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Cox rings of blowing-ups
1. Cox rings as invariant rings

Question 1.1. Given a subfield K ⊆ C(x1, . . . ,xn), Hilberth problem
14 asks when

S := K ∩C[x1, . . . ,xn]

is a finitely generated algebra [Hil90].

If G is a group that acts linearly on C(x1, . . . ,xn) and K =C(x1, . . . ,xn)
G,

then Hilbert proved finite generation of S when G is a reductive group
and conjectured that S would always be finitely generated. Finally, Na-
gata produced a counterexample [Nag59].
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Cox rings of blowing-ups
1. Cox rings as invariant rings

Nagata in [Nag59] takes K = C(x1, . . . ,xr,y1, . . . ,yr)
G, where G is a

subgroup of Cr
a which acts linearly on C[x1, . . . ,xr,y1, . . . ,yr] by

(g1, . . . ,gr) ·u =

{
xi if u = xi

yi +gixi if u = yi.

More precisely G is the kernel of a maximal rank n× r matrix, with
n < r, and such that no columns is the zero vector

M :=

p11 · · · p1r
...

...
pn1 · · · pnr
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Cox rings of blowing-ups
1. Cox rings as invariant rings

Nagata shows that there are isomorphisms of Zr+1-graded algebras

C[x1, . . . ,xr,y1, . . . ,yr]
G ≃

⊕
(d,m)∈Z×Zr

R(d,m)

≃R(Bl{p1,...,pr}(P
n−1))

where R(d,m) ⊆ C[z1, . . . ,zn] is the subspace of degree d homogeneous
polynomials with multiplicity ≥mi at pi ∈Pn−1, for any i= 1, . . . ,r. He
then shows that R(Bl{p1,...,pr}(P

n−1)) is not a finitely generated algebra.
Proving this leads him to formulate his famous conjecture.
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Cox rings of blowing-ups
1. Cox rings as invariant rings

Conjecture 1.2 (Nagata). Let Blgen
r (P2) be the blowing-up of P2 at r

points in very general position. Let H be the pullback of a line and let
E1, . . . ,Er be the exceptional divisors. Then the divisor

√
r H−E1 −·· ·−Er

is nef.
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Cox rings of blowing-ups
1. Cox rings as invariant rings

A generalization of Nagata example is given by Mukai in [Muk04]
who constructs an extended Nagata action and shows that its algebra
of invariants is isomorphic to the Cox ring of

Xa,b,c = Blb+c(Pc−1
a−1),

the blow-up of (Pc−1)a−1 in b+ c points in very general position. For
these rings Castravet and Tevelev prove the following [CT06].

Theorem 1.3. The following statements are equivalent:
▶ R(Xa,b,c) is a finitely generated algebra.
▶ 1

a +
1
b +

1
c > 1.
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Cox rings of blowing-ups
1. Cox rings as invariant rings

Definition 1.4. To any normal projective complex variety X with fi-
nitely generated divisor class group Cl(X) one can associate its Cox
sheaf and Cox ring [ADHL15]

R :=
⊕

[D]∈Cl(X)

OX(D), R(X) := Γ(X,R).

The Cox ring is a Cl(X)-graded algebra over the base field (complex
numbers in what follows).
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Cox rings of blowing-ups
1. Cox rings as invariant rings

A normal projective variety X with finitely generated Cox ring admits a
quotient construction similar to the one of projective space [ADHL15]

X̂

pX

��

⊆ X

X

where X̂ := SpecR, X := SpecR(X), and pX is a good quotient by the
action of HX = SpecC[Cl(X)]. The ideal IX ⊆R(X) of X \ X̂ is called
the irrelevant ideal.
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Cox rings of blowing-ups
1. Cox rings as invariant rings

Example 1.5. A toric variety X is quotient of a certain open subset
X̂ ⊆ Cr which is invariant under the diagonal action of a quasitorus
H = (C∗)r−n ⊕T , where T is a finite group.

(C∗)r

��

⊆ X̂

pX

��

⊆ Cr

(C∗)n ⊆ X

It is known that Cl(X) ≃ Zr−n ⊕ T and R(X) ≃ C[x1, . . . ,xr],
see [ADHL15, §2].
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Cox rings of blowing-ups
2. Blowing-ups

Let X be a normal projective variety with finitely generated Cox ring R,
and let BlpX be the blow-up at a smooth point p ∈ X (see also [Cut91]).

Theorem 2.1 ([HKL16]). Let I ⊆R be the ideal of p−1
X (p) in X. Then

R(BlpX)≃
⊕
m∈Z

(Im : I ∞
X )t−m ⊆ R[t±1],

where Im = R for any m ≤ 0.
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Cox rings of blowing-ups
2. Blowing-ups

As a consequence of the above theorem one can provide the follo-
wing criterion to decide if a subalgebra is the whole Cox ring [HKL16,
HKL18].

Proposition 2.2. Let X, R and I ⊆ R be as in Theorem 2.1 and let
S ⊆ R be a finite set of homogeneous elements which generate R. Let
▶ f := ∏

g∈S\I
g;

▶ f1t−m1 , . . . , fkt−mk ∈ R(BlpX) homogeneous elements;
▶ B0 := {tmisi − fi : i = 1, . . . ,k} ⊆ R[s1, . . . ,sk, t].

Assume that there is a finite set B0 ⊆ B ⊆ ⟨B0⟩ : ⟨t⟩∞ such that

dim(R) = dim(⟨B∪{t}⟩)> dim(⟨B∪{t, f}⟩).

Then R(BlpX) is generated by S∪{t, f1t−m1 , . . . , fkt−mk}.
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Cox rings of blowing-ups
2. Blowing-ups

Observation 2.3. There are no known necessary and sufficient
conditions for the finite generation of the Cox ring of BlpX,
when X is a toric variety. Partial results and examples are given
in [HKL16, HKL18, GL22, GAGK19, Cas18, GAGK23].

When X is a surface, as a consequence of [HK00], there are two reasons
for not having finite generation:

1. BlpX contains a nef class which is not semiample;
2. the effective cone Eff(BlpX) is not rational polyhedral.
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Cox rings of blowing-ups
3. Recent results

Theorem 3.1 ([CLTU23]). In every characteristic, there exist pro-
jective toric surfaces X such that the pseudo-effective cone Eff(BlpX)
is not polyhedral.
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Cox rings of blowing-ups
3. Recent results

Idea of proof.

▶ Riemann-Roch theorem implies that Eff(BlpX) contains a circular
cone Q.

▶ Using intersection theory and elliptic curve defined over Q one
constructs an extremal ray R≥0 · [C] of Eff(BlpX) which lies in Q.

[C]

Q

Thus, as shown in the picture, Eff(BlpX) cannot be polyhedral.
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Cox rings of blowing-ups
3. Recent results

Using Theorem 3.1 and a construction in [CT15] we could prove the
following.

Theorem 3.2 ([CLTU23]). The cone Eff(M0,n) is not polyhedral for
n ≥ 10, both in characteristic 0 and in characteristic p, for all primes p.
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Cox rings of blowing-ups
3. Recent results

Definition 3.3. A projective toric surface X is minimal if it does not
contain curves of negative self-intersection. These are quotients of P2

or of P1 ×P1 by the action of a finite abelian group of the maximal
torus (C∗)2.
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Cox rings of blowing-ups
3. Recent results

Theorem 3.4. There are minimal toric surfaces X of Picard rank
one, such that Eff(BlpX) is a two dimensional cone open on one si-
de [GAGK23].

Q

E
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Cox rings of blowing-ups
3. Recent results

Open problem. Is there such an example where the slope of the line is
not a rational number?

Q

E

R

The quotient morphism P2 → X, with fiber {q1, . . . ,qr} over p, induces
a surjection π : Blr(P2)→ Blp(X). So

R ∈ Eff(Blp(X))\Effp(X)⇒ R is nef

⇒ π
∗R is nef on Blr(P2)

⇒
√

r H−E1 −·· ·−Er is nef on Blr(P2)

⇒
√

r H−E1 −·· ·−Er is nef on Blgen
r (P2)
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Cox rings of blowing-ups
3. Recent results

Theorem 3.5 ([LU23]). Let X be a minimal toric surface of Picard
rank two. Then the Cox ring of BlpX is finitely generated.
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Cox rings of blowing-ups
3. Recent results

Idea of proof.

▶ The effective cone is generated by the subset S ⊆ Eff(BlpX) of
classes of strict transforms of one-parameters subgroups parame-
trized by the Hilbert bases of the four cones.

▶ S satisfies the hypothesis of Lemma 3.6.
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Cox rings of blowing-ups
3. Recent results

Lemma 3.6. Let X be a normal projective Q-factorial surface with
polyhedral effective cone Eff(X). Then the following are equivalent:

1. The Cox ring of X is finitely generated.
2. There exists a finite subset S ⊆ Eff(X) such that Eff(X) =

Cone(S) and for any facet F of Eff(X), the ray R ∈Nef(X), ortho-
gonal to F, satisfies the following

R ∈
⋂

C∈Rays(F)

Cone(S \C).
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