On polynomial automorphisms which commute with a simple derivation

Iván PAN

Pipa, December 2023

Introduction

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$.

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation,

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathfrak{k}-linear

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.
- Problem 1 (very difficult):

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.
- Problem 1 (very difficult): Classify simple derivations up to conjugate by an automorphism.

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.
- Problem 1 (very difficult): Classify simple derivations up to conjugate by an automorphism.
- $\operatorname{Aut}(D)=$ isotropy subgroup in $\operatorname{Aut}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)$, for D non necessarily simple

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.
- Problem 1 (very difficult): Classify simple derivations up to conjugate by an automorphism.
- $\operatorname{Aut}(D)=$ isotropy subgroup in $\operatorname{Aut}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)$, for D non necessarily simple-it is an invariant.

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.
- Problem 1 (very difficult): Classify simple derivations up to conjugate by an automorphism.
- $\operatorname{Aut}(D)=$ isotropy subgroup in $\operatorname{Aut}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)$, for D non necessarily simple-it is an invariant.
- Problem 2:

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.
- Problem 1 (very difficult): Classify simple derivations up to conjugate by an automorphism.
- $\operatorname{Aut}(D)=$ isotropy subgroup in $\operatorname{Aut}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)$, for D non necessarily simple-it is an invariant.
- Problem 2: Describe D for which $\operatorname{Aut}(D)$ is algebraic.

Introduction

$-\mathbb{k}$ an algebraically closed field, $\operatorname{Char}(\mathbb{k})=0$. Let $D: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be a \mathbb{k}-derivation, i.e. \mathbb{k}-linear such that $D(f g)=D(f) g+f D(g)$.
$-D$ is simple if there are no nontrivial ideals $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that $D(I) \subset I$.

- Geometric meaning $(\mathbb{k}=\mathbb{C})$:The (singular) foliation associated with the vector field $D=\sum_{i=1}^{n} a_{i} \partial_{x_{i}}$ admits no algebraic invariant subvarieties.
- Problem 1 (very difficult): Classify simple derivations up to conjugate by an automorphism.
- $\operatorname{Aut}(D)=$ isotropy subgroup in $\operatorname{Aut}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)$, for D non necessarily simple-it is an invariant.
- Problem 2: Describe D for which $\operatorname{Aut}(D)$ is algebraic. What happens when D is simple?

Some results

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __).

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, ___). In general, $\operatorname{Aut}(D)$ is algebraic

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent (2021, \qquad

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent (2021, __), i.e. for every f there exists n such that $D^{n}(f)=0$.

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent (2021, __), i.e. for every f there exists n such that $D^{n}(f)=0$.
- If $n>2$: Dan Yan gave examples with D simple and $\operatorname{Aut}(D)=\mathbb{k}$ acting as translations,

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent $(2021, \ldots)$, i.e. for every f there exists n such that $D^{n}(f)=0$.
- If $n>2$: Dan Yan gave examples with D simple and $\operatorname{Aut}(D)=\mathbb{k}$ acting as translations, and conjectured that there is no other possibility (2019).

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent $(2021, \ldots)$, i.e. for every f there exists n such that $D^{n}(f)=0$.
- If $n>2$: Dan Yan gave examples with D simple and $\operatorname{Aut}(D)=\mathbb{k}$ acting as translations, and conjectured that there is no other possibility (2019).
- Remark.

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent (2021, __), i.e. for every f there exists n such that $D^{n}(f)=0$.
- If $n>2$: Dan Yan gave examples with D simple and $\operatorname{Aut}(D)=\mathbb{k}$ acting as translations, and conjectured that there is no other possibility (2019).
- Remark. If D simple and Δ loc. nilpotent such that $[D, \Delta]=0$,

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent (2021, __), i.e. for every f there exists n such that $D^{n}(f)=0$.
- If $n>2$: Dan Yan gave examples with D simple and $\operatorname{Aut}(D)=\mathbb{k}$ acting as translations, and conjectured that there is no other possibility (2019).
- Remark. If D simple and Δ loc. nilpotent such that $[D, \Delta]=0$, then $\operatorname{Aut}(D)$ contains the exponential automorphisms:

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent (2021, __), i.e. for every f there exists n such that $D^{n}(f)=0$.
- If $n>2$: Dan Yan gave examples with D simple and $\operatorname{Aut}(D)=\mathbb{k}$ acting as translations, and conjectured that there is no other possibility (2019).
- Remark. If D simple and Δ loc. nilpotent such that $[D, \Delta]=0$, then $\operatorname{Aut}(D)$ contains the exponential automorphisms: $e^{a \Delta}\left(x_{i}\right)=\sum_{k=0}^{\infty} \frac{(a \Delta)^{k}\left(x_{i}\right)}{k!}, i=1, \ldots, n$, $a \in \mathbb{k}$.

Some results

- Assume $n=2$: if D is simple, then $\operatorname{Aut}(D)=1$ (2016, L.G. Mendes, __). In general, $\operatorname{Aut}(D)$ is algebraic if and only if D is not locally nilpotent (2021, __), i.e. for every f there exists n such that $D^{n}(f)=0$.
- If $n>2$: Dan Yan gave examples with D simple and $\operatorname{Aut}(D)=\mathbb{k}$ acting as translations, and conjectured that there is no other possibility (2019).
- Remark. If D simple and Δ loc. nilpotent such that $[D, \Delta]=0$, then $\operatorname{Aut}(D)$ contains the exponential automorphisms: $e^{a \Delta}\left(x_{i}\right)=\sum_{k=0}^{\infty} \frac{(a \Delta)^{k}\left(x_{i}\right)}{k!}, i=1, \ldots, n$, $a \in \mathbb{k}$.
- Notice: $e^{\mathrm{a} \Delta}$ is the translation $x_{i}+a$ if and only if $\Delta=$ the partial derivative $\partial / \partial x_{i}$.

An example and a conjecture

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation.

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example D is simple and $\left[D, \partial_{x_{j}}\right]=0 \forall j$.

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example D is simple and $\left[D, \partial_{x_{j}}\right]=0 \forall j$. So $\operatorname{Aut}(D)=\mathbb{k}^{n}$, acting as translations.

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example D is simple and $\left[D, \partial_{x_{j}}\right]=0 \forall j$. So $\operatorname{Aut}(D)=\mathbb{k}^{n}$, acting as translations.
- Conjecture:

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example D is simple and $\left[D, \partial_{x_{j}}\right]=0 \forall j$. So $\operatorname{Aut}(D)=\mathbb{k}^{n}$, acting as translations.
- Conjecture:If D is simple, then $\operatorname{Aut}(D)$ is algebraic.

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example D is simple and $\left[D, \partial_{x_{j}}\right]=0 \forall j$. So $\operatorname{Aut}(D)=\mathbb{k}^{n}$, acting as translations.
- Conjecture:If D is simple, then $\operatorname{Aut}(D)$ is algebraic.
- Remark.

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example D is simple and $\left[D, \partial_{x_{j}}\right]=0 \forall j$. So $\operatorname{Aut}(D)=\mathbb{k}^{n}$, acting as translations.
- Conjecture:If D is simple, then $\operatorname{Aut}(D)$ is algebraic.
- Remark. $\operatorname{Aut}(D)$ is $\operatorname{closed} \operatorname{in} \operatorname{Aut}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)$.

An example and a conjecture

- $\delta: \mathbb{k}[u, v]=B \rightarrow B, \delta(u)=1, \delta(v)=1+u v$ is a simple derivation. Define $D: A=B\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ as $D=\delta+\sum_{j=1}^{n} v^{j} \partial_{x_{j}}$.
- Example D is simple and $\left[D, \partial_{x_{j}}\right]=0 \forall j$. So $\operatorname{Aut}(D)=\mathbb{k}^{n}$, acting as translations.
- Conjecture:If D is simple, then $\operatorname{Aut}(D)$ is algebraic.
- Remark. $\operatorname{Aut}(D)$ is closed in $\operatorname{Aut}\left(\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]\right)$.
"Algebraic" means the degree of polynomials defining elements in that subgroup is bounded (Kambayashi, 1979).

Some new results

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard.

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1.

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic,

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.

Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.

- Theorem 2.

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.
- Theorem 2. $\operatorname{Aut}(D)^{0}$

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.
- Theorem 2. $\operatorname{Aut}(D)^{0}$ is algebraic of dimension $\leq n-2$.

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.
- Theorem 2. $\operatorname{Aut}(D)^{0}$ is algebraic of dimension $\leq n-2$.
- Theorem 3.

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.
- Theorem 2. $\operatorname{Aut}(D)^{0}$ is algebraic of dimension $\leq n-2$.
- Theorem 3. If $n=3$,

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.
- Theorem 2. $\operatorname{Aut}(D)^{0}$ is algebraic of dimension $\leq n-2$.
- Theorem 3. If $n=3$, then $\operatorname{Aut}(D)^{0}=1$

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.
- Theorem 2. $\operatorname{Aut}(D)^{0}$ is algebraic of dimension $\leq n-2$.
- Theorem 3. If $n=3$, then $\operatorname{Aut}(D)^{0}=1$ or $\operatorname{Aut}(D)^{0}=\operatorname{Aut}(D)=\mathbb{k}$

Some new results

- The results below are in collaboration with A. Rittatore and P.-L. Montagard. Assume D to be simple.
- Theorem 1. If $\operatorname{Aut}(D)$ is algebraic, then it is unipotent.
- Theorem 2. $\operatorname{Aut}(D)^{0}$ is algebraic of dimension $\leq n-2$.
- Theorem 3. If $n=3$, then $\operatorname{Aut}(D)^{0}=1$ or $\operatorname{Aut}(D)^{0}=\operatorname{Aut}(D)=\mathbb{k}$ (acting as translations).

Sketch

Sketch

- Lemma.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on A_{k}^{n}).

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathbb{k}}^{n}$ be a point.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on A_{k}^{n}).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$. Then $q=p$ implies $\sigma \varphi=\sigma$.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on A_{k}^{n}).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$. Then $q=p$ implies $\sigma \varphi=\sigma$. Since ker σ is D-stable

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$. Then $q=p$ implies $\sigma \varphi=\sigma$. Since ker σ is D-stable we conclude $q \neq p$ unless $\varphi=i d$.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$. Then $q=p$ implies $\sigma \varphi=\sigma$. Since ker σ is D-stable we conclude $q \neq p$ unless $\varphi=i d$.

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$. Then $q=p$ implies $\sigma \varphi=\sigma$. Since ker σ is D-stable we conclude $q \neq p$ unless $\varphi=i d$.
- To prove the theorems we use "Ind-varieties Theory"

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on $\mathbb{A}_{\mathbb{k}}^{n}$).
- Proof. Let $p \in \mathbb{A}_{\mathrm{k}}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$. Then $q=p$ implies $\sigma \varphi=\sigma$. Since ker σ is D-stable we conclude $q \neq p$ unless $\varphi=i d$.
- To prove the theorems we use "Ind-varieties Theory" (specially Further-Kraft results)

Sketch

- Lemma. If D is simple, then every nontrivial $\varphi \in \operatorname{Aut}(D)$ has no fixed points (w.r.t. its induced action on \mathbb{A}_{k}^{n}).
- Proof. Let $p \in \mathbb{A}_{k}^{n}$ be a point. Consider the solution of $\mathbf{x}^{\prime}=D(\mathbf{x})$ with $\mathbf{x}(0)=p$. It defines a \mathbb{k}-algebra homomorphism $\sigma: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}[[t]]$ such that $\partial_{t} \sigma=\sigma D$. Hence $\sigma \varphi$ corresponds to another solution by the point $q=\varphi \cdot p$. Then $q=p$ implies $\sigma \varphi=\sigma$. Since $\operatorname{ker} \sigma$ is D-stable we conclude $q \neq p$ unless $\varphi=i d$.
- To prove the theorems we use "Ind-varieties Theory" (specially Further-Kraft results) and a result by Derksen, van den Essen, Finston, and Maubach.

List of references

List of references

Derksen, H., van den Essen, A., Finston, D. R., Maubach, S., Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208.

List of references

Derksen, H., van den Essen, A., Finston, D. R., Maubach, S., Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208.

- J.P. Furter and H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pages, arXiv:1809.04175.

List of references

- Derksen, H., van den Essen, A., Finston, D. R., Maubach, S., Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208.
- J.P. Furter and H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pages, arXiv:1809.04175.
T. Kambayashi, Automorphism Group of a Polynomial Ring and Algebraic Group Action on an Affine Space, J. of Algebra, 60 (1979), pp. 439-451.

List of references

Derksen, H., van den Essen, A., Finston, D. R., Maubach, S., Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208.

- J.P. Furter and H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pages, arXiv:1809.04175.
T. Kambayashi, Automorphism Group of a Polynomial Ring and Algebraic Group Action on an Affine Space, J. of Algebra, 60 (1979), pp. 439-451.
L.G. Mendes and I. Pan, On plane polynomial automorphisms commuting with simple derivations, J. of Pure and Applied Algebra V. 221, Iss. 4 (2017), pp. 875-882.

List of references

Derksen, H., van den Essen, A., Finston, D. R., Maubach, S., Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208.

- J.P. Furter and H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pages, arXiv:1809.04175.
T. Kambayashi, Automorphism Group of a Polynomial Ring and Algebraic Group Action on an Affine Space, J. of Algebra, 60 (1979), pp. 439-451.
L.G. Mendes and I. Pan, On plane polynomial automorphisms commuting with simple derivations, J. of Pure and Applied Algebra V. 221, Iss. 4 (2017), pp. 875-882.
I. Pan, A characterization of local nilpotence for dimension two polynomial derivations, Comm. in Algebra, vol. 50 Issue 5 (2022), pp. 1884-1888.

List of references

Derksen, H., van den Essen, A., Finston, D. R., Maubach, S., Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208.
J.P. Furter and H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pages, arXiv:1809.04175.
T. Kambayashi, Automorphism Group of a Polynomial Ring and Algebraic Group Action on an Affine Space, J. of Algebra, 60 (1979), pp. 439-451.
L.G. Mendes and I. Pan, On plane polynomial automorphisms commuting with simple derivations, J. of Pure and Applied Algebra V. 221, Iss. 4 (2017), pp. 875-882.
I. Pan, A characterization of local nilpotence for dimension two polynomial derivations, Comm. in Algebra, vol. 50 Issue 5 (2022), pp. 1884-1888.
A. Shamsuddin, Ph.D. thesis, Univesity of Leeds, 1977

List of references

Derksen, H., van den Essen, A., Finston, D. R., Maubach, S., Unipotent group actions on affine varieties, J. Algebra 336 (2011), 200-208.
J.P. Furter and H. Kraft, On the geometry of the automorphism groups of affine varieties, 2018, 179 pages, arXiv:1809.04175.
T. Kambayashi, Automorphism Group of a Polynomial Ring and Algebraic Group Action on an Affine Space, J. of Algebra, 60 (1979), pp. 439-451.
L.G. Mendes and I. Pan, On plane polynomial automorphisms commuting with simple derivations, J. of Pure and Applied Algebra V. 221, Iss. 4 (2017), pp. 875-882.
I. Pan, A characterization of local nilpotence for dimension two polynomial derivations, Comm. in Algebra, vol. 50 Issue 5 (2022), pp. 1884-1888.

- A. Shamsuddin, Ph.D. thesis, Univesity of Leeds, 1977
D. Yan, Simple derivations in two variables, Comm. in Algebra, vol. 47, Issue 9 (2019), pp.3881-3888.

END

THANKS!

