Supercycles and stable supermaps

Ugo Bruzzo

ICTP/SISSA INSTITUTE FOR GEOMETRY AND PHYSICS TRIESTE

SISSA (International School for Advanced Studies), Trieste

Universidade Federal da Paraíba, João Pessoa, Brazil

Istituto Nazionale di Fisica Nucleare

ALGEBRAIC GEOMETRY, LIPSCHITZ GEOMETRY AND SINGULARITIES

Pipa, RN, 11-15 December 2023

Joint work with D. Hernández Ruipérez and Yu. I. Manin

First appearences of supersymmetry:

- H. Miyazawa (1966)
- J. L. Gervais and B. Sakita (1971), Yu. A. Golfand and E. P. Likhtman (1971), D. V. Volkov and V. P. Akulov (1972)
- J. Wess and B. Zumino (1974)

WZ model: hypermultiplet (ϕ, χ, F) with (infinitesimal) supersymmetry

$$\begin{split} \delta \phi &= \bar{\varepsilon} \chi \\ \delta \chi &= i \varepsilon \sigma^{\mu} \partial_{\mu} \phi \\ \delta F &= i \bar{\varepsilon} \sigma^{\mu} \partial_{\mu} \chi \end{split}$$

$$\mathcal{L} = \partial_{\mu}\bar{\phi}\,\partial^{\mu}\phi + i\bar{\chi}\sigma^{\mu}\partial_{\mu}\chi + \bar{F}F$$

Superspace formalism:

 $\Phi(x,\theta) = \phi(y) + \theta\chi(y) + \theta\bar{\theta}F(y)$ $y^{\mu} = x^{\mu} - i\theta\sigma^{\mu}\bar{\theta}$

э

⊂≣ ► 3/26

Supergeometry was created to deal with problems coming from supersymmetry using the powerful methods of differential/algebraic geometry

A geometric framework where anti-commutative (fermionic) variables appear \implies supermanifolds, supervarieties, superschemes, superstacks

Different first approaches (Berezin-Leïtes, De Witt-Rogers)

The Berezin-Leĭtes model prevailed (sheaf-theoretic, more elegant, works better). The definition can be adapted so to generalize differentiable manifolds, complex analytic manifolds/spaces, algebraic varieties or schemes, algebraic spaces, stacks ...

Algebraic supergeometry

- First applications of algebraic supergeometry (SUSY curves and their moduli, among others)
- Further developments require an effort to extend fundamental algebraic geometry to the super setting
- Contributions by many people

Super version of classical Grothendieck's *Fondements de la géométrie algébrique:*

Cohomology of coherent sheaves, finiteness theorems, semicontinuity, supervector and superprojective bundles, Hilbert and Picard superschemes, relative duality, supercycles and super Chow groups, stable supercurves, stable supermaps, etc. etc.

• U.B., D. Hernández Ruipérez. *The supermoduli of SUSY curves with Ramond punctures.* Rev. Real Acad. Ciencias Exactas Fis. Nat. Serie A Mat. **115** (2021) Art. no. 114, 33 pp.

• U.B., D. Hernández Ruipérez, A. Polishchuck. *Notes on Fundamental Algebraic Supergeometry. Hilbert and Picard superschemes*, Adv. Math. **415** (2023) 108890, 115 pp.

• U.B., D. Hernández Ruipérez, Yu. I. Manin. *Supercycles, stable supermaps and SUSY Nori Motives*, arXiv:2203.15855 (35 pp.)

A superring $\mathbb A$ is a $\mathbb Z_2\text{-}\mathsf{graded}$ supercommutative ring

$$ab=(-1)^{ij}ba$$
 if $a\in \mathbb{A}_i,\ b\in \mathbb{A}_j$

such that (equivalenty) the ideal J generated by the odd elements

- is finitely generated; or
- Jⁿ = 0 for some n > 0 and J/J² is a finitely generated module over A = A/J
- $A = \mathbb{A}/J$ bosonic reduction

 $X = \mathbb{S}pec \mathbb{A} = \{\mathbb{Z}_2 \text{-homogeneous prime ideals of } \mathbb{A}\} = \operatorname{Spec} A$

Zariski topology on X. Basis given by the usual open sets D(f) for $f \in \mathbb{A}$ non-nilpotent

Definition

The superspectrum of a superring \mathbb{A} is a pair $\operatorname{Spec} \mathbb{A} = (X, \mathcal{O})$ where \mathcal{O} is the sheaf of superrings defined by $\mathcal{O}(D(f)) = \mathbb{A}_f$ on the basic open subsets D(f)

Example

Affine superspace of dimension m|n over k:

$$\mathbb{A}^{m|n} = \mathbb{S} ext{pec} k[x_1, \dots, x_m, heta_1, \dots, heta_n], \quad x_i$$
's even, $heta_J$'s odd.

Locally ringed superspaces and superschemes defined as usual

All schemes are noetherian and locally of finite type over an algebraically closed field \boldsymbol{k}

Morphism of superschemes: $f: \mathcal{X} = (X, \mathcal{O}_{\mathcal{X}}) \to \mathcal{Z} = (Z, \mathcal{O}_{\mathcal{Z}})$ is a morphism of locally ringed superspaces, given by a continuous map $f: X \to Z$ and an even local morphism of superring sheaves $f_{\sharp}: \mathcal{O}_{\mathcal{Z}} \to f_*\mathcal{O}_{\mathcal{X}}.$

The induced morphism $f: X \to Z$ is a morphism of schemes

The projection $\mathcal{O}_{\mathcal{X}} \to \mathcal{O}_{\mathcal{X}} = \mathcal{O}_{\mathcal{X}}/\mathcal{J} \to 0$ induces a closed embedding of superschemes

 $i: X \hookrightarrow \mathcal{X}$

 $\mathcal{X} = (\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ superscheme. $\mathcal{E} = \mathcal{J}/\mathcal{J}^2$ is an $\mathcal{O}_{\mathcal{X}}$ -module

 \mathcal{X} is projected if there is a retraction $r: \mathcal{X} \to X$, $r \circ i = \mathsf{Id}$

 \mathcal{X} is split if \mathcal{E} is locally free and $\mathcal{O}_{\mathcal{X}} \cong \bigwedge_{\mathcal{O}_{\mathcal{X}}} \mathcal{E}$ (globally) compatibly with the projection to $\mathcal{O}_{\mathcal{X}}$

Split \implies projected (retraction given by the inclusion $\mathcal{O}_X \hookrightarrow \bigwedge_{\mathcal{O}_X} \mathcal{E}$) When \mathcal{X} is locally split, one sets dim $\mathcal{X} = m | n$, where $m = \dim X$ and $n = \operatorname{rk} \mathcal{E}$

Examples

• X scheme, \mathcal{E} l.f. sheaf on X: $\mathcal{X} = S(X, \mathcal{E}) = (X, \bigwedge_{\mathcal{O}_X} \mathcal{E})$ is the split superscheme associated to \mathcal{E}

• If
$$X = \mathbb{P}^m$$
 and $\mathcal{E} = \mathcal{O}_X(-1)^{\oplus n}$, then

$$\mathbb{P}^{m|n} = (\mathbb{P}^m, \bigwedge_{\mathcal{O}_{\mathbb{P}^m}} \mathcal{E}) \simeq \mathbb{P}^{roj} k[x_0, \dots, x_n, \theta_1, \dots, \theta_n]$$

- is the projective superspace of dimension m|n (Manin)
- Supergrassmannian

$$\mathbb{G}r(a|c;k^{m|n}) = (Gr(a;k^m) \times Gr(c;k^n), \mathcal{O}_{\mathbb{G}r})$$

of a|c-dimensional graded subspaces of $k^{m|n}$

Locally split of dimension a(m-a) + c(n-c) | a(n-c) + c(m-a)

$$\mathbb{G}$$
r (1|0; $k^{m|n}$) = $\mathbb{P}^{m-1|n}$

Separated, proper, (faithfully) flat morphism, and the notion of fiber of a morphism are defined generalizing the usual notions

Definition

A superscheme $\mathcal{X} = (X, \mathcal{O}_{\mathcal{X}})$ of dimension m|n is smooth if for every point $x \in X$ (not necessarily closed), the stalk $\Omega_{\mathcal{X},x}$ of the cotangent sheaf at x is a free $\mathcal{O}_{\mathcal{X},x}$ -module of rank m|n

 \Rightarrow definition of smooth of relative dimension m|n morphism

Supercycles

Give \mathbb{Z}^2 a superring structure by writing it as $\mathbb{Z} \oplus \Pi \mathbb{Z}$ $(m + \Pi n)(m' + \Pi n') = (mm' + nn' + \Pi(mn' + m'n))$

Definition

An h-supercycle of ${\mathcal X}$ is a finite sum

$$\alpha = \sum_i (m_i + \prod n_i) [Y_i]$$

where $m_i + \prod n_i \in \mathbb{Z}^2$ and the Y_i are closed subvarieties of X of dimension h. The set $Z_h(\mathcal{X})$ of h-supercycles is a free \mathbb{Z}_2 -graded module over \mathbb{Z}^2 . The group of supercycles of \mathcal{X} is the bigraded \mathbb{Z}^2 -module

$$Z_{ullet}(\mathcal{X}) = \bigoplus_{h=0}^m Z_h(\mathcal{X}) = Z_{ullet}(X) \oplus \Pi Z_{ullet}(X)$$

which has a natural ring structure using the ordinary intersection product

(Compare with the Manin-Penkov-Voronov definition of K-theory rings $K^{S}(\mathcal{X}) = K(X) \oplus \Pi K(X)$)

For these supercycles one can define

- functorial flat pullbacks
- proper pushforwards

Definition

• $\alpha \in Z_h(\mathcal{X})$ is rationally equivalent to zero if there are t subsupervarieties $\delta_i \colon \mathcal{W}_i \hookrightarrow \mathcal{X}$ of even dimension h + 1 and pure odd dimension s = 0 or 1 and nonzero rational even superfunctions $g_i \in \mathbb{K}(\mathcal{W}_i)^*$ such that $\alpha = \sum_{i=0}^t \delta_{i*} \operatorname{div}(g_i)$

• The \mathbb{Z}^2 -module of h-supercycles modulo rational equivalence is $A_h(\mathcal{X})=Z_h(\mathcal{X})/W_h(\mathcal{X})$

where $W_h(\mathcal{X}) \subset Z_h(\mathcal{X})$ is the graded \mathbb{Z}^2 -submodule formed by the *h*-supercycles rationally equivalent to zero

If $f: \mathcal{X} \to \mathcal{Y}$ is proper, there is a pushforward morphism

 $f_* \colon A_{ullet}(\mathcal{X}) \to A_{ullet}(\mathcal{Y})$

Definition

A supercurve is a reduced superscheme \mathcal{X} of pure dimension 1|1

One has

$$\mathcal{O}_{\mathcal{X}} = \mathcal{O}_{\mathcal{X}} \oplus \mathcal{L}$$

so that $\mathcal X$ is projected. We are not assuming that $\mathcal L$ is a line bundle hence $\mathcal X$ may not be split

Definition

A relative supercurve is a flat morphisms of superschemes $f: \mathcal{X} \to \mathcal{S}$ whose fibres are supercurves

SUSY curves

Definition

A SUSY curve is a relative supercurve $\pi \colon \mathcal{X} \to \mathcal{S}$ with locally free submodule $\mathcal{D} \hookrightarrow \Theta_{\mathcal{X}/\mathcal{S}}$ of rank (0,1) such that

$$\mathcal{D} \otimes_{\mathcal{O}_{\mathcal{X}}} \mathcal{D} \xrightarrow{[,]} \Theta_{\mathcal{X}/\mathcal{S}} \to \Theta_{\mathcal{X}/\mathcal{S}}/\mathcal{D}$$

is an isomorphism

 $\mathcal D$ is a conformal structure for $\pi\colon \mathcal X\to \mathcal S$

Definition

A relative effective superdivisor of degree n is a closed sub-superscheme $\mathcal{Z} = (Z, \mathcal{O}_{\mathcal{Z}}) \hookrightarrow \mathcal{X}$ whose ideal is a line bundle $\mathcal{O}_{\mathcal{X}}(-\mathcal{Z})$ of rank (1,0) and whose structure sheaf $\mathcal{O}_{\mathcal{Z}}$ is a finite flat $\mathcal{O}_{\mathcal{S}}$ -module of rank (n, n)

< /₽ > < E >

Ramond-Ramond SUSY curves

Definition

A (smooth) Ramond-Ramond SUSY curve $\pi: \mathcal{X} \to \mathcal{S}$ along an effective relative superdivisor $\mathcal{Z} \hookrightarrow \mathcal{X}$ is a smooth relative supercurve with a locally free submodule $\mathcal{D} \hookrightarrow \Theta_{\mathcal{X}/\mathcal{S}}$ of rank (0,1) such that the composition

$$\mathcal{D}\otimes_{\mathcal{O}_{\mathcal{X}}}\mathcal{D}\xrightarrow{[,]}\Theta_{\mathcal{X}/\mathcal{S}}
ightarrow rac{\Theta_{\mathcal{X}/\mathcal{S}}}{\mathcal{D}}$$

induces an isomorphism of $\mathcal{O}_{\mathcal{X}}$ -modules

$$\mathcal{D}\otimes_{\mathcal{O}_{\mathcal{X}}}\mathcal{D}\simeq rac{\Theta_{\mathcal{X}/\mathcal{S}}}{\mathcal{D}}(-\mathcal{Z})$$

 \mathcal{D} is a RR conformal structure for $\pi \colon \mathcal{X} \to \mathcal{S}$ along \mathcal{Z} The irreducible components \mathcal{Z}_i of the superdivisor \mathcal{Z} are the *Ramond-Ramond* punctures

Proposition

If $f: \mathcal{X} \to S$ is a proper smooth supercurve and $\mathcal{Z} \hookrightarrow \mathcal{X}$ is an effective relative superdivisor, a superconformal structure $\mathcal{D} \hookrightarrow \Theta_f = \Omega_f^*$ with RR punctures along \mathcal{Z} is equivalent to a sheaf epimorphism

$$\Omega_f \stackrel{ar{\delta}}{
ightarrow} \mathcal{B}er_f(\mathcal{Z})
ightarrow 0$$

such that the composition

$$\ker \bar{\delta} \hookrightarrow \Omega_f \xrightarrow{d} \Omega_f \land \Omega_f \xrightarrow{\bar{\delta} \land \bar{\delta}} \mathcal{B}er_f^{\otimes 2}(2\mathcal{Z})$$

yields an isomorphism

$$\ker \bar{\delta} \xrightarrow{\simeq} \mathcal{B}er_f^{\otimes 2}(\mathcal{Z})$$

 $\mathcal D$ is recovered as the image of $\bar\delta^*\colon \mathcal Ber^*_f(-\mathcal Z)\hookrightarrow \Theta_f$

In the singular case we may take this is the definition of SUSY curve with RR punctures

Stable supercurves

Definition

A (pre)stable SUSY curve of arithmetic genus g with punctures is a proper and Cohen-Macaulay supercurve $f : \mathcal{X} \to \mathcal{S}$ with:

- Disjoint closed sub-superschemes X_i → U (i = 1,..., n_{NS}), where U is the smooth locus of f, such that π: X_i → S is an isomorphism for every i (NS punctures)
- Disjoint irreducible Cartier divisors Z_j of relative degree 1 (j = 1,..., n_{RR}), contained in U (RR punctures)
- Solution An epimorphism $\overline{\delta}: \Omega_f \to \mathcal{B}er_f(\mathcal{Z})$, where $\mathcal{Z} = \sum \mathcal{Z}_j$, satisfying the conditions of the previous Proposition

These data must fulfil the following condition: if for every bosonic fibre X_s of $f: \mathcal{X} \to \mathcal{S}$ we write $x_{s,i} = X_i \cap X_s$ and $z_{s,j} = Z_j \cap X_s$, then (X_s, D_s) with $D_s = \{x_{s,1} \dots x_{s,\mathfrak{n}_{NS}}, z_{s,1} \dots, z_{s,\mathfrak{n}_{RR}}\}$ is a (pre)stable $(\mathfrak{n}_{NS} + \mathfrak{n}_{RR})$ -pointed curve of arithmetic genus g

э

19/26

< ロ > < 同 > < 回 > < 回 > < 回 > <

Stable supermaps

Stable supermaps with values in a superscheme \mathcal{Y} , which when \mathcal{Y} is a point coincide with stable SUSY curves with punctures. Fix an algebraically closed ground field k and $\beta \in A_1(\mathcal{Y})$

Definition

A stable supermap into ${\mathcal Y}$ of class β with NS and RR punctures is

- a prestable SUSY curve $(f : \mathcal{X} \to S, \{\mathcal{X}_i\}, \{\mathcal{Z}_j\}, \overline{\delta})$ with \mathfrak{n}_{NS} NS punctures and \mathfrak{n}_R RR punctures
- 2 a morphism $\phi: \mathcal{X} \to \mathcal{Y}$ such that $\phi_*[\mathcal{X}_s] = \beta$ for every closed $s \in S$
- Solution for every geometric point s ∈ S, if X̃'_s is a component of the normalization π: X̃_s → X_s of the bosonic fibre X_s which is contracted by φ ∘ π to a point, then
 - if \tilde{X}'_{s} is rational, it contains at least three points from $\pi^{-1}(D_{s} \cup X'_{s,sing})$, where $D_{s} = \{x_{s,1} \dots x_{s,n_{NS}}, z_{s,1} \dots, z_{s,n_{R}}\}$ with $x_{s,i} = X_{i} \cap X_{s}$ and $z_{s,j} = Z_{j} \cap X_{s}$
 - 2 if \tilde{X}'_s has genus 1, it contains at least one such point

Remarks

- The supercycle class $\phi_*[\mathcal{X}_s]$ is defined even when ϕ is not proper, because the restriction of ϕ to \mathcal{X}_s is automatically proper
- \bullet When ${\cal Y}$ is a point the second condition is automatically fulfilled and stable supermaps into a point are the same thing as stable SUSY curves

The stack of stable supermaps

Category fibred in groupoids $S\mathfrak{M}_{g,\mathfrak{n}_{NS},\mathfrak{n}_{R}}(\mathcal{Y},\beta) \xrightarrow{p} SSch of stable$ supermaps of class β and arithmetic genus g into \mathcal{Y} , with \mathfrak{n}_{NS} NS punctures and n_R RR punctures

Objects: stable supermaps

 $\mathfrak{X} = ((f: \mathcal{X} \to \mathcal{S}, \{\mathcal{X}_i\}, \{\mathcal{Z}_i\}, \overline{\delta}), \phi: \mathcal{X} \to \mathcal{Y})$

of class β and arithmetic genus g with \mathfrak{n}_{NS} NS punctures and \mathfrak{n}_{R} RR punctures

The definition of morphisms as fibre products has two consequences

- the fibre SM_{g,nNS,nR}(Y, β)(S) of SM_{g,nNS,nR}(Y, β) over a superscheme S is a groupoid whose objects are stable supermaps over S
- it equips the CFG $S\mathfrak{M}_{g,\mathfrak{n}_{NS},\mathfrak{n}_R}(\mathcal{Y},\beta)$ with a natural cleavage

Étale descent data for stable supermaps are effective and descent data for morphims to \mathcal{Y} are effective as well so that the descent data for $S\mathfrak{M}_{g,\mathfrak{n}_{NS},\mathfrak{n}_{R}}(\mathcal{Y},\beta)$ are effective

The isomorphisms between two objects of $S\mathfrak{M}_{g,\mathfrak{n}_{NS},\mathfrak{n}_{R}}(\mathcal{Y},\beta)$ form a sheaf in the étale topology of superschemes, so that the CFG $S\mathfrak{M}_{g,\mathfrak{n}_{NS},\mathfrak{n}_{R}}(\mathcal{Y},\beta)$ is a superstack

• Establish the basic deformation theory of supermaps

$\mathcal{X} \stackrel{\phi}{\longrightarrow} \mathcal{Y}$

where \mathcal{Y} is fixed and the pair (\mathcal{X}, ϕ) is deformed

 Compute the dimension of the stack SM<sub>g,n_{NS},n_R(Y, β) using Manin-Penkov-Voronov's super Grothendieck-Riemann-Roch theorem
</sub>

MUITO OBRIGADO PELA ATENÇÃO!

Supercycles and stable supermaps

25/26

æ