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Introduction
Joint with C. Spicer.

Setup: X=complex Q-factorial projective variety of dimension n.

A foliation F of rank r is a rank r coherent subsheaf T C Tx which is
@ closed under Lie bracket; and
@ Nr:= Tx/TF is torsion free.

The canonical divisor of F is a divisor Kz such that

Ox(K}‘) = det( T})
Let g: Y --» X birational map (or any dominant map) between normal varieties.
Then if F is a foliation on X, there exists a unique induced foliation Fy on Y.

Aim: We want to study the birational geometry of (X, F): i.e. does there exists a
birational map X --» Y such that the induced foliation Fy on Y is either such that
Kr, is nef or it admits a MFS?
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Some Motivations

@ Green-Griffiths conjecture on the subset of rational curves on a variety of general
type.

@ Generalise the canonical bundle formula in different contexts (e.g. in positive
characteristic).

@ Study singularities of a foliation.

@ Construct a moduli space for foliations.
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Singularities

Let F be a foliation of rank r on X. The inclusion Tr < Tx induced a morphism

¢ (Q%)** ® Ox(—K]:) — Ox.

The singular locus of F is the cosupport of ¢. If X is smooth then
SingF := {x € X | Nz is not locally free at x }.
By Frobenius theorem, for any x € X \ (SingF U SingX)
3 ¢g:xelUcCX—=>C""
such that Nz|y = ¢* Tea—r and Tx|y is the relative tangent bundle.

A leaf of F is an analytic subvariety of X which is locally a fibre of ¢.



Algebraically Integrable Foliations

Example: Any fibration f: X — Z induces a foliation on X by taking

ker[TX — f* Tz] C Tx.



Algebraically Integrable Foliations

Example: Any fibration f: X — Z induces a foliation on X by taking
ker[Tx — f*Tz] C Tx.
E.g. assume that Z is a curve, or more in general f is equidimensional. Then
Kr = Kxz + Z(l —{p)D

where, for any P C Z prime divisor, we have f*P =" {pD.



Algebraically Integrable Foliations

Example: Any fibration f: X — Z induces a foliation on X by taking
ker[Tx — f*Tz] C Tx.
E.g. assume that Z is a curve, or more in general f is equidimensional. Then
Kr = Kxz + Z(l —{p)D
where, for any P C Z prime divisor, we have f*P =" {pD.

More in general, any dominant map g: X --+ Z defines a foliation on X.



Algebraically Integrable Foliations

Example: Any fibration f: X — Z induces a foliation on X by taking
ker[Tx — f*Tz] C Tx.
E.g. assume that Z is a curve, or more in general f is equidimensional. Then
Kr = Kxz + Z(l —{p)D
where, for any P C Z prime divisor, we have f*P =" {pD.

More in general, any dominant map g: X --+ Z defines a foliation on X.

These foliations are called algebraically integrable.
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As in classical birational geometry, we have to work with pairs.
A foliated pair (F, A) consists of a foliation F on X and a Q-divisor A > 0 on X.

A subvariety E C X which is not contained in SingX U SingF is F-invariant if, outside
the singular locus, it is the union of leaves. For example, if F is induced by a morphism
f: X — Z, then being invariant coincides with being vertical (i.e. f(E) # Z ).

We write ¢(E) = 0 if E is F-invariant and €(E) = 1 if not.

Def. (F,A) is log canonical (resp. canonical) if for any birational morphism
f:Y = X we can write

Kry + 20 = F(Kr+ D)+ ) aiE;

where the sum runs over the exceptional divisor of f and a; > —¢(E;) (resp. > 0).
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Adjunction Formula

C. - Spicer '23: Let (F,A) be a foliated pair on X, let D C X be a prime divisor
which is not contained in the support of A and let D¥ — D be its normalisation.
Then

(Kz + B+ e(D)D)|pr = Kryy + Ap

where Fpv is the induced foliation on D¥ and Ap > 0.

Along the smooth locus, the leaves of Fp are the intersection of the leaves of F with
D. Thus, tkFpr = rkF — ¢(D).

If D C X is a F-invariant subvariety such that D is not contained in
Sing X U SingF U Supp A then the same result holds, i.e.

(Kr +A)|pr = Krp +Ap

Fpv is a foliation of rank equal to rk 7 and Ap > 0.
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C. - Spicer '23: If D C X is a non F-invariant divisor and (F, A) is log canonical
then (Fpv, Ap) is log canonical.

Remark: The same statement is not true if ¢(D) = 0. E.g. if F is the rank one
foliation on C3 defined by
x20, + y28y + z0,

then F is log canonical. Let D = {z = 0} then Fp is defined by x?0x + y20, and it is
not log canonical.

C. - Spicer ’23: Assume that tkF =1 and D C X is a F-invariant divisor. Let
Z C X be a non F-invarant subvariety such that Z is not contained in SingF and
such that (F, A) is log canonical around the generic point of Z.

Then (Fpv,Ap) is log canonical around the generic point of Z.
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Conjecture (Cone Theorem): Assume that (F,A) is a log canonical foliated log
pair. Then there exist rational curves C1, G, ... which are tangent to F and such that

NE(X) = NE(X),i, s a0 + > Rso[Cl.

Conjecture (Base Point Free Theorem): Assume that (F, A) is a log canonical pair
and let A be an ample Q-divisor such that L := Kr + A + Ais nef. Then L is
semi-ample.

@ C. - Spicer "20: If dim X < 3 then the Cone Theorem and the Base Point Free
Theorem hold.

@ Ambro - C. - Shokurov - Spicer '21: The Cone Theorem holds for algebraically
integrable foliations.

© G. Chen - J. Han - J. Liu - L. Xie '23: The Base Point Free Theorem hold for
algebraically integrable foliations with F-dIt singularities.

© Bogomolov-McQuillan '16, C. - Spicer '23: The Cone Theorem holds for
foliations of rank one.
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pair. Then there exist rational curves C1, G, ... which are tangent to F and such that

0< —(Kr+A)- G <2dimX

and

NE(X) = NE(X), s a0 + > Rso[Cl.

Sketch of the proof: Let R be an extremal ray and let Hg be a nef divisor on X
which defines a supporting hyperplane for NE(X) at R.

Let Null(Hr) = Uy, is not big V be the Null locus of Hg and let W C Null(Hg) a
component such that R is contained in the image of NE(W) — NE(X).

Since (F, A) is log canonical, we may show that W is not contained in SingF.
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Hgr supporting hyperplace for NE(X) at R and W C Null(Hg) a component.
We distinguish two cases:

@ W is F-invariant: by adjunction, we may write
Krpw +Bw = (Kr + A)|w

and Hg|wv is not big. By Miyaoka's theorem, it follows that W is covered by
rational curves which are tangent to F and spanning R.

@ W is not F-invariant: through the general point of W, there exists a non
F-invariant curve C such that (Kr + A)- C < 0. We may construct a F-invariant
(possibly analytic) surface S C X containing C. By adjunction, we may write

Krg, + As = (Kr + A)|sv

Inside S, we have that C? < 0. Assume that multcAs = 1. Then we apply
adjunction again:

K]:C,, + Ac = (K]:Sy + As) cv = (K]:—|— A)

But tkFcv =0, i.e. Kr,, =0 and, therefore (Kr + A)- C =degAc >0, a
contradiction. L]

Ccv.
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Let (F,A) be a log canonical pair and let R = (Kr + A)-negative extremal ray. Let

locus(R) = U C.
CeRrR
If the Cone Theorem holds then dimlocus(R) > 1.

If the Base Point Free Theorem holds then we may find a contraction cg: X — Y such
that Exc cg = locus(R).

Assume that dimlocus(R) < dim X — 2.
Conjecture (Existence of Flips): The flip ¢: X --+ X’ associated to R exists.

C. - Spicer ’20, '21: The conjecture holds if dim X = 3.
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Contraction Theorem and Existence of Flips for Algebraically Integrable
Foliations

C. - Spicer ’23: Assume termination of flips for QQ-factorial klt pairs in dimension r.
Let (F, A) be an algebraically integrable foliated pair of rank r with log canonical
singularities, such that (X, A) is klt. Let R=(Kr + A)-negative extremal ray such that
dimlocus(R) < dim X — 2.

Then both the contraction h: X — Y and the flip ¢: X --» X’ exist.

Idea of the proof:
© We first prove the theorem for a very special class of algebraically integrable
foliations.

@ Using some suitable MMP, we construct a flip for any algebraically integrable
foliations.
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@ for any z € Z and for any P > 0 such that (Z,X7 + P) is log smooth around z,
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Def. Let f: X — Z and let (X, B) be a log pair with B > 0. Then the pair (X/Z, B)
satisfies Property (*) if

@ There exists a reduced divisor ¥z on Z such that (Z,X ) is log smooth;
@ the vertical part of B coincides with f~1(X7); and

@ for any z € Z and for any P > 0 such that (Z,X7 + P) is log smooth around z,
we have that (X, B + f*(X — X7)) is log canonical around f~1(z).

Def: (F,A) satisfies Property (*) if there exists a pair (X/Z, B) which satisfies
Property (*) and such that F is the foliation induced by X — Z and A = Bhr,
Ambro - C. - Shokurov - Spicer '21:

o If (F,A) satisfies Property (x) then it is log canonical.

e If (F,A) is an algebraically integrable log canonical foliated pair then it admits a
Property (x) modification.

@ Property (x) is preserved by the MMP.

o Flips exist in this category.
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does not hold and we cannot assume that (F, A + A) satisfies Property ().

@ We have that K7+Z+Z = w*Hpg is big and nef. We may run a
(K= + A)-MMP with scaling of A. By termination of flips, there exists a
(minimal) sequence of steps of a MMP

~/

X=Xg-+Xg -+ - X=X

and 0 < A < 1 such that Kf—i—zl +(1 - )\)Z/ is big and nef, where T, A and
A’ are the induced items on X . This MMP is (K= + A + A)-trivial.



@ So far we have

~/

X - X
|
X

Both Kf—kzl +(1— M)A and Kﬁ—kzl + A are big and nef,



@ So far we have

~/

X - X
X
Both Kf—kzl +(1— M)A and Kﬁ—kzl + A are big and nef,
@ Since (X, A) is klt, we may write
Ky +T+E=71"(Kx +A)+F

where E, F >0, (X, + E) is kit and the support of E contains Excr. Let I and
E’ be the strict transform of I and E on X .



@ So far we have

~/

X - X
X
Both Kf—kzl +(1— M)A and Kﬁ—kzl + A are big and nef,
@ Since (X, A) is klt, we may write
Ky +T+E=71"(Kx +A)+F

where E, F >0, (X, + E) is kit and the support of E contains Excr. Let I and
E’ be the strict transform of I and E on X .

o We may run a MMP X' --» X" which is (K + " + E’)-negative and
(Ke + A + A)-trivial.



@ So far we have
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X
Both Kf—kzl +(1— M)A and Kﬁ—kzl + A are big and nef,
@ Since (X, A) is klt, we may write
Ky +T+E=71"(Kx +A)+F

where E, F >0, (X, + E) is kit and the support of E contains Excr. Let I and
E’ be the strict transform of I and E on X .

o We may run a MMP X' --» X" which is (K + " + E’)-negative and
(KﬁJrZI +ﬂ/)—trivia|. This MMP contracts Exc .
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Let F”, A" and A" be the corresponding items on X"

@ By the Classical Base Point Free Theorem, it follows that K&=7 + A+ A s
semi-ample.

@ Thus Hr = Kr+ A+ A is also semi-ample and the contraction cg: X — Y exists.
o The corresponding map X --» X is the desired flip. O



