On Foliation Adjunction

Paolo Cascini

Algebraic Geometry, Lipschitz Geometry and Singularities

14 December 2023

Joint with C. Spicer.

Joint with C. Spicer.

Setup: X=complex \mathbb{Q} -factorial projective variety of dimension n.

Joint with C. Spicer.

Setup: X=complex \mathbb{Q} -factorial projective variety of dimension n.

A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_X$ which is \bigcirc closed under Lie bracket; and

($\mathcal{N}_{\mathcal{F}} := T_X / T_{\mathcal{F}}$ is torsion free.

Joint with C. Spicer.

Setup: X=complex \mathbb{Q} -factorial projective variety of dimension n.

A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_X$ which is O closed under Lie bracket; and $\vcenter{O} \mathcal{N}_{\mathcal{F}} := T_X / T_{\mathcal{F}}$ is torsion free.

The **canonical divisor** of \mathcal{F} is a divisor $K_{\mathcal{F}}$ such that

 $\mathcal{O}_X(K_{\mathcal{F}}) = \det(T_{\mathcal{F}}^{\star}).$

Joint with C. Spicer.

Setup: $X = \text{complex } \mathbb{Q}$ -factorial projective variety of dimension *n*.

A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_X$ which is O closed under Lie bracket; and $\vcenter{O} \mathcal{N}_{\mathcal{F}} := T_X / T_{\mathcal{F}}$ is torsion free.

The **canonical divisor** of \mathcal{F} is a divisor $K_{\mathcal{F}}$ such that

 $\mathcal{O}_X(K_{\mathcal{F}}) = \det(T_{\mathcal{F}}^{\star}).$

Let $g: Y \dashrightarrow X$ birational map (or any dominant map) between normal varieties. Then if \mathcal{F} is a foliation on X, there exists a unique induced foliation \mathcal{F}_Y on Y.

Joint with C. Spicer.

Setup: $X = \text{complex } \mathbb{Q}$ -factorial projective variety of dimension *n*.

A foliation \mathcal{F} of rank r is a rank r coherent subsheaf $T_{\mathcal{F}} \subseteq T_X$ which is O closed under Lie bracket; and $\vcenter{O} \mathcal{N}_{\mathcal{F}} := T_X / T_{\mathcal{F}}$ is torsion free.

The **canonical divisor** of \mathcal{F} is a divisor $\mathcal{K}_{\mathcal{F}}$ such that

 $\mathcal{O}_X(K_{\mathcal{F}}) = \det(T_{\mathcal{F}}^{\star}).$

Let $g: Y \dashrightarrow X$ birational map (or any dominant map) between normal varieties. Then if \mathcal{F} is a foliation on X, there exists a unique induced foliation \mathcal{F}_Y on Y.

Aim: We want to study the birational geometry of (X, \mathcal{F}) : i.e. does there exists a birational map $X \dashrightarrow Y$ such that the induced foliation \mathcal{F}_Y on Y is either such that $\mathcal{K}_{\mathcal{F}_Y}$ is nef or it admits a MFS?

• Green-Griffiths conjecture on the subset of rational curves on a variety of general type.

• Green-Griffiths conjecture on the subset of rational curves on a variety of general type.

• Generalise the canonical bundle formula in different contexts (e.g. in positive characteristic).

• Green-Griffiths conjecture on the subset of rational curves on a variety of general type.

- Generalise the canonical bundle formula in different contexts (e.g. in positive characteristic).
- Study singularities of a foliation.

• Green-Griffiths conjecture on the subset of rational curves on a variety of general type.

- Generalise the canonical bundle formula in different contexts (e.g. in positive characteristic).
- Study singularities of a foliation.
- Construct a moduli space for foliations.

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_X$ induced a morphism

$$\phi\colon (\Omega_X^r)^{**}\otimes \mathcal{O}_X(-K_{\mathcal{F}})\to \mathcal{O}_X.$$

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_X$ induced a morphism

$$\phi\colon (\Omega_X^r)^{**}\otimes \mathcal{O}_X(-K_{\mathcal{F}})\to \mathcal{O}_X.$$

The **singular locus** of \mathcal{F} is the cosupport of ϕ .

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_X$ induced a morphism

$$\phi\colon (\Omega_X^r)^{**}\otimes \mathcal{O}_X(-K_{\mathcal{F}})\to \mathcal{O}_X.$$

The **singular locus** of \mathcal{F} is the cosupport of ϕ . If X is smooth then

$$\operatorname{Sing} \mathcal{F} := \{ x \in X \mid \mathcal{N}_{\mathcal{F}} \text{ is not locally free at } x \}.$$

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_X$ induced a morphism

$$\phi\colon (\Omega_X^r)^{**}\otimes \mathcal{O}_X(-K_{\mathcal{F}})\to \mathcal{O}_X.$$

The **singular locus** of \mathcal{F} is the cosupport of ϕ . If X is smooth then

 $\operatorname{Sing} \mathcal{F} := \{ x \in X \mid \mathcal{N}_{\mathcal{F}} \text{ is not locally free at } x \}.$

By **Frobenius theorem**, for any $x \in X \setminus (Sing \mathcal{F} \cup Sing X)$

$$\exists \quad \phi \colon x \in U \subset X \to \mathbb{C}^{n-r}$$

such that $\mathcal{N}_{\mathcal{F}}|_{\mathcal{U}} = \phi^* T_{\mathbb{C}^{n-r}}$ and $T_{\mathcal{F}}|_{\mathcal{U}}$ is the relative tangent bundle.

・ロト・「四ト・山田ト・山田ト・山下

Let \mathcal{F} be a foliation of rank r on X. The inclusion $T_{\mathcal{F}} \hookrightarrow T_X$ induced a morphism

$$\phi\colon (\Omega_X^r)^{**}\otimes \mathcal{O}_X(-K_{\mathcal{F}})\to \mathcal{O}_X.$$

The **singular locus** of \mathcal{F} is the cosupport of ϕ . If X is smooth then

 $\operatorname{Sing} \mathcal{F} := \{ x \in X \mid \mathcal{N}_{\mathcal{F}} \text{ is not locally free at } x \}.$

By **Frobenius theorem**, for any $x \in X \setminus (Sing \mathcal{F} \cup Sing X)$

$$\exists \quad \phi \colon x \in U \subset X \to \mathbb{C}^{n-r}$$

such that $\mathcal{N}_{\mathcal{F}}|_{\mathcal{U}} = \phi^* T_{\mathbb{C}^{n-r}}$ and $T_{\mathcal{F}}|_{\mathcal{U}}$ is the relative tangent bundle.

A **leaf** of \mathcal{F} is an analytic subvariety of X which is locally a fibre of ϕ .

Example: Any fibration $f: X \to Z$ induces a foliation on X by taking

 $\ker[T_X \to f^*T_Z] \subset T_X.$

(ロ) (型) (E) (E) (E) (O)

Example: Any fibration $f: X \to Z$ induces a foliation on X by taking

$$\ker[T_X \to f^*T_Z] \subset T_X.$$

E.g. assume that Z is a curve, or more in general f is equidimensional. Then

$$K_{\mathcal{F}} = K_{X/Z} + \sum (1 - \ell_D) D$$

where, for any $P \subset Z$ prime divisor, we have $f^*P = \sum \ell_D D$.

Example: Any fibration $f: X \to Z$ induces a foliation on X by taking

$$\ker[T_X \to f^*T_Z] \subset T_X.$$

E.g. assume that Z is a curve, or more in general f is equidimensional. Then

$$K_{\mathcal{F}} = K_{X/Z} + \sum (1 - \ell_D) D$$

where, for any $P \subset Z$ prime divisor, we have $f^*P = \sum \ell_D D$.

More in general, any dominant map $g: X \dashrightarrow Z$ defines a foliation on X.

Example: Any fibration $f: X \to Z$ induces a foliation on X by taking

$$\ker[T_X \to f^*T_Z] \subset T_X.$$

E.g. assume that Z is a curve, or more in general f is equidimensional. Then

$$K_{\mathcal{F}} = K_{X/Z} + \sum (1 - \ell_D) D$$

where, for any $P \subset Z$ prime divisor, we have $f^*P = \sum \ell_D D$.

More in general, any dominant map $g: X \dashrightarrow Z$ defines a foliation on X.

These foliations are called **algebraically integrable**.

As in classical birational geometry, we have to work with pairs.

As in classical birational geometry, we have to work with pairs.

A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q} -divisor $\Delta \geq 0$ on X.

As in classical birational geometry, we have to work with pairs.

A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q} -divisor $\Delta \geq 0$ on X.

A subvariety $E \subset X$ which is not contained in $SingX \cup Sing\mathcal{F}$ is \mathcal{F} -invariant if, outside the singular locus, it is the union of leaves.

As in classical birational geometry, we have to work with pairs.

A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q} -divisor $\Delta \geq 0$ on X.

A subvariety $E \subset X$ which is not contained in $\operatorname{Sing} X \cup \operatorname{Sing} \mathcal{F}$ is \mathcal{F} -invariant if, outside the singular locus, it is the union of leaves. For example, if \mathcal{F} is induced by a morphism $f: X \to Z$, then being invariant coincides with being vertical (i.e. $f(E) \neq Z$).

As in classical birational geometry, we have to work with pairs.

A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q} -divisor $\Delta \geq 0$ on X.

A subvariety $E \subset X$ which is not contained in $\operatorname{Sing} X \cup \operatorname{Sing} \mathcal{F}$ is \mathcal{F} -invariant if, outside the singular locus, it is the union of leaves. For example, if \mathcal{F} is induced by a morphism $f: X \to Z$, then being invariant coincides with being vertical (i.e. $f(E) \neq Z$).

We write $\epsilon(E) = 0$ if E is \mathcal{F} -invariant and $\epsilon(E) = 1$ if not.

As in classical birational geometry, we have to work with pairs.

A foliated pair (\mathcal{F}, Δ) consists of a foliation \mathcal{F} on X and a \mathbb{Q} -divisor $\Delta \geq 0$ on X.

A subvariety $E \subset X$ which is not contained in $\operatorname{Sing} X \cup \operatorname{Sing} \mathcal{F}$ is \mathcal{F} -invariant if, outside the singular locus, it is the union of leaves. For example, if \mathcal{F} is induced by a morphism $f: X \to Z$, then being invariant coincides with being vertical (i.e. $f(E) \neq Z$).

We write $\epsilon(E) = 0$ if E is \mathcal{F} -invariant and $\epsilon(E) = 1$ if not.

<u>Def</u>. (\mathcal{F}, Δ) is **log canonical** (resp. **canonical**) if for any birational morphism $f: Y \to X$ we can write

$$\mathcal{K}_{\mathcal{F}_Y} + f_*^{-1}\Delta = f^*(\mathcal{K}_{\mathcal{F}} + \Delta) + \sum a_i E_i$$

where the sum runs over the exceptional divisor of f and $a_i \ge -\epsilon(E_i)$ (resp. ≥ 0).

C. - **Spicer '23:** Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$(K_{\mathcal{F}} + \Delta + \epsilon(D)D)|_{D^{\nu}} = K_{\mathcal{F}_{D^{\nu}}} + \Delta_D$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_D \geq 0$.

C. - **Spicer '23:** Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$(K_{\mathcal{F}} + \Delta + \epsilon(D)D)|_{D^{\nu}} = K_{\mathcal{F}_{D^{\nu}}} + \Delta_D$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_D \geq 0$.

Along the smooth locus, the leaves of \mathcal{F}_D are the intersection of the leaves of \mathcal{F} with D.

C. - **Spicer '23:** Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$(K_{\mathcal{F}} + \Delta + \epsilon(D)D)|_{D^{\nu}} = K_{\mathcal{F}_{D^{\nu}}} + \Delta_D$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_D \geq 0$.

Along the smooth locus, the leaves of \mathcal{F}_D are the intersection of the leaves of \mathcal{F} with D. Thus, $\mathrm{rk}\mathcal{F}_{D^{\nu}} = \mathrm{rk}\mathcal{F} - \epsilon(D)$.

C. - **Spicer '23:** Let (\mathcal{F}, Δ) be a foliated pair on X, let $D \subset X$ be a prime divisor which is not contained in the support of Δ and let $D^{\nu} \rightarrow D$ be its normalisation. Then

$$(K_{\mathcal{F}} + \Delta + \epsilon(D)D)|_{D^{\nu}} = K_{\mathcal{F}_{D^{\nu}}} + \Delta_D$$

where $\mathcal{F}_{D^{\nu}}$ is the induced foliation on D^{ν} and $\Delta_D \geq 0$.

Along the smooth locus, the leaves of \mathcal{F}_D are the intersection of the leaves of \mathcal{F} with D. Thus, $\mathrm{rk}\mathcal{F}_{D^{\nu}} = \mathrm{rk}\mathcal{F} - \epsilon(D)$.

If $D \subset X$ is a \mathcal{F} -invariant subvariety such that D is not contained in $\operatorname{Sing} X \cup \operatorname{Sing} \mathcal{F} \cup \operatorname{Supp} \Delta$ then the same result holds, i.e.

$$(\mathcal{K}_\mathcal{F}+\Delta)|_{D^
u}=\mathcal{K}_{\mathcal{F}_{D^
u}}+\Delta_D$$

 $\mathcal{F}_{D^{\nu}}$ is a foliation of rank equal to $\operatorname{rk} \mathcal{F}$ and $\Delta_D \geq 0$.

Remark: The same statement is not true if $\epsilon(D) = 0$.

Remark: The same statement is not true if $\epsilon(D) = 0$. E.g. if \mathcal{F} is the rank one foliation on \mathbb{C}^3 defined by

$$x^2\partial_x + y^2\partial_y + z\partial_z$$

then \mathcal{F} is log canonical. Let $D = \{z = 0\}$ then \mathcal{F}_D is defined by $x^2 \partial_x + y^2 \partial_y$ and it is not log canonical.

Remark: The same statement is not true if $\epsilon(D) = 0$. E.g. if \mathcal{F} is the rank one foliation on \mathbb{C}^3 defined by

$$x^2\partial_x + y^2\partial_y + z\partial_z$$

then \mathcal{F} is log canonical. Let $D = \{z = 0\}$ then \mathcal{F}_D is defined by $x^2 \partial_x + y^2 \partial_y$ and it is not log canonical.

C. - **Spicer '23:** Assume that $\operatorname{rk} \mathcal{F} = 1$ and $D \subset X$ is a \mathcal{F} -invariant divisor. Let $Z \subset X$ be a non \mathcal{F} -invarant subvariety such that Z is not contained in $\operatorname{Sing} \mathcal{F}$ and such that (\mathcal{F}, Δ) is log canonical around the generic point of Z. Then $(\mathcal{F}_{D^{\nu}}, \Delta_D)$ is log canonical around the generic point of Z.

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$\overline{NE(X)} = \overline{NE(X)}_{K_{\mathcal{F}} + \Delta \ge 0} + \sum \mathbb{R}_{>0}[C_i].$$

Cone Theorem and Base Point Free Theorem

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$\overline{\mathsf{NE}(X)} = \overline{\mathsf{NE}(X)}_{\mathcal{K}_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q} -divisor such that $L := \mathcal{K}_{\mathcal{F}} + \Delta + A$ is nef. Then L is semi-ample.
Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$\overline{\mathsf{NE}(X)} = \overline{\mathsf{NE}(X)}_{\mathcal{K}_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q} -divisor such that $L := \mathcal{K}_{\mathcal{F}} + \Delta + A$ is nef. Then L is semi-ample.

 Q. - Spicer '20: If dim X ≤ 3 then the Cone Theorem and the Base Point Free Theorem hold.

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$\overline{\mathsf{NE}(X)} = \overline{\mathsf{NE}(X)}_{\mathcal{K}_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q} -divisor such that $L := \mathcal{K}_{\mathcal{F}} + \Delta + A$ is nef. Then L is semi-ample.

- Q. Spicer '20: If dim X ≤ 3 then the Cone Theorem and the Base Point Free Theorem hold.
- Ambro C. Shokurov Spicer '21: The Cone Theorem holds for algebraically integrable foliations.

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$\overline{\mathsf{NE}(X)} = \overline{\mathsf{NE}(X)}_{\mathcal{K}_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q} -divisor such that $L := \mathcal{K}_{\mathcal{F}} + \Delta + A$ is nef. Then L is semi-ample.

- Q. Spicer '20: If dim X ≤ 3 then the Cone Theorem and the Base Point Free Theorem hold.
- Ambro C. Shokurov Spicer '21: The Cone Theorem holds for algebraically integrable foliations.
- G. Chen J. Han J. Liu L. Xie '23: The Base Point Free Theorem hold for algebraically integrable foliations with F-dlt singularities.

Conjecture (Cone Theorem): Assume that (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$\overline{\mathsf{NE}(X)} = \overline{\mathsf{NE}(X)}_{\mathcal{K}_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Conjecture (Base Point Free Theorem): Assume that (\mathcal{F}, Δ) is a log canonical pair and let A be an ample \mathbb{Q} -divisor such that $L := K_{\mathcal{F}} + \Delta + A$ is nef. Then L is semi-ample.

- Q. Spicer '20: If dim X ≤ 3 then the Cone Theorem and the Base Point Free Theorem hold.
- Ambro C. Shokurov Spicer '21: The Cone Theorem holds for algebraically integrable foliations.
- G. Chen J. Han J. Liu L. Xie '23: The Base Point Free Theorem hold for algebraically integrable foliations with F-dlt singularities.
- Bogomolov-McQuillan '16, C. Spicer '23: The Cone Theorem holds for foliations of rank one.

C.-Spicer '23: Assume that X is \mathbb{Q} -factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

 $0 < -(K_{\mathcal{F}} + \Delta) \cdot C_i \leq 2 \dim X$

and

$$\overline{NE(X)} = \overline{NE(X)}_{K_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

C.-Spicer '23: Assume that X is \mathbb{Q} -factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$0 < -(K_{\mathcal{F}} + \Delta) \cdot C_i \leq 2 \dim X$$

and

$$\overline{NE(X)} = \overline{NE(X)}_{K_{\mathcal{F}} + \Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Sketch of the proof: Let *R* be an extremal ray and let H_R be a nef divisor on *X* which defines a supporting hyperplane for $\overline{NE(X)}$ at *R*.

C.-Spicer '23: Assume that X is \mathbb{Q} -factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$0 < -(K_{\mathcal{F}} + \Delta) \cdot C_i \leq 2 \dim X$$

and

$$\overline{\mathsf{NE}(X)} = \overline{\mathsf{NE}(X)}_{K_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Sketch of the proof: Let R be an extremal ray and let H_R be a nef divisor on X which defines a supporting hyperplane for $\overline{NE(X)}$ at R.

Let $\operatorname{Null}(H_R) = \bigcup_{H_R|_V \text{ is not big}} V$ be the Null locus of H_R and let $W \subset \operatorname{Null}(H_R)$ a component such that R is contained in the image of $\overline{NE(W)} \to \overline{NE(X)}$.

C.-Spicer '23: Assume that X is \mathbb{Q} -factorial and (\mathcal{F}, Δ) is a log canonical foliated log pair. Then there exist rational curves $C_1, C_2 \dots$ which are tangent to \mathcal{F} and such that

$$0 < -(K_{\mathcal{F}} + \Delta) \cdot C_i \leq 2 \dim X$$

and

$$\overline{NE(X)} = \overline{NE(X)}_{K_{\mathcal{F}}+\Delta \geq 0} + \sum \mathbb{R}_{>0}[C_i].$$

Sketch of the proof: Let R be an extremal ray and let H_R be a nef divisor on X which defines a supporting hyperplane for $\overline{NE(X)}$ at R.

Let $\operatorname{Null}(H_R) = \bigcup_{H_R|_V \text{ is not big}} V$ be the Null locus of H_R and let $W \subset \operatorname{Null}(H_R)$ a component such that R is contained in the image of $\overline{NE(W)} \to \overline{NE(X)}$.

Since (\mathcal{F}, Δ) is log canonical, we may show that W is not contained in $\operatorname{Sing}\mathcal{F}$.

() W is \mathcal{F} -invariant: by adjunction, we may write

$$\mathcal{K}_{\mathcal{F}_{W^{
u}}}+\Delta_{W}=(\mathcal{K}_{\mathcal{F}}+\Delta)|_{W^{
u}}$$

and $H_R|_{W^{\nu}}$ is not big.

() W is \mathcal{F} -invariant: by adjunction, we may write

$$K_{{\mathcal F}_{W^
u}}+\Delta_W=(K_{\mathcal F}+\Delta)ert_{W^
u}$$

and $H_R|_{W^{\nu}}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.

() W is \mathcal{F} -invariant: by adjunction, we may write

$$K_{\mathcal{F}_{W^{
u}}} + \Delta_W = (K_{\mathcal{F}} + \Delta)|_{W^{
u}}$$

and $H_R|_{W^{\nu}}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.

2 *W* is not \mathcal{F} -invariant: through the general point of *W*, there exists a non \mathcal{F} -invariant curve *C* such that $(K_{\mathcal{F}} + \Delta) \cdot C < 0$.

() W is \mathcal{F} -invariant: by adjunction, we may write

$$K_{{\mathcal F}_{W^
u}}+\Delta_W=(K_{{\mathcal F}}+\Delta)ert_{W^
u}$$

and $H_R|_{W^{\nu}}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.

 W is not *F*-invariant: through the general point of W, there exists a non *F*-invariant curve C such that (K_F + △) · C < 0. We may construct a *F*-invariant (possibly analytic) surface S ⊂ X containing C.

() W is \mathcal{F} -invariant: by adjunction, we may write

$$K_{{\mathcal F}_{W^
u}}+\Delta_W=(K_{{\mathcal F}}+\Delta)ert_{W^
u}$$

and $H_R|_{W^{\nu}}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.

W is not *F*-invariant: through the general point of W, there exists a non
 F-invariant curve C such that (K_F + Δ) · C < 0. We may construct a *F*-invariant (possibly analytic) surface S ⊂ X containing C. By adjunction, we may write

$$K_{\mathcal{F}_{S^{
u}}} + \Delta_S = (K_{\mathcal{F}} + \Delta)|_{S^{
u}}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

() W is \mathcal{F} -invariant: by adjunction, we may write

$$K_{\mathcal{F}_{W^{
u}}} + \Delta_W = (K_{\mathcal{F}} + \Delta)|_{W^{
u}}$$

and $H_R|_{W^{\nu}}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.

W is not *F*-invariant: through the general point of W, there exists a non
 F-invariant curve C such that (K_F + Δ) · C < 0. We may construct a *F*-invariant (possibly analytic) surface S ⊂ X containing C. By adjunction, we may write

$$\mathcal{K}_{\mathcal{F}_{S^{
u}}}+\Delta_{S}=(\mathcal{K}_{\mathcal{F}}+\Delta)|_{S^{
u}}$$

Inside S, we have that $C^2 < 0$. Assume that $\text{mult}_C \Delta_S = 1$. Then we apply adjunction again:

$$\mathcal{K}_{\mathcal{F}_{\mathcal{C}^{\nu}}} + \Delta_{\mathcal{C}} = (\mathcal{K}_{\mathcal{F}_{\mathcal{S}^{\nu}}} + \Delta_{\mathcal{S}})|_{\mathcal{C}^{\nu}} = (\mathcal{K}_{\mathcal{F}} + \Delta)|_{\mathcal{C}^{\nu}}.$$

1 W is \mathcal{F} -invariant: by adjunction, we may write

$$K_{\mathcal{F}_{W^{
u}}} + \Delta_W = (K_{\mathcal{F}} + \Delta)|_{W^{
u}}$$

and $H_R|_{W^{\nu}}$ is not big. By Miyaoka's theorem, it follows that W is covered by rational curves which are tangent to \mathcal{F} and spanning R.

W is not *F*-invariant: through the general point of W, there exists a non
 F-invariant curve C such that (K_F + Δ) · C < 0. We may construct a *F*-invariant (possibly analytic) surface S ⊂ X containing C. By adjunction, we may write

$$\mathcal{K}_{\mathcal{F}_{S^{
u}}}+\Delta_{S}=(\mathcal{K}_{\mathcal{F}}+\Delta)|_{S^{
u}}$$

Inside S, we have that $C^2 < 0$. Assume that $\text{mult}_C \Delta_S = 1$. Then we apply adjunction again:

$$\mathcal{K}_{\mathcal{F}_{C^{\nu}}} + \Delta_{C} = (\mathcal{K}_{\mathcal{F}_{S^{\nu}}} + \Delta_{S})|_{C^{\nu}} = (\mathcal{K}_{\mathcal{F}} + \Delta)|_{C^{\nu}}.$$

But $\operatorname{rk}\mathcal{F}_{C^{\nu}} = 0$, i.e. $\mathcal{K}_{\mathcal{F}_{C^{\nu}}} = 0$ and, therefore $(\mathcal{K}_{\mathcal{F}} + \Delta) \cdot C = \operatorname{deg} \Delta_{C} \geq 0$, a contradiction.

Let (\mathcal{F}, Δ) be a log canonical pair and let $R = (\mathcal{K}_{\mathcal{F}} + \Delta)$ -negative extremal ray. Let

$$\operatorname{locus}(R) = \bigcup_{C \in R} C.$$

Let (\mathcal{F}, Δ) be a log canonical pair and let $R = (\mathcal{K}_{\mathcal{F}} + \Delta)$ -negative extremal ray. Let

$$\operatorname{locus}(R) = \bigcup_{C \in R} C.$$

If the Cone Theorem holds then dim $locus(R) \ge 1$.

Let (\mathcal{F}, Δ) be a log canonical pair and let $R = (\mathcal{K}_{\mathcal{F}} + \Delta)$ -negative extremal ray. Let

$$\operatorname{locus}(R) = \bigcup_{C \in R} C.$$

If the Cone Theorem holds then dim $locus(R) \ge 1$.

If the Base Point Free Theorem holds then we may find a contraction $c_R \colon X \to Y$ such that $\text{Exc } c_R = \text{locus}(R)$.

Let (\mathcal{F}, Δ) be a log canonical pair and let $R = (\mathcal{K}_{\mathcal{F}} + \Delta)$ -negative extremal ray. Let

$$\operatorname{locus}(R) = \bigcup_{C \in R} C.$$

If the Cone Theorem holds then dim $locus(R) \ge 1$.

If the Base Point Free Theorem holds then we may find a contraction $c_R \colon X \to Y$ such that $\text{Exc } c_R = \text{locus}(R)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Assume that dim locus(R) \leq dim X - 2.

Let (\mathcal{F}, Δ) be a log canonical pair and let $R = (\mathcal{K}_{\mathcal{F}} + \Delta)$ -negative extremal ray. Let

$$\operatorname{locus}(R) = \bigcup_{C \in R} C.$$

If the Cone Theorem holds then dim $locus(R) \ge 1$.

If the Base Point Free Theorem holds then we may find a contraction $c_R \colon X \to Y$ such that $\text{Exc } c_R = \text{locus}(R)$.

Assume that dim locus(R) \leq dim X - 2.

Conjecture (Existence of Flips): The flip $\phi: X \dashrightarrow X'$ associated to R exists.

Let (\mathcal{F}, Δ) be a log canonical pair and let $R = (\mathcal{K}_{\mathcal{F}} + \Delta)$ -negative extremal ray. Let

$$\operatorname{locus}(R) = \bigcup_{C \in R} C.$$

If the Cone Theorem holds then dim $locus(R) \ge 1$.

If the Base Point Free Theorem holds then we may find a contraction $c_R \colon X \to Y$ such that $\text{Exc } c_R = \text{locus}(R)$.

Assume that dim locus(R) \leq dim X - 2.

Conjecture (Existence of Flips): The flip $\phi: X \dashrightarrow X'$ associated to R exists.

C. - **Spicer '20, '21:** The conjecture holds if dim X = 3.

Contraction Theorem and Existence of Flips for Algebraically Integrable Foliations

C. - **Spicer '23:** Assume termination of flips for \mathbb{Q} -factorial klt pairs in dimension r. Let (\mathcal{F}, Δ) be an algebraically integrable foliated pair of rank r with log canonical singularities, such that (X, Δ) is klt. Let $R = (K_{\mathcal{F}} + \Delta)$ -negative extremal ray such that $\dim \operatorname{locus}(R) \leq \dim X - 2$.

Then both the contraction $h: X \to Y$ and the flip $\phi: X \dashrightarrow X'$ exist.

Contraction Theorem and Existence of Flips for Algebraically Integrable Foliations

C. - **Spicer '23:** Assume termination of flips for \mathbb{Q} -factorial klt pairs in dimension r. Let (\mathcal{F}, Δ) be an algebraically integrable foliated pair of rank r with log canonical singularities, such that (X, Δ) is klt. Let $R = (K_{\mathcal{F}} + \Delta)$ -negative extremal ray such that dim locus $(R) \leq \dim X - 2$. Then both the contraction $h: X \to Y$ and the flip $\phi: X \dashrightarrow X'$ exist.

Idea of the proof:

We first prove the theorem for a very special class of algebraically integrable foliations.

Contraction Theorem and Existence of Flips for Algebraically Integrable Foliations

C. - **Spicer '23:** Assume termination of flips for \mathbb{Q} -factorial klt pairs in dimension r. Let (\mathcal{F}, Δ) be an algebraically integrable foliated pair of rank r with log canonical singularities, such that (X, Δ) is klt. Let $R = (K_{\mathcal{F}} + \Delta)$ -negative extremal ray such that dim locus $(R) \leq \dim X - 2$. Then both the contraction $h: X \to Y$ and the flip $\phi: X \dashrightarrow X'$ exist.

Idea of the proof:

- We first prove the theorem for a very special class of algebraically integrable foliations.
- Osing some suitable MMP, we construct a flip for any algebraically integrable foliations.

Def. Let $f: X \to Z$ and let (X, B) be a log pair with $B \ge 0$. Then the pair (X/Z, B) satisfies **Property (*)** if

- There exists a reduced divisor Σ_Z on Z such that (Z, Σ_Z) is log smooth;
- **2** the vertical part of *B* coincides with $f^{-1}(\Sigma_Z)$; and
- So for any z ∈ Z and for any P ≥ 0 such that $(Z, \Sigma_Z + P)$ is log smooth around z, we have that $(X, B + f^*(\Sigma \Sigma_Z))$ is log canonical around $f^{-1}(z)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Def. Let $f: X \to Z$ and let (X, B) be a log pair with $B \ge 0$. Then the pair (X/Z, B) satisfies **Property (*)** if

- There exists a reduced divisor Σ_Z on Z such that (Z, Σ_Z) is log smooth;
- **2** the vertical part of *B* coincides with $f^{-1}(\Sigma_Z)$; and
- for any $z \in Z$ and for any $P \ge 0$ such that $(Z, \Sigma_Z + P)$ is log smooth around z, we have that $(X, B + f^*(\Sigma \Sigma_Z))$ is log canonical around $f^{-1}(z)$.

Def: (\mathcal{F}, Δ) satisfies **Property (*)** if there exists a pair (X/Z, B) which satisfies **Property (*)** and such that \mathcal{F} is the foliation induced by $X \to Z$ and $\Delta = B^{\text{hor}}$.

Def. Let $f: X \to Z$ and let (X, B) be a log pair with $B \ge 0$. Then the pair (X/Z, B) satisfies **Property (*)** if

- There exists a reduced divisor Σ_Z on Z such that (Z, Σ_Z) is log smooth;
- **2** the vertical part of *B* coincides with $f^{-1}(\Sigma_Z)$; and
- for any $z \in Z$ and for any $P \ge 0$ such that $(Z, \Sigma_Z + P)$ is log smooth around z, we have that $(X, B + f^*(\Sigma \Sigma_Z))$ is log canonical around $f^{-1}(z)$.

Def: (\mathcal{F}, Δ) satisfies **Property (*)** if there exists a pair (X/Z, B) which satisfies **Property (*)** and such that \mathcal{F} is the foliation induced by $X \to Z$ and $\Delta = B^{\text{hor}}$.

Ambro - C. - Shokurov - Spicer '21:

• If (\mathcal{F}, Δ) satisfies Property (*) then it is log canonical.

Def. Let $f: X \to Z$ and let (X, B) be a log pair with $B \ge 0$. Then the pair (X/Z, B) satisfies **Property (*)** if

- There exists a reduced divisor Σ_Z on Z such that (Z, Σ_Z) is log smooth;
- **2** the vertical part of *B* coincides with $f^{-1}(\Sigma_Z)$; and
- for any $z \in Z$ and for any $P \ge 0$ such that $(Z, \Sigma_Z + P)$ is log smooth around z, we have that $(X, B + f^*(\Sigma \Sigma_Z))$ is log canonical around $f^{-1}(z)$.

Def: (\mathcal{F}, Δ) satisfies **Property (*)** if there exists a pair (X/Z, B) which satisfies **Property (*)** and such that \mathcal{F} is the foliation induced by $X \to Z$ and $\Delta = B^{\text{hor}}$.

Ambro - C. - Shokurov - Spicer '21:

- If (\mathcal{F}, Δ) satisfies Property (*) then it is log canonical.
- If (F, Δ) is an algebraically integrable log canonical foliated pair then it admits a Property (*) modification.

Def. Let $f: X \to Z$ and let (X, B) be a log pair with $B \ge 0$. Then the pair (X/Z, B) satisfies **Property (*)** if

- There exists a reduced divisor Σ_Z on Z such that (Z, Σ_Z) is log smooth;
- **2** the vertical part of *B* coincides with $f^{-1}(\Sigma_Z)$; and
- So for any z ∈ Z and for any P ≥ 0 such that $(Z, \Sigma_Z + P)$ is log smooth around z, we have that $(X, B + f^*(\Sigma \Sigma_Z))$ is log canonical around $f^{-1}(z)$.

Def: (\mathcal{F}, Δ) satisfies **Property (*)** if there exists a pair (X/Z, B) which satisfies **Property (*)** and such that \mathcal{F} is the foliation induced by $X \to Z$ and $\Delta = B^{\text{hor}}$.

Ambro - C. - Shokurov - Spicer '21:

- If (\mathcal{F}, Δ) satisfies Property (*) then it is log canonical.
- If (\mathcal{F}, Δ) is an algebraically integrable log canonical foliated pair then it admits a Property (*) modification.
- Property (*) is preserved by the MMP.

Def. Let $f: X \to Z$ and let (X, B) be a log pair with $B \ge 0$. Then the pair (X/Z, B) satisfies **Property (*)** if

- There exists a reduced divisor Σ_Z on Z such that (Z, Σ_Z) is log smooth;
- **2** the vertical part of *B* coincides with $f^{-1}(\Sigma_Z)$; and
- So for any z ∈ Z and for any P ≥ 0 such that $(Z, \Sigma_Z + P)$ is log smooth around z, we have that $(X, B + f^*(\Sigma \Sigma_Z))$ is log canonical around $f^{-1}(z)$.

Def: (\mathcal{F}, Δ) satisfies **Property (*)** if there exists a pair (X/Z, B) which satisfies **Property (*)** and such that \mathcal{F} is the foliation induced by $X \to Z$ and $\Delta = B^{\text{hor}}$.

Ambro - C. - Shokurov - Spicer '21:

- If (\mathcal{F}, Δ) satisfies Property (*) then it is log canonical.
- If (\mathcal{F}, Δ) is an algebraically integrable log canonical foliated pair then it admits a Property (*) modification.
- Property (*) is preserved by the MMP.
- Flips exist in this category.

• Let A ample Q-divisor such that $H_R = K_F + \Delta + A$ defines a supporting hyperplane for $\overline{NE(X)}$.

- Let A ample Q-divisor such that $H_R = K_F + \Delta + A$ defines a supporting hyperplane for $\overline{NE(X)}$.
- Let π: X → X be a Property (*)-modification of (F, Δ) so that if F is the induced foliation on X and

$$\mathcal{K}_{\overline{\mathcal{F}}}+\overline{\Delta}=\pi^*(\mathcal{K}_{\mathcal{F}}+\Delta)$$

then $(\overline{\mathcal{F}}, \overline{\Delta})$ satisfies Property (*).

- Let A ample Q-divisor such that $H_R = K_F + \Delta + A$ defines a supporting hyperplane for $\overline{NE(X)}$.
- Let π: X → X be a Property (*)-modification of (F, Δ) so that if F is the induced foliation on X and

$$\mathcal{K}_{\overline{\mathcal{F}}} + \overline{\Delta} = \pi^* (\mathcal{K}_{\mathcal{F}} + \Delta)$$

then $(\overline{\mathcal{F}}, \overline{\Delta})$ satisfies Property (*). Let $\overline{A} = \pi^* A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \overline{\Delta} + \overline{A})$ satisfies Property (*).

- Let A ample Q-divisor such that $H_R = K_F + \Delta + A$ defines a supporting hyperplane for $\overline{NE(X)}$.
- Let π: X → X be a Property (*)-modification of (F, Δ) so that if F is the induced foliation on X and

$$K_{\overline{\mathcal{F}}} + \overline{\Delta} = \pi^* (K_{\mathcal{F}} + \Delta)$$

then $(\overline{\mathcal{F}}, \overline{\Delta})$ satisfies Property (*). Let $\overline{A} = \pi^* A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \overline{\Delta} + \overline{A})$ satisfies Property (*).

• We have that $K_{\overline{F}} + \overline{\Delta} + \overline{A} = \pi^* H_R$ is big and nef. We may run a $(K_{\overline{F}} + \overline{\Delta})$ -MMP with scaling of \overline{A} .

- Let A ample Q-divisor such that $H_R = K_F + \Delta + A$ defines a supporting hyperplane for $\overline{NE(X)}$.
- Let π: X → X be a Property (*)-modification of (F, Δ) so that if F is the induced foliation on X and

$$K_{\overline{\mathcal{F}}} + \overline{\Delta} = \pi^* (K_{\mathcal{F}} + \Delta)$$

then $(\overline{\mathcal{F}}, \overline{\Delta})$ satisfies Property (*). Let $\overline{A} = \pi^* A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \overline{\Delta} + \overline{A})$ satisfies Property (*).

• We have that $K_{\overline{F}} + \overline{\Delta} + \overline{A} = \pi^* H_R$ is big and nef. We may run a $(K_{\overline{F}} + \overline{\Delta})$ -MMP with scaling of \overline{A} . By termination of flips, there exists a (minimal) sequence of steps of a MMP

$$\overline{X} = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_k = \overline{X}'$$

and $0 < \lambda \ll 1$ such that $K_{\overline{\mathcal{F}'}} + \overline{\Delta}' + (1 - \lambda)\overline{A}'$ is big and nef, where $\overline{\mathcal{F}}'$, $\overline{\Delta}'$ and \overline{A}' are the induced items on \overline{X}' .

- Let A ample Q-divisor such that $H_R = K_F + \Delta + A$ defines a supporting hyperplane for $\overline{NE(X)}$.
- Let π: X → X be a Property (*)-modification of (F, Δ) so that if F is the induced foliation on X and

$$K_{\overline{\mathcal{F}}} + \overline{\Delta} = \pi^* (K_{\mathcal{F}} + \Delta)$$

then $(\overline{\mathcal{F}}, \overline{\Delta})$ satisfies Property (*). Let $\overline{A} = \pi^* A$. Note that Bertini's theorem does not hold and we cannot assume that $(\overline{\mathcal{F}}, \overline{\Delta} + \overline{A})$ satisfies Property (*).

• We have that $K_{\overline{F}} + \overline{\Delta} + \overline{A} = \pi^* H_R$ is big and nef. We may run a $(K_{\overline{F}} + \overline{\Delta})$ -MMP with scaling of \overline{A} . By termination of flips, there exists a (minimal) sequence of steps of a MMP

$$\overline{X} = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_k = \overline{X}'$$

and $0 < \lambda \ll 1$ such that $K_{\overline{\mathcal{F}'}} + \overline{\Delta}' + (1 - \lambda)\overline{A}'$ is big and nef, where $\overline{\mathcal{F}}'$, $\overline{\Delta}'$ and \overline{A}' are the induced items on \overline{X}' . This MMP is $(K_{\overline{\mathcal{F}}} + \overline{\Delta} + \overline{A})$ -trivial.
• So far we have

$$\begin{array}{ccc} \overline{X} & \dashrightarrow & \overline{X}' \\ & \pi \\ & & \\ & & \\ & X \end{array}$$

Both $K_{\overline{\mathcal{F}'}} + \overline{\Delta}' + (1 - \lambda)\overline{A}'$ and $K_{\overline{\mathcal{F}'}} + \overline{\Delta}' + \overline{A}'$ are big and nef.

▲□▶▲□▶▲□▶▲□▶ □ のへで

• So far we have

$$\begin{array}{ccc} \overline{X} & \dashrightarrow & \overline{X}' \\ & \pi \\ & \chi \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$$
 Both $K_{\overline{\mathcal{F}'}} + \overline{\Delta}' + (1 - \lambda)\overline{A}' \text{ and } K_{\overline{\mathcal{F}'}} + \overline{\Delta}' + \overline{A}' \text{ are big and nef.} \\ \bullet & \\ & \\ \bullet & \\ \\ & \\ \end{array}$ Since (X, Δ) is klt, we may write

$$K_{\overline{X}} + \Gamma + E = \pi^*(K_X + \Delta) + F$$

where $E, F \ge 0$, $(\overline{X}, \Gamma + E)$ is klt and the support of E contains $\operatorname{Exc} \pi$. Let Γ' and E' be the strict transform of Γ and E on \overline{X}' .

・ロト・(四)・(日)・(日)・(日)・(日)

So far we have

$$K_{\overline{X}} + \Gamma + E = \pi^*(K_X + \Delta) + F$$

where $E, F \ge 0$, $(\overline{X}, \Gamma + E)$ is klt and the support of E contains $\operatorname{Exc} \pi$. Let Γ' and E' be the strict transform of Γ and E on \overline{X}' .

• We may run a MMP $\overline{X}' \dashrightarrow \overline{X}''$ which is $(K_{\overline{X}'} + \Gamma' + E')$ -negative and $(K_{\overline{F'}} + \overline{\Delta}' + \overline{A}')$ -trivial.

So far we have

$$\begin{array}{ccc} \overline{X} & \dashrightarrow & \overline{X}' \\ & \pi \\ & & \\ &$$

$$K_{\overline{X}} + \Gamma + E = \pi^*(K_X + \Delta) + F$$

where $E, F \ge 0$, $(\overline{X}, \Gamma + E)$ is klt and the support of E contains $\operatorname{Exc} \pi$. Let Γ' and E' be the strict transform of Γ and E on \overline{X}' .

• We may run a MMP $\overline{X}' \dashrightarrow \overline{X}''$ which is $(K_{\overline{X}'} + \Gamma' + E')$ -negative and $(K_{\overline{F'}} + \overline{\Delta}' + \overline{A}')$ -trivial. This MMP contracts $\operatorname{Exc} \pi$.

• We have

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

• We have

Let $\overline{\mathcal{F}''}$, $\overline{\Delta}''$ and $\overline{\mathcal{A}}''$ be the corresponding items on \overline{X}'' .

• By the Classical Base Point Free Theorem, it follows that $K_{\overline{F''}} + \overline{\Delta}'' + \overline{A}''$ is semi-ample.

We have

Let $\overline{\mathcal{F}''}$, $\overline{\Delta}''$ and $\overline{\mathcal{A}}''$ be the corresponding items on \overline{X}'' .

- By the Classical Base Point Free Theorem, it follows that $K_{\overline{F''}} + \overline{\Delta}'' + \overline{A}''$ is semi-ample.
- Thus $H_R = K_F + \Delta + A$ is also semi-ample and the contraction $c_R \colon X \to Y$ exists.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We have

$$\begin{array}{cccc} \overline{X} & \dashrightarrow & \overline{X}' & \dashrightarrow & \overline{X}'' \\ \pi \\ \chi & & & \\ \end{array}$$

Let $\overline{\mathcal{F}''}$, $\overline{\Delta}''$ and $\overline{\mathcal{A}}''$ be the corresponding items on \overline{X}'' .

- By the Classical Base Point Free Theorem, it follows that $K_{\overline{F''}} + \overline{\Delta}'' + \overline{A}''$ is semi-ample.
- Thus $H_R = K_F + \Delta + A$ is also semi-ample and the contraction $c_R \colon X \to Y$ exists.
- The corresponding map $X \dashrightarrow \overline{X}''$ is the desired flip.