
Higgs bundles vs Fullerene-like molecules

Nikon Kurnosov

December 15, 2023



Fullerenes

The Buckminsterfullerene molecule C60



Motivation: Graphene to Fullerene

Fullerene Nanotube Graphite

Spherical configurations of graphene are known as fullerenes. The
altered topology requires defects where twelve of the regular
carbon hexagons are replaced by pentagons.



Motivation: Exciting properties of graphene
The electronic properties of graphene are well modelled by a simple
Hückel model of nearest-neighbor hopping on a two-dimensional
honeycomb lattice:



Motivation: Exciting properties of graphene
Conical singularities

Graphene is expected to exhibit phenomena more familiar in
relativistic quantum theory, such as the Klein Paradox
(unimpeded penetration of relativistic particles through high and
wide potential barriers)



Fullerenes: Engel’s paper

There are three irreducible fullerenes in the buckygen algorithm,
isomers of C20,C28, and C30. generates larger fullerenes from
smaller ones, by excising a patch of faces and replacing it with a
larger patch having the same boundary.

Theorem (Engel, Smillie, ’23)

An exact formula for the number of oriented fullerenes with a given
number of vertices.
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BB(q) :=
∑

n>1 BBnq
n =

q10 + q12 + q13 + 3q14 + 3q15 + 10q16 + 9q17 + 23q18+

Theorem (Engel, Smillie, ’23)

An exact formula for the number of oriented fullerenes with a given
number of vertices.



Geometric defects: pentagon disclination

The honeycomb lattice comprises of two triangular lattices, A,
denoted by black circles and, B, denoted by blank circles. A single
pentagonal deformation can be introduced by cutting a π/3 sector

and gluing the opposite sites together.



Higgs bundles

Let Σ be a Riemann surface of genus g > 2 with canonical bundle
K = T ∗Σ.

Definition
A Higgs bundle is a pair (E ,Φ) for E a holomorphic vector bundle
on Σ, and the Higgs field Φ ∈ H0(Σ,End(E )⊗ K ).
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The field Φ is named by analogy with the Higgs field in physics,
which is an additional scalar field ”coupled” to other particle fields
(i.e. there are terms in Lagrangian involving both the scalar field
and other fields). Namely, any time someone adds on an auxilliary
field that is coupled to the original data in geometry, they call it a
Higgs field.
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Remark: Locally,Φ is a matrix-valued one-form. It has eigenvalues.



Higgs bundles

Each Higgs bundle on Σ will determine a spectral curve Σ̃ that
forms a branched cover of Σ. Then

(E ,Φ) L on Σ̃

spectral correspondence



Higgs bundles

Each Higgs bundle on Σ will determine a spectral curve Σ̃ that
forms a branched cover of Σ. Then

(E ,Φ) L on Σ̃

spectral correspondence

Spectral curve is characterized by the coefficients of its
characteristic polynomial.



Moduli of Higgs bundles

Therefore, we have Hitchin map:

h : MHiggs → B

where B is the Hitchin base (space of spectral curves).
The remaining spectral data is a line bundle L→ Σ̃b, and for
smooth Σ̃b, the fiber of the Hitchin map is Jac(Σ̃b)

Remark: MHiggs inherits a hyperkähler structure from the set of
pairs (E ,Φ). Moreover, the fibers are Lagrangian tori.
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Bloch variety
Crystal momenta are representations of the fundamental group,
which all arise from the monodromy of a flat connection, due to
the Riemann-Hilbert correspondence:

ρ : π1(Σ)→ GL(n,C)

The Hamiltonian Hρ for each crystal momentum is defined through
the associated Higgs field (E ,Φ), via Hρ = D∗

ΦDΦ + V . We can
assemble the eigenstates of Hρ into a master Bloch function
ψ(z , ρ, e) satisfying

Hρψ(z , ρ, e) = eψ(z , ρ, e)

Definition
The band structure is the set of pairs ρ ∈MHiggs , e ∈ C where
the equation has a solution. We call this set the Bloch variety
β ⊂MHiggs × C
Remark: This is a codimension 1 analytic (possibly singular)
submanifold in MHiggs × C



Band structure

Credits to E.Kienzle, S. Rayan (Adv.in Math., 2022) for the figure

Each point on the base gives a spectral curve. The Hamiltonian
defines a band structure over its fiber, the Jacobian of the spectral
curve. These band structures glue together to form a master
band structure on all MHiggs , represented by the translucent
purple shells.



Bloch variety: graphene
Moreover, the level crossings on each fiber glue together to a level
crossing set on all MHiggs .
Remark: Level crossings often occur on high-symmetry momenta.

Theorem (Von Neumann-Wigner)

The generic band structures have codimension 2 level crossings.

Therefore, codimension 2 level crossings must be singularities of
the Bloch variety

Example:
Dirac points of graphene is an example of conical singularity of the
Bloch variety.
Questions (E.Kienzle, S. Rayan (Adv.in Math., 2022)):
1. What is the crystallographic meaning of the principle
polarization of the Jacobian or its associated theta divisor?
2. Crystallographic interpretation of the singular fibers?



Tight-binding model

Assumption: A cell only interacts with its neighbors –
tightly-bound.

Then the Hamiltonian splits into on-site matrix M and hopping
matrices J. The latter couple the cell to its neighbors.
Bloch locus is then the zero set of the characteristic polynomial
det(Hk − E ).



Toy model: plane Euclidean crystal

We start with lattice Γ = 〈1, τ〉 ⊂ C, unit cell Σ = C/Γ is a genus
1 Riemann surface.
Hamiltonian is ∆ + V . Moreover, since the genus is 1 we have
Jac(Σ) is an elliptic curve. Then a Higgs field with genus 1
spectral curve lives on a rank 2 bundle E over P1, valued in the
line bundle K (D) for a degree 4 divisor D.
The points in D are the roots of degree 4 polynomial P(z), then
the Higgs field has determinant proportional to meromorphic
quadratic differential

dz2

z(z−1)(z−m)

The Hitchin base is C, then the moduli space is a complex surface.
And it admits an explicit description.



Fullerenes

Following the paper of Kienzle-Rayan, we assign to each fullerene
(for large enough number of atoms) a hyperbolic crystal on H. A
crystal structure is given by a discrete group of isometries
(Fuchsian group) Γ ⊂ PSL(2,R). By uniformization theorem we
know that every Riemann surface Σ with g > 2 is isomorphic to
H/Γ for some Γ.

I Γ is isomorphic to π1(Σ).

Goal: Band structure for simple fullerenes and how it relates with
reality.



Results, ’23

For fullerene-like molecules there are six low-lying states that do
not depend strongly on the Kekule-induced mass gap.

The coupling configuration of the C60 molecule, where vortices
reside on the pentagons.

When applied to the leapfrog fullerenes C60+6k it is possible to find
that there should be as well six low-lying modes that are insensitive
to the magnitude of the Kekule distortion.



Thank you!


