

Arcs and singularities

Nero Budur (KU Leuven)

Pipa, December 2023

Arcs and jets

 $\mathscr{L}_{\infty}(\mathbb{A}^n) = \operatorname{Hom}_{\mathbb{C}-a/g}(\mathbb{C}[x_1,\ldots,x_n],\mathbb{C}[\![t]\!]) \simeq \mathbb{A}^{\infty}$ $\mathscr{L}_m(\mathbb{A}^n) = \operatorname{Hom}_{\mathbb{C}_{-2}/\sigma}(\mathbb{C}[x_1, \ldots, x_n], \mathbb{C}[t]/t^{m+1}) \simeq \mathbb{A}^{n(m+1)}$ Truncation: $\pi_m : \mathscr{L}_{\infty}(\mathbb{A}^n) \to \mathscr{L}_m(\mathbb{A}^m)$ trivial fibration. Contact loci of $f \in \mathbb{C}[x_1, \ldots, x_n] \setminus \mathbb{C}$ $\mathscr{L}_{\infty}(\mathbb{A}^n) \supset \mathscr{X}_{\infty}^{\infty} = \{\gamma \mid f(\gamma)(t) = *t^m + h.o.t., * \neq 0\}$ $\mathscr{L}_m(\mathbb{A}^n) \supset \mathscr{X}_m = \{ \gamma \mid f(\gamma)(t) \equiv *t^m, \ * \neq 0 \}$ $\mathscr{X}_m^{\infty} = \pi_m^{-1} \mathscr{X}_m$, so \mathscr{X}_m^{∞} and \mathscr{X}_m are essentially the same. Encode: singularities of f. Good: have explicit equations. Bad: their basic topology is not understood. Closely related: $\mathscr{X}_m^{res} := \{ \gamma \in \mathscr{X}_m \mid s = 1 \}$, the restricted contact loci.

Motivic zeta function

$$\begin{split} &Z_f(T) = \sum_m [\mathscr{X}_m] T^m \text{ is rational (Denef-Loeser).} \\ &\text{Monodromy Conjecture (Igusa, D-L): The poles of } Z_f(t) \text{ give eigenvalues of monodromy on the cohomology of Milnor fibers of } f. \\ &\textbf{Example } f = y^2 - x^3 \\ &\gamma = (x + x_1 t + x_2 t^2 + \dots, y + y_1 t + y_2 t^2 + \dots) \\ &f(\gamma) = f + f_1 t + f_2 t^2 + \dots = \\ &= f + (2yy_1 - 3x^2x_1)t + (2(y_1^2 + yy_2) - 3(2xx_1^2 + x^2x_2))t^2 + \dots \\ &\mathscr{X}_3^\infty = \{f = f_1 = f_2 = 0\} \setminus \{f_3 = 0\} \end{split}$$

Example f hyperplane arrangement \Rightarrow cohomology rings $H^*(\mathscr{X}_m, \mathbb{Z})$ are explicit combinatorial invariants (B.-Tue)

General setup X smooth \mathbb{C} variety, D effective divisor, Σ closed subset of D. Consider $\mathscr{X}_m(X, D, \Sigma)$ and $\mathscr{X}_m^{res}(X, D, \Sigma)$. Fix $\mu : X \to X$ an m-separating log resolution $\mu^{-1}D = \Sigma = N \cdot F$

Fix $\mu: Y \to X$ an *m*-separating log resolution, $\mu^{-1}D = \sum_{i \in S} N_i E_i$. Get partition

$$\mathscr{X}_m^{\infty} = \sqcup_{i \in S_m} \mathscr{X}_{m,i}$$

where $S_m = \{i \in S \mid N_i \text{ divides } m, \ \mu(E_i) \subset \Sigma\}$ and

 $\mathscr{X}_{m,i} = \{ \gamma \in \mathscr{X}_m^{\infty} \mid \gamma \text{ lifts with center on } E_i^{\circ} \}$

are non-empty, irreducible, smooth, locally closed, homotopy type related to E_i° (Ein-Lazarsfeld-Mustata). Similarly for \mathscr{X}_m^{res} . **Theorem** (B.-Bobadilla-Le-Nguyen) An explicit spectral sequence with \mathbb{E}_1 in terms of E_i° computes $H_c^*(\mathscr{X}_m^{res}, \mathbb{Z})$. **Theorem** (McLean) A spectral sequence with same \mathbb{E}_1 computes Floer cohomology $HF^*(\phi_f^m)$, where ϕ_f is the monodromy on the Milnor fiber of f, if f has an isolated singularity.

Arc-Floer conjecture (BBLN)

$$H^*_c(\mathscr{X}^{res}_m(\mathbb{A}^n, D, 0), \mathbb{Z}) \simeq HF^*(\phi^m_f)$$

where $D = f^{-1}(0)$, $0 \in D$ isolated singularity. OK: for $m = mult_0 f$. It would recover: **Theorem** (Denef-Loeser)

$$\chi(\mathscr{X}_m) = \sum_k (-1)^k \operatorname{Trace} \{ \phi_f^m \subset H^k(M_{f,0}, \mathbb{C}) \}$$

where $M_{f,0}$ is the Milnor fiber of f at 0. **Theorem** (de la Bodega - de Lorenzo Poza) The Arc-Floer conjecture is true for plane curves.

Embedded Nash problem Determine geometrically the irreducible components of $\mathscr{X}_m(X, D, \Sigma)$. That is, which E_i give components $\mathscr{X}_{m,i}$ of \mathscr{X}_m ?

Theorem (B., Bobadilla, de la Bodega, de Lorenzo Poza, Pelka) If E_i is not contracted on a minimal model of $(Y, (\mu^* D_{red}))$ over X, then $\overline{\mathscr{K}_{m,i}}$ is a component of \mathscr{K}_m for any m divisible by N_i .

Theorem (BBBLP) Combinatorial solution to the embedded Nash problem for $(\mathbb{C}^2, C, 0)$ with C an unibranch plane curve singularity.

Theorem (de la Bodega - de Lorenzo Poza) All plane curves C.

These are embedded analogs of results for the classical Nash problem of Bobadilla-Pe Pereira, de Fernex-Docampo.

KU LEUVEN

Example
$$f = y^2 - x^3$$
, $m = 8$

So $\mathscr{X}_8(\mathbb{C}^2, f, 0)$ has two irreducible (and disjoint) components: \mathscr{X}_{8, E_6} and $\overline{\mathscr{X}_{8, E_4}} = \mathscr{X}_{8, E_4} \sqcup \mathscr{X}_{8, E_1}$.

