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Bernstein’s problem

Goal
The objective of this work is to study the geometric behavior of the
solutions of the equation:

div

(
∇u√

∥∇u∥2 + 1

)
= 0.

Bernstein’s Problem
If the graph of a function on Rn is a minimal hypersurface in Rn+1,
does this imply that the function is linear?
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History

1. Bernstein (1915 − 1917): proved Bernstein’s theorem that a
graph of a real function on R2 that is also a minimal surface in R3

must be a plane (dimM = 2);
2. Moser (1961): proved Bernstein’s theorem that a graph of a real

Lipschitz function on Rn that is also a minimal surface in Rn+1

must be a hyperplane (any dimension dimM)
3. Fleming (1962) gave a new proof of Bernstein’s theorem by

deducing it from the fact that there is no non-planar
area-minimizing cone in R3;

4. De Giorgi (1965) showed that if there is no non-planar
area-minimizing cone in Rn−1 then the analogue of Bernstein’s
theorem is true for graphs in Rn, which in particular implies that it
is true in R4 (dimM = 3).

5. Almgren (1966) showed there are no non-planar minimizing
cones in R4, thus extending Bernstein’s theorem to
R5(dimM = 4).
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History-Higher codimension

1. Simons (1968) showed there are no non-planar minimizing
cones in R7, thus extending Bernstein’s theorem to R8. He also
showed that the surface defined by{

x ∈ R8 : x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8
}
,

is a locally stable cone in R8, and asked if it is globally
area-minimizing (dimM ≤ 7);

2. Bombieri, De Giorgi and Giusti (1969) showed that Simons’ cone
is indeed globally minimizing, and that in Rn for n ≥ 9 there are
graphs that are minimal, but not hyperplanes. Combined with the
result of Simons, this shows that the analogue of Bernstein’s
theorem is true in Rn for n ≤ 8, and false in higher dimensions.
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History-Higher dimension and codimension

1. Lawson (1977) present the graph of the Lipschitz mapping
f : R4 → R3 given by f (0) = 0 and

f (x) =
√

5
2

∥x∥η
(

x
∥x∥

)
, ∀x ̸= 0,

is a minimal cone, where η : S3 → S2 is the Hopf mapping given
by

η(z1, z2) = (|z1|2 − |z2|2,2z1z̄2).

2. Fernandes and Sampaio (2020) showed that if X ⊂ Cn be a pure
dimensional complex algebraic subset. If X is Lipschitz regular at
infinity, then X is an affine linear subspace of Cn.
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History-Higher dimension and codimension

1. Sampaio (2022) showed that X ⊂ Cn be a pure d-dimensional
entire complex analytic set. If X is Lipschitz regular at infinity,
then X is an affine linear subspace of Cn.

2. Sampaio and Silva (2023) showed that if X ⊂ Cn be a pure
dimensional complex algebraic set. If X is blow-spherical regular
at infinity, then X is an affine linear subspace of Cn.
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Principal curvatures

Figure: Principal curvatures
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Minimal hypersurface

Mean curvature
We define the mean curvature of X ⊂ Rn+1 by:

H =
1
n

n∑
j=1

kj ,

where k ′
j s are principal curvature of X . We say that X is a minimal

hypersurface if H = 0.
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Minimal surface equation

Remind that if X ⊂ Rn+1 is a smooth hypersurface and whenever X is
locally expressed as the graph of a smooth function u : Bn

ε (p) → R,
then u is a solution of the following PDE

div
(
(1 + |∇u|2)− 1

2 ∇u
)
= nH, (1)

we say that X is a minimal hypersurface and when H = 0.
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Examples minimal surfaces

Figure: Catenóide e Helicóide
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Tangent cone at infinity

Definition
Let X ⊂ Rn+1 be an unbounded definable set (resp. p ∈ X ). We say
that v ∈ Rn+1 is a tangent vector of X at infinity (resp. p) if there are a
sequence of points {xi} ⊂ X tending to infinity (resp. p) and a
sequence of positive real numbers {ti} such that

lim
i→∞

1
ti

xi = v (resp. lim
i→∞

1
ti
(xi − p) = v).

Let C(X ,∞) (resp. C(X ,p)) denote the set of all tangent vectors of X
at infinity (resp. p). We call C(X ,∞) the tangent cone of X at
infinity (resp. p).
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Example tangent cone

Now let’s present some examples of tangent cones. Consider M a
smooth submanifold in Euclidean space, then its tangent cone at
point x is equal to the tangent space at x.

Example
Let M is a Ck differentiable submanifold in Euclidian space and
x ∈ M, then C(M, x) = TxM.
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Cusp

Another important example is the complex cusp. Its tangent cone at
the origin is the blue line and tangent cone at infinity is tha red line.

Example
Let X = {(x , y) ∈ C2; x3 = y2}
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Spherical blow-up

Another way to present the tangent cone at infinity (resp. p) of a
subset X ⊂ Rn+1 is via the spherical blow-up at infinity (resp. p) of
Rn+1.

Definition
Let us consider the spherical blowing-up at infinity (resp. p) of
Rn+1, ρ∞ : Sn × (0,+∞) → Rn+1 (resp. ρp : Sn × [0,+∞) → Rn+1),
given by ρ∞(x , r) = 1

r x (resp. ρp(x , r) = rx + p).
Note that ρ∞ : Sn × (0,+∞) → Rn+1 \ {0} (resp.
ρp : Sn × (0,+∞) → Rn+1 \ {0}) is a homeomorphism with inverse
mapping ρ−1

∞ : Rn+1 \ {0} → Sn × (0,+∞) (resp.
ρp : Sn × (0,+∞) → Rn+1 \ {0}) given by ρ−1

∞ (x) = ( x
∥x∥ ,

1
∥x∥ ) (resp.

ρ−1
p (x) = ( x−p

∥x−p∥ , ∥x − p∥)).
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Strict transform

Definition
The strict transform of the subset X under the spherical blowing-up
ρ∞ is X ′

∞ := ρ−1
∞ (X \ {0}) (resp. X ′

p := ρ−1
p (X \ {0})). The subset

X ′
∞ ∩ (Sn × {0}) (resp. X ′

p ∩ (Sn × {0})) is called the boundary of X ′
∞

(resp. X ′
p) and it is denoted by ∂X ′

∞ (resp. ∂X ′
p).

Remark
If X ⊂ Rn+1 is a semialgebraic set, then ∂X ′

∞ = (C(X ,∞) ∩ Sn)× {0}
(resp. ∂X ′

p = (C(X ,p) ∩ Sn)× {0}).
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Simple point

Definition
Let X ⊂ Rm+1 be a d-dimensional subanalytic subset and
p ∈ Rm+1 ∪ {∞}. We say x ∈ ∂X ′

p is simple point of ∂X ′
p, if there is

an open subset U ⊂ Rm+2 with x ∈ U such that:
a) the connected components X1, · · · ,Xr of (X ′

p ∩ U) \ ∂X ′
p are

topological submanifolds of Rm+2 with dimXi = dimX , for all
i = 1, · · · , r ;

b) (Xi ∪ ∂X ′
p) ∩ U are topological manifolds with boundary, for all

i = 1, · · · , r .
Let Smp(∂X ′

p) be the set of simple points of ∂X ′
p and we define

CSmp(X ,p) = {t · x ; t > 0 and x ∈ Smp(∂X ′
p)}. Let

kX ,p : Smp(∂X ′
p) → N be the function such that kX ,p(x) is the number

of connected components of the germ (ρ−1
p (X \ {p}), x).

Euripedes Carvalho da Silva | On the Moser’s Bernstein Theorem



1

16

Simple point

Definition
Let X ⊂ Rm+1 be a d-dimensional subanalytic subset and
p ∈ Rm+1 ∪ {∞}. We say x ∈ ∂X ′

p is simple point of ∂X ′
p, if there is

an open subset U ⊂ Rm+2 with x ∈ U such that:
a) the connected components X1, · · · ,Xr of (X ′

p ∩ U) \ ∂X ′
p are

topological submanifolds of Rm+2 with dimXi = dimX , for all
i = 1, · · · , r ;

b) (Xi ∪ ∂X ′
p) ∩ U are topological manifolds with boundary, for all

i = 1, · · · , r .
Let Smp(∂X ′

p) be the set of simple points of ∂X ′
p and we define

CSmp(X ,p) = {t · x ; t > 0 and x ∈ Smp(∂X ′
p)}. Let

kX ,p : Smp(∂X ′
p) → N be the function such that kX ,p(x) is the number

of connected components of the germ (ρ−1
p (X \ {p}), x).

Euripedes Carvalho da Silva | On the Moser’s Bernstein Theorem



1

17

Blow-spherical homeomorphism at p

It is clear the function kX ,p is locally constant. In fact, kX ,p is constant
on each connected component Xj of Smp(∂X ′

p). Then, we define the
relative multiplicity of X at p (along of Xj ) to be kX ,p(Xj) := kX ,p(x)
with x ∈ Xj . Let X1, ...,Xr be the connected components of Smp(∂X ′

p).
By reordering indices, if necessary, we assume that
kX ,p(X1) ≤ · · · ≤ kX ,p(Xr ). Then we define
k(X ,p) = (kX ,p(X1), ..., kX ,p(Xr )).
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Relative multiplicity
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Blow-spherical sets equivalence

Definition
Let X ⊂ Rn and Y ⊂ Rm be closed sets. Let p ∈ Rn ∪ {∞},
q ∈ Rm ∪ {∞} and a homeomorphism φ : X → Y such that
q = lim

x→p
φ′(x), is said to be blow-spherical homeomorphism at p, if

the homeomorphism

φ′ : X ′
x \ ∂X ′

x → Y ′
y \ ∂Y ′

y

estends to a homeomorphism φ′ : X ′
x → Y ′

y .

Remark
A subset X ⊂ Rn is called blow-spherical regular at infinity if there are
compact subsets K and K̃ in X and Rd respectively such that X \ K is
a blow-spherical homeomorphic at ∞ to an Rd \ K̃ .
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Blow-spherical sets equivalence
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Density at infinity

Definition
Let X ⊂ Rn be a set in an o-minimal structure S of dimensional k . We
say that X has a density at infinity and we denote it by θ(X ), when
the limit exists:

θk (X ) := lim
r→+∞

Hk (X ∩ Bn
r )

µk r k ,

where µk is the volume of the k -dimensional Euclidean unit ball,
Hk (A) is the Hausdorff measure of A and Bm

r (p) ⊂ Rm is the open
Euclidean ball center at p of radius r > 0 and by simplicity we denote
Bm

r := Bm
r (0).

Remark
If X has the density at infinity defined, then it does not depend on the
base point p
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Kurdyka-Raby’s formula at infinity

Let X ⊂ Rn be a definable set in an o-minimal structure S of
dimensional k . Fixed p ∈ X , we define the function
θk (X ,p, ·) : (0,+∞) → X by the following:

θ(X ,p, r) =
Hk (X ∩ Bn

r (p))
Hk (Br (p))

.

Theorem (Sampaio, —– (2023))
Let X ⊂ Rn be a definable set in an o-minimal structure and
d = dimH X. Let C1, ...,Cm be the connected components of
Smp(∂X ′

∞). Then, for each p ∈ Rn, we have

θd (X ) = lim
r→+∞

Hd (X ∩ Bn
r (p))

µd rd =
m∑

j=1

kX ,∞(Cj) · Hd−1(Cj).
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LNE sets

Let us remind the definition of inner distance. Given a path connected
subset X ⊂ Rm the inner distance on X is defined as follows: given
two points x1, x2 ∈ X , dX (x1, x2) is the infimum of the lengths of paths
on X connecting x1 to x2.

Definition (Birbrair and Mostowski: 2000)
A subset X ⊂ Rn is called Lipschitz normally embedded (or shortly
LNE) if there exists λ > 0 such that

dX (x1, x2) ≤ λ∥x1 − x2∥

for all x1, x2 ∈ X .
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LNE sets at infinity

Definition (Fernandes and Sampaio: 2020)
A subset X ⊂ Rn is Lipschitz normally embedded at infinity (or
shortly LNE at infinity) if there exists a compact subset K ⊂ Rn such
that X \ K is Lipschitz normally embedded.
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Caracterization minimal and definable sets

Theorem (Sampaio, ——-, 2023)
Let X ⊂ Rn+1 be a closed and connected set and d = dimH X.
Assume that X is a minimal submanifold or is an area-minimizing set.
Then the following statements are equivalent:
(1) X is an affine linear subspace;
(2) X is a definable set that is Lipschitz regular at infinity and

C(X ,∞) is a linear subspace;
(3) X is a definable set, blow-spherical regular at infinity and

C(X ,∞) is a linear subspace;
(4) X is an LNE at infinity definable set and C(X ,∞) is a linear

subspace;
(5) θd (X ) = 1.
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Corollary
Let X ⊂ Rn+1 be a complete area-minimizing hypersurface with
2 ≤ n ≤ 6. Suppose that X is a definable set and is Lipschitz regular
at infinity. Then X is an affine linear subspace.
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Theorem type Moser

Theorem (Sampaio, ——- : 2023)
Let X ⊂ Rn+1 be a complete minimal hypersurface with n ≥ 2.
Suppose that there are compact sets K ⊂ Rn and K̃ ⊂ Rn+1 such that
X \ K̃ is the graph of a Lipschitz function u : Rn \K → R. Then u is the
restriction of an affine function and, in particular, X is a hyperplane.

Euripedes Carvalho da Silva | On the Moser’s Bernstein Theorem



1

28

Sketch of the proof
Since u is a C2 solution of the equation

div

(
∇u√

∥∇∥2 + 1

)
= 0,

on Rn \ K and u is a Lipschitz function, we have by Simon and Bers
Theorem X that that limit exists

lim
∥x∥→+∞

(∇u(x),−1) = ω.
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Sketch of the proof
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Sketch of the proof

Sketch of the proof
Now, we define F (x , y) = z − u(x). Moreover,
∇F (x , y) = (−∇u(x),1). Thus, ∇F

∥∇F∥ → ω. Now, we choose linear
coordinates (y1, · · · , yn+1) of Rn+1 such that P be the hyperplane ω⊥.
Thus we have for a larger enough R > 0, such that X \ Bn

R × R is the
graph of a function v : P \ Bn

R →. By Bers and Simon Theorem we
have

lim
∥y∥→+∞

∇v(y) = ω̃.

On the other hand, we have N = (−∇v(y),1)
∥(−∇v(y),1)∥ . Therefore, ω̃ = 0. Thus,

∥∇v(y)∥ ≤ ϵ for all y ∈ P \ Bn
R .
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Sketch of the proof

Euripedes Carvalho da Silva | On the Moser’s Bernstein Theorem



1

32

Sketch of the proof

Sketch of the proof
Now, since P \ Bn

R is a LNE set, we have

∥v(x)− v(y)∥ ≤ ϵdP\Bn
R

in (x , y) ≤ πϵ∥x − y∥.

Finally, let φ : P \ Bn
R → X \ Bn

R × R be the mapping given
φ(x) = (x , v(x)). Thus, we have φ is a bi-Lipschitz mapping such that

∥x − y∥ ≤ ∥φ(x)− φ(y)∥ ≤ (1 + πϵ)∥x − y∥.

Therefore, the density,

θn(Rn \ Bn
r ) ≤ θn(X \ Bn+1

r ) ≤ (1 + ϵπ)nθn(Rn).

Therefore, θn(X ) = 1.Consequently, X is a hyperplane.

Euripedes Carvalho da Silva | On the Moser’s Bernstein Theorem



1

33

Non-complete minimal surface

Figure: Catenoid non-complete
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