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Initial considerations

1 The results presented here are in the articles:

1 Alexandre Fernandes and E. S. Global bi-Lipschitz classification of
semialgebraic surfaces. Accepted for publication in Annali della Scuola
Normale Superiore di Pisa, Classe di Scienze (2022).

2 Local vs. global Lipschitz geometry. Submitted for publication (2023).
arXiv:2305.11830 [math.MG].

2 You can find these articles and others on my ResearchGate’s webpage:

https://www.researchgate.net/profile/Jose-Edson-Sampaio

3 And on my homepage:

https://sites.google.com/mat.ufc.br/edsonsampaio/
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Goals

In the first part of this talk, we consider semialgebraic surfaces S in
Rn (with isolated singularities) equipped with the inner distance

dS,inn(x1, x2) = inf{length(γ) : γ is a path on S connecting x1, x2 ∈ S}

and we classify those surfaces up to bi-Lipschitz homeomorphisms
with respect to the inner distance, the so-called inner lipeomorphims.

For example, associated to each Nash surface S, we present a list of
symbols, θS ∈ {−1, 1}, gS ∈ N ∪ {0}, eS ∈ N ∪ {0} and β1, ...,βeS ,
where β′is (≤ 1) are rational numbers associated to the ends of S;
which determines S up to inner lipeomorphisms.

Present several relations between Local and global Lipschitz geometry.
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Classification of smooth compact surfaces

Theorem

Let X and Y be two connected smooth (without boundary) compact
surfaces. Then the following statements are equivalent:

(1) X and Y are homeomorphic;

(2) X and Y are diffeomorphic;

(3) X and Y are inner lipeomorphic;

(4) θ(X) = θ(Y ) and g(X) = g(Y ),
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Classification of smooth compact surfaces

Theorem

Let X and Y be two connected smooth (maybe with boundary) compact
surfaces. Then the following statements are equivalent:

(1) X and Y are homeomorphic;

(2) X and Y are diffeomorphic;

(3) X and Y are inner lipeomorphic;

(4) θ(X) = θ(Y ), g(X) = g(Y ) and X and Y have the number of
boundary components.
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Non-compact surfaces

Example

Let X = R2, Y = {(x, y, z) ∈ R3;x2 + y2 = 1} and
Z = {(x, y, z) ∈ R3; z = x2 + y2}.
a) θ(X) = θ(Y ), g(X) = g(Y ), but X and Y are not homeomorphic;

(b) X and Z are diffeomorphic, but they are not inner lipeomorphic;
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Non-smooth surfaces

Example

Let Y = {(x, y, z) ∈ R3; (x2 + 9
2y

2 + z2 − 1)3 − x2z3 − 9
200y

2z3 = 0} and
X = S2. Then X and Y are homeomorphic, but they are not inner
lipeomorphic.

Figure: The heart surface and the sphere
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Local classification of surfaces

Theorem of Birbrair

Given the germ of a semialgebraic set, (X, a), with isolated singularity and
connected link, there is a unique rational number β ≥ 1 such that (X, a) is
inner homeomorphic to the germ at 0 ∈ R3 of the β-horn

{(x, y, z) ∈ R3 : x2 + y2 = z2β and z ≥ 0}.
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Preliminary invariants I

Definition

Let X ⊂ Rn be a semialgebraic surface with isolated inner Lipschitz
singularities. Let us consider the following symbols:

i) For p ∈ SinginLip(X), ℓ(X, p) denotes the number of connected
components of the link of X at p;

ii) We can consider a sufficient large radius R > 0 (and ρ = 1/R) such
that

X ′ = (X ∩B(0, R)) \
{
B(x1, ρ) ∪ · · · ∪B(xs, ρ)

}
is a topological surface with boundary and its topological type does
not depend on R. Thus, we define

θ(X) =

{
1, if X ′ is orientable

−1, if X ′ is not orientable.
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Preliminary invariants II

Definition

iii) g(X) is the genus of X ′;

iv) For each p ∈ X, there is r > 0 such that

X ∩B(p, r) =

ℓ(X,p)⋃
i=1

Xi

and each Xi is a topological surface. Let βi be the horn exponent of
Xi at p (given by Theorem of Birbrair). By reordering the indices, if
necessary, we assume that β1 ≤ β2 ≤ · · · ≤ βℓ(X,p). In this way, we
define β(X, p) = (β1, β2, · · · , βℓ(X,p)).
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Preliminary invariants III

Theorem (Fernandes and S. (2022))

Given an end E of X (i.e., a connected component of X \B(0, R)), there
is a unique rational number 0 ≤ β ≤ 1 such that E is inner lipeomorphic
to the β-tube

Pβ = {(x, y, z) ∈ R3 : x2 + y2 = z2β and z ≥ a > 0}.

Definition

v) e(X) is the number of ends of X, and if E1, . . . , Ee(X) are the ends
of X, then denote by βi, the tube exponent of Ei, the only rational
number smaller than or equal to 1 such that Ei is a βi-tube. By
reordering the indices, if necessary, we assume that
β1 ≤ β2 ≤ · · · ≤ βe(X). In this way, we define
β(X,∞) = (β1, β2, ..., βe(X)).
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The invariant

Definition (Inner Lipschitz code)

Let X ⊂ Rn be a semialgebraic surface with isolated inner Lipschitz
singularities. If ReginLip(X) is a connected set, then the collection of
symbols {

θ(X), g(X), β(X,∞), {β(X, p)}p∈SinginLip(X)

}
is called the inner Lipschitz code of X and we denote it by
CodeinLip(X).

Remark

We can also define CodeinLip(X) when ReginLip(X) is not connected,
but we will not consider this case in our talk.
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Some examples

Example

Let us see the inner Lipschitz code of some well-known semialgebraic
topological surfaces.

a) Right cylinder: {1, 0, (0, 0), ∅};
b) Unbounded Moebius band

{(x, y, u, v) ∈ R4 : x2 + y2 = 1, (u2 − v2)y = 2uvx}: {−1, 0, 1, ∅};
c) Global β-horn in R3; β ≥ 1: {1, 0, 1, {β}};
d) {(z, w) ∈ C2 : z2 = w(w − a)(w − b)}; a, b ̸= 0 and a ̸= b:

{1, 1, (1, 1, 1), ∅};
e) Plane: {1, 0, 1, ∅}
f) Paraboloid in R3: {1, 0, 1/2, ∅}
g) Torus: {1, 1, ∅, ∅}
h) Klein bottle: {−1, 1, ∅, ∅}
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Outline

1 Introduction and motivation

2 Global classification of semialgebraic surfaces

3 Consequences
Classification of Nash surfaces
Classification of minimal surfaces with finite total curvature
Classification of complex algebraic curves
One-point compactification

4 Inner distance is conical

5 Outer Lipschitz geometry: local vs. global
Applications to the Ahern-Rudin’s results
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Global classification of semialgebraic surfaces

Theorem (Fernandes and S. (2022))

Let X ⊂ Rn and Y ⊂ Rm be semialgebraic surfaces with isolated inner
Lipschitz singularities. Then, X and Y are inner lipeomorphic if, and only
if, their inner Lipschitz code are equal.
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Nash surfaces

Figure: An oriented Nash surface with 5 ends and genus 4.
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Classification of compact semialgebraic surfaces

Theorem (Fernandes and S. (2022))

Let N1, N2 ⊂ Rn be two Nash surfaces. Then, the following statements
are equivalent:

(1) N1 and N2 are homeomorphic and β(N1,∞) = β(N2,∞);

(2) N1 and N2 are diffeomorphic and β(N1,∞) = β(N2,∞);

(3) N1 and N2 are inner lipeomorphic;

(4) θ(N1) = θ(N2), g(N1) = g(N2) and β(N1,∞) = β(N2,∞).
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Normal forms

For θ ∈ {−1, 1} and g ∈ N, let N(θ, g) ⊂ R5 be a compact Nash
surface such that θ(N(θ, g)) = θ and g(N(θ, g)) = g;
For a positive integer number e and β = (β1, ..., βe) ∈ Q such that
β1 ≤ β2 ≤ .... ≤ βe ≤ 1, we remove e distinct points of N(θ, g), let
us say x1, ..., xe ∈ N(θ, g), and we define
F : N(θ, g) \ {x1, ..., xe} → R6e given by

F (x) = (
x− x1

∥x− x1∥1+β1
, ∥x− x1∥−1, ...,

x− xe
∥x− xe∥1+βe

, ∥x− xe∥−1);

We denote the image of F , which is a Nash surface, by N(θ, g, β);
We also define N(θ, g, ∅) = N(θ, g).
Note that θ(N(θ, g, β)) = θ, g(N(θ, g, β)) = g and
β(N(θ, g, β),∞) = β.

Theorem (Fernandes and S. (2022))

Let N ⊂ Rn be a Nash surface. Then, N(θ(N), g(N), β(N,∞)) and N
are inner lipeomorphic.
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Classification of minimal surfaces

Theorem (Fernandes and S. (2022))

Let M1,M2 ⊂ R3 be two connected properly embedded minimal surfaces
with finite total curvature. Then, the following statements are equivalent:

(1) M1 and M2 are homeomorphic;

(2) M1 and M2 are inner lipeomorphic;

(3) g(M1) = g(M2) and e(M1) = e(M2).
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Classification of complex algebraic curves

Theorem (Fernandes and S. (2022))

Let C1, C2 ⊂ C2 be two complex algebraic curves. Then, the following
statements are equivalent:

(1) C1 and C2 are homeomorphic;

(2) C1 and C2 are inner lipeomorphic.

Corollary

Let C1, C2 ⊂ C2 be two LNE complex algebraic curves. Then, the
following statements are equivalent:

(1) C1 and C2 are homeomorphic;

(2) C1 and C2 are outer lipeomorphic.
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Classification of compact semialgebraic surfaces

Definition

Let X ⊂ Rn be an unbounded closed subset. Let X̂ = ρ−1(X) ∪ {en+1},
where ρ : Sn \ {en+1} → Rn is the stereographic projection of
en+1 = (0, ..., 0, 1) ∈ Sn.

Theorem (Fernandes and S. (2022))

Let X ⊂ Rn and Y ⊂ Rm be semi-algebraic surfaces with isolated inner
Lipschitz singularities. Then, X and Y are inner lipeomorphic if, and only
if, the pointed spaces (X̂, en+1) and (Ŷ , em+1) are inner lipeomorphic.
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Edson Sampaio (UFC) Global bi-Lipschitz classification of surfaces December 12, 2023 24 / 36



Classification of compact semialgebraic surfaces

In the last result, the equivalence as pointed spaces can not be dropped.

Example

Let P = {(x, y, z) ∈ R3; z = x2 + y2} and
H = {(x, y, z) ∈ R3; z3 = x2 + y2}. Then
P̂ = {(x, y, z, w) ∈ S3; z(1− w) = x2 + y2} and
Ĥ = {(x, y, z, w) ∈ S3; z3 = (x2 + y2)(1− w)}. Thus,
CodeinLip(P ) = {1, 0, 12 , ∅} and CodeinLip(H) = {1, 0, 1, 32}. Therefore,
by Inner Lip Classification Theorem, P and H are not inner lipeomorphic.
Moreover, CodeinLip(P̂ ) = CodeinLip(Ĥ) = {1, 0, ∅, {3

2}}. Therefore, by
Inner Lip Classification Theorem, P̂ and Ĥ are inner lipeomorphic.
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O-minimal structure

Definition

An o-minimal structure on R is a collection S = {Sn}n∈N where each Sn

is a set of subsets of Rn, satisfying the following axioms:

1) All algebraic subsets of Rn are in Sn;

2) For every n, Sn is a Boolean subalgebra of the powerset of Rn;

3) If A ∈ Sm and B ∈ Sn, then A×B ∈ Sm+n;

4) If π : Rn+1 → Rn is the projection on the first n coordinates and
A ∈ Sn+1, then π(A) ∈ Sn;

5) The elements of S1 are precisely the finite unions of points and
intervals.

The elements of Sn are called the definable subsets of Rn.

In this talk, we fix an o-minimal structure S on R.
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2) For every n, Sn is a Boolean subalgebra of the powerset of Rn;

3) If A ∈ Sm and B ∈ Sn, then A×B ∈ Sm+n;

4) If π : Rn+1 → Rn is the projection on the first n coordinates and
A ∈ Sn+1, then π(A) ∈ Sn;

5) The elements of S1 are precisely the finite unions of points and
intervals.

The elements of Sn are called the definable subsets of Rn.

In this talk, we fix an o-minimal structure S on R.
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Inner distance is conical

Theorem (S. (2023))

Let A ⊂ Rn be a definable set in S. Let φ : A→ R be a radius function,
i.e., φ is a definable outer Lipschitz function such that there is C ≥ 1
satisfying 1

C ∥x∥ ≤ ∥φ(x)∥ ≤ C∥x∥ for all x ∈ A.

(a) If the link of A at infinity is connected, then there are constants
K, r ≥ 1 such that for each t ∈ (r,+∞), we have

dA,inn(x, y) ≤ dAφ,t,inn(x, y) ≤ KdA,inn(x, y),

for all x, y ∈ Aφ,t = {x ∈ A;φ(x) = t}.
(b) If the link of A at 0 is connected, then there are constants K, r ≥ 1

such that for each t ∈ (0, 1r ), we have

dA,inn(x, y) ≤ dAφ,t,inn(x, y) ≤ KdA,inn(x, y),

for all x, y ∈ Aφ,t.
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Definable Lipschitz geometry: Local vs. global

Theorem (S. (2023))

Let X ⊂ Rn and Y ⊂ Rm be definable sets in S with connected links at
infinity. Let σ, σ̃ ∈ {inn, out}. Then, the following statements are
equivalent:

1 There is a definable lipeomorphism at infinity
φ : (X, dX,σ) → (Y, dX,σ̃) which preserves the outer distance to the
origin;

2 There is a germ of definable lipeomorphism
ψ : (X̂, d

X̂,σ
, en+1) → (Ŷ , d

Ŷ ,σ̃
, em+1) which preserves the last

coordinate;

3 There is a germ of lipeomorphism
φ̃ : (ι(X \ {0}), dι(X\{0}),σ, 0) → (ι(Y \ {0}), dι(Y \{0}),σ̃, 0) which
preserves the outer distance to the origin.
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Definable Lipschitz geometry: Local vs. global

Theorem (S. (2023))

Let X ⊂ Rn and Y ⊂ Rm be definable sets in S. Let σ, σ̃ ∈ {inn, out}.
Then, (X, dX,σ) and (Y, dX,σ̃) are definably lipeomorphic if and only if the

pointed stereographic modifications (X̂, d
X̂,σ

,∞) and (Ŷ , d
Ŷ ,σ̃

,∞) are
definably lipeomorphic.

Edson Sampaio (UFC) Global bi-Lipschitz classification of surfaces December 12, 2023 30 / 36



Definable Lipschitz geometry: Local vs. global

Theorem (S. (2023))

Let X ⊂ Rn and Y ⊂ Rm be definable sets in S. Let σ, σ̃ ∈ {inn, out}.
Then, (X, dX,σ) and (Y, dX,σ̃) are definably lipeomorphic if and only if the

pointed stereographic modifications (X̂, d
X̂,σ

,∞) and (Ŷ , d
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Outline

1 Introduction and motivation

2 Global classification of semialgebraic surfaces

3 Consequences
Classification of Nash surfaces
Classification of minimal surfaces with finite total curvature
Classification of complex algebraic curves
One-point compactification

4 Inner distance is conical

5 Outer Lipschitz geometry: local vs. global
Applications to the Ahern-Rudin’s results
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Outer Lipschitz geometry: Local vs. global

Theorem

Let X ⊂ Rn and Y ⊂ Rm be sets. Then, the following statements are
equivalent:

1 X and Y are outer lipeomorphic at infinity;

2 The germs of the stereographic modifications (X̂, en+1) and
(Ŷ , em+1) are outer lipeomorphic;

3 The germs of the inversions (ι(X \ {0}), 0) and (ι(Y \ {0}), 0) are
outer lipeomorphic.

This result appeared firstly in the preprint arXiv:2305.07469 [math.MG]
written by Grandjean and Oliveira. However, our proofs are different.
Their proof is by contradiction and the mine is a direct proof.
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Smoothness at infinity

Ahern and Rudin in 1993 defined the notion of a set to be C1-smooth at
infinity.

Definition

A set V ⊂ Rn is C1-smooth at infinity if ι(V \ {0}) ∪ {0} is a C1

submanifold around 0.

Theorem (Ahern and Rudin (2023))

A complex analytic set V ⊂ Cn is C1-smooth at infinity if and only if V is
the union of an affine linear subspace of Cn and a (possibly empty) finite
set.
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Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set V ⊂ Rn is Lipschitz smooth at infinity if (ι(V \ {0})∪ {0}, 0) and
(Rk, 0) are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin’s theorem:

Theorem (S. (2023))

A complex analytic set V ⊂ Cn is Lipschitz smooth at infinity if and only
if V is the union of an affine linear subspace of Cn and a (possibly empty)
finite set.

Theorem (Fernandes and S. (2020))

A complex analytic set V ⊂ Cn is outer lipeomorphic to an Euclidean
space (outside of compact sets) if and only if V is the union of an affine
linear subspace of Cn and a (possibly empty) finite set.

Edson Sampaio (UFC) Global bi-Lipschitz classification of surfaces December 12, 2023 34 / 36



Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set V ⊂ Rn is Lipschitz smooth at infinity if (ι(V \ {0})∪ {0}, 0) and
(Rk, 0) are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin’s theorem:

Theorem (S. (2023))

A complex analytic set V ⊂ Cn is Lipschitz smooth at infinity if and only
if V is the union of an affine linear subspace of Cn and a (possibly empty)
finite set.

Theorem (Fernandes and S. (2020))

A complex analytic set V ⊂ Cn is outer lipeomorphic to an Euclidean
space (outside of compact sets) if and only if V is the union of an affine
linear subspace of Cn and a (possibly empty) finite set.

Edson Sampaio (UFC) Global bi-Lipschitz classification of surfaces December 12, 2023 34 / 36



Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set V ⊂ Rn is Lipschitz smooth at infinity if (ι(V \ {0})∪ {0}, 0) and
(Rk, 0) are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin’s theorem:

Theorem (S. (2023))

A complex analytic set V ⊂ Cn is Lipschitz smooth at infinity if and only
if V is the union of an affine linear subspace of Cn and a (possibly empty)
finite set.

Theorem (Fernandes and S. (2020))

A complex analytic set V ⊂ Cn is outer lipeomorphic to an Euclidean
space (outside of compact sets) if and only if V is the union of an affine
linear subspace of Cn and a (possibly empty) finite set.

Edson Sampaio (UFC) Global bi-Lipschitz classification of surfaces December 12, 2023 34 / 36



Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set V ⊂ Rn is Lipschitz smooth at infinity if (ι(V \ {0})∪ {0}, 0) and
(Rk, 0) are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin’s theorem:

Theorem (S. (2023))

A complex analytic set V ⊂ Cn is Lipschitz smooth at infinity if and only
if V is the union of an affine linear subspace of Cn and a (possibly empty)
finite set.

Theorem (Fernandes and S. (2020))

A complex analytic set V ⊂ Cn is outer lipeomorphic to an Euclidean
space (outside of compact sets) if and only if V is the union of an affine
linear subspace of Cn and a (possibly empty) finite set.

Edson Sampaio (UFC) Global bi-Lipschitz classification of surfaces December 12, 2023 34 / 36



Lipschitz smoothness at infinity

Thus, we define the following:

Definition

A set V ⊂ Rn is Lipschitz smooth at infinity if (ι(V \ {0})∪ {0}, 0) and
(Rk, 0) are germs of outer lipeomorphic sets.

We obtain the following generalization of Ahern-Rudin’s theorem:

Theorem (S. (2023))

A complex analytic set V ⊂ Cn is Lipschitz smooth at infinity if and only
if V is the union of an affine linear subspace of Cn and a (possibly empty)
finite set.

Theorem (Fernandes and S. (2020))

A complex analytic set V ⊂ Cn is outer lipeomorphic to an Euclidean
space (outside of compact sets) if and only if V is the union of an affine
linear subspace of Cn and a (possibly empty) finite set.

Edson Sampaio (UFC) Global bi-Lipschitz classification of surfaces December 12, 2023 34 / 36



Final comment

An open problem

Classify the semialgebraic surfaces (with isolated singularities) up to outer
lipeomorphisms (Local and global).
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Thank you!
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