On the Moser's Bernstein Theorem

Algebraic Geometry, Lipschitz Geometry and Singularities in Pipa

Euripedes Carvalho da Silva Joint work with José Edson Sampaio (UFC).

11/12/2023

Introduction and motivation Bernstein Theorem

Definition and basic results Cone tangente

Spherical blow-up

Kurdyka-Raby's formula at infinity

Parametric versions of the Bernstein Theorem Caracterization minimal and definable sets Theorem type Moser outside compact set

Bernstein's problem

Goal

The objective of this work is to study the geometric behavior of the solutions of the equation:

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{\|\nabla u\|^2+1}}\right) = 0.$$

INSTITUTO FEDERAL

Bernstein's problem

Goal

The objective of this work is to study the geometric behavior of the solutions of the equation:

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{\|\nabla u\|^2+1}}\right) = 0.$$

Bernstein's Problem

If the graph of a function on \mathbb{R}^n is a minimal hypersurface in \mathbb{R}^{n+1} , does this imply that the function is linear?

History

- Bernstein (1915 1917): proved Bernstein's theorem that a graph of a real function on ℝ² that is also a minimal surface in ℝ³ must be a plane (dim M = 2);
- Moser (1961): proved Bernstein's theorem that a graph of a real Lipschitz function on ℝⁿ that is also a minimal surface in ℝⁿ⁺¹ must be a hyperplane (any dimension dim *M*)
- Fleming (1962) gave a new proof of Bernstein's theorem by deducing it from the fact that there is no non-planar area-minimizing cone in R³;
- 4. De Giorgi (1965) showed that if there is no non-planar area-minimizing cone in \mathbb{R}^{n-1} then the analogue of Bernstein's theorem is true for graphs in \mathbb{R}^n , which in particular implies that it is true in \mathbb{R}^4 (dim M = 3).
- Almgren (1966) showed there are no non-planar minimizing cones in ℝ⁴, thus extending Bernstein's theorem to ℝ⁵(dim *M* = 4).

History-Higher codimension

1. Simons (1968) showed there are no non-planar minimizing cones in \mathbb{R}^7 , thus extending Bernstein's theorem to \mathbb{R}^8 . He also showed that the surface defined by

$$\left\{x \in \mathbb{R}^8 : x_1^2 + x_2^2 + x_3^2 + x_4^2 = x_5^2 + x_6^2 + x_7^2 + x_8^2\right\},\$$

is a locally stable cone in \mathbb{R}^8 , and asked if it is globally area-minimizing (dim $M \leq 7$);

2. Bombieri, De Giorgi and Giusti (1969) showed that Simons' cone is indeed globally minimizing, and that in \mathbb{R}^n for $n \ge 9$ there are graphs that are minimal, but not hyperplanes. Combined with the result of Simons, this shows that the analogue of Bernstein's theorem is true in \mathbb{R}^n for $n \le 8$, and false in higher dimensions.

History-Higher dimension and codimension

1. Lawson (1977) present the graph of the Lipschitz mapping $f: \mathbb{R}^4 \to \mathbb{R}^3$ given by f(0) = 0 and

$$f(x) = rac{\sqrt{5}}{2} \|x\| \eta\left(rac{x}{\|x\|}
ight), \quad orall x
eq 0,$$

is a minimal cone, where $\eta\colon \mathbb{S}^3\to \mathbb{S}^2$ is the Hopf mapping given by

$$\eta(z_1, z_2) = (|z_1|^2 - |z_2|^2, 2z_1\overline{z}_2).$$

 Fernandes and Sampaio (2020) showed that if X ⊂ Cⁿ be a pure dimensional complex algebraic subset. If X is Lipschitz regular at infinity, then X is an affine linear subspace of Cⁿ.

History-Higher dimension and codimension

- Sampaio (2022) showed that X ⊂ Cⁿ be a pure d-dimensional entire complex analytic set. If X is Lipschitz regular at infinity, then X is an affine linear subspace of Cⁿ.
- Sampaio and Silva (2023) showed that if X ⊂ Cⁿ be a pure dimensional complex algebraic set. If X is blow-spherical regular at infinity, then X is an affine linear subspace of Cⁿ.

Principal curvatures

INSTITUTO FEDERAL Ceará

Figure: Principal curvatures

We define the mean curvature of $X \subset \mathbb{R}^{n+1}$ by:

$$H=\frac{1}{n}\sum_{j=1}^n k_j,$$

where $k'_j s$ are principal curvature of *X*. We say that *X* is a minimal hypersurface if H = 0.

Remind that if $X \subset \mathbb{R}^{n+1}$ is a smooth hypersurface and whenever X is locally expressed as the graph of a smooth function $u: B_{\varepsilon}^{n}(p) \to \mathbb{R}$, then u is a solution of the following PDE

$$\operatorname{div}\left((1+|\nabla u|^2)^{-\frac{1}{2}}\nabla u\right) = nH,\tag{1}$$

we say that X is a **minimal hypersurface** and when H = 0.

Examples minimal surfaces

FEDERAL

Figure: Catenóide e Helicóide

Euripedes Carvalho da Silva | On the Moser's Bernstein Theorem

Definition

Let $X \subset \mathbb{R}^{n+1}$ be an unbounded definable set (resp. $p \in \overline{X}$). We say that $v \in \mathbb{R}^{n+1}$ is a tangent vector of X at infinity (resp. p) if there are a sequence of points $\{x_i\} \subset X$ tending to infinity (resp. p) and a sequence of positive real numbers $\{t_i\}$ such that

$$\lim_{n\to\infty}\frac{1}{t_i}x_i=v \quad (\text{resp. } \lim_{i\to\infty}\frac{1}{t_i}(x_i-p)=v).$$

Let $C(X, \infty)$ (resp. C(X, p)) denote the set of all tangent vectors of X at infinity (resp. p). We call $C(X, \infty)$ the **tangent cone of** X at **infinity** (resp. p).

INSTITUTO FEOEral

Now let's present some examples of tangent cones. Consider M a smooth submanifold in Euclidean space, then its tangent cone at point x is equal to the tangent space at x.

Example

Let *M* is a C^k differentiable submanifold in Euclidian space and $x \in M$, then $C(M, x) = T_x M$.

Cusp

Another important example is the complex cusp. Its tangent cone at the origin is the blue line and tangent cone at infinity is tha red line.

Example

INSTITUTO FEDERAL Cesra

Another way to present the tangent cone at infinity (resp. *p*) of a subset $X \subset \mathbb{R}^{n+1}$ is via the spherical blow-up at infinity (resp. *p*) of \mathbb{R}^{n+1} .

Another way to present the tangent cone at infinity (resp. *p*) of a subset $X \subset \mathbb{R}^{n+1}$ is via the spherical blow-up at infinity (resp. *p*) of \mathbb{R}^{n+1} .

Definition

Let us consider the **spherical blowing-up at infinity** (resp. *p*) of \mathbb{R}^{n+1} , $\rho_{\infty} : \mathbb{S}^n \times (0, +\infty) \to \mathbb{R}^{n+1}$ (resp. $\rho_p : \mathbb{S}^n \times [0, +\infty) \to \mathbb{R}^{n+1}$), given by $\rho_{\infty}(x, r) = \frac{1}{r}x$ (resp. $\rho_p(x, r) = rx + p$). Note that $\rho_{\infty} : \mathbb{S}^n \times (0, +\infty) \to \mathbb{R}^{n+1} \setminus \{0\}$ (resp. $\rho_p : \mathbb{S}^n \times (0, +\infty) \to \mathbb{R}^{n+1} \setminus \{0\}$) is a homeomorphism with inverse mapping $\rho_{\infty}^{-1} : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{S}^n \times (0, +\infty)$ (resp. $\rho_p : \mathbb{S}^n \times (0, +\infty) \to \mathbb{R}^{n+1} \setminus \{0\}$) given by $\rho_{\infty}^{-1}(x) = (\frac{x}{\|x\|}, \frac{1}{\|x\|})$ (resp. $\rho_p^{-1}(x) = (\frac{x-p}{\|x-p\|}, \|x-p\|)$).

Strict transform

Strict transform

Definition

The **strict transform** of the subset *X* under the spherical blowing-up ρ_{∞} is $X'_{\infty} := \overline{\rho_{\infty}^{-1}(X \setminus \{0\})}$ (resp. $X'_p := \overline{\rho_p^{-1}(X \setminus \{0\})}$). The subset $X'_{\infty} \cap (\mathbb{S}^n \times \{0\})$ (resp. $X'_p \cap (\mathbb{S}^n \times \{0\})$) is called the **boundary** of X'_{∞} (resp. X'_p) and it is denoted by $\partial X'_{\infty}$ (resp. $\partial X'_p$).

Remark

If $X \subset \mathbb{R}^{n+1}$ is a semialgebraic set, then $\partial X'_{\infty} = (C(X, \infty) \cap \mathbb{S}^n) \times \{0\}$ (resp. $\partial X'_p = (C(X, p) \cap \mathbb{S}^n) \times \{0\}$).

Simple point

INSTITUTO FEDERAL Ceara

Definition

Let $X \subset \mathbb{R}^{m+1}$ be a *d*-dimensional subanalytic subset and $p \in \mathbb{R}^{m+1} \cup \{\infty\}$. We say $x \in \partial X'_p$ is **simple point of** $\partial X'_p$, if there is an open subset $U \subset \mathbb{R}^{m+2}$ with $x \in U$ such that:

- a) the connected components X₁, ..., X_r of (X'_p ∩ U) \ ∂X'_p are topological submanifolds of ℝ^{m+2} with dim X_i = dim X, for all i = 1, ..., r;
- b) $(X_i \cup \partial X'_p) \cap U$ are topological manifolds with boundary, for all $i = 1, \cdots, r$.

Let $\operatorname{Smp}(\partial X'_{\rho})$ be the set of simple points of $\partial X'_{\rho}$ and we define $C_{\operatorname{Smp}}(X,\rho) = \{t \cdot x; t > 0 \text{ and } x \in \operatorname{Smp}(\partial X'_{\rho})\}$. Let $k_{X,\rho} \colon \operatorname{Smp}(\partial X'_{\rho}) \to \mathbb{N}$ be the function such that $k_{X,\rho}(x)$ is the number of connected components of the germ $(\rho_{\rho}^{-1}(X \setminus \{\rho\}), x)$.

Blow-spherical homeomorphism at p

It is clear the function $k_{X,p}$ is locally constant. In fact, $k_{X,p}$ is constant on each connected component X_j of $\text{Smp}(\partial X'_p)$. Then, we define **the relative multiplicity of** X **at** p (along of X_j) to be $k_{X,p}(X_j) := k_{X,p}(x)$ with $x \in X_j$. Let $X_1, ..., X_r$ be the connected components of $\text{Smp}(\partial X'_p)$. By reordering indices, if necessary, we assume that $k_{X,p}(X_1) \le \cdots \le k_{X,p}(X_r)$. Then we define $k(X,p) = (k_{X,p}(X_1), ..., k_{X,p}(X_r))$.

Relative multiplicity

18

INSTITUTO FEDERAL

Blow-spherical sets equivalence

Definition

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be closed sets. Let $p \in \mathbb{R}^n \cup \{\infty\}$, $q \in \mathbb{R}^m \cup \{\infty\}$ and a homeomorphism $\varphi : X \to Y$ such that $q = \lim_{x \to p} \varphi'(x)$, is said to be **blow-spherical homeomorphism at** *p*, if the homeomorphism

$$\varphi'\colon X'_{x}\setminus\partial X'_{x}\to Y'_{y}\setminus\partial Y'_{y}$$

estends to a homeomorphism $\varphi' \colon X'_x \to Y'_y$.

Blow-spherical sets equivalence

Definition

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be closed sets. Let $p \in \mathbb{R}^n \cup \{\infty\}$, $q \in \mathbb{R}^m \cup \{\infty\}$ and a homeomorphism $\varphi : X \to Y$ such that $q = \lim_{x \to p} \varphi'(x)$, is said to be **blow-spherical homeomorphism at** *p*, if the homeomorphism

$$\varphi'\colon X'_{\mathsf{X}}\setminus\partial X'_{\mathsf{X}}\to Y'_{\mathsf{Y}}\setminus\partial Y'_{\mathsf{Y}}$$

estends to a homeomorphism $\varphi' \colon X'_{x} \to Y'_{y}$.

Remark

A subset $X \subset \mathbb{R}^n$ is called blow-spherical regular at infinity if there are compact subsets K and \widetilde{K} in X and \mathbb{R}^d respectively such that $X \setminus K$ is a blow-spherical homeomorphic at ∞ to an $\mathbb{R}^d \setminus \widetilde{K}$.

Blow-spherical sets equivalence

INSTITUTO FEDERAL Ceará

Density at infinity

Definition

Let $X \subset \mathbb{R}^n$ be a set in an o-minimal structure S of dimensional k. We say that X has a **density at infinity** and we denote it by $\theta(X)$, when the limit exists:

$$\theta^k(X) := \lim_{r \to +\infty} \frac{\mathcal{H}^k(X \cap B^n_r)}{\mu_k r^k},$$

where μ_k is the volume of the *k*-dimensional Euclidean unit ball, $\mathcal{H}^k(A)$ is the Hausdorff measure of *A* and $B_r^m(p) \subset \mathbb{R}^m$ is the open Euclidean ball center at *p* of radius r > 0 and by simplicity we denote $B_r^m := B_r^m(0)$.

Density at infinity

Definition

Let $X \subset \mathbb{R}^n$ be a set in an o-minimal structure S of dimensional k. We say that X has a **density at infinity** and we denote it by $\theta(X)$, when the limit exists:

$$\theta^k(X) := \lim_{r \to +\infty} \frac{\mathcal{H}^k(X \cap B_r^n)}{\mu_k r^k},$$

where μ_k is the volume of the *k*-dimensional Euclidean unit ball, $\mathcal{H}^k(A)$ is the Hausdorff measure of *A* and $B_r^m(p) \subset \mathbb{R}^m$ is the open Euclidean ball center at *p* of radius r > 0 and by simplicity we denote $B_r^m := B_r^m(0)$.

Remark

If X has the density at infinity defined, then it does not depend on the base point p

Let $X \subset \mathbb{R}^n$ be a definable set in an o-minimal structure S of dimensional k. Fixed $p \in X$, we define the function $\theta^k(X, p, \cdot) \colon (0, +\infty) \to X$ by the following:

$$\theta(X,p,r) = \frac{\mathcal{H}^k(X \cap B^n_r(p))}{\mathcal{H}^k(B_r(p))}.$$

Theorem (Sampaio, — (2023))

Let $X \subset \mathbb{R}^n$ be a definable set in an o-minimal structure and $d = \dim_H X$. Let $C_1, ..., C_m$ be the connected components of $Smp(\partial X'_{\infty})$. Then, for each $p \in \mathbb{R}^n$, we have

$$\theta^d(X) = \lim_{r \to +\infty} \frac{\mathcal{H}^d(X \cap B^n_r(p))}{\mu_d r^d} = \sum_{j=1}^m k_{X,\infty}(C_j) \cdot \mathcal{H}^{d-1}(C_j).$$

Let us remind the definition of inner distance. Given a path connected subset $X \subset \mathbb{R}^m$ the *inner distance* on X is defined as follows: given two points $x_1, x_2 \in X$, $d_X(x_1, x_2)$ is the infimum of the lengths of paths on X connecting x_1 to x_2 .

Definition (Birbrair and Mostowski: 2000)

A subset $X \subset \mathbb{R}^n$ is called **Lipschitz normally embedded** (or shortly **LNE**) if there exists $\lambda > 0$ such that

$$d_X(x_1,x_2) \leq \lambda \|x_1-x_2\|$$

for all $x_1, x_2 \in X$.

LNE sets at infinity

Definition (Fernandes and Sampaio: 2020)

A subset $X \subset \mathbb{R}^n$ is **Lipschitz normally embedded at infinity** (or shortly **LNE at infinity**) if there exists a compact subset $K \subset \mathbb{R}^n$ such that $X \setminus K$ is Lipschitz normally embedded.

Theorem (Sampaio, ——-, 2023)

Let $X \subset \mathbb{R}^{n+1}$ be a closed and connected set and $d = \dim_H X$. Assume that X is a minimal submanifold or is an area-minimizing set. Then the following statements are equivalent:

- (1) X is an affine linear subspace;
- (2) X is a definable set that is Lipschitz regular at infinity and C(X,∞) is a linear subspace;
- (3) X is a definable set, blow-spherical regular at infinity and C(X,∞) is a linear subspace;
- (4) X is an LNE at infinity definable set and C(X,∞) is a linear subspace;
- (5) $\theta^d(X) = 1$.

Corollary

Let $X \subset \mathbb{R}^{n+1}$ be a complete area-minimizing hypersurface with $2 \leq n \leq 6$. Suppose that X is a definable set and is Lipschitz regular at infinity. Then X is an affine linear subspace.

Let $X \subset \mathbb{R}^{n+1}$ be a complete minimal hypersurface with $n \ge 2$. Suppose that there are compact sets $K \subset \mathbb{R}^n$ and $\tilde{K} \subset \mathbb{R}^{n+1}$ such that $X \setminus \tilde{K}$ is the graph of a Lipschitz function $u : \mathbb{R}^n \setminus K \to \mathbb{R}$. Then u is the restriction of an affine function and, in particular, X is a hyperplane.

Since u is a C^2 solution of the equation

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{\|\nabla\|^2+1}}\right)=0,$$

on $\mathbb{R}^n \setminus K$ and *u* is a Lipschitz function, we have by Simon and Bers Theorem X that that limit exists

$$\lim_{\|x\|\to+\infty} (\nabla u(x), -1) = \omega.$$

29

INSTITUTO FEDERAL Ceará

Now, we define F(x, y) = z - u(x). Moreover, $\nabla F(x, y) = (-\nabla u(x), 1)$. Thus, $\frac{\nabla F}{\|\nabla F\|} \to \omega$. Now, we choose linear coordinates (y_1, \dots, y_{n+1}) of \mathbb{R}^{n+1} such that P be the hyperplane ω^{\perp} . Thus we have for a larger enough R > 0, such that $X \setminus B_R^n \times R$ is the graph of a function $v \colon P \setminus B_R^n \to$. By Bers and Simon Theorem we have

$$\lim_{\|y\|\to+\infty}\nabla v(y)=\widetilde{\omega}.$$

On the other hand, we have $N = \frac{(-\nabla v(y),1)}{\|(-\nabla v(y),1)\|}$. Therefore, $\tilde{\omega} = 0$. Thus, $\|\nabla v(y)\| \le \epsilon$ for all $y \in P \setminus \overline{B_R^n}$.

31

INSTITUTO FEDERAL Ceará

Euripedes Carvalho da Silva | On the Moser's Bernstein Theorem

Now, since $P \setminus \overline{B_R^n}$ is a LNE set, we have

$$\|\mathbf{v}(\mathbf{x}) - \mathbf{v}(\mathbf{y})\| \le \epsilon d_{in}^{P \setminus \overline{B_R^n}}(\mathbf{x}, \mathbf{y}) \le \pi \epsilon \|\mathbf{x} - \mathbf{y}\|.$$

Finally, let $\varphi \colon P \setminus \overline{B_R^n} \to X \setminus \overline{B_R^n} \times \mathbb{R}$ be the mapping given $\varphi(x) = (x, v(x))$. Thus, we have φ is a bi-Lipschitz mapping such that

$$\|\mathbf{x} - \mathbf{y}\| \le \|\varphi(\mathbf{x}) - \varphi(\mathbf{y})\| \le (1 + \pi\epsilon)\|\mathbf{x} - \mathbf{y}\|.$$

Therefore, the density,

$$\theta^n(\mathbb{R}^n\setminus\overline{B_r^n})\leq \theta^n(X\setminus\overline{B_r^{n+1}})\leq (1+\epsilon\pi)^n\theta^n(\mathbb{R}^n).$$

Therefore, $\theta^n(X) = 1$.Consequently, X is a hyperplane.

Non-complete minimal surface

INSTITUTO FEDERAL

Figure: Catenoid non-complete

References I

- Allard, W. K. On the first variation of a varifold. Ann. of Math. (2), 95:417–491, 1972.
- Bers, L. Isolated Singularities of Minimal Surfaces. Ann. Math., vol. 53 (1951), 364–386.

Birbrair, L. and Mostowski, T. *Normal embeddings of semialgebraic sets*. Michigan Math. J., vol. 47 (2000), 125–132.

Birbrair, L.; Fernandes, A.; Lê D. T. and Sampaio, J. E. *Lipschitz regular complex algebraic sets are smooth*. Proceedings of the American Mathematical Society, vol. 144 (2016), 983–987.

Bombieri, Enrico; De Giorgi, Ennio; Giusti, E. *Minimal cones and the Bernstein problem*. Inventiones Mathematicae, vol. 7 (1969), 243–268.

Collin, P. *Topologie et courbure des surfaces minimales proprement plonges de* \mathbb{R}^3 . Ann. of Math., (145)2 (1997), 1-31.

References II

Fernandes, A. and J. E. Sampaio. On Lipschitz rigidity of complex analytic sets. The Journal of Geometric Analysis, vol. 30 (2020), 706–718.

Ghomi, M. and Howard, R. *Tangent cones and regularity of real hypersurfaces*. Journal für die reine und angewandte Mathematik (Crelles Journal), vol. 697 (2014), 221–247.

Kurdyka, K. and Raby, G. *Densité des ensembles sous-analytiques*. (French) Ann. Inst. Fourier (Grenoble), vol. 39 (1989), no. 3, 753–771.

 Mumford, M. The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Études Sci.
 Publ. Math., vol. 9 (1961), 5–22.

References III

Sampaio, J. E. Multiplicity, regularity and blow-spherical equivalence of complex analytic sets. To appear in The Asian Journal of Mathematics, 24 (2021), no. 5. arXiv:1702.06213v2 [math.AG].

Sampaio, J. E. *On Zariski's multiplicity problem at infinity*. Proc. Amer. Math. Soc., vol. 147 (2019), 1367–1376.

Sampaio, J. E. *Multiplicity, regularity and Lipschitz Geometry of real analytic hypersurfaces.* To appear in the Israel Journal of Mathematics (2021).

SAMPAIO, J. Edson *Multiplicity, regularity and blow-spherical* equivalence of real analytic sets. preprint, 2021.

Sampaio, J. E. and da Silva, E. C. *Classification of complex algebraic curves under blow-spherical equivalence*. Preprint (2023), arXiv:2302.02026 [math.AG]

Thank you for your attention