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Introduction
Joint with C. Spicer.

Setup: X=complex Q-factorial projective variety of dimension n.

A foliation F of rank r is a rank r coherent subsheaf TF ⊆ TX which is
(i) closed under Lie bracket; and
(ii) NF := TX/TF is torsion free.

The canonical divisor of F is a divisor KF such that

OX (KF ) = det(T ⋆
F ).

Let g : Y 99K X birational map (or any dominant map) between normal varieties.
Then if F is a foliation on X , there exists a unique induced foliation FY on Y .

Aim: We want to study the birational geometry of (X ,F): i.e. does there exists a
birational map X 99K Y such that the induced foliation FY on Y is either such that
KFY

is nef or it admits a MFS?
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Some Motivations

Green-Griffiths conjecture on the subset of rational curves on a variety of general
type.

Generalise the canonical bundle formula in different contexts (e.g. in positive
characteristic).

Study singularities of a foliation.

Construct a moduli space for foliations.
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Singularities

Let F be a foliation of rank r on X . The inclusion TF ↪→ TX induced a morphism

ϕ : (Ωr
X )

∗∗ ⊗OX (−KF ) → OX .

The singular locus of F is the cosupport of ϕ. If X is smooth then

SingF := {x ∈ X | NF is not locally free at x }.

By Frobenius theorem, for any x ∈ X \ (SingF ∪ SingX)

∃ ϕ : x ∈ U ⊂ X → Cn−r

such that NF |U = ϕ∗TCn−r and TF |U is the relative tangent bundle.

A leaf of F is an analytic subvariety of X which is locally a fibre of ϕ.
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Algebraically Integrable Foliations

Example: Any fibration f : X → Z induces a foliation on X by taking

ker[TX → f ∗TZ ] ⊂ TX .

E.g. assume that Z is a curve, or more in general f is equidimensional. Then

KF = KX/Z +
∑

(1− ℓD)D

where, for any P ⊂ Z prime divisor, we have f ∗P =
∑

ℓDD.

More in general, any dominant map g : X 99K Z defines a foliation on X .

These foliations are called algebraically integrable.
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Foliated Pairs

As in classical birational geometry, we have to work with pairs.

A foliated pair (F ,∆) consists of a foliation F on X and a Q-divisor ∆ ≥ 0 on X .

A subvariety E ⊂ X which is not contained in SingX∪ SingF is F-invariant if, outside
the singular locus, it is the union of leaves. For example, if F is induced by a morphism
f : X → Z , then being invariant coincides with being vertical (i.e. f (E ) ̸= Z ).

We write ϵ(E ) = 0 if E is F-invariant and ϵ(E ) = 1 if not.

Def. (F ,∆) is log canonical (resp. canonical) if for any birational morphism
f : Y → X we can write

KFY
+ f −1

∗ ∆ = f ∗(KF +∆) +
∑

aiEi

where the sum runs over the exceptional divisor of f and ai ≥ −ϵ(Ei ) (resp. ≥ 0).
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Adjunction Formula

C. - Spicer ’23: Let (F ,∆) be a foliated pair on X , let D ⊂ X be a prime divisor
which is not contained in the support of ∆ and let Dν → D be its normalisation.
Then

(KF +∆+ ϵ(D)D)|Dν = KFDν +∆D

where FDν is the induced foliation on Dν and ∆D ≥ 0.

Along the smooth locus, the leaves of FD are the intersection of the leaves of F with
D. Thus, rkFDν = rkF − ϵ(D).

If D ⊂ X is a F-invariant subvariety such that D is not contained in
SingX ∪ SingF ∪ Supp∆ then the same result holds, i.e.

(KF +∆)|Dν = KFDν +∆D

FDν is a foliation of rank equal to rkF and ∆D ≥ 0.



Adjunction Formula

C. - Spicer ’23: Let (F ,∆) be a foliated pair on X , let D ⊂ X be a prime divisor
which is not contained in the support of ∆ and let Dν → D be its normalisation.
Then

(KF +∆+ ϵ(D)D)|Dν = KFDν +∆D

where FDν is the induced foliation on Dν and ∆D ≥ 0.

Along the smooth locus, the leaves of FD are the intersection of the leaves of F with
D.

Thus, rkFDν = rkF − ϵ(D).

If D ⊂ X is a F-invariant subvariety such that D is not contained in
SingX ∪ SingF ∪ Supp∆ then the same result holds, i.e.

(KF +∆)|Dν = KFDν +∆D

FDν is a foliation of rank equal to rkF and ∆D ≥ 0.



Adjunction Formula

C. - Spicer ’23: Let (F ,∆) be a foliated pair on X , let D ⊂ X be a prime divisor
which is not contained in the support of ∆ and let Dν → D be its normalisation.
Then

(KF +∆+ ϵ(D)D)|Dν = KFDν +∆D

where FDν is the induced foliation on Dν and ∆D ≥ 0.

Along the smooth locus, the leaves of FD are the intersection of the leaves of F with
D. Thus, rkFDν = rkF − ϵ(D).

If D ⊂ X is a F-invariant subvariety such that D is not contained in
SingX ∪ SingF ∪ Supp∆ then the same result holds, i.e.

(KF +∆)|Dν = KFDν +∆D

FDν is a foliation of rank equal to rkF and ∆D ≥ 0.



Adjunction Formula

C. - Spicer ’23: Let (F ,∆) be a foliated pair on X , let D ⊂ X be a prime divisor
which is not contained in the support of ∆ and let Dν → D be its normalisation.
Then

(KF +∆+ ϵ(D)D)|Dν = KFDν +∆D

where FDν is the induced foliation on Dν and ∆D ≥ 0.

Along the smooth locus, the leaves of FD are the intersection of the leaves of F with
D. Thus, rkFDν = rkF − ϵ(D).

If D ⊂ X is a F-invariant subvariety such that D is not contained in
SingX ∪ SingF ∪ Supp∆ then the same result holds, i.e.

(KF +∆)|Dν = KFDν +∆D

FDν is a foliation of rank equal to rkF and ∆D ≥ 0.



C. - Spicer ’23: If D ⊂ X is a non F-invariant divisor and (F ,∆) is log canonical
then (FDν ,∆D) is log canonical.

Remark: The same statement is not true if ϵ(D) = 0. E.g. if F is the rank one
foliation on C3 defined by

x2∂x + y2∂y + z∂z

then F is log canonical. Let D = {z = 0} then FD is defined by x2∂x + y2∂y and it is
not log canonical.

C. - Spicer ’23: Assume that rkF = 1 and D ⊂ X is a F-invariant divisor. Let
Z ⊂ X be a non F-invarant subvariety such that Z is not contained in SingF and
such that (F ,∆) is log canonical around the generic point of Z .
Then (FDν ,∆D) is log canonical around the generic point of Z .
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Cone Theorem and Base Point Free Theorem
Conjecture (Cone Theorem): Assume that (F ,∆) is a log canonical foliated log
pair. Then there exist rational curves C1,C2 . . . which are tangent to F and such that

NE (X ) = NE (X )KF+∆≥0 +
∑

R>0[Ci ].

Conjecture (Base Point Free Theorem): Assume that (F ,∆) is a log canonical pair
and let A be an ample Q-divisor such that L := KF +∆+ A is nef. Then L is
semi-ample.

1 C. - Spicer ’20: If dimX ≤ 3 then the Cone Theorem and the Base Point Free
Theorem hold.

2 Ambro - C. - Shokurov - Spicer ’21: The Cone Theorem holds for algebraically
integrable foliations.

3 G. Chen - J. Han - J. Liu - L. Xie ’23: The Base Point Free Theorem hold for
algebraically integrable foliations with F-dlt singularities.

4 Bogomolov-McQuillan ’16, C. - Spicer ’23: The Cone Theorem holds for
foliations of rank one.
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Cone Theorem for Rank One Foliations

C.-Spicer ’23: Assume that X is Q-factorial and (F ,∆) is a log canonical foliated log
pair. Then there exist rational curves C1,C2 . . . which are tangent to F and such that

0 < −(KF +∆) · Ci ≤ 2 dimX

and
NE (X ) = NE (X )KF+∆≥0 +

∑
R>0[Ci ].

Sketch of the proof: Let R be an extremal ray and let HR be a nef divisor on X
which defines a supporting hyperplane for NE (X ) at R.

Let Null(HR) =
⋃

HR |V is not big V be the Null locus of HR and let W ⊂ Null(HR) a

component such that R is contained in the image of NE (W ) → NE (X ).

Since (F ,∆) is log canonical, we may show that W is not contained in SingF .
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HR supporting hyperplace for NE (X ) at R and W ⊂ Null(HR) a component.
We distinguish two cases:

1 W is F-invariant: by adjunction, we may write

KFWν +∆W = (KF +∆)|W ν

and HR |W ν is not big.

By Miyaoka’s theorem, it follows that W is covered by
rational curves which are tangent to F and spanning R.

2 W is not F-invariant: through the general point of W , there exists a non
F-invariant curve C such that (KF +∆) ·C < 0. We may construct a F-invariant
(possibly analytic) surface S ⊂ X containing C . By adjunction, we may write

KFSν
+∆S = (KF +∆)|Sν

Inside S , we have that C 2 < 0. Assume that multC∆S = 1. Then we apply
adjunction again:

KFCν +∆C = (KFSν
+∆S)|Cν = (KF +∆)|Cν .

But rkFCν = 0, i.e. KFCν = 0 and, therefore (KF +∆) · C = deg∆C ≥ 0, a
contradiction.
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Existence of Flips

Let (F ,∆) be a log canonical pair and let R = (KF +∆)-negative extremal ray. Let

locus(R) =
⋃
C∈R

C .

If the Cone Theorem holds then dim locus(R) ≥ 1.

If the Base Point Free Theorem holds then we may find a contraction cR : X → Y such
that Exc cR = locus(R).

Assume that dim locus(R) ≤ dimX − 2.

Conjecture (Existence of Flips): The flip ϕ : X 99K X ′ associated to R exists.

C. - Spicer ’20, ’21: The conjecture holds if dimX = 3.
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Contraction Theorem and Existence of Flips for Algebraically Integrable
Foliations

C. - Spicer ’23: Assume termination of flips for Q-factorial klt pairs in dimension r .
Let (F ,∆) be an algebraically integrable foliated pair of rank r with log canonical
singularities, such that (X ,∆) is klt. Let R=(KF +∆)-negative extremal ray such that
dim locus(R) ≤ dimX − 2.
Then both the contraction h : X → Y and the flip ϕ : X 99K X ′ exist.

Idea of the proof:

1 We first prove the theorem for a very special class of algebraically integrable
foliations.

2 Using some suitable MMP, we construct a flip for any algebraically integrable
foliations.
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Property (∗)
Def. Let f : X → Z and let (X ,B) be a log pair with B ≥ 0. Then the pair (X/Z ,B)
satisfies Property (*) if

1 There exists a reduced divisor ΣZ on Z such that (Z ,ΣZ ) is log smooth;

2 the vertical part of B coincides with f −1(ΣZ ); and

3 for any z ∈ Z and for any P ≥ 0 such that (Z ,ΣZ + P) is log smooth around z ,
we have that (X ,B + f ∗(Σ− ΣZ )) is log canonical around f −1(z).

Def: (F ,∆) satisfies Property (*) if there exists a pair (X/Z ,B) which satisfies
Property (*) and such that F is the foliation induced by X → Z and ∆ = Bhor.

Ambro - C. - Shokurov - Spicer ’21:

If (F ,∆) satisfies Property (∗) then it is log canonical.

If (F ,∆) is an algebraically integrable log canonical foliated pair then it admits a
Property (∗) modification.

Property (∗) is preserved by the MMP.

Flips exist in this category.
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Sketch of the Proof
Let A ample Q-divisor such that HR = KF +∆+ A defines a supporting
hyperplane for NE(X ).

Let π : X → X be a Property (∗)-modification of (F ,∆) so that if F is the
induced foliation on X and

KF +∆ = π∗(KF +∆)

then (F ,∆) satisfies Property (∗). Let A = π∗A. Note that Bertini’s theorem
does not hold and we cannot assume that (F ,∆+ A) satisfies Property (∗).
We have that KF +∆+ A = π∗HR is big and nef. We may run a
(KF +∆)-MMP with scaling of A. By termination of flips, there exists a
(minimal) sequence of steps of a MMP

X = X0 99K X1 99K · · · 99K Xk = X
′

and 0 < λ ≪ 1 such that KF ′ +∆
′
+ (1− λ)A

′
is big and nef, where F ′

, ∆
′
and

A
′
are the induced items on X

′
. This MMP is (KF +∆+ A)-trivial.
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′
+ (1− λ)A

′
is big and nef, where F ′

, ∆
′
and

A
′
are the induced items on X

′
. This MMP is (KF +∆+ A)-trivial.
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So far we have

X 99K X
′

π

y
X

Both KF ′ +∆
′
+ (1− λ)A

′
and KF ′ +∆

′
+ A

′
are big and nef.

Since (X ,∆) is klt, we may write

KX + Γ + E = π∗(KX +∆) + F

where E ,F ≥ 0, (X , Γ+ E ) is klt and the support of E contains Excπ. Let Γ′ and

E ′ be the strict transform of Γ and E on X
′
.

We may run a MMP X
′
99K X

′′
which is (K

X
′ + Γ′ + E ′)-negative and

(KF ′ +∆
′
+ A

′
)-trivial. This MMP contracts Excπ.
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We have
X 99K X

′
99K X

′′

π

y
X

Let F ′′, ∆
′′
and A

′′
be the corresponding items on X

′′
.

By the Classical Base Point Free Theorem, it follows that KF ′′ +∆
′′
+ A

′′
is

semi-ample.

Thus HR = KF +∆+A is also semi-ample and the contraction cR : X → Y exists.

The corresponding map X 99K X
′′
is the desired flip.
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