On Foliation Adjunction

Paolo Cascini
Algebraic Geometry, Lipschitz Geometry and Singularities

14 December 2023

Introduction

Joint with C. Spicer.

Introduction

Joint with C. Spicer.
Setup: $X=$ complex \mathbb{Q}-factorial projective variety of dimension n.

Introduction

Joint with C. Spicer.
Setup: $X=$ complex \mathbb{Q}-factorial projective variety of dimension n.
A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_{X}$ which is
(1) closed under Lie bracket; and
(1) $\mathcal{N}_{\mathcal{F}}:=T_{X} / T_{\mathcal{F}}$ is torsion free.

Introduction

Joint with C. Spicer.
Setup: $X=$ complex \mathbb{Q}-factorial projective variety of dimension n.
A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_{X}$ which is
(1) closed under Lie bracket; and
(1) $\mathcal{N}_{\mathcal{F}}:=T_{X} / T_{\mathcal{F}}$ is torsion free.

The canonical divisor of \mathcal{F} is a divisor $K_{\mathcal{F}}$ such that

$$
\mathcal{O}_{X}\left(K_{\mathcal{F}}\right)=\operatorname{det}\left(T_{\mathcal{F}}^{\star}\right)
$$

Introduction

Joint with C. Spicer.
Setup: $X=$ complex \mathbb{Q}-factorial projective variety of dimension n.
A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_{X}$ which is
(1) closed under Lie bracket; and
(1) $\mathcal{N}_{\mathcal{F}}:=T_{X} / T_{\mathcal{F}}$ is torsion free.

The canonical divisor of \mathcal{F} is a divisor $K_{\mathcal{F}}$ such that

$$
\mathcal{O}_{X}\left(K_{\mathcal{F}}\right)=\operatorname{det}\left(T_{\mathcal{F}}^{\star}\right)
$$

Let $g: Y \rightarrow X$ birational map (or any dominant map) between normal varieties. Then if \mathcal{F} is a foliation on X, there exists a unique induced foliation \mathcal{F}_{Y} on Y.

Introduction

Joint with C. Spicer.
Setup: $X=$ complex \mathbb{Q}-factorial projective variety of dimension n.
A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_{X}$ which is
(1) closed under Lie bracket; and
(1) $\mathcal{N}_{\mathcal{F}}:=T_{X} / T_{\mathcal{F}}$ is torsion free.

The canonical divisor of \mathcal{F} is a divisor $K_{\mathcal{F}}$ such that

$$
\mathcal{O}_{X}\left(K_{\mathcal{F}}\right)=\operatorname{det}\left(T_{\mathcal{F}}^{\star}\right)
$$

Let $g: Y \rightarrow X$ birational map (or any dominant map) between normal varieties. Then if \mathcal{F} is a foliation on X, there exists a unique induced foliation \mathcal{F}_{Y} on Y.

Aim: We want to study the birational geometry of (X, \mathcal{F}) : i.e. does there exists a birational map $X \rightarrow Y$ such that the induced foliation \mathcal{F}_{Y} on Y is either such that $K_{\mathcal{F}_{Y}}$ is nef or it admits a MFS?

Some Motivations

- Green-Griffiths conjecture on the subset of rational curves on a variety of general type.

Some Motivations

- Green-Griffiths conjecture on the subset of rational curves on a variety of general type.
- Generalise the canonical bundle formula in different contexts (e.g. in positive characteristic).

Some Motivations

- Green-Griffiths conjecture on the subset of rational curves on a variety of general type.
- Generalise the canonical bundle formula in different contexts (e.g. in positive characteristic).
- Study singularities of a foliation.

Some Motivations

- Green-Griffiths conjecture on the subset of rational curves on a variety of general type.
- Generalise the canonical bundle formula in different contexts (e.g. in positive characteristic).
- Study singularities of a foliation.
- Construct a moduli space for foliations.

Singularities

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_{X}$ induced a morphism

$$
\phi:\left(\Omega_{X}^{r}\right)^{* *} \otimes \mathcal{O}_{X}\left(-K_{\mathcal{F}}\right) \rightarrow \mathcal{O}_{X}
$$

Singularities

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_{X}$ induced a morphism

$$
\phi:\left(\Omega_{X}^{r}\right)^{* *} \otimes \mathcal{O}_{X}\left(-K_{\mathcal{F}}\right) \rightarrow \mathcal{O}_{X}
$$

The singular locus of \mathcal{F} is the cosupport of ϕ.

Singularities

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_{X}$ induced a morphism

$$
\phi:\left(\Omega_{X}^{r}\right)^{* *} \otimes \mathcal{O}_{X}\left(-K_{\mathcal{F}}\right) \rightarrow \mathcal{O}_{X}
$$

The singular locus of \mathcal{F} is the cosupport of ϕ. If X is smooth then

$$
\operatorname{Sing} \mathcal{F}:=\left\{\mathrm{x} \in \mathrm{X} \mid \mathcal{N}_{\mathcal{F}} \text { is not locally free at } \mathrm{x}\right\} .
$$

Singularities

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_{X}$ induced a morphism

$$
\phi:\left(\Omega_{X}^{r}\right)^{* *} \otimes \mathcal{O}_{X}\left(-K_{\mathcal{F}}\right) \rightarrow \mathcal{O}_{X}
$$

The singular locus of \mathcal{F} is the cosupport of ϕ. If X is smooth then

$$
\operatorname{Sing} \mathcal{F}:=\left\{\mathrm{x} \in \mathrm{X} \mid \mathcal{N}_{\mathcal{F}} \text { is not locally free at } \mathrm{x}\right\} .
$$

By Frobenius theorem, for any $x \in X \backslash(\operatorname{Sing} \mathcal{F} \cup \operatorname{SingX})$

$$
\exists \quad \phi: x \in U \subset X \rightarrow \mathbb{C}^{n-r}
$$

such that $\left.\mathcal{N}_{\mathcal{F}}\right|_{U}=\phi^{*} T_{\mathbb{C}^{n-r}}$ and $\left.T_{\mathcal{F}}\right|_{U}$ is the relative tangent bundle.

Singularities

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_{X}$ induced a morphism

$$
\phi:\left(\Omega_{X}^{r}\right)^{* *} \otimes \mathcal{O}_{X}\left(-K_{\mathcal{F}}\right) \rightarrow \mathcal{O}_{X}
$$

The singular locus of \mathcal{F} is the cosupport of ϕ. If X is smooth then

$$
\operatorname{Sing} \mathcal{F}:=\left\{\mathrm{x} \in \mathrm{X} \mid \mathcal{N}_{\mathcal{F}} \text { is not locally free at } \mathrm{x}\right\}
$$

By Frobenius theorem, for any $x \in X \backslash(\operatorname{Sing} \mathcal{F} \cup \operatorname{SingX})$

$$
\exists \quad \phi: x \in U \subset X \rightarrow \mathbb{C}^{n-r}
$$

such that $\left.\mathcal{N}_{\mathcal{F}}\right|_{U}=\phi^{*} T_{\mathbb{C}^{n-r}}$ and $\left.T_{\mathcal{F}}\right|_{U}$ is the relative tangent bundle.
A leaf of \mathcal{F} is an analytic subvariety of X which is locally a fibre of ϕ.

Algebraically Integrable Foliations

Example: Any fibration $f: X \rightarrow Z$ induces a foliation on X by taking

$$
\operatorname{ker}\left[T_{X} \rightarrow f^{*} T_{Z}\right] \subset T_{X}
$$

Algebraically Integrable Foliations

Example: Any fibration $f: X \rightarrow Z$ induces a foliation on X by taking

$$
\operatorname{ker}\left[T_{X} \rightarrow f^{*} T_{Z}\right] \subset T_{X}
$$

E.g. assume that Z is a curve, or more in general f is equidimensional. Then

$$
K_{\mathcal{F}}=K_{X / Z}+\sum\left(1-\ell_{D}\right) D
$$

where, for any $P \subset Z$ prime divisor, we have $f^{*} P=\sum \ell_{D} D$.

Algebraically Integrable Foliations

Example: Any fibration $f: X \rightarrow Z$ induces a foliation on X by taking

$$
\operatorname{ker}\left[T_{X} \rightarrow f^{*} T_{Z}\right] \subset T_{X}
$$

E.g. assume that Z is a curve, or more in general f is equidimensional. Then

$$
K_{\mathcal{F}}=K_{X / Z}+\sum\left(1-\ell_{D}\right) D
$$

where, for any $P \subset Z$ prime divisor, we have $f^{*} P=\sum \ell_{D} D$.
More in general, any dominant map $g: X \rightarrow Z$ defines a foliation on X.

Algebraically Integrable Foliations

Example: Any fibration $f: X \rightarrow Z$ induces a foliation on X by taking

$$
\operatorname{ker}\left[T_{X} \rightarrow f^{*} T_{Z}\right] \subset T_{X}
$$

E.g. assume that Z is a curve, or more in general f is equidimensional. Then

$$
K_{\mathcal{F}}=K_{X / Z}+\sum\left(1-\ell_{D}\right) D
$$

where, for any $P \subset Z$ prime divisor, we have $f^{*} P=\sum \ell_{D} D$.
More in general, any dominant map $g: X \rightarrow Z$ defines a foliation on X.
These foliations are called algebraically integrable.

Foliated Pairs

As in classical birational geometry, we have to work with pairs.

Foliated Pairs

As in classical birational geometry, we have to work with pairs.
A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q}-divisor $\Delta \geq 0$ on X.

Foliated Pairs

As in classical birational geometry, we have to work with pairs.
A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q}-divisor $\Delta \geq 0$ on X.
A subvariety $E \subset X$ which is not contained in $\operatorname{SingX} \cup \operatorname{Sing} \mathcal{F}$ is \mathcal{F}-invariant if, outside the singular locus, it is the union of leaves.

Foliated Pairs

As in classical birational geometry, we have to work with pairs.
A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q}-divisor $\Delta \geq 0$ on X.
A subvariety $E \subset X$ which is not contained in $\operatorname{SingX} \cup \operatorname{Sing} \mathcal{F}$ is \mathcal{F}-invariant if, outside the singular locus, it is the union of leaves. For example, if \mathcal{F} is induced by a morphism $f: X \rightarrow Z$, then being invariant coincides with being vertical (i.e. $f(E) \neq Z$).

Foliated Pairs

As in classical birational geometry, we have to work with pairs.
A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q}-divisor $\Delta \geq 0$ on X.
A subvariety $E \subset X$ which is not contained in $\operatorname{SingX} \cup \operatorname{Sing} \mathcal{F}$ is \mathcal{F}-invariant if, outside the singular locus, it is the union of leaves. For example, if \mathcal{F} is induced by a morphism $f: X \rightarrow Z$, then being invariant coincides with being vertical (i.e. $f(E) \neq Z$).

We write $\epsilon(E)=0$ if E is \mathcal{F}-invariant and $\epsilon(E)=1$ if not.

Foliated Pairs

As in classical birational geometry, we have to work with pairs.
A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q}-divisor $\Delta \geq 0$ on X.
A subvariety $E \subset X$ which is not contained in $\operatorname{SingX} \cup \operatorname{Sing} \mathcal{F}$ is \mathcal{F}-invariant if, outside the singular locus, it is the union of leaves. For example, if \mathcal{F} is induced by a morphism $f: X \rightarrow Z$, then being invariant coincides with being vertical (i.e. $f(E) \neq Z$).

We write $\epsilon(E)=0$ if E is \mathcal{F}-invariant and $\epsilon(E)=1$ if not.
Def. (\mathcal{F}, Δ) is log canonical (resp. canonical) if for any birational morphism $f: Y \rightarrow X$ we can write

$$
K_{\mathcal{F}_{Y}}+f_{*}^{-1} \Delta=f^{*}\left(K_{\mathcal{F}}+\Delta\right)+\sum a_{i} E_{i}
$$

where the sum runs over the exceptional divisor of f and $a_{i} \geq-\epsilon\left(E_{i}\right)$ (resp. ≥ 0).

Adjunction Formula

C. - Spicer '23: Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$
\left.\left(K_{\mathcal{F}}+\Delta+\epsilon(D) D\right)\right|_{D^{\nu}}=K_{\mathcal{F}_{D^{\nu}}}+\Delta_{D}
$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_{D} \geq 0$.

Adjunction Formula

C. - Spicer '23: Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$
\left.\left(K_{\mathcal{F}}+\Delta+\epsilon(D) D\right)\right|_{D^{\nu}}=K_{\mathcal{F}_{D^{\nu}}}+\Delta_{D}
$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_{D} \geq 0$.
Along the smooth locus, the leaves of \mathcal{F}_{D} are the intersection of the leaves of \mathcal{F} with D.

Adjunction Formula

C. - Spicer '23: Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$
\left.\left(K_{\mathcal{F}}+\Delta+\epsilon(D) D\right)\right|_{D^{\nu}}=K_{\mathcal{F}_{D^{\nu}}}+\Delta_{D}
$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_{D} \geq 0$.
Along the smooth locus, the leaves of \mathcal{F}_{D} are the intersection of the leaves of \mathcal{F} with D. Thus, $\mathrm{rk} \mathcal{F}_{D^{\nu}}=\operatorname{rk} \mathcal{F}-\epsilon(D)$.

Adjunction Formula

C. - Spicer '23: Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$
\left.\left(K_{\mathcal{F}}+\Delta+\epsilon(D) D\right)\right|_{D^{\nu}}=K_{\mathcal{F}_{D^{\nu}}}+\Delta_{D}
$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_{D} \geq 0$.
Along the smooth locus, the leaves of \mathcal{F}_{D} are the intersection of the leaves of \mathcal{F} with D. Thus, $\mathrm{rk} \mathcal{F}_{D^{\nu}}=\operatorname{rk} \mathcal{F}-\epsilon(D)$.

If $D \subset X$ is a \mathcal{F}-invariant subvariety such that D is not contained in $\operatorname{Sing} X \cup \operatorname{Sing} \mathcal{F} \cup \operatorname{Supp} \Delta$ then the same result holds, i.e.

$$
\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{D^{\nu}}=K_{\mathcal{F}_{D^{\nu}}}+\Delta_{D}
$$

$\mathcal{F}_{D^{\nu}}$ is a foliation of rank equal to $\mathrm{rk} \mathcal{F}$ and $\Delta_{D} \geq 0$.
C. - Spicer '23: If $D \subset X$ is a non \mathcal{F}-invariant divisor and (\mathcal{F}, Δ) is \log canonical then $\left(\mathcal{F}_{D^{\nu}}, \Delta_{D}\right)$ is log canonical.
C. - Spicer '23: If $D \subset X$ is a non \mathcal{F}-invariant divisor and (\mathcal{F}, Δ) is log canonical then $\left(\mathcal{F}_{D^{\nu}}, \Delta_{D}\right)$ is log canonical.

Remark: The same statement is not true if $\epsilon(D)=0$.
C. - Spicer '23: If $D \subset X$ is a non \mathcal{F}-invariant divisor and (\mathcal{F}, Δ) is log canonical then $\left(\mathcal{F}_{D^{\nu}}, \Delta_{D}\right)$ is \log canonical.

Remark: The same statement is not true if $\epsilon(D)=0$. E.g. if \mathcal{F} is the rank one foliation on \mathbb{C}^{3} defined by

$$
x^{2} \partial_{x}+y^{2} \partial_{y}+z \partial_{z}
$$

then \mathcal{F} is \log canonical. Let $D=\{z=0\}$ then \mathcal{F}_{D} is defined by $x^{2} \partial_{x}+y^{2} \partial_{y}$ and it is not log canonical.
C. - Spicer '23: If $D \subset X$ is a non \mathcal{F}-invariant divisor and (\mathcal{F}, Δ) is log canonical then $\left(\mathcal{F}_{D^{\nu}}, \Delta_{D}\right)$ is \log canonical.

Remark: The same statement is not true if $\epsilon(D)=0$. E.g. if \mathcal{F} is the rank one foliation on \mathbb{C}^{3} defined by

$$
x^{2} \partial_{x}+y^{2} \partial_{y}+z \partial_{z}
$$

then \mathcal{F} is \log canonical. Let $D=\{z=0\}$ then \mathcal{F}_{D} is defined by $x^{2} \partial_{x}+y^{2} \partial_{y}$ and it is not log canonical.
C. - Spicer '23: Assume that $\operatorname{rk} \mathcal{F}=1$ and $D \subset X$ is a \mathcal{F}-invariant divisor. Let $Z \subset X$ be a non \mathcal{F}-invarant subvariety such that Z is not contained in $\operatorname{sing} \mathcal{F}$ and such that (\mathcal{F}, Δ) is log canonical around the generic point of Z. Then $\left(\mathcal{F}_{D^{\nu}}, \Delta_{D}\right)$ is log canonical around the generic point of Z.

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right]
$$

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .
$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q}-divisor such that $L:=K_{\mathcal{F}}+\Delta+A$ is nef. Then L is semi-ample.

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .
$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q}-divisor such that $L:=K_{\mathcal{F}}+\Delta+A$ is nef. Then L is semi-ample.
(1) C. - Spicer '20: If $\operatorname{dim} X \leq 3$ then the Cone Theorem and the Base Point Free Theorem hold.

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .
$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q}-divisor such that $L:=K_{\mathcal{F}}+\Delta+A$ is nef. Then L is semi-ample.
(1) C. - Spicer '20: If $\operatorname{dim} X \leq 3$ then the Cone Theorem and the Base Point Free Theorem hold.
(2) Ambro-C. - Shokurov - Spicer '21: The Cone Theorem holds for algebraically integrable foliations.

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
\overline{N E(X)}=\overline{N E(X)_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .}
$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q}-divisor such that $L:=K_{\mathcal{F}}+\Delta+A$ is nef. Then L is semi-ample.
(1) C. - Spicer '20: If $\operatorname{dim} X \leq 3$ then the Cone Theorem and the Base Point Free Theorem hold.
(2) Ambro - C. - Shokurov - Spicer '21: The Cone Theorem holds for algebraically integrable foliations.
© G. Chen - J. Han - J. Liu - L. Xie '23: The Base Point Free Theorem hold for algebraically integrable foliations with F -dlt singularities.

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
\overline{N E(X)}=\overline{N E(X)_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .}
$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q}-divisor such that $L:=K_{\mathcal{F}}+\Delta+A$ is nef. Then L is semi-ample.
(1) C. - Spicer '20: If $\operatorname{dim} X \leq 3$ then the Cone Theorem and the Base Point Free Theorem hold.
(3) Ambro - C. - Shokurov - Spicer '21: The Cone Theorem holds for algebraically integrable foliations.
© G. Chen - J. Han - J. Liu - L. Xie '23: The Base Point Free Theorem hold for algebraically integrable foliations with F -dlt singularities.

- Bogomolov-McQuillan '16, C. - Spicer '23: The Cone Theorem holds for foliations of rank one.

Cone Theorem for Rank One Foliations

C.-Spicer '23: Assume that X is \mathbb{Q}-factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
0<-\left(K_{\mathcal{F}}+\Delta\right) \cdot C_{i} \leq 2 \operatorname{dim} X
$$

and

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .
$$

Cone Theorem for Rank One Foliations

C.-Spicer '23: Assume that X is \mathbb{Q}-factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
0<-\left(K_{\mathcal{F}}+\Delta\right) \cdot C_{i} \leq 2 \operatorname{dim} X
$$

and

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .
$$

Sketch of the proof: Let R be an extremal ray and let H_{R} be a nef divisor on X which defines a supporting hyperplane for $\overline{N E(X)}$ at R.

Cone Theorem for Rank One Foliations

C.-Spicer '23: Assume that X is \mathbb{Q}-factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
0<-\left(K_{\mathcal{F}}+\Delta\right) \cdot C_{i} \leq 2 \operatorname{dim} X
$$

and

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .
$$

Sketch of the proof: Let R be an extremal ray and let H_{R} be a nef divisor on X which defines a supporting hyperplane for $\overline{N E(X)}$ at R.

Let $\operatorname{Null}\left(H_{R}\right)=\bigcup_{H_{R} \mid V}$ is not big V be the Null locus of H_{R} and let $W \subset \operatorname{Null}\left(H_{R}\right)$ a component such that R is contained in the image of $\overline{N E(W)} \rightarrow \overline{N E(X)}$.

Cone Theorem for Rank One Foliations

C.-Spicer '23: Assume that X is \mathbb{Q}-factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_{1}, C_{2} \ldots$ which are tangent to \mathcal{F} and such that

$$
0<-\left(K_{\mathcal{F}}+\Delta\right) \cdot C_{i} \leq 2 \operatorname{dim} X
$$

and

$$
\overline{N E(X)}=\overline{N E(X)}_{K_{\mathcal{F}}+\Delta \geq 0}+\sum \mathbb{R}_{>0}\left[C_{i}\right] .
$$

Sketch of the proof: Let R be an extremal ray and let H_{R} be a nef divisor on X which defines a supporting hyperplane for $\overline{N E(X)}$ at R.

Let $\operatorname{Null}\left(H_{R}\right)=\bigcup_{H_{R} \mid V}$ is not big V be the Null locus of H_{R} and let $W \subset \operatorname{Null}\left(H_{R}\right)$ a component such that R is contained in the image of $\overline{N E(W)} \rightarrow \overline{N E(X)}$.

Since (\mathcal{F}, Δ) is \log canonical, we may show that W is not contained in $\operatorname{Sing} \mathcal{F}$.
H_{R} supporting hyperplace for $\overline{N E(X)}$ at R and $W \subset \operatorname{Null}\left(H_{R}\right)$ a component. We distinguish two cases:
(1) W is \mathcal{F}-invariant: by adjunction, we may write

$$
K_{\mathcal{F}_{W^{\nu}}}+\Delta_{W}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{W^{\nu}}
$$

and $H_{R} \mid W^{\nu}$ is not big.
H_{R} supporting hyperplace for $\overline{N E(X)}$ at R and $W \subset \operatorname{Null}\left(H_{R}\right)$ a component. We distinguish two cases:
(1) W is \mathcal{F}-invariant: by adjunction, we may write

$$
K_{\mathcal{F}_{W^{\nu}}}+\Delta_{W}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{W^{\nu}}
$$

and $H_{R} \mid W^{\nu}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.
H_{R} supporting hyperplace for $\overline{N E(X)}$ at R and $W \subset \operatorname{Null}\left(H_{R}\right)$ a component. We distinguish two cases:
(1) W is \mathcal{F}-invariant: by adjunction, we may write

$$
K_{\mathcal{F}_{W^{\nu}}}+\Delta_{W}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{W^{\nu}}
$$

and $H_{R} \mid W^{\nu}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.
(2) W is not \mathcal{F}-invariant: through the general point of W, there exists a non \mathcal{F}-invariant curve C such that $\left(K_{\mathcal{F}}+\Delta\right) \cdot C<0$.
H_{R} supporting hyperplace for $\overline{N E(X)}$ at R and $W \subset \operatorname{Null}\left(H_{R}\right)$ a component. We distinguish two cases:
(1) W is \mathcal{F}-invariant: by adjunction, we may write

$$
K_{\mathcal{F}_{W^{\nu}}}+\Delta_{W}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{W^{\nu}}
$$

and $H_{R} \mid W^{\nu}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.
(2) W is not \mathcal{F}-invariant: through the general point of W, there exists a non \mathcal{F}-invariant curve C such that $\left(K_{\mathcal{F}}+\Delta\right) \cdot C<0$. We may construct a \mathcal{F}-invariant (possibly analytic) surface $S \subset X$ containing C.
H_{R} supporting hyperplace for $\overline{N E(X)}$ at R and $W \subset \operatorname{Null}\left(H_{R}\right)$ a component. We distinguish two cases:
(1) W is \mathcal{F}-invariant: by adjunction, we may write

$$
K_{\mathcal{F}_{W^{\nu}}}+\Delta_{W}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{W^{\nu}}
$$

and $H_{R} \mid W^{\nu}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.
(2) W is not \mathcal{F}-invariant: through the general point of W, there exists a non \mathcal{F}-invariant curve C such that $\left(K_{\mathcal{F}}+\Delta\right) \cdot C<0$. We may construct a \mathcal{F}-invariant (possibly analytic) surface $S \subset X$ containing C. By adjunction, we may write

$$
K_{\mathcal{F}_{S^{\nu}}}+\Delta_{S}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{S^{\nu}}
$$

H_{R} supporting hyperplace for $\overline{N E(X)}$ at R and $W \subset \operatorname{Null}\left(H_{R}\right)$ a component. We distinguish two cases:
(1) W is \mathcal{F}-invariant: by adjunction, we may write

$$
K_{\mathcal{F}_{W^{\nu}}}+\Delta_{W}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{W^{\nu}}
$$

and $H_{R} \mid W^{\nu}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.
(2) W is not \mathcal{F}-invariant: through the general point of W, there exists a non \mathcal{F}-invariant curve C such that $\left(K_{\mathcal{F}}+\Delta\right) \cdot C<0$. We may construct a \mathcal{F}-invariant (possibly analytic) surface $S \subset X$ containing C. By adjunction, we may write

$$
K_{\mathcal{F}_{S^{\nu}}}+\Delta_{S}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{S^{\nu}}
$$

Inside S, we have that $C^{2}<0$. Assume that mult ${ }_{C} \Delta_{S}=1$. Then we apply adjunction again:

$$
K_{\mathcal{F}_{C^{\nu}}}+\Delta_{C}=\left.\left(K_{\mathcal{F}_{S^{\nu}}}+\Delta_{S}\right)\right|_{C^{\nu}}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{C^{\nu}}
$$

H_{R} supporting hyperplace for $\overline{N E(X)}$ at R and $W \subset \operatorname{Null}\left(H_{R}\right)$ a component. We distinguish two cases:
(1) W is \mathcal{F}-invariant: by adjunction, we may write

$$
K_{\mathcal{F}_{W^{\nu}}}+\Delta_{W}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{W^{\nu}}
$$

and $H_{R} \mid W^{\nu}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.
(2) W is not \mathcal{F}-invariant: through the general point of W, there exists a non \mathcal{F}-invariant curve C such that $\left(K_{\mathcal{F}}+\Delta\right) \cdot C<0$. We may construct a \mathcal{F}-invariant (possibly analytic) surface $S \subset X$ containing C. By adjunction, we may write

$$
K_{\mathcal{F}_{S^{\nu}}}+\Delta_{S}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{S^{\nu}}
$$

Inside S, we have that $C^{2}<0$. Assume that mult ${ }_{C} \Delta_{S}=1$. Then we apply adjunction again:

$$
K_{\mathcal{F}_{C^{\nu}}}+\Delta_{C}=\left.\left(K_{\mathcal{F}_{S} \nu}+\Delta_{S}\right)\right|_{C^{\nu}}=\left.\left(K_{\mathcal{F}}+\Delta\right)\right|_{C^{\nu}}
$$

But $\operatorname{rk} \mathcal{F}_{C^{\nu}}=0$, i.e. $K_{\mathcal{F}_{C^{\nu}}}=0$ and, therefore $\left(K_{\mathcal{F}}+\Delta\right) \cdot C=\operatorname{deg} \Delta_{C} \geq 0$, a contradiction.

Existence of Flips

Let (\mathcal{F}, Δ) be a log canonical pair and let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray. Let

$$
\operatorname{locus}(R)=\bigcup_{C \in R} C
$$

Existence of Flips

Let (\mathcal{F}, Δ) be a log canonical pair and let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray. Let

$$
\operatorname{locus}(R)=\bigcup_{C \in R} C
$$

If the Cone Theorem holds then $\operatorname{dim} \operatorname{locus}(R) \geq 1$.

Existence of Flips

Let (\mathcal{F}, Δ) be a log canonical pair and let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray. Let

$$
\operatorname{locus}(R)=\bigcup_{C \in R} C
$$

If the Cone Theorem holds then $\operatorname{dim} \operatorname{locus}(R) \geq 1$.
If the Base Point Free Theorem holds then we may find a contraction $c_{R}: X \rightarrow Y$ such that $\operatorname{Exc} c_{R}=\operatorname{locus}(R)$.

Existence of Flips

Let (\mathcal{F}, Δ) be a log canonical pair and let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray. Let

$$
\operatorname{locus}(R)=\bigcup_{C \in R} C
$$

If the Cone Theorem holds then $\operatorname{dim} \operatorname{locus}(R) \geq 1$.
If the Base Point Free Theorem holds then we may find a contraction $c_{R}: X \rightarrow Y$ such that $\operatorname{Exc} c_{R}=\operatorname{locus}(R)$.

Assume that $\operatorname{dim} \operatorname{locus}(R) \leq \operatorname{dim} X-2$.

Existence of Flips

Let (\mathcal{F}, Δ) be a log canonical pair and let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray. Let

$$
\operatorname{locus}(R)=\bigcup_{C \in R} C
$$

If the Cone Theorem holds then $\operatorname{dim} \operatorname{locus}(R) \geq 1$.
If the Base Point Free Theorem holds then we may find a contraction $c_{R}: X \rightarrow Y$ such that $\operatorname{Exc} c_{R}=\operatorname{locus}(R)$.

Assume that $\operatorname{dim} \operatorname{locus}(R) \leq \operatorname{dim} X-2$.
Conjecture (Existence of Flips): The flip $\phi: X \rightarrow X^{\prime}$ associated to R exists.

Existence of Flips

Let (\mathcal{F}, Δ) be a log canonical pair and let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray. Let

$$
\operatorname{locus}(R)=\bigcup_{C \in R} C
$$

If the Cone Theorem holds then $\operatorname{dim} \operatorname{locus}(R) \geq 1$.
If the Base Point Free Theorem holds then we may find a contraction $c_{R}: X \rightarrow Y$ such that $\operatorname{Exc} c_{R}=\operatorname{locus}(R)$.

Assume that $\operatorname{dim} \operatorname{locus}(R) \leq \operatorname{dim} X-2$.
Conjecture (Existence of Flips): The flip $\phi: X \rightarrow X^{\prime}$ associated to R exists.
C. - Spicer '20, '21: The conjecture holds if $\operatorname{dim} X=3$.

Contraction Theorem and Existence of Flips for Algebraically Integrable Foliations

C. - Spicer '23: Assume termination of flips for \mathbb{Q}-factorial klt pairs in dimension r. Let (\mathcal{F}, Δ) be an algebraically integrable foliated pair of rank r with log canonical singularities, such that (X, Δ) is klt. Let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray such that $\operatorname{dim} \operatorname{locus}(R) \leq \operatorname{dim} X-2$.
Then both the contraction $h: X \rightarrow Y$ and the flip $\phi: X \rightarrow X^{\prime}$ exist.

Contraction Theorem and Existence of Flips for Algebraically Integrable Foliations

C. - Spicer '23: Assume termination of flips for \mathbb{Q}-factorial klt pairs in dimension r. Let (\mathcal{F}, Δ) be an algebraically integrable foliated pair of rank r with log canonical singularities, such that (X, Δ) is klt. Let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray such that $\operatorname{dim} \operatorname{locus}(R) \leq \operatorname{dim} X-2$.
Then both the contraction $h: X \rightarrow Y$ and the flip $\phi: X \rightarrow X^{\prime}$ exist.
Idea of the proof:
(1) We first prove the theorem for a very special class of algebraically integrable foliations.

Contraction Theorem and Existence of Flips for Algebraically Integrable Foliations

C. - Spicer '23: Assume termination of flips for \mathbb{Q}-factorial klt pairs in dimension r.

Let (\mathcal{F}, Δ) be an algebraically integrable foliated pair of rank r with log canonical singularities, such that (X, Δ) is klt. Let $R=\left(K_{\mathcal{F}}+\Delta\right)$-negative extremal ray such that $\operatorname{dim} \operatorname{locus}(R) \leq \operatorname{dim} X-2$.
Then both the contraction $h: X \rightarrow Y$ and the flip $\phi: X \rightarrow X^{\prime}$ exist.
Idea of the proof:
(1) We first prove the theorem for a very special class of algebraically integrable foliations.
(2) Using some suitable MMP, we construct a flip for any algebraically integrable foliations.

Property (*)

Def. Let $f: X \rightarrow Z$ and let (X, B) be a \log pair with $B \geq 0$. Then the pair $(X / Z, B)$ satisfies Property (*) if
(1) There exists a reduced divisor Σ_{Z} on Z such that $\left(Z, \Sigma_{Z}\right)$ is log smooth;
(2) the vertical part of B coincides with $f^{-1}\left(\Sigma_{Z}\right)$; and
(3) for any $z \in Z$ and for any $P \geq 0$ such that $\left(Z, \Sigma_{Z}+P\right)$ is log smooth around z, we have that $\left(X, B+f^{*}\left(\Sigma-\Sigma_{z}\right)\right)$ is \log canonical around $f^{-1}(z)$.

Property (*)

Def. Let $f: X \rightarrow Z$ and let (X, B) be a \log pair with $B \geq 0$. Then the pair $(X / Z, B)$ satisfies Property (*) if
(1) There exists a reduced divisor Σ_{Z} on Z such that $\left(Z, \Sigma_{Z}\right)$ is log smooth;
(2) the vertical part of B coincides with $f^{-1}\left(\Sigma_{Z}\right)$; and
(3) for any $z \in Z$ and for any $P \geq 0$ such that $\left(Z, \Sigma_{z}+P\right)$ is \log smooth around z, we have that $\left(X, B+f^{*}\left(\Sigma-\Sigma_{Z}\right)\right)$ is \log canonical around $f^{-1}(z)$.
Def: (\mathcal{F}, Δ) satisfies Property $\left(^{*}\right)$ if there exists a pair $(X / Z, B)$ which satisfies Property $\left(^{*}\right)$ and such that \mathcal{F} is the foliation induced by $X \rightarrow Z$ and $\Delta=B^{\text {hor }}$.

Property (*)

Def. Let $f: X \rightarrow Z$ and let (X, B) be a \log pair with $B \geq 0$. Then the pair $(X / Z, B)$ satisfies Property (*) if
(1) There exists a reduced divisor Σ_{Z} on Z such that $\left(Z, \Sigma_{Z}\right)$ is log smooth;
(2) the vertical part of B coincides with $f^{-1}\left(\Sigma_{Z}\right)$; and
(3) for any $z \in Z$ and for any $P \geq 0$ such that $\left(Z, \Sigma_{z}+P\right)$ is log smooth around z, we have that $\left(X, B+f^{*}\left(\Sigma-\Sigma_{z}\right)\right)$ is log canonical around $f^{-1}(z)$.
Def: (\mathcal{F}, Δ) satisfies Property (*) if there exists a pair $(X / Z, B)$ which satisfies Property (${ }^{*}$) and such that \mathcal{F} is the foliation induced by $X \rightarrow Z$ and $\Delta=B^{\text {hor }}$.

Ambro-C. - Shokurov-Spicer '21:

- If (\mathcal{F}, Δ) satisfies Property $(*)$ then it is \log canonical.

Property (*)

Def. Let $f: X \rightarrow Z$ and let (X, B) be a \log pair with $B \geq 0$. Then the pair $(X / Z, B)$ satisfies Property (*) if
(1) There exists a reduced divisor Σ_{Z} on Z such that $\left(Z, \Sigma_{Z}\right)$ is log smooth;
(2) the vertical part of B coincides with $f^{-1}\left(\Sigma_{Z}\right)$; and
(3) for any $z \in Z$ and for any $P \geq 0$ such that $\left(Z, \Sigma_{z}+P\right)$ is log smooth around z, we have that $\left(X, B+f^{*}\left(\Sigma-\Sigma_{z}\right)\right)$ is log canonical around $f^{-1}(z)$.
Def: (\mathcal{F}, Δ) satisfies Property (*) if there exists a pair $(X / Z, B)$ which satisfies Property $\left(^{*}\right)$ and such that \mathcal{F} is the foliation induced by $X \rightarrow Z$ and $\Delta=B^{\text {hor }}$.

Ambro - C. - Shokurov - Spicer '21:

- If (\mathcal{F}, Δ) satisfies Property $(*)$ then it is log canonical.
- If (\mathcal{F}, Δ) is an algebraically integrable log canonical foliated pair then it admits a Property ($*$) modification.

Property (*)

Def. Let $f: X \rightarrow Z$ and let (X, B) be a \log pair with $B \geq 0$. Then the pair $(X / Z, B)$ satisfies Property (*) if
(1) There exists a reduced divisor Σ_{Z} on Z such that $\left(Z, \Sigma_{Z}\right)$ is log smooth;
(2) the vertical part of B coincides with $f^{-1}\left(\Sigma_{Z}\right)$; and
(3) for any $z \in Z$ and for any $P \geq 0$ such that $\left(Z, \Sigma_{Z}+P\right)$ is log smooth around z, we have that $\left(X, B+f^{*}\left(\Sigma-\Sigma_{z}\right)\right)$ is log canonical around $f^{-1}(z)$.
Def: (\mathcal{F}, Δ) satisfies Property (*) if there exists a pair $(X / Z, B)$ which satisfies Property $\left(^{*}\right)$ and such that \mathcal{F} is the foliation induced by $X \rightarrow Z$ and $\Delta=B^{\text {hor }}$.

Ambro - C. - Shokurov - Spicer '21:

- If (\mathcal{F}, Δ) satisfies Property $(*)$ then it is log canonical.
- If (\mathcal{F}, Δ) is an algebraically integrable log canonical foliated pair then it admits a Property ($*$) modification.
- Property $(*)$ is preserved by the MMP.

Property (*)

Def. Let $f: X \rightarrow Z$ and let (X, B) be a \log pair with $B \geq 0$. Then the pair $(X / Z, B)$ satisfies Property (*) if
(1) There exists a reduced divisor Σ_{Z} on Z such that $\left(Z, \Sigma_{Z}\right)$ is log smooth;
(2) the vertical part of B coincides with $f^{-1}\left(\Sigma_{Z}\right)$; and
(3) for any $z \in Z$ and for any $P \geq 0$ such that $\left(Z, \Sigma_{Z}+P\right)$ is log smooth around z, we have that $\left(X, B+f^{*}\left(\Sigma-\Sigma_{z}\right)\right)$ is log canonical around $f^{-1}(z)$.
Def: (\mathcal{F}, Δ) satisfies Property $\left(^{*}\right)$ if there exists a pair $(X / Z, B)$ which satisfies Property $\left(^{*}\right)$ and such that \mathcal{F} is the foliation induced by $X \rightarrow Z$ and $\Delta=B^{\text {hor }}$.

Ambro - C. - Shokurov - Spicer '21:

- If (\mathcal{F}, Δ) satisfies Property $(*)$ then it is log canonical.
- If (\mathcal{F}, Δ) is an algebraically integrable log canonical foliated pair then it admits a Property ($*$) modification.
- Property $(*)$ is preserved by the MMP.
- Flips exist in this category.

Sketch of the Proof

- Let A ample \mathbb{Q}-divisor such that $H_{R}=K_{\mathcal{F}}+\Delta+A$ defines a supporting hyperplane for $\mathrm{NE}(X)$.

Sketch of the Proof

- Let A ample \mathbb{Q}-divisor such that $H_{R}=K_{\mathcal{F}}+\Delta+A$ defines a supporting hyperplane for $\overline{\mathrm{NE}(X)}$.
- Let $\pi: \bar{X} \rightarrow X$ be a Property $(*)$-modification of (\mathcal{F}, Δ) so that if $\overline{\mathcal{F}}$ is the induced foliation on \bar{X} and

$$
K_{\overline{\mathcal{F}}}+\bar{\Delta}=\pi^{*}\left(K_{\mathcal{F}}+\Delta\right)
$$

then $(\overline{\mathcal{F}}, \bar{\Delta})$ satisfies Property $(*)$.

Sketch of the Proof

- Let A ample \mathbb{Q}-divisor such that $H_{R}=K_{\mathcal{F}}+\Delta+A$ defines a supporting hyperplane for $\overline{\mathrm{NE}(X)}$.
- Let $\pi: \bar{X} \rightarrow X$ be a Property $(*)$-modification of (\mathcal{F}, Δ) so that if $\overline{\mathcal{F}}$ is the induced foliation on \bar{X} and

$$
K_{\overline{\mathcal{F}}}+\bar{\Delta}=\pi^{*}\left(K_{\mathcal{F}}+\Delta\right)
$$

then $(\overline{\mathcal{F}}, \bar{\Delta})$ satisfies Property $(*)$. Let $\bar{A}=\pi^{*} A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \bar{\Delta}+\bar{A})$ satisfies Property (*).

Sketch of the Proof

- Let A ample \mathbb{Q}-divisor such that $H_{R}=K_{\mathcal{F}}+\Delta+A$ defines a supporting hyperplane for $\overline{\mathrm{NE}(X)}$.
- Let $\pi: \bar{X} \rightarrow X$ be a Property $(*)$-modification of (\mathcal{F}, Δ) so that if $\overline{\mathcal{F}}$ is the induced foliation on \bar{X} and

$$
K_{\overline{\mathcal{F}}}+\bar{\Delta}=\pi^{*}\left(K_{\mathcal{F}}+\Delta\right)
$$

then $(\overline{\mathcal{F}}, \bar{\Delta})$ satisfies Property $(*)$. Let $\bar{A}=\pi^{*} A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \bar{\Delta}+\bar{A})$ satisfies Property ($*$).

- We have that $K_{\overline{\mathcal{F}}}+\bar{\Delta}+\bar{A}=\pi^{*} \underline{H}_{R}$ is big and nef. We may run a $\left(K_{\overline{\mathcal{F}}}+\bar{\Delta}\right)$-MMP with scaling of \bar{A}.

Sketch of the Proof

- Let A ample \mathbb{Q}-divisor such that $H_{R}=K_{\mathcal{F}}+\Delta+A$ defines a supporting hyperplane for $\overline{\mathrm{NE}(X)}$.
- Let $\pi: \bar{X} \rightarrow X$ be a Property $(*)$-modification of (\mathcal{F}, Δ) so that if $\overline{\mathcal{F}}$ is the induced foliation on \bar{X} and

$$
K_{\overline{\mathcal{F}}}+\bar{\Delta}=\pi^{*}\left(K_{\mathcal{F}}+\Delta\right)
$$

then $(\overline{\mathcal{F}}, \bar{\Delta})$ satisfies Property $(*)$. Let $\bar{A}=\pi^{*} A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \bar{\Delta}+\bar{A})$ satisfies Property ($*$).

- We have that $K_{\overline{\mathcal{F}}}+\bar{\Delta}+\bar{A}=\pi^{*} \mathcal{H}_{R}$ is big and nef. We may run a $\left(K_{\overline{\mathcal{F}}}+\bar{\Delta}\right)$-MMP with scaling of \bar{A}. By termination of flips, there exists a (minimal) sequence of steps of a MMP

$$
\bar{X}=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{k}=\bar{X}^{\prime}
$$

and $0<\lambda \ll 1$ such that $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+(1-\lambda) \bar{A}^{\prime}$ is big and nef, where $\overline{\mathcal{F}}^{\prime}, \bar{\Delta}^{\prime}$ and \bar{A}^{\prime} are the induced items on \bar{X}^{\prime}.

Sketch of the Proof

- Let A ample \mathbb{Q}-divisor such that $H_{R}=K_{\mathcal{F}}+\Delta+A$ defines a supporting hyperplane for $\overline{\mathrm{NE}(X)}$.
- Let $\pi: \bar{X} \rightarrow X$ be a Property $(*)$-modification of (\mathcal{F}, Δ) so that if $\overline{\mathcal{F}}$ is the induced foliation on \bar{X} and

$$
K_{\overline{\mathcal{F}}}+\bar{\Delta}=\pi^{*}\left(K_{\mathcal{F}}+\Delta\right)
$$

then $(\overline{\mathcal{F}}, \bar{\Delta})$ satisfies Property $(*)$. Let $\bar{A}=\pi^{*} A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \bar{\Delta}+\bar{A})$ satisfies Property ($*$).

- We have that $K_{\overline{\mathcal{F}}}+\bar{\Delta}+\bar{A}=\pi^{*} \mathcal{H}_{R}$ is big and nef. We may run a $\left(K_{\overline{\mathcal{F}}}+\bar{\Delta}\right)$-MMP with scaling of \bar{A}. By termination of flips, there exists a (minimal) sequence of steps of a MMP

$$
\bar{X}=X_{0} \rightarrow X_{1} \rightarrow \cdots \rightarrow X_{k}=\bar{X}^{\prime}
$$

and $0<\lambda \ll 1$ such that $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+(1-\lambda) \bar{A}^{\prime}$ is big and nef, where $\overline{\mathcal{F}}^{\prime}, \bar{\Delta}^{\prime}$ and \bar{A}^{\prime} are the induced items on \bar{X}^{\prime}. This MMP is $\left(K_{\overline{\mathcal{F}}}+\bar{\Delta}+\bar{A}\right)$-trivial.

- So far we have

$$
\begin{array}{rll}
\bar{X} & -\rightarrow & \bar{X}^{\prime} \\
\pi & & \\
X & &
\end{array}
$$

Both $K_{\overline{\mathcal{F}}^{\prime}}+\bar{\Delta}^{\prime}+(1-\lambda) \bar{A}^{\prime}$ and $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+\bar{A}^{\prime}$ are big and nef.

- So far we have

$$
\begin{array}{ccc}
\bar{X} & \cdots & \bar{X}^{\prime} \\
\pi & \\
X &
\end{array}
$$

Both $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+(1-\lambda) \bar{A}^{\prime}$ and $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+\bar{A}^{\prime}$ are big and nef.

- Since (X, Δ) is klt, we may write

$$
K_{\bar{x}}+\Gamma+E=\pi^{*}\left(K_{X}+\Delta\right)+F
$$

where $E, F \geq 0,(\bar{X}, \Gamma+E)$ is klt and the support of E contains Exc π. Let Γ^{\prime} and E^{\prime} be the strict transform of Γ and E on \bar{X}^{\prime}.

- So far we have

$$
\begin{array}{rll}
\bar{X} & \rightarrow & \bar{X}^{\prime} \\
\pi & & \\
X & &
\end{array}
$$

Both $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+(1-\lambda) \bar{A}^{\prime}$ and $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+\bar{A}^{\prime}$ are big and nef.

- Since (X, Δ) is klt, we may write

$$
K_{\bar{x}}+\Gamma+E=\pi^{*}\left(K_{X}+\Delta\right)+F
$$

where $E, F \geq 0,(\bar{X}, \Gamma+E)$ is klt and the support of E contains $\operatorname{Exc} \pi$. Let Γ^{\prime} and E^{\prime} be the strict transform of Γ and E on \bar{X}^{\prime}.

- We may run a MMP $\bar{X}^{\prime} \rightarrow \bar{X}^{\prime \prime}$ which is $\left(K_{\bar{X}^{\prime}}+\Gamma^{\prime}+E^{\prime}\right)$-negative and $\left(K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+\bar{A}^{\prime}\right)$-trivial.
- So far we have

$$
\begin{array}{rll}
\bar{X} & \rightarrow & \bar{X}^{\prime} \\
\pi & & \\
X & &
\end{array}
$$

Both $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+(1-\lambda) \bar{A}^{\prime}$ and $K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+\bar{A}^{\prime}$ are big and nef.

- Since (X, Δ) is klt, we may write

$$
K_{\bar{x}}+\Gamma+E=\pi^{*}\left(K_{X}+\Delta\right)+F
$$

where $E, F \geq 0,(\bar{X}, \Gamma+E)$ is klt and the support of E contains $\operatorname{Exc} \pi$. Let Γ^{\prime} and E^{\prime} be the strict transform of Γ and E on \bar{X}^{\prime}.

- We may run a MMP $\bar{X}^{\prime} \rightarrow \bar{X}^{\prime \prime}$ which is $\left(K_{\bar{X}^{\prime}}+\Gamma^{\prime}+E^{\prime}\right)$-negative and $\left(K_{\overline{\mathcal{F}^{\prime}}}+\bar{\Delta}^{\prime}+\bar{A}^{\prime}\right)$-trivial. This MMP contracts $\operatorname{Exc} \pi$.
- We have

$$
\begin{array}{rllll}
\bar{x} & \rightarrow & \bar{x}^{\prime} & \rightarrow & \bar{x}^{\prime \prime} \\
\pi & & & & \\
x & & &
\end{array}
$$

- We have

$$
\begin{array}{cccc}
\bar{X} & \cdots & \bar{X}^{\prime} & \cdots \\
\pi & & \bar{X}^{\prime \prime} \\
\bar{x} & & & \\
& &
\end{array}
$$

Let $\overline{\mathcal{F}^{\prime \prime}}, \bar{\Delta}^{\prime \prime}$ and $\bar{A}^{\prime \prime}$ be the corresponding items on $\bar{X}^{\prime \prime}$.

- We have

$$
\begin{array}{ccccc}
\bar{X} & \rightarrow & \bar{X}^{\prime} & \cdots & \bar{X}^{\prime \prime} \\
\pi & & & & \\
X & & & &
\end{array}
$$

Let $\overline{\mathcal{F}^{\prime \prime}}, \bar{\Delta}^{\prime \prime}$ and $\bar{A}^{\prime \prime}$ be the corresponding items on $\bar{X}^{\prime \prime}$.

- By the Classical Base Point Free Theorem, it follows that $K_{\overline{\mathcal{F}^{\prime \prime}}}+\bar{\Delta}^{\prime \prime}+\bar{A}^{\prime \prime}$ is semi-ample.
- We have

$$
\begin{array}{cccc}
\bar{X} & \rightarrow & \bar{X}^{\prime} & \cdots \\
X^{\prime \prime} \\
\pi & & & \\
X & & &
\end{array}
$$

Let $\overline{\mathcal{F}^{\prime \prime}}, \bar{\Delta}^{\prime \prime}$ and $\bar{A}^{\prime \prime}$ be the corresponding items on $\bar{X}^{\prime \prime}$.

- By the Classical Base Point Free Theorem, it follows that $K_{\overline{\mathcal{F}^{\prime \prime}}}+\bar{\Delta}^{\prime \prime}+\bar{A}^{\prime \prime}$ is semi-ample.
- Thus $H_{R}=K_{\mathcal{F}}+\Delta+A$ is also semi-ample and the contraction $c_{R}: X \rightarrow Y$ exists.
- We have

$$
\begin{array}{ccccc}
\bar{X} & \rightarrow & \bar{X}^{\prime} & \cdots & \bar{X}^{\prime \prime} \\
\pi & & & \\
X & & &
\end{array}
$$

Let $\overline{\mathcal{F}^{\prime \prime}}, \bar{\Delta}^{\prime \prime}$ and $\bar{A}^{\prime \prime}$ be the corresponding items on $\bar{X}^{\prime \prime}$.

- By the Classical Base Point Free Theorem, it follows that $K_{\overline{\mathcal{F}^{\prime \prime}}}+\bar{\Delta}^{\prime \prime}+\bar{A}^{\prime \prime}$ is semi-ample.
- Thus $H_{R}=K_{\mathcal{F}}+\Delta+A$ is also semi-ample and the contraction $c_{R}: X \rightarrow Y$ exists.
- The corresponding map $X \longrightarrow \bar{X}^{\prime \prime}$ is the desired flip.

