Rigidity of Brieskorn-Pham affine hypersurfaces

DECEMBER 12, 2023

Definition: Affine Brieskorn-Pham hypersurfaces

A hypersurface $X_{a_0,...,a_n} \subset \mathbb{A}^{n+1} = 0$ defined by an equation of the form

$$X_0^{a_0} + \cdots X_n^{a_n} = 0$$

for an (n+1)-tuple of positive integers a_i .

The Rigidity Conjecture

For $n \ge 2$, $X_{a_0,...a_n}$ admits a non-trivial action of the additive group \mathbb{G}_a if and only if:

- **①** Either $a_i = 1$ for some i,
- **2** Or at least two distinct a_i 's are equal to 2.

Notion of cylinder

- A cylinder in an algebraic variety X is a Zariski open subset U of X isomorphic to Z × A¹ for some affine variety Z.
- A polar cylinder in a polarized variety (X, H) -H an ample Weil Q-divisor on X- is a cylinder U in X such that D = X \ U is the support of an effective Weil Q-divisor Q-linearly equivalent to H.

Affine varieties with \mathbb{G}_a -actions have large automorphism groups

- **(**) An affine \mathbb{G}_a -variety contains an invariant principal cylinder.
- ② Consequence: if dim X ≥ 2 then Aut(X) is an infinite dimensional group: it contains C_a[∞] = colim_nC_aⁿ.

Classical numerology and "easy" exclusion results

For $X = X_{a_0,a_1,a_2} = \{X_0^{a_0} + X_1^{a_1} + X_2^{a_2} = 0\}$, we have the following dichotomy:

● $1/a_0 + 1/a_1 + 1/a_2 \le 1 \Rightarrow \bar{\kappa}(X \setminus \{0\}) \ge 0 \Rightarrow X$ does not contain a cylinder.

② $1/a_0 + 1/a_1 + 1/a_2 > 1$ and then (a_0, a_1, a_2) is one of the *Platonic* triplets (2, 2, m), (2, 3, 3), (2, 3, 4) and (2, 3, 5). In this case $\bar{\kappa}(X \setminus \{0\}) = -\infty$: requires an additional algebraic/geometric study!

Theorem (Kaliman-Zaidenberg 2000)

The rigidity conjecture holds for Brieskorn-Pham surfaces.

Definition

An affine Brieskorn-Pham hypersurface $X = X_{a_0,...,a_n} \subset \mathbb{A}^{n+1}$ is called *well-formed* if the corresponding quasi-smooth weighted hypersurface

$$\hat{X} = \{X_0^{a_0} + \dots + X_n^{a_n} = 0\} \subset \mathbb{P} := \mathbb{P}(w_0, \dots, w_n), \quad w_i = \mathrm{lcm}_{i=0,\dots,n}(a_i)/a_i$$

is well-formed:

Proposition

For $n \ge 2$, $X = X_{a_0,...,a_n} \subset \mathbb{A}^{n+1}$ is well-formed if and only if for every i = 0, ..., n, a_i divides $lcm(a_0, ..., \hat{a}_i, ..., a_n)$.

Chitayat Reduction Theorem

To prove the Rigidity Conjecture in any dimension $n \ge 3$ it suffices to prove it for well-formed Brieskorn-Pham hypersurfaces.

Consequence for Brieskorn-Pham threefolds

For well-formed affine Brieskorn-Pham threefolds $X = X_{a_0,...,a_3}$, we have the following dichotomy:

- $\sum 1/a_i \le 1$: $K_{\hat{X}}$ is either ample or trivial.
- ② $\sum 1/a_i > 1$ leads to a finite number of cases: (2,3,3,6), (2,3,6,6), (2,4,4,4), (3,3,3,3), (3,3,4,4), (3,3,5,5), (2,3,4,12), (2,3,5,30). In each of these cases, \hat{X} is a del Pezzo surface with (at worse) cyclic quotient singularities.

REDUCTION TO THE EXISTENCE OF POLAR CYLINDERS

Kishimoto-Prokhorov-Zaidenberg correspondance

For well-formed affine Brieskorn-Pham threefolds $X = X_{a_0,...,a_3}$, the following are equivalent:

- X admits a non-trivial \mathbb{G}_a -action.
- 2 \hat{X} admits a $\mathcal{O}_{\hat{X}}(1)$ -polar cylinder.

Consequence:

- **1** If $\sum 1/a_i \le 1$ then $X_{a_0,...,a_3}$ does not admit any nontrivial \mathbb{G}_a -action.
- ② If $\sum 1/a_i > 1$ then $X = X_{a_0,...,a_3}$ admits a nontrivial $𝔅_a$ -action if and only if \hat{X} admits a $-K_{\hat{X}}$ -polar cylinder.

EXCLUSION OF ANTI-CANONICAL POLAR CYLIN-DERS IN DEL PEZZO SURFACES

Theorem (Cheltsov-Park-Won -2016)

- A smooth del Pezzo surface of degree d admits an anticanonical polar cylinder if and only if d ≥ 4.
- Complete classification of del Pezzo surfaces with at most du Val singularities admiting anticanonical polar cylinders.

Consequences

- **(**(3,3,3,3): Fermat cubic surface in \mathbb{P}^3 , no cylinder.
- (2,4,4,4): Smooth del Pezzo surface of degree 2 in $\mathbb{P}(2,1,1,1)$, no cylinder.
- (2,3,6,6): Smooth del Pezzo surface of degree 1 in P(3,2,1,1), no cylinder.
- (2,3,3,6): del Pezzo surface of degre 3 in $\mathbb{P}(3,2,2,1)$ with three A_1 -singularities, no cylinder.

Cylinders and non log-canonicity (Cheltov-Park)

Let S be a del Pezzo surface with at worse log-canonical singularities and let $D \sim_{\mathbb{Q}} -K_S$ be an effective Weil \mathbb{Q} -Cartier \mathbb{Q} -divisor such that $S \smallsetminus \text{Supp}(D)$ is a cylinder. Then the log pair (S, D) is not log-canonical.

Consequence:

A del Pezzo surface S with quotient singularities and $\alpha\text{-invariant}$ larger than or equal to 1 does not contain any $-K_S\text{-polar}$ cylinder.

- (3,3,4,4): $\alpha = 1$ (Cheltsov-Park-Shramov 2010), no cylinder.
- (3,3,5,5): $\alpha = 2$ (Cheltsov-Park-Shramov 2010), no cylinder.

The last two cases

- (2,3,5,30): a del Pezzo surface of degree 2/15 in $\mathbb{P}(15,10,6,1)$ with three cyclic quotient singularities of type 1/5(1,1), 1/3(1,1) and 1/2(1,1) supported on a line.
- (2,3,4,12): a del Pezzo surface of degree 2/3 in $\mathbb{P}(6,4,3,1)$ with three cyclic quotient singularities of type 1/2(1,1), 1/3(1,1) and 1/3(1,1) supported on a line.

Proposition and Theorem

The two surfaces above do not contain any anticanonical polar cylinder. Consequently, the Rigidity Conjecture is solved in dimension 3: an affine Brieskorn-Pham threefold $X_{a_0,...,a_3}$ admits a nontrivial \mathbb{G}_a -action if and only if either one of the a_i 's equals 1 or at least two the a_i 's are equal to 2.