1,1\}$ and $g \in \mathbb{N}$, let $N(\theta, g) \subset \mathbb{R}^{5}$ be a compact Nash surface such that $\theta(N(\theta, g))=\theta$ and $g(N(\theta, g))=g$;
- For a positive integer number e and $\beta=\left(\beta_{1}, \ldots, \beta_{e}\right) \in \mathbb{Q}$ such that $\beta_{1} \leq \beta_{2} \leq \ldots \leq \beta_{e} \leq 1$, we remove e distinct points of $N(\theta, g)$, let us say $x_{1}, \ldots, x_{e} \in N(\theta, g)$, and we define $F: N(\theta, g) \backslash\left\{x_{1}, \ldots, x_{e}\right\} \rightarrow \mathbb{R}^{6 e}$ given by

$$
F(x)=\left(\frac{x-x_{1}}{\left\|x-x_{1}\right\|^{1+\beta_{1}}},\left\|x-x_{1}\right\|^{-1}, \ldots, \frac{x-x_{e}}{\left\|x-x_{e}\right\|^{1+\beta_{e}}},\left\|x-x_{e}\right\|^{-1}\right)
$$

Normal forms

- For $\theta \in\{-1,1\}$ and $g \in \mathbb{N}$, let $N(\theta, g) \subset \mathbb{R}^{5}$ be a compact Nash surface such that $\theta(N(\theta, g))=\theta$ and $g(N(\theta, g))=g$;
- For a positive integer number e and $\beta=\left(\beta_{1}, \ldots, \beta_{e}\right) \in \mathbb{Q}$ such that $\beta_{1} \leq \beta_{2} \leq \ldots \leq \beta_{e} \leq 1$, we remove e distinct points of $N(\theta, g)$, let us say $x_{1}, \ldots, x_{e} \in N(\theta, g)$, and we define $F: N(\theta, g) \backslash\left\{x_{1}, \ldots, x_{e}\right\} \rightarrow \mathbb{R}^{6 e}$ given by

$$
F(x)=\left(\frac{x-x_{1}}{\left\|x-x_{1}\right\|^{1+\beta_{1}}},\left\|x-x_{1}\right\|^{-1}, \ldots, \frac{x-x_{e}}{\left\|x-x_{e}\right\|^{1+\beta_{e}}},\left\|x-x_{e}\right\|^{-1}\right)
$$

- We denote the image of F, which is a Nash surface, by $N(\theta, g, \beta)$;

Normal forms

- For $\theta \in\{-1,1\}$ and $g \in \mathbb{N}$, let $N(\theta, g) \subset \mathbb{R}^{5}$ be a compact Nash surface such that $\theta(N(\theta, g))=\theta$ and $g(N(\theta, g))=g$;
- For a positive integer number e and $\beta=\left(\beta_{1}, \ldots, \beta_{e}\right) \in \mathbb{Q}$ such that $\beta_{1} \leq \beta_{2} \leq \ldots \leq \beta_{e} \leq 1$, we remove e distinct points of $N(\theta, g)$, let us say $x_{1}, \ldots, x_{e} \in N(\theta, g)$, and we define $F: N(\theta, g) \backslash\left\{x_{1}, \ldots, x_{e}\right\} \rightarrow \mathbb{R}^{6 e}$ given by

$$
F(x)=\left(\frac{x-x_{1}}{\left\|x-x_{1}\right\|^{1+\beta_{1}}},\left\|x-x_{1}\right\|^{-1}, \ldots, \frac{x-x_{e}}{\left\|x-x_{e}\right\|^{1+\beta_{e}}},\left\|x-x_{e}\right\|^{-1}\right)
$$

- We denote the image of F, which is a Nash surface, by $N(\theta, g, \beta)$;
- We also define $N(\theta, g, \emptyset)=N(\theta, g)$.

Normal forms

- For $\theta \in\{-1,1\}$ and $g \in \mathbb{N}$, let $N(\theta, g) \subset \mathbb{R}^{5}$ be a compact Nash surface such that $\theta(N(\theta, g))=\theta$ and $g(N(\theta, g))=g$;
- For a positive integer number e and $\beta=\left(\beta_{1}, \ldots, \beta_{e}\right) \in \mathbb{Q}$ such that $\beta_{1} \leq \beta_{2} \leq \ldots \leq \beta_{e} \leq 1$, we remove e distinct points of $N(\theta, g)$, let us say $x_{1}, \ldots, x_{e} \in N(\theta, g)$, and we define $F: N(\theta, g) \backslash\left\{x_{1}, \ldots, x_{e}\right\} \rightarrow \mathbb{R}^{6 e}$ given by

$$
F(x)=\left(\frac{x-x_{1}}{\left\|x-x_{1}\right\|^{1+\beta_{1}}},\left\|x-x_{1}\right\|^{-1}, \ldots, \frac{x-x_{e}}{\left\|x-x_{e}\right\|^{1+\beta_{e}}},\left\|x-x_{e}\right\|^{-1}\right)
$$

- We denote the image of F, which is a Nash surface, by $N(\theta, g, \beta)$;
- We also define $N(\theta, g, \emptyset)=N(\theta, g)$.
- Note that $\theta(N(\theta, g, \beta))=\theta, g(N(\theta, g, \beta))=g$ and $\beta(N(\theta, g, \beta), \infty)=\beta$.

Normal forms

- For $\theta \in\{-1,1\}$ and $g \in \mathbb{N}$, let $N(\theta, g) \subset \mathbb{R}^{5}$ be a compact Nash surface such that $\theta(N(\theta, g))=\theta$ and $g(N(\theta, g))=g$;
- For a positive integer number e and $\beta=\left(\beta_{1}, \ldots, \beta_{e}\right) \in \mathbb{Q}$ such that $\beta_{1} \leq \beta_{2} \leq \ldots \leq \beta_{e} \leq 1$, we remove e distinct points of $N(\theta, g)$, let us say $x_{1}, \ldots, x_{e} \in N(\theta, g)$, and we define $F: N(\theta, g) \backslash\left\{x_{1}, \ldots, x_{e}\right\} \rightarrow \mathbb{R}^{6 e}$ given by

$$
F(x)=\left(\frac{x-x_{1}}{\left\|x-x_{1}\right\|^{1+\beta_{1}}},\left\|x-x_{1}\right\|^{-1}, \ldots, \frac{x-x_{e}}{\left\|x-x_{e}\right\|^{1+\beta_{e}}},\left\|x-x_{e}\right\|^{-1}\right)
$$

- We denote the image of F, which is a Nash surface, by $N(\theta, g, \beta)$;
- We also define $N(\theta, g, \emptyset)=N(\theta, g)$.
- Note that $\theta(N(\theta, g, \beta))=\theta, g(N(\theta, g, \beta))=g$ and $\beta(N(\theta, g, \beta), \infty)=\beta$.

Theorem (Fernandes and S. (2022))

Let $N \subset \mathbb{R}^{n}$ be a Nash surface. Then, $N(\theta(N), g(N), \beta(N, \infty))$ and N are inner lipeomorphic.

Classification of minimal surfaces

Classification of minimal surfaces

Theorem (Fernandes and S. (2022))

Let $M_{1}, M_{2} \subset \mathbb{R}^{3}$ be two connected properly embedded minimal surfaces with finite total curvature. Then, the following statements are equivalent:
(1) M_{1} and M_{2} are homeomorphic;
(2) M_{1} and M_{2} are inner lipeomorphic;
(3) $g\left(M_{1}\right)=g\left(M_{2}\right)$ and $e\left(M_{1}\right)=e\left(M_{2}\right)$.

Classification of complex algebraic curves

Classification of complex algebraic curves

Theorem (Fernandes and S. (2022))

Let $C_{1}, C_{2} \subset \mathbb{C}^{2}$ be two complex algebraic curves. Then, the following statements are equivalent:
(1) C_{1} and C_{2} are homeomorphic;
(2) C_{1} and C_{2} are inner lipeomorphic.

Classification of complex algebraic curves

Theorem (Fernandes and S. (2022))

Let $C_{1}, C_{2} \subset \mathbb{C}^{2}$ be two complex algebraic curves. Then, the following statements are equivalent:
(1) C_{1} and C_{2} are homeomorphic;
(2) C_{1} and C_{2} are inner lipeomorphic.

Corollary

Let $C_{1}, C_{2} \subset \mathbb{C}^{2}$ be two LNE complex algebraic curves. Then, the following statements are equivalent:
(1) C_{1} and C_{2} are homeomorphic;
(2) C_{1} and C_{2} are outer lipeomorphic.

Classification of compact semialgebraic surfaces

Classification of compact semialgebraic surfaces

Definition

Let $X \subset \mathbb{R}^{n}$ be an unbounded closed subset. Let $\widehat{X}=\rho^{-1}(X) \cup\left\{e_{n+1}\right\}$, where $\rho: \mathbb{S}^{n} \backslash\left\{e_{n+1}\right\} \rightarrow \mathbb{R}^{n}$ is the stereographic projection of $e_{n+1}=(0, \ldots, 0,1) \in \mathbb{S}^{n}$.

Classification of compact semialgebraic surfaces

Definition

Let $X \subset \mathbb{R}^{n}$ be an unbounded closed subset. Let $\widehat{X}=\rho^{-1}(X) \cup\left\{e_{n+1}\right\}$, where $\rho: \mathbb{S}^{n} \backslash\left\{e_{n+1}\right\} \rightarrow \mathbb{R}^{n}$ is the stereographic projection of $e_{n+1}=(0, \ldots, 0,1) \in \mathbb{S}^{n}$.

Theorem (Fernandes and S. (2022))

Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be semi-algebraic surfaces with isolated inner Lipschitz singularities. Then, X and Y are inner lipeomorphic if, and only if, the pointed spaces $\left(\widehat{X}, e_{n+1}\right)$ and $\left(\widehat{Y}, e_{m+1}\right)$ are inner lipeomorphic.

Classification of compact semialgebraic surfaces

In the last result, the equivalence as pointed spaces can not be dropped.

Example

Let $P=\left\{(x, y, z) \in \mathbb{R}^{3} ; z=x^{2}+y^{2}\right\}$ and $H=\left\{(x, y, z) \in \mathbb{R}^{3} ; z^{3}=x^{2}+y^{2}\right\}$. Then
$\widehat{P}=\left\{(x, y, z, w) \in \mathbb{S}^{3} ; z(1-w)=x^{2}+y^{2}\right\}$ and
$\widehat{H}=\left\{(x, y, z, w) \in \mathbb{S}^{3} ; z^{3}=\left(x^{2}+y^{2}\right)(1-w)\right\}$. Thus,
$\operatorname{Code}_{\text {inLip }}(P)=\left\{1,0, \frac{1}{2}, \emptyset\right\}$ and $\operatorname{Code}_{\text {inLip }}(H)=\left\{1,0,1, \frac{3}{2}\right\}$. Therefore, by Inner Lip Classification Theorem, P and H are not inner lipeomorphic. Moreover, $\operatorname{Code}_{\text {inLip }}(\widehat{P})=\operatorname{Code}_{\text {inLip }}(\widehat{H})=\left\{1,0, \emptyset,\left\{\frac{3}{2}\right\}\right\}$. Therefore, by Inner Lip Classification Theorem, \widehat{P} and \widehat{H} are inner lipeomorphic.

Outline

(1) Introduction and motivation

(2) Global classification of semialgebraic surfaces
(3) Consequences

- Classification of Nash surfaces
- Classification of minimal surfaces with finite total curvature
- Classification of complex algebraic curves
- One-point compactification
(4) Inner distance is conical
(5) Outer Lipschitz geometry: local vs. global
- Applications to the Ahern-Rudin's results

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

1) All algebraic subsets of \mathbb{R}^{n} are in \mathcal{S}_{n};

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

1) All algebraic subsets of \mathbb{R}^{n} are in \mathcal{S}_{n};
2) For every n, \mathcal{S}_{n} is a Boolean subalgebra of the powerset of \mathbb{R}^{n};

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

1) All algebraic subsets of \mathbb{R}^{n} are in \mathcal{S}_{n};
2) For every n, \mathcal{S}_{n} is a Boolean subalgebra of the powerset of \mathbb{R}^{n};
3) If $A \in \mathcal{S}_{m}$ and $B \in S_{n}$, then $A \times B \in \mathcal{S}_{m+n}$;

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

1) All algebraic subsets of \mathbb{R}^{n} are in \mathcal{S}_{n};
2) For every n, \mathcal{S}_{n} is a Boolean subalgebra of the powerset of \mathbb{R}^{n};
3) If $A \in \mathcal{S}_{m}$ and $B \in S_{n}$, then $A \times B \in \mathcal{S}_{m+n}$;
4) If $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates and $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_{n} ;$

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

1) All algebraic subsets of \mathbb{R}^{n} are in \mathcal{S}_{n};
2) For every n, \mathcal{S}_{n} is a Boolean subalgebra of the powerset of \mathbb{R}^{n};
3) If $A \in \mathcal{S}_{m}$ and $B \in S_{n}$, then $A \times B \in \mathcal{S}_{m+n}$;
4) If $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates and $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_{n} ;$
5) The elements of \mathcal{S}_{1} are precisely the finite unions of points and intervals.

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

1) All algebraic subsets of \mathbb{R}^{n} are in \mathcal{S}_{n};
2) For every n, \mathcal{S}_{n} is a Boolean subalgebra of the powerset of \mathbb{R}^{n};
3) If $A \in \mathcal{S}_{m}$ and $B \in S_{n}$, then $A \times B \in \mathcal{S}_{m+n}$;
4) If $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates and $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_{n}$;
5) The elements of \mathcal{S}_{1} are precisely the finite unions of points and intervals.
The elements of \mathcal{S}_{n} are called the definable subsets of \mathbb{R}^{n}.

O-minimal structure

Definition

An o-minimal structure on \mathbb{R} is a collection $\mathcal{S}=\left\{\mathcal{S}_{n}\right\}_{n \in \mathbb{N}}$ where each \mathcal{S}_{n} is a set of subsets of \mathbb{R}^{n}, satisfying the following axioms:

1) All algebraic subsets of \mathbb{R}^{n} are in \mathcal{S}_{n};
2) For every n, \mathcal{S}_{n} is a Boolean subalgebra of the powerset of \mathbb{R}^{n};
3) If $A \in \mathcal{S}_{m}$ and $B \in S_{n}$, then $A \times B \in \mathcal{S}_{m+n}$;
4) If $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ is the projection on the first n coordinates and $A \in \mathcal{S}_{n+1}$, then $\pi(A) \in \mathcal{S}_{n} ;$
5) The elements of \mathcal{S}_{1} are precisely the finite unions of points and intervals.
The elements of \mathcal{S}_{n} are called the definable subsets of \mathbb{R}^{n}.

In this talk, we fix an o-minimal structure \mathcal{S} on \mathbb{R}.

Inner distance is conical

Inner distance is conical

Theorem (S. (2023))

Let $A \subset \mathbb{R}^{n}$ be a definable set in \mathcal{S}. Let $\varphi: A \rightarrow \mathbb{R}$ be a radius function, i.e., φ is a definable outer Lipschitz function such that there is $C \geq 1$ satisfying $\frac{1}{C}\|x\| \leq\|\varphi(x)\| \leq C\|x\|$ for all $x \in A$.
(a) If the link of A at infinity is connected, then there are constants $K, r \geq 1$ such that for each $t \in(r,+\infty)$, we have

$$
d_{A, i n n}(x, y) \leq d_{A_{\varphi, t, i n n}}(x, y) \leq K d_{A, i n n}(x, y)
$$

for all $x, y \in A_{\varphi, t}=\{x \in A ; \varphi(x)=t\}$.
(b) If the link of A at 0 is connected, then there are constants $K, r \geq 1$ such that for each $t \in\left(0, \frac{1}{r}\right)$, we have

$$
d_{A, i n n}(x, y) \leq d_{A_{\varphi, t, i n n}}(x, y) \leq K d_{A, i n n}(x, y)
$$

for all $x, y \in A_{\varphi, t}$.

Definable Lipschitz geometry: Local vs. global

Definable Lipschitz geometry: Local vs. global

Theorem (S. (2023))

Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be definable sets in \mathcal{S} with connected links at infinity. Let $\sigma, \tilde{\sigma} \in\{i n n$, out $\}$. Then, the following statements are equivalent:
(1) There is a definable lipeomorphism at infinity $\varphi:\left(X, d_{X, \sigma}\right) \rightarrow\left(Y, d_{X, \tilde{\sigma}}\right)$ which preserves the outer distance to the origin;
(2) There is a germ of definable lipeomorphism $\psi:\left(\widehat{X}, d_{\widehat{X}, \sigma}, e_{n+1}\right) \rightarrow\left(\widehat{Y}, d_{\widehat{Y}, \tilde{\sigma}}, e_{m+1}\right)$ which preserves the last coordinate;
(3) There is a germ of lipeomorphism $\tilde{\varphi}:\left(\iota(X \backslash\{0\}), d_{\iota(X \backslash\{0\}), \sigma}, 0\right) \rightarrow\left(\iota(Y \backslash\{0\}), d_{\iota(Y \backslash\{0\}), \tilde{\sigma}}, 0\right)$ which preserves the outer distance to the origin.

Definable Lipschitz geometry: Local vs. global

Definable Lipschitz geometry: Local vs. global

Theorem (S. (2023))

Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be definable sets in \mathcal{S}. Let $\sigma, \tilde{\sigma} \in\{$ inn, out $\}$. Then, $\left(X, d_{X, \sigma}\right)$ and $\left(Y, d_{X, \tilde{\sigma}}\right)$ are definably lipeomorphic if and only if the pointed stereographic modifications $\left(\widehat{X}, d_{\widehat{X}, \sigma}, \infty\right)$ and $\left(\widehat{Y}, d_{\widehat{Y}, \tilde{\sigma}}, \infty\right)$ are definably lipeomorphic.

Outline

(1) Introduction and motivation

(2) Global classification of semialgebraic surfaces
(3) Consequences

- Classification of Nash surfaces
- Classification of minimal surfaces with finite total curvature
- Classification of complex algebraic curves
- One-point compactification
(4) Inner distance is conical
(5) Outer Lipschitz geometry: local vs. global
- Applications to the Ahern-Rudin's results

Outer Lipschitz geometry: Local vs. global

Outer Lipschitz geometry: Local vs. global

Theorem

Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be sets. Then, the following statements are equivalent:
(1) X and Y are outer lipeomorphic at infinity;
(2) The germs of the stereographic modifications $\left(\widehat{X}, e_{n+1}\right)$ and $\left(\widehat{Y}, e_{m+1}\right)$ are outer lipeomorphic;
(3) The germs of the inversions $(\iota(X \backslash\{0\}), 0)$ and $(\iota(Y \backslash\{0\}), 0)$ are outer lipeomorphic.

Outer Lipschitz geometry: Local vs. global

Theorem

Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{m}$ be sets. Then, the following statements are equivalent:
(1) X and Y are outer lipeomorphic at infinity;
(2) The germs of the stereographic modifications $\left(\hat{X}, e_{n+1}\right)$ and $\left(\widehat{Y}, e_{m+1}\right)$ are outer lipeomorphic;
(3) The germs of the inversions $(\iota(X \backslash\{0\}), 0)$ and $(\iota(Y \backslash\{0\}), 0)$ are outer lipeomorphic.

This result appeared firstly in the preprint arXiv:2305.07469 [math.MG] written by Grandjean and Oliveira. However, our proofs are different. Their proof is by contradiction and the mine is a direct proof.

Smoothness at infinity

Ahern and Rudin in 1993 defined the notion of a set to be C^{1}-smooth at infinity.

Definition

A set $V \subset \mathbb{R}^{n}$ is C^{1}-smooth at infinity if $\iota(V \backslash\{0\}) \cup\{0\}$ is a C^{1} submanifold around 0 .

Smoothness at infinity

Ahern and Rudin in 1993 defined the notion of a set to be C^{1}-smooth at infinity.

Definition

A set $V \subset \mathbb{R}^{n}$ is C^{1}-smooth at infinity if $\iota(V \backslash\{0\}) \cup\{0\}$ is a C^{1} submanifold around 0 .

Smoothness at infinity

Ahern and Rudin in 1993 defined the notion of a set to be C^{1}-smooth at infinity.

Definition

A set $V \subset \mathbb{R}^{n}$ is C^{1}-smooth at infinity if $\iota(V \backslash\{0\}) \cup\{0\}$ is a C^{1} submanifold around 0 .

Theorem (Ahern and Rudin (2023))

A complex analytic set $V \subset \mathbb{C}^{n}$ is C^{1}-smooth at infinity if and only if V is the union of an affine linear subspace of \mathbb{C}^{n} and a (possibly empty) finite set.

Lipschitz smoothness at infinity

Thus, we define the following:

Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set $V \subset \mathbb{R}^{n}$ is Lipschitz smooth at infinity if $(\iota(V \backslash\{0\}) \cup\{0\}, 0)$ and $\left(\mathbb{R}^{k}, 0\right)$ are germs of outer lipeomorphic sets.

Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set $V \subset \mathbb{R}^{n}$ is Lipschitz smooth at infinity if $(\iota(V \backslash\{0\}) \cup\{0\}, 0)$ and $\left(\mathbb{R}^{k}, 0\right)$ are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin's theorem:

Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set $V \subset \mathbb{R}^{n}$ is Lipschitz smooth at infinity if $(\iota(V \backslash\{0\}) \cup\{0\}, 0)$ and $\left(\mathbb{R}^{k}, 0\right)$ are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin's theorem:

Theorem (S. (2023))

A complex analytic set $V \subset \mathbb{C}^{n}$ is Lipschitz smooth at infinity if and only if V is the union of an affine linear subspace of \mathbb{C}^{n} and a (possibly empty) finite set.

Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set $V \subset \mathbb{R}^{n}$ is Lipschitz smooth at infinity if $(\iota(V \backslash\{0\}) \cup\{0\}, 0)$ and $\left(\mathbb{R}^{k}, 0\right)$ are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin's theorem:

Theorem (S. (2023))

A complex analytic set $V \subset \mathbb{C}^{n}$ is Lipschitz smooth at infinity if and only if V is the union of an affine linear subspace of \mathbb{C}^{n} and a (possibly empty) finite set.

Theorem (Fernandes and S. (2020))

A complex analytic set $V \subset \mathbb{C}^{n}$ is outer lipeomorphic to an Euclidean space (outside of compact sets) if and only if V is the union of an affine linear subspace of \mathbb{C}^{n} and a (possibly empty) finite set.

Final comment

Final comment

An open problem

Classify the semialgebraic surfaces (with isolated singularities) up to outer lipeomorphisms (Local and global).

Thank you!

