Automorphisms of Projective Hypersurfaces

Alvaro Liendo

(joint work with V. González, P. Montero and R. Villaflor)

Instituto de Matemática, Universidad de Talca
Pipa, December 15, 2023

Projective space

Let V be a vector space V of dimension $n+2$
The projective space \mathbf{P}^{n+1} is the quotient of $V \backslash\{0\}$ by the equivalence relation \sim given by

$$
x \sim y \text { if and only if } x=\lambda y \quad \text { with } \lambda \in \mathbf{C}
$$

Projective hypersurfaces

A homogeneous form F of degree d is an element in the symmetric product $S^{d}\left(V^{*}\right)$

If we pick a basis $\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}, x_{n+1}\right\}$ of V^{*}, we have the symmetric algebra

$$
S\left(V^{*}\right) \simeq \mathbf{C}\left[x_{0}, x_{1}, \cdots, x_{n}, x_{n+1}\right]
$$

Hence, a homogeneous form F of degree d is a polynomial of degree d.

A projective hypersurface X of dimension n and degree d is the zero set in \mathbf{P}^{n+1} of a homogeneous form F of degree d.

$$
X=V(F)=\left\{x \in \mathbf{P}^{n+1} \mid F(x)=0\right\}
$$

Fermat Hypersurface

The Fermat hypersurface of dimension n and degree d is given by the form

$$
F=x_{0}^{d}+x_{1}^{d}+\ldots+x_{n+1}^{d}
$$

Two-dimensional cross-section of the Fermat quintic threefold

Klein Hypersurface

The Fermat hypersurface of dimension n and degree d is given by the form

$$
K=x_{0}^{d-1} x_{1}+x_{1}^{d-1} x_{2}+\ldots+x_{n+1}^{d-1} x_{0}
$$

Clebsch cubic surface

Smooth varieties

A complex variety is smooth if it is locally analytically isomorphic to the Euclidean space

The points where X is not locally analytically isomorphic to the Euclidean space are called the singular points of X.

Cayley nodal cubic surface

Clebsch cubic surface

Smooth hypersurfaces

Jacobian Criterion

A point x in a projective hypersurface $X=V(F)$ of dimension n and degree d in \mathbf{P}^{n+1} is singular if and only if

$$
\frac{d F}{d x_{0}}(x)=\frac{d F}{d x_{1}}(x)=\cdots=\frac{d F}{d x_{n+1}}(x)=0
$$

Let $n \geq 1$ and $d \geq 3$ with $(n, d) \neq(1,3),(2,4)$
Every automorphism of a smooth hypersurface

$$
X=\{F=0\} \subset \mathbf{P}^{n+1}
$$

is induced by an automorphism of \mathbf{P}^{n+1} and $\operatorname{Aut}(X)$ is finite.
(Matsumura-Monsky '64)
Since

$$
\operatorname{Aut}\left(\mathbf{P}^{n+1}\right)=\operatorname{PGL}(n, \mathbf{C})
$$

every automorphism φ of X is represented by a matrix $M \in \operatorname{GL}(n, \mathbf{C})$.

Let φ be an automorphism of $X=V(F)$
Since the order of φ is finite (say p), we can chose a basis that makes it diagonal. Hence,

$$
\left(x_{0}: x_{1}: \cdots: x_{n+1}\right) \stackrel{\varphi}{\longmapsto}\left(\xi^{\sigma_{0}} \cdot x_{0}: \xi^{\sigma_{1}} \cdot x_{1}: \cdots: \xi^{\sigma_{n+1}} \cdot x_{n+1}\right),
$$

Hence, the automorphism if characterized by

$$
\sigma=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n+1}\right) \in(\mathbf{Z} / p \mathbf{Z})^{n+2}
$$

Let X be a hypersurface of dimension n and degree d, given by the homogeneous form $F \in S^{d}\left(V^{*}\right)$. If $\operatorname{deg}_{i}(F) \leq d-2$, for some $i \in\{0, \ldots, n+1\}$, then X is singular.

Proof.

$$
F=x_{0}^{d-2} L_{2}+x_{0}^{d-3} L_{3}+\ldots+x_{0} L_{d-1}+L_{d}
$$

where L_{j} is a form of degree j in the variables $\left\{x_{1}, \ldots, x_{n+1}\right\}$.

$$
\begin{aligned}
& \frac{\partial F}{\partial x_{0}}=(d-2) x_{0}^{d-3} L_{2}+(d-3) x_{0}^{d-4} L_{3}+\ldots+L_{d-1} \\
& \frac{\partial F}{\partial x_{i}}=x_{0}^{d-2} \frac{d L_{2}}{d x_{i}}+x_{0}^{d-3} \frac{d L_{3}}{d x_{i}}+\ldots+\frac{d L_{d}}{d x_{i}}, \quad i \in\{1, \ldots, n+1\}
\end{aligned}
$$

Now, the Jacobian criterion shows that the point $(1: 0: \ldots: 0)$ is singular.

Let $\varphi \in \operatorname{Aut}(X)$. We have $\varphi^{*}(F)=\lambda F$. Assume for a moment that $\varphi^{*}(F)=F$.

$$
\text { if } \quad F=x_{0}^{d}+\ldots \quad \text { then } \quad \varphi^{*}(F)=\xi^{d \sigma_{0}} x_{0}^{d}+\ldots
$$

And so p divides d

$$
F=x_{0}^{d-1} x_{1}+\ldots \quad \text { then } \quad \varphi^{*}(F)=\xi^{(d-1) \sigma_{0}+\sigma_{1}} x_{0}^{d-1} x_{1}+\ldots
$$

And so $\left\{\begin{array}{l}p \text { divides } d-1 \text { and } \sigma_{1}=0 \bmod p \text {, or } \\ \sigma_{0}, \sigma_{1} \neq 0 \text { and }(d-1) \sigma_{0}+\sigma_{1}=0 \bmod p\end{array}\right.$
In the second case, we can iterate with x_{1} to obtain

$$
\sigma_{i}=(1-d)^{i} \sigma_{0} \quad \bmod p
$$

Theorem (González, L. 2013)

Let n, d, p be positive integers with $d \geq 3,(n, d) \neq(1,3),(2,4)$ and p prime.
Then p is the order of a smooth hypersurface of dimension n and degree d if and only if p divides $d(d-1)$ or
there exists $\ell \in\{1,2, \ldots, n+2\}$ such that $(1-d)^{\ell} \equiv 1 \bmod p$.

Corollary

Let n, d be positive integers with $d \geq 3$ and $(n, d) \neq(1,3),(2,4)$. If a prime number p is the order of an automorphism of a smooth hypersurface of dimension n and degree d, then

$$
p<(d-1)^{n+1}
$$

Theorem (González, L. 2013)
Let $n \geq 3, d \geq 3$. Then, a smooth hypersurface $X \subseteq \mathbf{P}^{n+1}$ of degree d admits an automorphism of prime order $p>(d-1)^{n}$ if and only if

$$
X \simeq\left\{x_{0}^{d-1} x_{1}+x_{1}^{d-1} x_{2}+\ldots+x_{n+1}^{d-1} x_{0}=0\right\}
$$

$n+2$ is prime and $p=\frac{(d-1)^{n+2}+1}{d}$ is prime.
We say that X is a Klein hypersurface of Wagstaff type of dimension n and degree d.

Theorem (González, Montero, L. 2022)
Let n, d, p, r be positive integers with $d \geq 3,(n, d) \neq(1,3),(2,4)$ and p prime.
Then p^{r} is the order of an automorphism of a smooth hypersurface of dimension n and degree d if and only if
(i) p divides $d-1$ and $r \leq k(n+1)$, where $d-1=p^{k} e$ with $\operatorname{gcd}(p, e)=1$, or
(ii) p divides d and and there exists $\ell \in\{1,2, \ldots, n+1\}$ such that $(1-d)^{\ell} \equiv 1 \bmod p^{r}$, or
(iii) p does not divide $d(d-1)$ and there exists $\ell \in\{1,2, \ldots, n+2\}$ such that $(1-d)^{\ell} \equiv 1 \bmod p^{r}$.

Let $\pi: \operatorname{PGL}(V) \rightarrow \mathrm{GL}(V)$.
Let $G \subset \operatorname{Aut}(X) \subset \operatorname{PGL}(V)$ with $X=V(F)$.
We say that G is liftable if and only if there exists $\widetilde{G} \in G L(\underset{\sim}{V})$ such that $\widetilde{G} \xrightarrow{\pi} G$ is an isomorphism and $\varphi^{*}(F)=F$ for all $\varphi \in \widetilde{G}$.

Theorem (González, Montero, L. 2022)
Let $n \geq 1$ and $d \geq 3$ with $(n, d) \neq(1,3),(2,4)$. Then the automorphism group of every smooth hypersurface of dimension n and degree d in $\mathbb{P}(V)$ is liftable if and only if d and $n+2$ are relatively prime.

We also obtain that non-liftable automorphism always have order dividing d and $n+2$.

This theorem was inspired by papers by Oguiso and his coauthors.

The Klein hypersurface

$$
X_{K}=\left\{x_{0}^{d-1} x_{1}+x_{1}^{d-1} x_{2}+\ldots+x_{n+1}^{d-1} x_{0}=0\right\}
$$

has two natural automorphisms: if we define

$$
m:=\frac{(d-1)^{n+2}-(-1)^{n+2}}{d}
$$

then X admits an automorphism σ of order m and an automorphism ν of order $n+2$. They are given by

$$
\begin{gathered}
\left(x_{0}: x_{1}: \cdots: x_{n+1}\right) \stackrel{\sigma}{\mapsto}\left(\zeta_{d m} x_{0}: \zeta_{d m}^{1-d} x_{1}: \cdots: \zeta_{d m}^{(1-d)^{n+1}} x_{n+1}\right), \\
\left(x_{0}: x_{1}: \cdots: x_{n+1}\right) \stackrel{\nu}{\mapsto}\left(x_{1}: x_{2}: \cdots: x_{n+1}: x_{0}\right)
\end{gathered}
$$

Hence, the following group acts faithfully on X

$$
\mathcal{K}(n, d):=(\mathbf{Z} / m \mathbf{Z}) \rtimes \mathbf{Z} /(n+2) \mathbf{Z}
$$

Theorem (González, Montero, Villaflor, L. 2023)
Let $n \geq 1$ and $d \geq 3$, and $X_{d} \subseteq \mathbf{P}^{n+1}$ be the Klein hypersurface X. Then

$$
\operatorname{Aut}(X)=\left\{\begin{array}{cl}
X \rtimes \mathbf{Z} / 6 \mathbf{Z} & \text { if } n=1, d=3 \\
\operatorname{PSL}_{2}\left(\mathbf{F}_{7}\right) & \text { if } n=1, d=4 \\
\mathcal{K}(n, d) & \text { if } n=1, d \geq 5 \\
\mathcal{S}_{5} & \text { if } n=2, d=3 \\
?(+\infty) & \text { if } n=2, d=4 \\
\mathcal{K}(n, d) & \text { if } n=2, d \geq 5 \\
\operatorname{PSL}_{2}\left(\mathbf{F}_{11}\right) & \text { if } n=3, d=3 \\
\mathcal{K}(n, d) & \text { if } n=3, d \geq 4 \\
\mathcal{K}(n, d) & \text { if } n \geq 4, d \geq 3
\end{array}\right.
$$

Theorem (González, Montero, Villaflor, L. 2023)
Let $n \geq 1$ and $d \geq 3$, and $X_{d} \subseteq \mathbf{P}^{n+1}$ be the Klein hypersurface X. Then

$$
\operatorname{Aut}(X)=\left\{\begin{array}{cl}
X \rtimes \mathbf{Z} / 6 \mathbf{Z} & \text { if } n=1, d=3 \\
\operatorname{PSL}_{2}\left(\mathbf{F}_{7}\right) & \text { if } n=1, d=4 \\
\mathcal{K}(n, d) & \text { if } n=1, d \geq 5 \\
\mathcal{S}_{5} & \text { if } n=2, d=3 \\
?(+\infty) & \text { if } n=2, d=4 \\
\mathcal{K}(n, d) & \text { if } n=2, d \geq 5 \\
\operatorname{PSL}_{2}\left(\mathbf{F}_{11}\right) & \text { if } n=3, d=3 \\
\mathcal{K}(n, d) & \text { if } n=3, d \geq 4 \\
\mathcal{K}(n, d) & \text { if } n \geq 4, d \geq 3
\end{array}\right.
$$

arXiv:2212.13308: On a Torelli Principle for automorphisms of Klein hypersurfaces

Remark that

$$
\mathcal{K}(n, d):=(\mathbf{Z} / m \mathbf{Z}) \rtimes \mathbf{Z} /(n+2) \mathbf{Z}=\langle\sigma\rangle \rtimes\langle\nu\rangle
$$

σ is diagonal
ν and σ have at most one coefficient different from 0 in each row and each column

Remark that

$$
\mathcal{K}(n, d):=(\mathbf{Z} / m \mathbf{Z}) \rtimes \mathbf{Z} /(n+2) \mathbf{Z}=\langle\sigma\rangle \rtimes\langle\nu\rangle
$$

σ is diagonal
ν and σ have at most one coefficient different from 0 in each row and each column

A matrix M is a generalized permutation matrix if there is at most one coefficient different from 0 in each row and each column. $M=P_{1} D P_{2}$ with P_{1}, P_{2} permutation matrices and D diagonal.

A matrix M is a generalized triangular matrix if $M=P_{1} T P_{2}$ with P_{1}, P_{2} permutation matrices and T triangular.

To compute $\operatorname{Aut}(X)$ in the remaining cases, we improve the differential method introduced by Poonen (2005) and Oguiso-Yu (2019).

Let $V=\mathbf{C}^{n+2}$ so that $\mathbf{P}^{n+1}=\mathbf{P}(V)$.
$V^{*}=\operatorname{span}\left(x_{0}, \ldots, x_{n+1}\right) \simeq \mathbf{C}^{n+2}$
$S\left(V^{*}\right)=\mathbf{C}\left[x_{0}, \ldots, x_{n+1}\right]$
$K \in S^{d}\left(V^{*}\right)$ homogeneous forms in $n+2$ variables of degree d.

Let D be the directional derivative operator

$$
D: V^{*} \times S\left(V^{*}\right) \rightarrow S\left(V^{*}\right), \quad(x, F) \mapsto \frac{\partial F}{\partial x}=\nabla(F) \cdot x
$$

For a fixed homogeneous form $F \in S\left(V^{*}\right)$ define the specialization of D given by

$$
D_{F}: V^{*} \rightarrow S\left(V^{*}\right), \quad x \mapsto \frac{\partial F}{\partial x}=\nabla(F) \cdot x
$$

We define the differential rank of a form $F \in S\left(V^{*}\right)$ as

$$
\operatorname{drank}(F):=\operatorname{rank} D_{F}
$$

Theorem (Differential method)
Let X be a hypersurface in \mathbf{P}^{n+1} given by a homogeneous form $F \in S\left(V^{*}\right)$ and let $\varphi \in G L(V)$ be a linear automorphism of X.
Then for every $x \in V^{*}$ we have

$$
\operatorname{drank}\left(\frac{\partial F}{\partial x}\right)=\operatorname{drank}\left(\frac{\partial F}{\partial\left(\varphi^{*} x\right)}\right) .
$$

The differential method is useful when there exists $x \in V^{*}$ with small

$$
\operatorname{drank}\left(\frac{\partial F}{\partial x}\right)
$$

Example: Fermat hypersurface

$$
F=x_{0}^{d}+x_{1}^{d}+\ldots+x_{n+1}^{d}, \quad d \geq 3
$$

Let $\varphi=\left(\varphi_{i j}\right)$ be an automorphism of

$$
Y=\{F=0\} \in \mathbf{P}^{n+1}
$$

We have

$$
\operatorname{drank}\left(\frac{\partial F}{\partial x_{i}}\right)=\operatorname{drank}\left(d x_{i}^{d-1}\right)=\operatorname{drank}\left(x_{i}^{d-1}\right)=1
$$

Example: Fermat hypersurface

$$
F=x_{0}^{d}+x_{1}^{d}+\ldots+x_{n+1}^{d}, \quad d \geq 3
$$

Let $\varphi=\left(\varphi_{i j}\right)$ be an automorphism of

$$
Y=\{F=0\} \in \mathbf{P}^{n+1}
$$

We have

$$
\operatorname{drank}\left(\frac{\partial F}{\partial x_{i}}\right)=\operatorname{drank}\left(d x_{i}^{d-1}\right)=\operatorname{drank}\left(x_{i}^{d-1}\right)=1
$$

Hence
$1=\operatorname{drank}\left(\frac{\partial F}{\partial \varphi\left(x_{i}\right)}\right)=\operatorname{drank}\left(\nabla F \cdot \varphi\left(x_{i}\right)\right)=\operatorname{drank}\left(\sum_{j} \varphi_{i j} \cdot x_{j}^{d-1}\right)$

Example: Fermat hypersurface

$$
F=x_{0}^{d}+x_{1}^{d}+\ldots+x_{n+1}^{d}, \quad d \geq 3
$$

Let $\varphi=\left(\varphi_{i j}\right)$ be an automorphism of

$$
Y=\{F=0\} \in \mathbf{P}^{n+1}
$$

We have

$$
\operatorname{drank}\left(\frac{\partial F}{\partial x_{i}}\right)=\operatorname{drank}\left(d x_{i}^{d-1}\right)=\operatorname{drank}\left(x_{i}^{d-1}\right)=1
$$

Hence
$1=\operatorname{drank}\left(\frac{\partial F}{\partial \varphi\left(x_{i}\right)}\right)=\operatorname{drank}\left(\nabla F \cdot \varphi\left(x_{i}\right)\right)=\operatorname{drank}\left(\sum_{j} \varphi_{i j} \cdot x_{j}^{d-1}\right)$
and so
φ is a generalized permutation matrix

Example: Fermat hypersurface

$$
F=x_{0}^{d}+x_{1}^{d}+\ldots+x_{n+1}^{d}, \quad d \geq 3
$$

Theorem
The automorphism group of the Fermat hypersurface $X=V(F)$ of dimension $n \geq 1$ and degree $d \geq 3$, with $(n, d) \neq(1,3),(2,4)$ is isomorphic to

$$
\operatorname{Aut}(X)=(\mathbf{Z} / d \mathbf{Z})^{n+1} \rtimes S_{n+2}
$$

Let $F \in S^{d}\left(V^{*}\right)$ be a homogeneous form of degree d.
(i) We define the distance between two monomials $\prod x_{i}^{a_{i}}$ and $\prod x_{i}^{b_{i}}$ as the sum $\sum_{i}\left|a_{i}-b_{i}\right|$.
(ii) We define the sparsity of F with respect to β, denoted by $\operatorname{spar}(F)$, as the minimum of the distance between the monomials of F after identifying $S\left(V^{*}\right) \simeq \mathbf{C}\left[x_{0}, \ldots, x_{n+1}\right]$ via the basis β.
(iii) We define the variables of F, denoted by $\operatorname{vars}(F)$, as the set of variables appearing in F, i.e., $\operatorname{vars}(F)$ is the smallest subset of β^{*} such that F is contained in $S^{d}(W)$ with W the span of $\operatorname{vars}(F)$.

Let $F \in S\left(V^{*}\right)$ be homogeneous of degree $d \geq 2$ respectively. We endow the set $\beta^{*}=\left\{x_{0}, \ldots, x_{n+1}\right\}$ with the relation \leq_{F} given by

$$
x_{i} \leq_{F} x_{j} \quad \Longleftrightarrow \quad \operatorname{vars}\left(\frac{d F}{d x_{i}}\right) \subseteq \operatorname{vars}\left(\frac{d F}{d x_{j}}\right)
$$

Let $F \in S\left(V^{*}\right)$ be homogeneous of degree $d \geq 2$ respectively. We endow the set $\beta^{*}=\left\{x_{0}, \ldots, x_{n+1}\right\}$ with the relation \leq_{F} given by

$$
x_{i} \leq_{F} x_{j} \quad \Longleftrightarrow \quad \operatorname{vars}\left(\frac{d F}{d x_{i}}\right) \subseteq \operatorname{vars}\left(\frac{d F}{d x_{j}}\right)
$$

The set β^{*} together with the relation \leq_{F} may not be a poset. Indeed, let $\beta^{*}=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$.

$$
F=x_{0}^{d-1} x_{1}+x_{1}^{d-1} x_{0}+x_{2}^{d}+x_{3}^{d} .
$$

Then $\left(\beta^{*}, \leq_{F}\right)$ is not a poset since $x_{0} \leq_{(F, \beta)} x_{1}$ and $x_{1} \leq_{(F, \beta)} x_{0}$.

$$
F=x_{0}^{d}+x_{1}^{d}+x_{2}^{d}+x_{3}^{d} .
$$

Then $\left(\beta^{*}, \leq_{F}\right)$ is the trivial poset

Theorem

Let $X=V(F) \subset \mathbb{P}(V)$ be a smooth hypersurface of dimension $n \geq 1$ and degree $d \geq 3$ with $(n, d) \neq(1,3),(2,4)$. If $\operatorname{spar}(F)>4$ and $\left(\beta^{*}, \leq_{F}\right)$ is a poset then $\operatorname{Aut}(X)$ is composed of generalized triangular matrices.

Corollary

Let $X=V(F) \subset \mathbb{P}(V)$ be a smooth hypersurface of dimension $n \geq 1$ and degree $d \geq 3$ with $(n, d) \neq(1,3),(2,4)$. If $\operatorname{spar}(F)>4$ and $\left(\beta^{*}, \leq_{F}\right)$ is the trivial a poset then $\operatorname{Aut}(X)$ is composed of generalized permutation matrices.

$$
K=x_{0}^{d-1} x_{1}+x_{1}^{d-1} x_{2}+\ldots+x_{n+1}^{d-1} x_{0}
$$

Corollary

The automorphism group of the Klein hypersurface $X=V(K)$ of dimension $n \geq 2$ and degree $d \geq 4$, with $(n, d) \neq(2,4)$ is isomorphic to

$$
\operatorname{Aut}(X)=(\mathbf{Z} / m \mathbf{Z}) \rtimes \mathbf{Z} /(n+2) \mathbf{Z}
$$

where $m=\frac{(d-1)^{n+2}-(-1)^{n+2}}{d}$.

Proof.

$\operatorname{spar}(K)=2 d-2>4 y$ vars $\left(\frac{d K}{d x_{i}}\right)=\left\{x_{i-1}, x_{i}, x_{i+1}\right\}$
$x_{i} \leq_{K} x_{j} \Longleftrightarrow x_{i}=x_{j}$ and $\left(\beta^{*}, \leq_{K}\right)$ is a poset
$\varphi \in \operatorname{Aut}(X)$ is given by a generalized permutation matrix

$$
K=x_{0}^{d-1} x_{1}+x_{1}^{d-1} x_{2}+\ldots+x_{n+1}^{d-1} x_{0}
$$

Proof.

The only generalized permutation matrices inducing automorphisms of X have the shape of a multiple of

$$
\varphi=\left(\begin{array}{ccccc}
0 & * & 0 & \cdots & 0 \\
0 & 0 & * & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & * \\
* & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Taking all coefficients equal to 1 we obtain a cyclic permutation of the variables. $P<\operatorname{Aut}(X)$ with $|P|=n+2$

Composing any φ with an element of P we obtain a diagonal matrix.

Proof.

Assume that φ is diagonal, and note that, up to changing the representative we can assume that $\varphi_{0,0}^{d-1} \varphi_{1,1}=1$. Replacing in Klein's equation we get that $\varphi_{i, i}^{d-1} \varphi_{i+1, i+1}=1$ for all $i=0, \ldots, n+1$. Hence

$$
\varphi_{0,0}=\varphi_{n+1, n+1}^{1-d}=\varphi_{n, n}^{(1-d)^{2}}=\cdots=\varphi_{1,1}^{(1-d)^{n+1}}=\varphi_{0,0}^{(1-d)^{n+2}}
$$

Thus φ is determined by the value of $\varphi_{0,0}$ which is a dm-root of unity.
Hence, we have an epimorphism $\mathbf{Z} / d m \mathbf{Z} \rightarrow D$ whose kernel is the d-roots of unity. Therefore D is a cyclic group of order m
¡Gracias!

