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▶ k an algebraically closed field, Char(k) = 0.

Let
D : k[x1, . . . , xn] → k[x1, . . . , xn] be a k-derivation, i.e.
k-linear such that D(fg) = D(f )g + fD(g).

▶ D is simple if there are no nontrivial ideals I ⊂ k[x1, . . . , xn]
such that D(I) ⊂ I.

▶ Geometric meaning (k = C):

The (singular) foliation
associated with the vector field D =

∑n
i=1 ai∂xi admits no

algebraic invariant subvarieties.

▶ Problem 1 (very difficult):

Classify simple derivations up
to conjugate by an automorphism.

▶ Aut(D) =isotropy subgroup in Aut(k[x1, . . . , xn]), for D non
necessarily simple

–it is an invariant.

▶ Problem 2:

Describe D for which Aut(D) is algebraic.
What happens when D is simple?
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▶ Assume n = 2: if D is simple, then Aut(D) = 1 (2016, L.G.
Mendes, ).

In general, Aut(D) is algebraic if and only if
D is not locally nilpotent (2021, ), i.e. for every f there
exists n such that Dn(f ) = 0.

▶ If n > 2: Dan Yan gave examples with D simple and
Aut(D) = k acting as translations,

and conjectured that
there is no other possibility (2019).

▶ Remark.

If D simple and ∆ loc. nilpotent such that
[D,∆] = 0, then Aut(D) contains the exponential
automorphisms: ea∆(xi) =

∑∞
k=0

(a∆)k (xi )
k! , i = 1, . . . ,n,

a ∈ k.

▶ Notice:

ea∆ is the translation xi + a if and only if ∆ = the
partial derivative ∂/∂xi .
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An example and a conjecture

▶ δ : k[u, v ] = B → B, δ(u) = 1, δ(v) = 1 + uv is a simple
derivation.

Define D : A = B[x1, . . . , xn] → A as
D = δ +

∑n
j=1 v j∂xj .

▶ Example

D is simple and [D, ∂xj ] = 0 ∀j . So Aut(D) = kn,
acting as translations.

▶ Conjecture:

If D is simple, then Aut(D) is algebraic.

▶ Remark.

Aut(D) is closed in Aut(k[x1, . . . , xn]).
“Algebraic” means the degree of polynomials defining
elements in that subgroup is bounded (Kambayashi, 1979).
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Some new results

▶ The results below are in collaboration with A. Rittatore and
P.-L. Montagard.

Assume D to be simple.

▶ Theorem 1.

If Aut(D) is algebraic, then it is unipotent.

▶ Theorem 2.

Aut(D)0 is algebraic of dimension ≤ n − 2.

▶ Theorem 3.

If n = 3, then Aut(D)0 = 1 or
Aut(D)0 = Aut(D) = k (acting as translations).
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Sketch

▶ Lemma.

If D is simple, then every nontrivial φ ∈ Aut(D)
has no fixed points (w.r.t. its induced action on An

k).

▶ Proof.

Let p ∈ An
k be a point. Consider the solution of

x′ = D(x) with x(0) = p. It defines a k-algebra
homomorphism σ : k[x1, . . . , xn] → k[[t ]] such that
∂tσ = σD. Hence σφ corresponds to another solution by
the point q = φ · p. Then q = p implies σφ = σ. Since
ker σ is D-stable we conclude q ̸= p unless φ = id .

▶ To prove the theorems we use “Ind-varieties Theory”

(specially Further-Kraft results) and a result by Derksen,
van den Essen, Finston, and Maubach.
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the point q = φ · p. Then q = p implies σφ = σ. Since
ker σ is D-stable we conclude q ̸= p unless φ = id .

▶ To prove the theorems we use “Ind-varieties Theory”
(specially Further-Kraft results)

and a result by Derksen,
van den Essen, Finston, and Maubach.
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END
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THANKS!
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