Rigidity of Brieskorn-Pham affine hypersurfaces

December 12, 2023

Affine Brieskorn-Pham hypersurfaces

Definition: Affine Brieskorn-Pham hypersurfaces

A hypersurface $X_{a_{0}, \ldots, a_{n}} \subset \mathbb{A}^{n+1}=0$ defined by an equation of the form

$$
X_{0}^{a_{0}}+\cdots X_{n}^{a_{n}}=0
$$

for an $(n+1)$-tuple of positive integers a_{i}.

The Rigidity Conjecture

For $n \geq 2, X_{a_{0}, \ldots a_{n}}$ admits a non-trivial action of the additive group \mathbb{G}_{a} if and only if:
(1) Either $a_{i}=1$ for some i,
(2) Or at least two distinct a_{i} 's are equal to 2 .

ADDITIVE GROUP ACTIONS AND CYLINDERS

Notion of cylinder

(1) A cylinder in an algebraic variety X is a Zariski open subset U of X isomorphic to $Z \times \mathbb{A}^{1}$ for some affine variety Z.
(2) A polar cylinder in a polarized variety $(X, H)-H$ an ample Weil \mathbb{Q}-divisor on X - is a cylinder U in X such that $D=X \backslash U$ is the support of an effective Weil \mathbb{Q}-divisor \mathbb{Q}-linearly equivalent to H.

Affine varieties with \mathbb{G}_{a}-actions have large automorphism groups

(1) An affine \mathbb{G}_{a}-variety contains an invariant principal cylinder.
(2) Consequence: if $\operatorname{dim} X \geq 2$ then $\operatorname{Aut}(X)$ is an infinite dimensional group: it contains $\mathbb{G}_{a}^{\infty}=\operatorname{colim}_{n} \mathbb{G}_{a}^{n}$.

Rigidity for Brieskorn-Pham surfaces

Classical numerology and "easy" exclusion results

For $X=X_{a_{0}, a_{1}, a_{2}}=\left\{X_{0}^{a_{0}}+X_{1}^{a_{1}}+X_{2}^{a_{2}}=0\right\}$, we have the following dichotomy:
(1) $1 / a_{0}+1 / a_{1}+1 / a_{2} \leq 1 \Rightarrow \bar{\kappa}(X \backslash\{0\}) \geq 0 \Rightarrow X$ does not contain a cylinder.
(2) $1 / a_{0}+1 / a_{1}+1 / a_{2}>1$ and then $\left(a_{0}, a_{1}, a_{2}\right)$ is one of the Platonic triplets $(2,2, m),(2,3,3),(2,3,4)$ and $(2,3,5)$. In this case $\bar{\kappa}(X \backslash\{0\})=-\infty$: requires an additional algebraic/geometric study!

Theorem (Kaliman-Zaidenberg 2000)

The rigidity conjecture holds for Brieskorn-Pham surfaces.

WELL-FORMED HYPERSURFACES

Definition

An affine Brieskorn-Pham hypersurface $X=X_{a_{0}, \ldots, a_{n}} \subset \mathbb{A}^{n+1}$ is called well-formed if the corresponding quasi-smooth weighted hypersurface

$$
\hat{X}=\left\{X_{0}^{a_{0}}+\cdots X_{n}^{a_{n}}=0\right\} \subset \mathbb{P}:=\mathbb{P}\left(w_{0}, \ldots, w_{n}\right), \quad w_{i}=\operatorname{lcm}_{i=0, \ldots, n}\left(a_{i}\right) / a_{i}
$$

is well-formed:
(1) $\operatorname{gcd}\left(w_{0}, \ldots, \hat{w}_{i}, \ldots w_{n}\right)=1, \forall i=0, \ldots, n$
(2) $\operatorname{codim}_{\hat{X}}(\hat{X} \cap \operatorname{Sing}(\mathbb{P})) \geq 2$.

Proposition

For $n \geq 2, X=X_{a_{0}, \ldots, a_{n}} \subset \mathbb{A}^{n+1}$ is well-formed if and only if for every $i=0, \ldots, n, a_{i}$ divides $\operatorname{lcm}\left(a_{0}, \ldots, \hat{a}_{i}, \ldots, a_{n}\right)$.

Reduction of the Conjecture

Chitayat Reduction Theorem

To prove the Rigidity Conjecture in any dimension $n \geq 3$ it suffices to prove it for well-formed Brieskorn-Pham hypersurfaces.

Consequence for Brieskorn-Pham threefolds

For well-formed affine Brieskorn-Pham threefolds $X=X_{a_{0}, \ldots, a_{3}}$, we have the following dichotomy:
(1) $\sum 1 / a_{i} \leq 1: K_{\hat{X}}$ is either ample or trivial.
(2) $\sum 1 / a_{i}>1$ leads to a finite number of cases: $(2,3,3,6),(2,3,6,6)$, $(2,4,4,4),(3,3,3,3),(3,3,4,4),(3,3,5,5),(2,3,4,12),(2,3,5,30)$. In each of these cases, \hat{X} is a del Pezzo surface with (at worse) cyclic quotient singularities.

REDUCTION TO THE EXISTENCE OF POLAR CYLINDERS

Kishimoto-Prokhorov-Zaidenberg correspondance

For well-formed affine Brieskorn-Pham threefolds $X=X_{a_{0}, \ldots, a_{3}}$, the following are equivalent:
(1) X admits a non-trivial \mathbb{G}_{a}-action.
(2) \hat{X} admits a $\mathcal{O}_{\hat{X}}(1)$-polar cylinder.

Consequence:

(1) If $\sum 1 / a_{i} \leq 1$ then $X_{a_{0}, \ldots, a_{3}}$ does not admit any nontrivial \mathbb{G}_{a}-action.
(2) If $\sum 1 / a_{i}>1$ then $X=X_{a_{0}, \ldots, a_{3}}$ admits a nontrivial \mathbb{G}_{a}-action if and only if \hat{X} admits a $-K_{\hat{X}}$-polar cylinder.

EXCLUSION OF ANTI-CANONICAL POLAR CYLINDERS IN DEL PEZZO SURFACES

Theorem (Cheltsov-Park-Won -2016)

(1) A smooth del Pezzo surface of degree d admits an anticanonical polar cylinder if and only if $d \geq 4$.
(2) Complete classification of del Pezzo surfaces with at most du Val singularities admiting anticanonical polar cylinders.

Consequences

(1) $(3,3,3,3)$: Fermat cubic surface in \mathbb{P}^{3}, no cylinder.
(2) $(2,4,4,4)$: Smooth del Pezzo surface of degree 2 in $\mathbb{P}(2,1,1,1)$, no cylinder.
(3) $(2,3,6,6)$: Smooth del Pezzo surface of degree 1 in $\mathbb{P}(3,2,1,1)$, no cylinder.
(9) $(2,3,3,6)$: del Pezzo surface of degre 3 in $\mathbb{P}(3,2,2,1)$ with three A_{1}-singularities, no cylinder.

Remaining cases - Take 1

Cylinders and non log-canonicity (Cheltov-Park)

Let S be a del Pezzo surface with at worse log-canonical singularities and let $D \sim \mathbb{Q}-K_{S}$ be an effective Weil \mathbb{Q}-Cartier \mathbb{Q}-divisor such that $S \backslash \operatorname{Supp}(D)$ is a cylinder. Then the \log pair (S, D) is not log-canonical.

Consequence:

A del Pezzo surface S with quotient singularities and α-invariant larger than or equal to 1 does not contain any $-K_{S}$-polar cylinder.
(1) $(3,3,4,4): \alpha=1$ (Cheltsov-Park-Shramov 2010), no cylinder.
(2) $(3,3,5,5): \alpha=2$ (Cheltsov-Park-Shramov 2010), no cylinder.

Remaining cases - Take 2

The last two cases

(1) $(2,3,5,30)$: a del Pezzo surface of degree $2 / 15$ in $\mathbb{P}(15,10,6,1)$ with three cyclic quotient singularities of type $1 / 5(1,1), 1 / 3(1,1)$ and $1 / 2(1,1)$ supported on a line.
(2) $(2,3,4,12)$: a del Pezzo surface of degree $2 / 3$ in $\mathbb{P}(6,4,3,1)$ with three cyclic quotient singularities of type $1 / 2(1,1), 1 / 3(1,1)$ and $1 / 3(1,1)$ supported on a line.

Proposition and Theorem

The two surfaces above do not contain any anticanonical polar cylinder. Consequently, the Rigidity Conjecture is solved in dimension 3: an affine Brieskorn-Pham threefold $X_{a_{0}, \ldots, a_{3}}$ admits a nontrivial \mathbb{G}_{a}-action if and only if either one of the a_{i} 's equals 1 or at least two the a_{i} 's are equal to 2 .

