
Examples of non-rigid modular vector bundles on hyperkähler
manifolds

Enrico Fatighenti (Università di Bologna)
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Hyperkähler manifolds: definition

In this talk, we are going to talk about a special class of manifolds called
compact hyperkähler manifolds.

Definition

X (compact Kähler manifold) is a hyperkähler (HK) manifold if

π1(X ) = {0};
H0(X ,Ω2

X ) = Cσ, for σ non degenerate.

In general the definition does not require projectivity, but we are going to focus
on the projective ones.
Key result (Beauville - Bogomolov decomposition theorem): If X is a compact
Kähler manifold with c1(X ) = 0, then (up to a étale cover), X decomposes as
a product of HK, complex tori and Calabi-Yau manifolds.

Enrico Fatighenti Modular vector bundles on HK 2 / 14



Hyperkähler manifolds: definition

In this talk, we are going to talk about a special class of manifolds called
compact hyperkähler manifolds.

Definition

X (compact Kähler manifold) is a hyperkähler (HK) manifold if

π1(X ) = {0};
H0(X ,Ω2

X ) = Cσ, for σ non degenerate.

In general the definition does not require projectivity, but we are going to focus
on the projective ones.

Key result (Beauville - Bogomolov decomposition theorem): If X is a compact
Kähler manifold with c1(X ) = 0, then (up to a étale cover), X decomposes as
a product of HK, complex tori and Calabi-Yau manifolds.

Enrico Fatighenti Modular vector bundles on HK 2 / 14



Hyperkähler manifolds: definition

In this talk, we are going to talk about a special class of manifolds called
compact hyperkähler manifolds.

Definition

X (compact Kähler manifold) is a hyperkähler (HK) manifold if

π1(X ) = {0};
H0(X ,Ω2

X ) = Cσ, for σ non degenerate.

In general the definition does not require projectivity, but we are going to focus
on the projective ones.
Key result (Beauville - Bogomolov decomposition theorem): If X is a compact
Kähler manifold with c1(X ) = 0, then (up to a étale cover), X decomposes as
a product of HK, complex tori and Calabi-Yau manifolds.

Enrico Fatighenti Modular vector bundles on HK 2 / 14



Examples of compact HK

There aren’t many examples available of (projective) HK in dimension higher
than two:

1 (in dimension 2n, by Beauville):Hilbert schemes of n points on a K3
surfaces K3[n], or generalized Kummer variety Kn(A) constructed from an
abelian surface and their deformations;

2 in dimension 6 and 10: two sporadic examples constructed by O’Grady.

Standard technique to construct these examples: (desingularization of) moduli
spaces of (stable) sheaves on K3/Abelian surfaces.
Idea: Construct examples of (possibly known) HK by looking at moduli spaces
of sheaves (with extra properties) on higher dimensional HK.

For example, a possible good notion asks for stable sheaves F for which PX (F )
extends to all deformations of X . (cf. Verbitsky’s projectively
hyperholomorphicity of vector bundles)
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A good class of sheaves: modular sheaves

The notion of modular sheaves was recently introduced by O’Grady to expand
the previous idea. Recall that the discriminant of a sheaf is defined as

∆(F ) = c2(End(F )) = −2r(F )ch2(F ) + ch2
1(F ).

Definition

Let X be a HK of dimension 2n, and let qX be the Beauville-Bogomolov-Fujiki
form. F a torsion-free coherent sheaf on X is modular if there exists d(F ) ∈ Q
such that ∀α ∈ H2(X ),∫

X

∆(F ) · α2n−2 = d(F )(2n − 3)!!qX (α)n−1

If X is of K3[2]-type (i.e. deformation equivalent to the Hilbert scheme of two
points on a K3 surface), the modularity condition becomes simpler:

Remark

Let X be a HK of K3[2]-type. Then F is modular if and only if

∆(F ) = αc2(X )
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Examples of modular vector bundles

In order to produce examples of modular vector bundles on HK, we start from
the following well known example.

Let Y ⊂ P5 be a smooth cubic 4-fold. We consider X = F1(Y ) ⊂ Gr(2, 6) its
variety of lines. It is well known that X ∼ K3[2] (Beauville-Donagi) - and in
fact it gives a locally complete example.
On X we have two very natural vector bundles to consider: the restriction of
the (rank 4) quotient bundle E := Q|X and also the restriction of the rank 2
tautological bundle U|X .

Example

On X ⊂ Gr(2, 6) as above, E is modular (and U|X is not).

One can produce a similar construction starting from the Debarre-Voisin HK
Z ⊂ Gr(6, 10). Once again, Q|Z is modular.
More in general, there is the following (series of) results by O’Grady:

Theorem (O’Grady)

Results of existence and uniqueness of modular vector bundles on K3[n] under
certain numerical conditions. Moreover, if X = F1(Y ),
r(F ) = 4, c1(F ) = h, ∆(F ) = c2(X ), then F ∼= E .
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Rigidity and non-rigidity

Problem

E (and the others O’Grady’s bundles) are rigid, i.e. Ext1(E , E) = 0, so not
useful to construct positive-dimensional examples of HK.

In order to find more (non rigid) examples, the notion of atomic sheaves has
been introduced (cf Beckmann, Markman, Taelman), which is more restrictive
than the modular one. There is a encouraging result by Bottini:

Theorem (Bottini)

Let X be X ∼ K3[2]. There exists a stable, atomic (hence modular) vector
bundle F with ext1(F ,F ) = 10 and∧2 Ext1(F ,F ) ∼= Ext2(F ,F ) (smooth deformation functor).
On a specific HK, the smooth locus of an irreducible component of the moduli
space containing [F ] is birational (and conjecturally isomorphic) to OG10.

Question

Can we produce ”easy” examples of non rigid, modular vector bundles?
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Main idea

We want to modify O’Grady’s bundles, using standard tools from
representation theory. For example O’Grady’s bundle E : Q|X on
X = F1(Y ) ⊂ Gr(2, 6) is the restriction of a homogeneous bundle on Gr(2, 6).

Idea

Take (the restriction of) a suitable Schur functor of Q and see what happens!

Standard construction from representation theory: every irreducible,
homogeneous vector bundle on Gr(k, n) is of the form ΣαU ⊗ ΣβQ. The
cohomology of these objects on Gr(k, n) is completely explicit via the famous
Borel-Weil-Bott theorem. Of course, not every Schur functor will work. For
example, Sym2 E = Sym2Q|X is still rigid! We introduce first a definition:

Definition

For E a vector bundle on X , we denote with End0(E) the subbundle of the
traceless endomorphisms, i.e.

E ⊗ E∨ ∼= End0(E)⊕OX

We observe that if X is HK, then H i (End(E)) ⊃ H i (OX ) ∼= C for i = 2p.
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A first theorem

We state our first theorem:

Theorem (-, 2023)

Let X ⊂ Gr(2, 6) be X = F1(Y ), E as above. Set F =
∧2 E . Assume that X is

generic in the moduli space. Then F is µ-stable, modular and not rigid. We
have in fact:

Hp(X ,End0(F)) =


∧3 V∨6 p = 1, 3

C p = 2

0 otherwise

As a corollary, we have

extp(X ,F) =


20 p = 1, 3

2 p = 2

1 p = 0, 4

and also

H0(X ,F) =
∧2 V6;

ch(F) = 6 + 3h + 1
4
(3h2 − c2(X ))− 1

20
hc2(X )− c4(X )

h4
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How to prove it? Modularity and stability

There are several things to prove before making the statement above a
theorem. First of all, the modularity. We proved it using an auxiliary result.

Propostion

Let A be a torsion-free coherent sheaf of rank r on a smooth projective variety.
Then

∆(

p∧
A) = λp∆(A),

with λp = 1
p−1

(
r−1
p

)(
r−2
p−2

)

In our case ∆(F) = ∆(
∧2 E) = 10∆(E) = 10c2(X ). Hence, F is modular.

For the stability, since E is stable for X generic, F =
∧2 E is polystable. But F

is also simple, then for X generic F is stable.
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How to prove it? Cohomology computations

The cohomological computations of the proof are done using a combination of
standard tools in algebraic geometry and representation theory. First we
decompose in irreducibles

F ⊗ F∨ ∼= Σ2,2Q|X (−1)⊕OX ⊕ Σ2,1,1Q|X (−1)

In order to compute the cohomology of the factors above, we need to use the
Koszul complex. We know that X ⊂ Gr(2, 6) is X = V (σ), with
σ ∈ H0(Gr(2, 6), Sym3 U∨) a general global section. Therefore OX is resolved
by

0→ OGr(2,6)(−6)→
3∧

Sym3 U →
2∧

Sym3 U → Sym3 U → OX → 0

One has then to tensor the above complex with the factor involved in the
endomorphism bundle, decompose in irreducibles, use the Borel-Weil-Bott to
compute the cohomology of every single factor, and finally use all these data
together to compute the necessary cohomologies.
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A couple of remarks

A first remark is about the obstruction map:

Remark

We can consider the obstruction map given by the (symmetrized) Yoneda
pairing:

H1(X ,End0(F))× H1(X ,End0(F))→ H2(X ,End0(F)) ∼= C

If is zero, then there is a single component of the moduli space of stable
sheaves on X containing F , it has dimension 20 and it is smooth at F . If the
latter holds, then the component in question has a regular 2-form which is
symplectic in a neighborhood of F .

A second remark is about what happens if we started from the Debarre-Voisin
HK:

Remark

On Z ⊂ Gr(6, 10), Q|Z is also modular, stable and rigid. We can consider∧2Q|Z , and has the same invariants and ext-table. This should not be a
coincidence, since PX (Q|X ) deforms to PZ (Q|Z ), and the same for their

∧2.
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Iterating the process

What if we iterate the process? In fact, we can consider

K :=
2∧
F ∼=

2∧ 2∧
Q|X

which happens to be still irreducible (in fact, K = Σ2,1,1Q|X ).

K now has
r(K) = deg(K) = 15, and the same argument for modularity and stability
holds. More interestingly,

Theorem (-, 2023)

Let X ⊂ Gr(2, 6) be X = F1(Y ), K as above. Assume that X is generic in the
moduli space. Then K is µ-stable, modular and not rigid. We have in fact:

hp(X ,End0(K)) =


20 p = 1, 3

190 p = 2

0 otherwise

and we also have

Σ2,2,1,1V
∨
6 ⊕ C ∼= H2(X ,End0(K)) ∼=

2∧
H1(X ,End0(K))
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Iterating the process

What if we iterate the process? In fact, we can consider

K :=
2∧
F ∼=

2∧ 2∧
Q|X

which happens to be still irreducible (in fact, K = Σ2,1,1Q|X ). K now has
r(K) = deg(K) = 15, and the same argument for modularity and stability
holds. More interestingly,

Theorem (-, 2023)

Let X ⊂ Gr(2, 6) be X = F1(Y ), K as above. Assume that X is generic in the
moduli space. Then K is µ-stable, modular and not rigid. We have in fact:

hp(X ,End0(K)) =


20 p = 1, 3

190 p = 2

0 otherwise

and we also have

Σ2,2,1,1V
∨
6 ⊕ C ∼= H2(X ,End0(K)) ∼=

2∧
H1(X ,End0(K))
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Final comments

A few observations.

1 The situation of the last theorem is analogous to Bottini’s result, with the
smoothness of the deformation functor;

2 We could go on and produce more and more non-rigid examples! Also, we
could try to understand (combinatorially) which Schur functors give
non-rigid examples.

3 A work-in-progress by O’Grady is attempting to insert these examples in a
more general context. In particular, these moduli spaces could be
birational to K3[10].
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Thanks for the attention!
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