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D : k[x1,...,Xxn] = Kk[x1,..., Xn] be a k-derivation, i.e.
k-linear such that D(fg) = D(f)g + fD(g).
» Dis simple if there are no nontrivial ideals / C k[x1, ..., Xp]

such that D(/) c I.

» Geometric meaning (k = C):The (singular) foliation
associated with the vector field D = 3", a;0x.admits no
algebraic invariant subvarieties.

> Problem 1 (very difficult): Classify simple derivations up
to conjugate by an automorphism.

» Aut(D) =isotropy subgroup in Aut(k[x1, ..., Xxs]), for D non
necessarily simple—it is an invariant.
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» k an algebraically closed field, Char(k) = 0. Let

D : k[x1,...,Xxn] = Kk[x1,..., Xn] be a k-derivation, i.e.
k-linear such that D(fg) = D(f)g + fD(g).
» Dis simple if there are no nontrivial ideals / C k[x, ..., Xp]

such that D(/) c I.

» Geometric meaning (k = C):The (singular) foliation
associated with the vector field D = 3", a;0x.admits no
algebraic invariant subvarieties.

> Problem 1 (very difficult): Classify simple derivations up
to conjugate by an automorphism.

» Aut(D) =isotropy subgroup in Aut(k[x1, ..., Xxs]), for D non
necessarily simple—it is an invariant.

» Problem 2: Describe D for which Aut(D) is algebraic.
What happens when D is simple?
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D is not locally nilpotent (2021, _ ), i.e. for every f there
exists n such that D"(f) = 0.

» If n > 2: Dan Yan gave examples with D simple and
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; . pal _ oo (@8 (x)
automorphisms: e#2(x;) = > xlo i =1,...,n,
ack.

Ivan PAN On polynomial automorphisms which commute with a simple



Some results

» Assume n = 2: if D is simple, then Aut(D) = 1 (2016, L.G.
Mendes, _ ). In general, Aut(D) is algebraic if and only if
D is not locally nilpotent (2021, _ ), i.e. for every f there
exists n such that D"(f) = 0.

» If n > 2: Dan Yan gave examples with D simple and
Aut(D) = k acting as translations, and conjectured that
there is no other possibility (2019).

» Remark. If D simple and A loc. nilpotent such that
[D, A] = 0, then Aut(D) contains the exponential

automorphisms: e#2(x;) = Y e, (aA}(T(X’),i: 1,...,n,
ack.
> e?A is the translation x; + aif and only if A = the

partial derivative 0/0x;.
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» 6 :klu,v]=B— B, j(u)=1,6(v) =14 uvis asimple
derivation. Define D : A= B[xy,...,xp] — Aas
D=5¢+ Zj’-’:1 VD,

> Example D is simple and [D, 9] = 0 Vj. So Aut(D) = k",
acting as translations.

» Conjecture:If D is simple, then Aut(D) is algebraic.

» Remark.
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An example and a conjecture

» 6 :klu,v]=B— B, j(u)=1,6(v) =14 uvis asimple
derivation. Define D : A= B[xy,...,xp] — Aas
D = 6 + Zjn:‘l V/axj.

> Example D is simple and [D, 9] = 0 Vj. So Aut(D) = k",
acting as translations.

» Conjecture:If D is simple, then Aut(D) is algebraic.

» Remark. Aut(D) is closed in Aut(k[x1, ..., Xs]).
“Algebraic” means the degree of polynomials defining
elements in that subgroup is bounded (Kambayashi, 1979).
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» Theorem 2. Aut(D)° is algebraic of dimension < n — 2.
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» The results below are in collaboration with A. Rittatore and
P.-L. Montagard. Assume D to be simple.

» Theorem 1. If Aut(D) is algebraic, then it is unipotent.
» Theorem 2. Aut(D)° is algebraic of dimension < n — 2.
» Theorem 3. If n =3,
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Some new results

» The results below are in collaboration with A. Rittatore and
P.-L. Montagard. Assume D to be simple.

» Theorem 1. If Aut(D) is algebraic, then it is unipotent.
» Theorem 2. Aut(D)° is algebraic of dimension < n — 2.
» Theorem 3. If n = 3, then Aut(D)° = 1
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Some new results

» The results below are in collaboration with A. Rittatore and
P.-L. Montagard. Assume D to be simple.

» Theorem 1. If Aut(D) is algebraic, then it is unipotent.
» Theorem 2. Aut(D)° is algebraic of dimension < n — 2.

» Theorem 3. If n = 3, then Aut(D)° =1 or
Aut(D)° = Aut(D) =k
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Some new results

» The results below are in collaboration with A. Rittatore and
P.-L. Montagard. Assume D to be simple.

» Theorem 1. If Aut(D) is algebraic, then it is unipotent.
» Theorem 2. Aut(D)° is algebraic of dimension < n — 2.

» Theorem 3. If n = 3, then Aut(D)° =1 or
Aut(D)? = Aut(D) = k (acting as translations).
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has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xs] = Kk[[{]]
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> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xn] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the pointg = ¢ - p.
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» Lemma. If D is simple, then every nontrivial ¢ € Aut(D)
has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xs] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the point g = ¢ - p. Then g = p implies oy = 0.
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has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xs] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the point g = ¢ - p. Then g = p implies o = 0. Since
ker o is D-stable
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has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xs] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the point g = ¢ - p. Then g = p implies o = 0. Since
ker o is D-stable we conclude g # p unless ¢ = id.
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has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xn] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the point g = ¢ - p. Then g = pimplies o = 0. Since
ker o is D-stable we conclude g # p unless ¢ = id. Ol
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» Lemma. If D is simple, then every nontrivial ¢ € Aut(D)
has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xn] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the point g = ¢ - p. Then g = pimplies o = 0. Since
ker o is D-stable we conclude g # p unless ¢ = id. Ol
» To prove the theorems we use “Ind-varieties Theory”
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has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xn] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the point g = ¢ - p. Then g = pimplies o = 0. Since
ker o is D-stable we conclude g # p unless ¢ = id. Ol
» To prove the theorems we use “Ind-varieties Theory”
(specially Further-Kraft results)

Ivan PAN On polynomial automorphisms which commute with a simple



Sketch

» Lemma. If D is simple, then every nontrivial ¢ € Aut(D)
has no fixed points (w.r.t. its induced action on A7).

> Proof. Let p € A] be a point. Consider the solution of
x' = D(x) with x(0) = p. It defines a k-algebra
homomorphism o : k[x1, ..., Xn] — k[[{]] such that
0toc = oD. Hence oy corresponds to another solution by
the point g = ¢ - p. Then g = pimplies o = 0. Since
ker o is D-stable we conclude g # p unless ¢ = id. Ol
» To prove the theorems we use “Ind-varieties Theory”
(specially Further-Kraft results) and a result by Derksen,
van den Essen, Finston, and Maubach.
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