Mond conjecture for mappings on ICIS

J.J. Nuño-Ballesteros

Univ. de València, SPAIN \& Univ. Federal da Paraíba, BRAZIL Joint work with A. Fernández-Hernández (Univ. Polit. de València, SPAIN)

Algebraic Geometry, Lipschitz Geometry and Singularities
December 11-15 2023, Pipa, Brazil
(1) Introduction
(2) Singularities of mappings on ICIS
(3) The generalised Jacobian module
(4) Proof for $n=2$

Introduction

Mond conjecture is an inequality of type $\mu \geq \tau$ for singularities of mappings:

Introduction

Mond conjecture is an inequality of type $\mu \geq \tau$ for singularities of mappings:

Conjecture (Mond conjecture, 1991)

Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(f) \leq \mu_{l}(f)
$$

with equality if f is weighted homogeneous.

Introduction

Mond conjecture is an inequality of type $\mu \geq \tau$ for singularities of mappings:

Conjecture (Mond conjecture, 1991)

Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(f) \leq \mu_{l}(f)
$$

with equality if f is weighted homogeneous.
True for:

Introduction

Mond conjecture is an inequality of type $\mu \geq \tau$ for singularities of mappings:

Conjecture (Mond conjecture, 1991)

Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(f) \leq \mu_{l}(f)
$$

with equality if f is weighted homogeneous.
True for:

- $n=2$, de Jong \& Pellikaan (unpublished), de Jong \& van Straten (1991), Mond (1991),

Introduction

Mond conjecture is an inequality of type $\mu \geq \tau$ for singularities of mappings:

Conjecture (Mond conjecture, 1991)

Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(f) \leq \mu_{l}(f)
$$

with equality if f is weighted homogeneous.
True for:

- $n=2$, de Jong \& Pellikaan (unpublished), de Jong \& van Straten (1991), Mond (1991),
- $n=1$, Mond (1995).

Introduction

Mond conjecture is an inequality of type $\mu \geq \tau$ for singularities of mappings:

Conjecture (Mond conjecture, 1991)

Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(f) \leq \mu_{l}(f)
$$

with equality if f is weighted homogeneous.
True for:

- $n=2$, de Jong \& Pellikaan (unpublished), de Jong \& van Straten (1991), Mond (1991),
- $n=1$, Mond (1995).

Still open for $n \geq 3$.

Other $\mu \geq \tau$-inequalities:

Other $\mu \geq \tau$-inequalities:

- $(X, 0)$ isolated hypersurface singularity (IHS), then

$$
\mu(X, 0) \geq \tau(X, 0)
$$

with equality iff $(X, 0)$ is weighted homogeneous. Trivial, except that $=$ implies w.h., Saito (1971).

Other $\mu \geq \tau$-inequalities:

- $(X, 0)$ isolated hypersurface singularity (IHS), then

$$
\mu(X, 0) \geq \tau(X, 0)
$$

with equality iff $(X, 0)$ is weighted homogeneous. Trivial, except that $=$ implies w.h., Saito (1971).

- $(X, 0)$ isolated complete intersection singularity (ICIS) of dimension ≥ 1, then

$$
\mu(X, 0) \geq \tau(X, 0)
$$

with equality iff $(X, 0)$ is weighted homogeneous. Non-trivial:

- w.h. implies $=$, Greuel (1980),
- \geq, Looijenga \& Steenbrik (1985),
- = implies w.h., Vosegaard (2002).
- Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ has isolated instability and (n, p) are nice dimensions, with $n \geq p$. Then,

$$
\operatorname{codim}_{\mathscr{A _ { e }}}(f) \leq \mu_{\Delta}(f),
$$

with equality if f is weighted homogeneous.

- Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ has isolated instability and (n, p) are nice dimensions, with $n \geq p$. Then,

$$
\operatorname{codim}_{\mathscr{A _ { e }}}(f) \leq \mu_{\Delta}(f),
$$

with equality if f is weighted homogeneous.
Here we change the image Milnor number $\mu_{l}(f)$ by the discriminant Milnor number $\mu_{\Delta}(f)$.

- Suppose $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ has isolated instability and (n, p) are nice dimensions, with $n \geq p$. Then,

$$
\operatorname{codim}_{\mathscr{A _ { e }}}(f) \leq \mu_{\Delta}(f),
$$

with equality if f is weighted homogeneous.
Here we change the image Milnor number $\mu_{l}(f)$ by the discriminant Milnor number $\mu_{\Delta}(f)$.

It was proved by Damon \& Mond (Invent. Math. 1991).

Conjecture (Generalised Mond conjecture)

Suppose $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability where (X, S) is an n-dimensional ICIS and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f) \leq \mu_{l}(X, f),
$$

with equality if (X, f) is weighted homogeneous.

Conjecture (Generalised Mond conjecture)

Suppose $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability where (X, S) is an n-dimensional ICIS and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f) \leq \mu_{I}(X, f),
$$

with equality if (X, f) is weighted homogeneous.
The Thom-Mather theory for mappings on ICIS $f:(X, S) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ was developed by Mond \& Montaldi (1996).

Conjecture (Generalised Mond conjecture)

Suppose $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ has isolated instability where (X, S) is an n-dimensional ICIS and $(n, n+1)$ are nice dimensions. Then,

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f) \leq \mu_{I}(X, f),
$$

with equality if (X, f) is weighted homogeneous.
The Thom-Mather theory for mappings on ICIS $f:(X, S) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ was developed by Mond \& Montaldi (1996).
In the same paper: if $n \geq p$ and (n, p) are nice dimensions, then
$\operatorname{codim}_{\mathscr{A}_{e}}(X, f) \leq \mu_{\Delta}(X, f)$,
with equality if (X, f) is weighted homogeneous (generalised Damon \& Mond theorem).

The generalised Mond conjecture has been proved for curves ($n=1$) with additional hypothesis:

The generalised Mond conjecture has been proved for curves ($n=1$) with additional hypothesis:

- if $(X, 0)$ is a plane curve, Ament \& JJNB (2017)

The generalised Mond conjecture has been proved for curves ($n=1$) with additional hypothesis:

- if $(X, 0)$ is a plane curve, Ament \& JJNB (2017)
- if $(X, 0)$ is irreducible and (X, f) is w.h., Ament, JJNB \& Tomazella (2020).

The generalised Mond conjecture has been proved for curves ($n=1$) with additional hypothesis:

- if $(X, 0)$ is a plane curve, Ament \& JJNB (2017)
- if $(X, 0)$ is irreducible and (X, f) is w.h., Ament, JJNB \& Tomazella (2020).

In this work, we prove the generalised Mond conjecture for surfaces $n=2$ without any extra hypothesis.

The generalised Mond conjecture has been proved for curves ($n=1$) with additional hypothesis:

- if $(X, 0)$ is a plane curve, Ament \& JJNB (2017)
- if $(X, 0)$ is irreducible and (X, f) is w.h., Ament, JJNB \& Tomazella (2020).

In this work, we prove the generalised Mond conjecture for surfaces $n=2$ without any extra hypothesis.

Our proof is based on the construction of a generalised Jacobian module, which controls the image Milnor number.

Reasons to consider the generalised Mond conjecture:

Reasons to consider the generalised Mond conjecture:

- It is also a generalisation of the classical $\mu \geq \tau$-inequality for IHS. In fact, if $(X, 0)$ is an IHS and $i:(X, 0) \hookrightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is the inclusion, then

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, i)=\tau(X, 0), \quad \mu_{I}(X, i)=\mu(X, 0) .
$$

Reasons to consider the generalised Mond conjecture:

- It is also a generalisation of the classical $\mu \geq \tau$-inequality for IHS. In fact, if $(X, 0)$ is an IHS and $i:(X, 0) \hookrightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is the inclusion, then

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, i)=\tau(X, 0), \quad \mu_{I}(X, i)=\mu(X, 0) .
$$

- Proof the Mond conjecture by induction on the dimension, this can be done in two ways. We start with $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$.

Reasons to consider the generalised Mond conjecture:

- It is also a generalisation of the classical $\mu \geq \tau$-inequality for IHS. In fact, if $(X, 0)$ is an IHS and $i:(X, 0) \hookrightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is the inclusion, then

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, i)=\tau(X, 0), \quad \mu_{I}(X, i)=\mu(X, 0) .
$$

- Proof the Mond conjecture by induction on the dimension, this can be done in two ways. We start with $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$.

Take H a generic hyperplane in $\mathbb{C}^{n+1}, 0 \in H$. Then $X=f^{-1}(H)$ is now an ICIS of dimension $n-1$ and consider $\left.f\right|_{X, S}:(X, S) \rightarrow H$. We have a Lê-Greuel type formula for $\mu_{I}(f)$.

Reasons to consider the generalised Mond conjecture:

- It is also a generalisation of the classical $\mu \geq \tau$-inequality for IHS. In fact, if $(X, 0)$ is an IHS and $i:(X, 0) \hookrightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is the inclusion, then

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, i)=\tau(X, 0), \quad \mu_{l}(X, i)=\mu(X, 0) .
$$

- Proof the Mond conjecture by induction on the dimension, this can be done in two ways. We start with $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$.
Take H a generic hyperplane in $\mathbb{C}^{n+1}, 0 \in H$. Then $X=f^{-1}(H)$ is now an ICIS of dimension $n-1$ and consider $\left.f\right|_{X, S}:(X, S) \rightarrow H$. We have a Lê-Greuel type formula for $\mu_{I}(f)$.
If f has corank one, the double point space $D^{2}(f) \subset \mathbb{C}^{n} \times \mathbb{C}^{n}$ is an ICIS of dimension $n-1$ and consider the projection $\pi_{1}: D^{2}(f) \rightarrow \mathbb{C}^{n}$. Then $\mu_{I}\left(D^{2}(f), \pi_{1}\right)$ is strongly related to $\mu_{I}(f)$, Giménez-Conejero \& JJNB (Adv. Math. 2023).

Singularities of mappings on ICIS

We follow Mond \& Montaldi (1996).

Singularities of mappings on ICIS

We follow Mond \& Montaldi (1996).
We consider $f:(X, S) \rightarrow\left(\mathbb{C}^{p}, 0\right)$, where X is an ICIS of dimension n. We denote it by (X, f).

Singularities of mappings on ICIS

We follow Mond \& Montaldi (1996).
We consider $f:(X, S) \rightarrow\left(\mathbb{C}^{p}, 0\right)$, where X is an ICIS of dimension n. We denote it by (X, f).
\mathscr{A}-equivalence:

where the columns are biholomorphisms.

Singularities of mappings on ICIS

We follow Mond \& Montaldi (1996).
We consider $f:(X, S) \rightarrow\left(\mathbb{C}^{p}, 0\right)$, where X is an ICIS of dimension n. We denote it by (X, f).
\mathscr{A}-equivalence:

where the columns are biholomorphisms.
Unfoldings (deformations): we deform both the variety X and the map f simultaneously.

An unfolding is a pair (\mathcal{X}, F), where $F:(\mathcal{X}, S) \rightarrow\left(\mathbb{C}^{p} \times \mathbb{C}^{r}, 0\right)$ is a map germ together with a flat projection $\pi:(\mathcal{X}, S) \rightarrow\left(\mathbb{C}^{r}, 0\right)$ such that the following diagram commutes

and such that $X=\pi^{-1}(0)$ and f is the restriction of $\pi_{1} \circ F$ to X.

An unfolding is a pair (\mathcal{X}, F), where $F:(\mathcal{X}, S) \rightarrow\left(\mathbb{C}^{p} \times \mathbb{C}^{r}, 0\right)$ is a map germ together with a flat projection $\pi:(\mathcal{X}, S) \rightarrow\left(\mathbb{C}^{r}, 0\right)$ such that the following diagram commutes

and such that $X=\pi^{-1}(0)$ and f is the restriction of $\pi_{1} \circ F$ to X.
For each parameter $u \in \mathbb{C}^{r}$, we have a mapping $f_{u}: X_{u} \rightarrow V_{u} \subseteq \mathbb{C}^{p}$, where $X_{u}=\pi^{-1}(u)$ and f_{u} is the restriction of $\pi_{1} \circ F$. This is called a perturbation, denoted by $\left(X_{u}, f_{u}\right)$.

An unfolding is a pair (\mathcal{X}, F), where $F:(\mathcal{X}, S) \rightarrow\left(\mathbb{C}^{p} \times \mathbb{C}^{r}, 0\right)$ is a map germ together with a flat projection $\pi:(\mathcal{X}, S) \rightarrow\left(\mathbb{C}^{r}, 0\right)$ such that the following diagram commutes

and such that $X=\pi^{-1}(0)$ and f is the restriction of $\pi_{1} \circ F$ to X.
For each parameter $u \in \mathbb{C}^{r}$, we have a mapping $f_{u}: X_{u} \rightarrow V_{u} \subseteq \mathbb{C}^{p}$, where $X_{u}=\pi^{-1}(u)$ and f_{u} is the restriction of $\pi_{1} \circ F$. This is called a perturbation, denoted by $\left(X_{u}, f_{u}\right)$.

We can see the unfolding (\mathcal{X}, F) as a family $\left\{\left(X_{u}, f_{u}\right)\right\}_{u \in \mathbb{C}^{r}}$ which deforms (X, f).
\mathscr{A}-equivalence of unfoldings: There exist Φ and Ψ unfoldings of the identity on (X, S) and $\left(\mathbb{C}^{p}, 0\right)$ resp, such that for each parameter $u \in \mathbb{C}^{r}$ we have \mathscr{A}-equivalence of mappings:

$$
\begin{aligned}
& X_{u} \xrightarrow{f_{u}} V_{u} \\
& \boldsymbol{L}_{u} \\
& X_{u}^{\prime} \xrightarrow{f_{u}^{\prime}} \xrightarrow{\psi_{u}} V_{u}^{\prime}
\end{aligned}
$$

\mathscr{A}-equivalence of unfoldings: There exist Φ and Ψ unfoldings of the identity on (X, S) and $\left(\mathbb{C}^{p}, 0\right)$ resp, such that for each parameter $u \in \mathbb{C}^{r}$ we have \mathscr{A}-equivalence of mappings:

$$
\begin{array}{cc}
X_{u} \xrightarrow{f_{u}} & V_{u} \\
\downarrow_{u} & \stackrel{\phi_{u}}{\phi_{u}} \\
X_{u}^{\prime} \xrightarrow{f_{u}^{\prime}} & V_{u}^{\prime}
\end{array}
$$

A pair (X, f) is stable if any unfolding is trivial (i,e, \mathscr{A}-equivalent to the constant unfolding).
\mathscr{A}-equivalence of unfoldings: There exist Φ and Ψ unfoldings of the identity on (X, S) and $\left(\mathbb{C}^{p}, 0\right)$ resp, such that for each parameter $u \in \mathbb{C}^{r}$ we have \mathscr{A}-equivalence of mappings:

$$
\begin{array}{cc}
X_{u} \xrightarrow{f_{u}} & V_{u} \\
\downarrow_{\phi_{u}} & \downarrow_{u} \\
X_{u}^{\prime} \xrightarrow{f_{u}^{\prime}} & V_{u}^{\prime}
\end{array}
$$

A pair (X, f) is stable if any unfolding is trivial (i,e, \mathscr{A}-equivalent to the constant unfolding).

A pair (X, f) has isolated instability if there exits a representative $f: X \rightarrow V \subseteq \mathbb{C}^{p}$ such that f has only stable singularities on $V \backslash\{0\}$.
\mathscr{A}-equivalence of unfoldings: There exist Φ and Ψ unfoldings of the identity on (X, S) and $\left(\mathbb{C}^{p}, 0\right)$ resp, such that for each parameter $u \in \mathbb{C}^{r}$ we have \mathscr{A}-equivalence of mappings:

$$
\begin{array}{cc}
X_{u} \xrightarrow{f_{u}} & V_{u} \\
\downarrow_{u} & \stackrel{q_{u}}{\phi_{u}} \\
X_{u}^{\prime} \xrightarrow{f_{u}^{\prime}} & V_{u}^{\prime}
\end{array}
$$

A pair (X, f) is stable if any unfolding is trivial (i,e, \mathscr{A}-equivalent to the constant unfolding).

A pair (X, f) has isolated instability if there exits a representative $f: X \rightarrow V \subseteq \mathbb{C}^{p}$ such that f has only stable singularities on $V \backslash\{0\}$.

A stabilisation is a 1-parameter unfolding such that $\left(X_{t}, f_{t}\right)$ has only stable singularities, if $t \in \mathbb{C}, t \neq 0$ (stable perturbation).

Proposition

Any pair (X, f) with isolated instability admits a stabilisation, provided that (n, p) are nice dimensions in the sense of Mather or f has only kernel rank one singularities

Proposition

Any pair (X, f) with isolated instability admits a stabilisation, provided that (n, p) are nice dimensions in the sense of Mather or f has only kernel rank one singularities

Change of parameter space: Given $\varphi:\left(\mathbb{C}^{s}, 0\right) \rightarrow\left(\mathbb{C}^{r}, 0\right)$ we construct a new unfolding whose perturbation is $\left(X_{\varphi(v)}, f_{\varphi(v)}\right)$ for each $v \in \mathbb{C}^{s}$.

Proposition

Any pair (X, f) with isolated instability admits a stabilisation, provided that (n, p) are nice dimensions in the sense of Mather or f has only kernel rank one singularities

Change of parameter space: Given $\varphi:\left(\mathbb{C}^{s}, 0\right) \rightarrow\left(\mathbb{C}^{r}, 0\right)$ we construct a new unfolding whose perturbation is $\left(X_{\varphi(v)}, f_{\varphi(v)}\right)$ for each $v \in \mathbb{C}^{s}$.
An unfolding is versal if any other unfolding is obtained by change of parameter space and \mathscr{A}-equivalence.

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f)=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{t f\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{\mathscr { A } _ { e }}}(X, f)=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{t f\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

- θ_{p} is the \mathscr{O}_{p}-module of germs of vector fields on $\left(\mathbb{C}^{p}, 0\right)$,

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f)=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{t f\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

- θ_{p} is the \mathscr{O}_{p}-module of germs of vector fields on $\left(\mathbb{C}^{p}, 0\right)$,
- $\theta_{X, S}$ is the $\mathscr{O}_{X, S}$-module of germs of vector fields on (X, S),

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f)=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{t f\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

- θ_{p} is the \mathscr{O}_{p}-module of germs of vector fields on $\left(\mathbb{C}^{p}, 0\right)$,
- $\theta_{X, S}$ is the $\mathscr{O}_{X, S}$-module of germs of vector fields on (X, S),
- $\theta(f)$ is the module of vector fields along f,

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{\mathscr { A } _ { e }}(X, f)}=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{t f\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

- θ_{p} is the \mathscr{O}_{p}-module of germs of vector fields on $\left(\mathbb{C}^{p}, 0\right)$,
- $\theta_{X, S}$ is the $\mathscr{O}_{X, S}$-module of germs of vector fields on (X, S),
- $\theta(f)$ is the module of vector fields along f,
- $\omega f: \theta_{p} \rightarrow \theta(f)$ is the mapping $\omega(\eta)=\eta \circ f$,

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f)=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{t f\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

- θ_{p} is the \mathscr{O}_{p}-module of germs of vector fields on $\left(\mathbb{C}^{p}, 0\right)$,
- $\theta_{X, S}$ is the $\mathscr{O}_{X, S}$-module of germs of vector fields on (X, S),
- $\theta(f)$ is the module of vector fields along f,
- $\omega f: \theta_{p} \rightarrow \theta(f)$ is the mapping $\omega(\eta)=\eta \circ f$,
- tf: $\theta_{X, S} \rightarrow \theta(f)$ is mapping $t f(\xi)=d \tilde{f} \circ \xi$, for some analytic extension \tilde{f} of f.

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f)=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{\operatorname{tf(}\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

- θ_{p} is the \mathscr{O}_{p}-module of germs of vector fields on ($\mathbb{C}^{p}, 0$),
- $\theta_{X, S}$ is the $\mathscr{O}_{X, S}$-module of germs of vector fields on (X, S),
- $\theta(f)$ is the module of vector fields along f,
- $\omega f: \theta_{p} \rightarrow \theta(f)$ is the mapping $\omega(\eta)=\eta \circ f$,
- tf: $\theta_{X, S} \rightarrow \theta(f)$ is mapping $t f(\xi)=d \tilde{f} \circ \xi$, for some analytic extension \tilde{f} of f.
(X, f) is called \mathscr{A}-finite if $\operatorname{codim}_{\mathscr{A}_{e}}(X, f)<\infty$.

The \mathscr{A}_{e}-codimension of (X, f) is defined as

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, f)=\operatorname{dim}_{\mathbb{C}} \frac{\theta(f)}{t f\left(\theta_{X, S}\right)+\omega f\left(\theta_{p}\right)}+\sum_{x \in S} \tau(X, x)
$$

- θ_{p} is the \mathscr{O}_{p}-module of germs of vector fields on $\left(\mathbb{C}^{p}, 0\right)$,
- $\theta_{X, S}$ is the $\mathscr{O}_{X, S}$-module of germs of vector fields on (X, S),
- $\theta(f)$ is the module of vector fields along f,
- $\omega f: \theta_{p} \rightarrow \theta(f)$ is the mapping $\omega(\eta)=\eta \circ f$,
- tf: $\theta_{X, S} \rightarrow \theta(f)$ is mapping $t f(\xi)=d \tilde{f} \circ \xi$, for some analytic extension \tilde{f} of f.
(X, f) is called \mathscr{A}-finite if $\operatorname{codim}_{\mathscr{A}_{e}}(X, f)<\infty$.

Example

$(X, 0)$ is an ICIS in $\left(\mathbb{C}^{n+k}, 0\right)$, inclusion $i:(X, 0) \rightarrow\left(\mathbb{C}^{n+k}, 0\right)$. By construction, $\omega i\left(\theta_{n+k}\right)=\theta(i)$, hence

$$
\operatorname{codim}_{\mathscr{A}_{e}}(X, i)=\tau(X, 0)
$$

Theorem (Versality theorem, Mond \& Montaldi 1996)
(X, f) admits a versal unfolding iff it is \mathscr{A}-finite. In such case, $\operatorname{codim}_{\mathscr{A}_{e}}(X, f)$ is the minimal number of parameters in a versal unfolding.

Theorem (Versality theorem, Mond \& Montaldi 1996)

(X, f) admits a versal unfolding iff it is \mathscr{A}-finite. In such case, $\operatorname{codim}_{\mathscr{A}_{e}}(X, f)$ is the minimal number of parameters in a versal unfolding.

Theorem (Generalised Mather-Gaffney criterion)

(X, f) has isolated instability iff it is \mathscr{A}-finite.

From now on, we consider only pairs (X, f), where $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is \mathscr{A}-finite and either $(n, n+1)$ are nice dimensions or f has corank one.

From now on, we consider only pairs (X, f), where $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is \mathscr{A}-finite and either $(n, n+1)$ are nice dimensions or f has corank one.

Theorem (Mond, 1991 adapted by Giménez-Conejero \& JJNB, 2023)

Take a stable perturbation $\left(X_{t}, f_{t}\right)$. Then $f_{t}\left(X_{t}\right) \cap B_{\epsilon}$ has the homotopy type of a bouquet of n-spheres, $\forall 0<\eta \ll \epsilon \ll 1$ and $0<|t|<\eta$. The number of such spheres $\beta_{n}\left(f_{t}\left(X_{t}\right) \cap B_{\epsilon}\right)$ is independent of the choice of η, ϵ, t and the stabilisation.

From now on, we consider only pairs (X, f), where $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is \mathscr{A}-finite and either $(n, n+1)$ are nice dimensions or f has corank one.

Theorem (Mond, 1991 adapted by Giménez-Conejero \& JJNB, 2023)

Take a stable perturbation $\left(X_{t}, f_{t}\right)$. Then $f_{t}\left(X_{t}\right) \cap B_{\epsilon}$ has the homotopy type of a bouquet of n-spheres, $\forall 0<\eta \ll \epsilon \ll 1$ and $0<|t|<\eta$. The number of such spheres $\beta_{n}\left(f_{t}\left(X_{t}\right) \cap B_{\epsilon}\right)$ is independent of the choice of η, ϵ, t and the stabilisation.
$\mu_{l}(X, f)=\beta_{n}\left(f_{t}\left(X_{t}\right) \cap B_{\epsilon}\right)$ is called the image Milnor number.

From now on, we consider only pairs (X, f), where $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is \mathscr{A}-finite and either $(n, n+1)$ are nice dimensions or f has corank one.

Theorem (Mond, 1991 adapted by Giménez-Conejero \& JJNB, 2023)

Take a stable perturbation $\left(X_{t}, f_{t}\right)$. Then $f_{t}\left(X_{t}\right) \cap B_{\epsilon}$ has the homotopy type of a bouquet of n-spheres, $\forall 0<\eta \ll \epsilon \ll 1$ and $0<|t|<\eta$. The number of such spheres $\beta_{n}\left(f_{t}\left(X_{t}\right) \cap B_{\epsilon}\right)$ is independent of the choice of η, ϵ, t and the stabilisation.
$\mu_{I}(X, f)=\beta_{n}\left(f_{t}\left(X_{t}\right) \cap B_{\epsilon}\right)$ is called the image Milnor number.

Example

Let $(X, 0)$ be an IHS and consider the inclusion $i:(X, 0) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$. We take a reduced equation $g \in \mathscr{O}_{n+1}$. For each $t \neq 0, X_{t}=g^{-1}(t)$ is smooth and $i: X_{t} \rightarrow \mathbb{C}^{n+1}$ the inclusion is stable. We have

$$
\mu_{l}(X, i)=\beta_{n}\left(X_{t} \cap B_{\epsilon}\right)=\mu(X, 0) .
$$

The generalised Jacobian module

The Jacobian module was introduced in a paper by Bobadilla, JJNB \& Peñafort (2019) for map germs $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$. Here we present a generalised version for mappings on ICIS.

The generalised Jacobian module

The Jacobian module was introduced in a paper by Bobadilla, JJNB \& Peñafort (2019) for map germs $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$. Here we present a generalised version for mappings on ICIS.
Assume $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is finite, where (X, S) is ICIS of dimension n.

The generalised Jacobian module

The Jacobian module was introduced in a paper by Bobadilla, JJNB \& Peñafort (2019) for map germs $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$. Here we present a generalised version for mappings on ICIS.
Assume $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is finite, where (X, S) is ICIS of dimension n.

We choose $h:\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{k}, 0\right)$ reduced equation of (X, S) and $\tilde{f}:\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ an analytic extension of f. We define

$$
\hat{f}=(\tilde{f}, h):\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{p} \times \mathbb{C}^{k}, 0\right)
$$

The generalised Jacobian module

The Jacobian module was introduced in a paper by Bobadilla, JJNB \& Peñafort (2019) for map germs $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$. Here we present a generalised version for mappings on ICIS.

Assume $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is finite, where (X, S) is ICIS of dimension n.

We choose $h:\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{k}, 0\right)$ reduced equation of (X, S) and $\tilde{f}:\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ an analytic extension of f. We define

$$
\hat{f}=(\tilde{f}, h):\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{p} \times \mathbb{C}^{k}, 0\right) .
$$

Then $\left(\mathbb{C}^{n+k}, \hat{f}\right)$ is an unfolding of (X, f) with smooth base \mathbb{C}^{n+k} and with parameter space \mathbb{C}^{k}.

The generalised Jacobian module

The Jacobian module was introduced in a paper by Bobadilla, JJNB \& Peñafort (2019) for map germs $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$. Here we present a generalised version for mappings on ICIS.

Assume $f:(X, S) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ is finite, where (X, S) is ICIS of dimension n.

We choose $h:\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{k}, 0\right)$ reduced equation of (X, S) and $\tilde{f}:\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ an analytic extension of f. We define

$$
\hat{f}=(\tilde{f}, h):\left(\mathbb{C}^{n+k}, S\right) \rightarrow\left(\mathbb{C}^{p} \times \mathbb{C}^{k}, 0\right) .
$$

Then $\left(\mathbb{C}^{n+k}, \hat{f}\right)$ is an unfolding of (X, f) with smooth base \mathbb{C}^{n+k} and with parameter space \mathbb{C}^{k}.
If $(X, 0)$ has embedding dimension $n+k$, then $\left(\mathbb{C}^{n+k}, \hat{f}\right)$ is a minimal unfolding with smooth base.

Since f is finite, \hat{f} is also finite and its image is a hypersurface in ($\mathbb{C}^{n+1} \times \mathbb{C}^{k}, 0$). Let $\hat{g} \in \mathscr{O}_{n+1+k}$ be a reduced equation of its image.

Since f is finite, \hat{f} is also finite and its image is a hypersurface in $\left(\mathbb{C}^{n+1} \times \mathbb{C}^{k}, 0\right)$. Let $\hat{g} \in \mathscr{O}_{n+1+k}$ be a reduced equation of its image.

We also put $g \in \mathscr{O}_{n+1}, g(y)=\hat{g}(y, 0)$, which is a reduced equation of the image of f.

Since f is finite, \hat{f} is also finite and its image is a hypersurface in $\left(\mathbb{C}^{n+1} \times \mathbb{C}^{k}, 0\right)$. Let $\hat{g} \in \mathscr{O}_{n+1+k}$ be a reduced equation of its image.
We also put $g \in \mathscr{O}_{n+1}, g(y)=\hat{g}(y, 0)$, which is a reduced equation of the image of f.

The generalised Jacobian module is

$$
M(g)=\frac{\left(\hat{f}^{*}\right)^{-1}\left(J(\hat{\mathrm{~g}}) \cdot \mathscr{O}_{n+k}\right)}{J_{y}(\hat{\mathrm{~g}})} \otimes \frac{\mathscr{O}_{k}}{\mathfrak{m}_{k}},
$$

where $J_{y}(\hat{g})=$ the relative Jacobian ideal, generated in \mathscr{O}_{n+1+k} by $\partial \hat{g} / \partial y_{i}, i=1, \ldots, n+1$.

Example

Let $(X, 0)$ be an IHS and consider the inclusion $i:(X, 0) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$. We have $\hat{g}(y, t)=g(y)-t$, where $g \in \mathscr{O}_{n+1}$ is the equation of $(X, 0)$. Thus, $J(\hat{g})=\mathscr{O}_{n+2}$ and

$$
M(g)=\frac{\mathscr{O}_{n+2}}{J_{y}(\hat{g})} \otimes \frac{\mathscr{O}_{1}}{\mathfrak{m}_{1}} \cong \frac{\mathscr{O}_{n+1}}{J(g)},
$$

the Jacobian algebra.

Theorem

Suppose (X, f) has isolated instability and $(n, n+1)$ nice dimensions, $n \geq 2$, then

$$
\operatorname{dim}_{\mathbb{C}} M(g)=\operatorname{codim}_{\mathscr{A}_{e}}(X, f)+\operatorname{dim}_{\mathbb{C}} \frac{J(g)+(g)}{J(g)}
$$

Theorem

Suppose (X, f) has isolated instability and $(n, n+1)$ nice dimensions, $n \geq 2$, then

$$
\operatorname{dim}_{\mathbb{C}} M(g)=\operatorname{codim}_{\mathscr{A}_{e}}(X, f)+\operatorname{dim}_{\mathbb{C}} \frac{J(g)+(g)}{J(g)} .
$$

Corollary

$$
\operatorname{dim}_{\mathbb{C}} M(g) \geq \operatorname{codim}_{\mathscr{A}_{e}}(X, f),
$$

with equality if (X, f) is w.h.

Now we consider only unfoldings with smooth base, so we can assume they are also unfoldings of the minimal unfolding with smooth base $\left(\mathbb{C}^{n+k}, \hat{f}\right)$.

Now we consider only unfoldings with smooth base, so we can assume they are also unfoldings of the minimal unfolding with smooth base $\left(\mathbb{C}^{n+k}, \hat{f}\right)$.

That is, we consider

$$
F:\left(\mathbb{C}^{n+k} \times \mathbb{C}^{r}, S \times\{0\}\right) \rightarrow\left(\mathbb{C}^{n+1} \times \mathbb{C}^{k} \times \mathbb{C}^{r}, 0\right)
$$

with $F(x, z)=\left(f_{z}(x), h(x), z\right)$ such that $h^{-1}(0)=X$ and $f_{0} \mid x=f$.

Now we consider only unfoldings with smooth base, so we can assume they are also unfoldings of the minimal unfolding with smooth base $\left(\mathbb{C}^{n+k}, \hat{f}\right)$.

That is, we consider

$$
F:\left(\mathbb{C}^{n+k} \times \mathbb{C}^{r}, S \times\{0\}\right) \rightarrow\left(\mathbb{C}^{n+1} \times \mathbb{C}^{k} \times \mathbb{C}^{r}, 0\right)
$$

with $F(x, z)=\left(f_{z}(x), h(x), z\right)$ such that $h^{-1}(0)=X$ and $f_{0} \mid x=f$.
Again, the image of F is a hypersurface in $\left(\mathbb{C}^{n+1} \times \mathbb{C}^{k} \times \mathbb{C}^{r}, 0\right)$. We take $G \in \mathscr{O}_{n+1+k+r}$ a reduced equation.

Now we consider only unfoldings with smooth base, so we can assume they are also unfoldings of the minimal unfolding with smooth base $\left(\mathbb{C}^{n+k}, \hat{f}\right)$.

That is, we consider

$$
F:\left(\mathbb{C}^{n+k} \times \mathbb{C}^{r}, S \times\{0\}\right) \rightarrow\left(\mathbb{C}^{n+1} \times \mathbb{C}^{k} \times \mathbb{C}^{r}, 0\right)
$$

with $F(x, z)=\left(f_{z}(x), h(x), z\right)$ such that $h^{-1}(0)=X$ and $f_{0} \mid x=f$.
Again, the image of F is a hypersurface in $\left(\mathbb{C}^{n+1} \times \mathbb{C}^{k} \times \mathbb{C}^{r}, 0\right)$. We take $G \in \mathscr{O}_{n+1+k+r}$ a reduced equation.

The relative generalised Jacobian module is

$$
M_{r e l}(G)=\frac{\left(F^{*}\right)^{-1}\left(J_{y, z}(G) \cdot \mathscr{O}_{n+k+r}\right)}{J_{y}(G)}
$$

Theorem

We have an exact sequence:

$$
0 \longrightarrow M_{r e l}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{n+k+r}} \longrightarrow 0 .
$$

Theorem

We have an exact sequence:

$$
0 \longrightarrow M_{r e l}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{n+k+r}} \longrightarrow 0 .
$$

$F_{1}(F):=$ first Fitting ideal of \mathscr{O}_{n+k+r} as $\mathscr{O}_{n+1+k+r}$-module via $F^{*}: \mathscr{O}_{n+1+k+r} \rightarrow \mathscr{O}_{n+k+r}$ and $C(F):=F_{1}(F) \cdot \mathscr{O}_{n+k+r}$.

Theorem

We have an exact sequence:

$$
0 \longrightarrow M_{r e l}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{n+k+r}} \longrightarrow 0 .
$$

$F_{1}(F):=$ first Fitting ideal of \mathscr{O}_{n+k+r} as $\mathscr{O}_{n+1+k+r}$-module via
$F^{*}: \mathscr{O}_{n+1+k+r} \rightarrow \mathscr{O}_{n+k+r}$ and $C(F):=F_{1}(F) \cdot \mathscr{O}_{n+k+r}$.

Lemma (Piene (1979), Bruce \& Marar (1996))

$$
\frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{n+k+r}} \cong \frac{\mathscr{O}_{n+k+r}}{R(F)},
$$

where $R(F)$ is the ramification ideal, generated by the maximal minors of the Jacobian matrix of F. In particular, it is Cohen-Macaulay of dimension $n+k+r-2$.

Theorem

$$
M_{r e l}(G) \otimes \frac{\mathscr{O}_{k+r}}{\mathfrak{m}_{k+r}} \cong M(g)
$$

Theorem

$$
M_{r e l}(G) \otimes \frac{\mathscr{O}_{k+r}}{\mathfrak{m}_{k+r}} \cong M(g)
$$

The bifurcation set $\mathscr{B}(F)=$ set of parameters u such that f_{u} has unstable singularities.

Theorem

$$
M_{r e l}(G) \otimes \frac{\mathscr{O}_{k+r}}{\mathfrak{m}_{k+r}} \cong M(g)
$$

The bifurcation set $\mathscr{B}(F)=$ set of parameters u such that f_{u} has unstable singularities.

Theorem

Let F be any unfolding such that $\mathscr{B}(F) \subsetneq\left(\mathbb{C}^{k+r}, 0\right)$. Then,

$$
\mu_{l}(X, f)=e\left(\mathfrak{m}_{k+r} ; M_{r e l}(G)\right),
$$

the Samuel multiplicity of $M_{r e l}(G)$ as \mathscr{O}_{k+r}-module via the projection onto the parameter space.

Corollary

$$
\mu_{I}(X, f) \leq \operatorname{dim}_{\mathbb{C}} M(g),
$$

with equality iff $M_{r e l}(G)$ is Cohen-Macaulay.

Corollary

$$
\mu_{I}(X, f) \leq \operatorname{dim}_{\mathbb{C}} M(g),
$$

with equality iff $M_{r e l}(G)$ is Cohen-Macaulay.

We have

$$
\mu_{I}(X, f) \leq \operatorname{dim}_{\mathbb{C}} M(g) \geq \operatorname{codim}_{\mathscr{A}_{e}}(X, f) .
$$

Corollary

$$
\mu_{I}(X, f) \leq \operatorname{dim}_{\mathbb{C}} M(g),
$$

with equality iff $M_{\text {rel }}(G)$ is Cohen-Macaulay.

We have

$$
\mu_{I}(X, f) \leq \operatorname{dim}_{\mathbb{C}} M(g) \geq \operatorname{codim}_{\mathscr{A}_{e}}(X, f) .
$$

If we want to prove the Mond conjecture by means of the Jacobian module, we have to show that $\mu_{l}(X, f)=\operatorname{dim}_{\mathbb{C}} M(g)$.

Corollary

$$
\mu_{I}(X, f) \leq \operatorname{dim}_{\mathbb{C}} M(g),
$$

with equality iff $M_{\text {rel }}(G)$ is Cohen-Macaulay.

We have

$$
\mu_{I}(X, f) \leq \operatorname{dim}_{\mathbb{C}} M(g) \geq \operatorname{codim}_{\mathscr{A}_{e}}(X, f)
$$

If we want to prove the Mond conjecture by means of the Jacobian module, we have to show that $\mu_{l}(X, f)=\operatorname{dim}_{\mathbb{C}} M(g)$.

Conjecture (Strong generalised Mond conjecture)

$$
\mu_{l}(X, f)=\operatorname{dim}_{\mathbb{C}} M(g) .
$$

Proof for $n=2$

Theorem (Strong generalised Mond conjecture for $n=2$)
Let $f:(X, S) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be with isolated instability, (X, S) a 2-dimensional ICIS. Then

$$
\mu_{I}(X, f)=\operatorname{dim}_{\mathbb{C}} M(g) .
$$

Proof for $n=2$

Theorem (Strong generalised Mond conjecture for $n=2$)
Let $f:(X, S) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be with isolated instability, (X, S) a 2-dimensional ICIS. Then

$$
\mu_{I}(X, f)=\operatorname{dim}_{\mathbb{C}} M(g) .
$$

Proof: This is equivalent to show that $M_{\text {rel }}(G)$ is Cohen-Macaulay for some (and hence for any) unfolding F such that $\mathscr{B}(F) \subsetneq\left(\mathbb{C}^{k+r}, 0\right)$.

Proof for $n=2$

Theorem (Strong generalised Mond conjecture for $n=2$)
Let $f:(X, S) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be with isolated instability, (X, S) a 2-dimensional ICIS. Then

$$
\mu_{I}(X, f)=\operatorname{dim}_{\mathbb{C}} M(g) .
$$

Proof: This is equivalent to show that $M_{\text {rel }}(G)$ is Cohen-Macaulay for some (and hence for any) unfolding F such that $\mathscr{B}(F) \subsetneq\left(\mathbb{C}^{k+r}, 0\right)$.

We have $\operatorname{dim}_{\mathbb{C}} M(g)<\infty$ and $M(g) \cong M_{r e l}(G) \otimes \mathscr{O}_{k+r} / \mathfrak{m}_{k+r}$. This implies $\operatorname{dim} M_{r e l}(G) \leq k+r$.

Recall that we have an exact sequence

$$
0 \longrightarrow M_{r e l}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{2+k+r}} \longrightarrow 0
$$

and we know that the module in the RHS is Cohen-Macaulay of dimension $k+r$.

Recall that we have an exact sequence

$$
0 \longrightarrow M_{\text {rel }}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{2+k+r}} \longrightarrow 0
$$

and we know that the module in the RHS is Cohen-Macaulay of dimension $k+r$.

Now we have:

Recall that we have an exact sequence

$$
0 \longrightarrow M_{\text {rel }}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{2+k+r}} \longrightarrow 0
$$

and we know that the module in the RHS is Cohen-Macaulay of dimension $k+r$.

Now we have:

- $\operatorname{dim} F_{1}(F) / J_{y}(G)=k+r$, i.e., codimension 3 in \mathscr{O}_{3+k+r}.

Recall that we have an exact sequence

$$
0 \longrightarrow M_{\text {rel }}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{2+k+r}} \longrightarrow 0
$$

and we know that the module in the RHS is Cohen-Macaulay of dimension $k+r$.

Now we have:

- $\operatorname{dim} F_{1}(F) / J_{y}(G)=k+r$, i.e., codimension 3 in \mathscr{O}_{3+k+r}.
- $\mathscr{O}_{3+k+r} / F_{1}(F)$ is Cohen-Macaulay of codimension 2 (Mond \& Pellikaan, 1989).

Recall that we have an exact sequence

$$
0 \longrightarrow M_{\text {rel }}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{2+k+r}} \longrightarrow 0
$$

and we know that the module in the RHS is Cohen-Macaulay of dimension $k+r$.

Now we have:

- $\operatorname{dim} F_{1}(F) / J_{y}(G)=k+r$, i.e., codimension 3 in \mathscr{O}_{3+k+r}.
- $\mathscr{O}_{3+k+r} / F_{1}(F)$ is Cohen-Macaulay of codimension 2 (Mond \& Pellikaan, 1989).
- $J_{y}(G)$ is generated by 3 elements.

Recall that we have an exact sequence

$$
0 \longrightarrow M_{\text {rel }}(G) \longrightarrow \frac{F_{1}(F)}{J_{y}(G)} \longrightarrow \frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{2+k+r}} \longrightarrow 0
$$

and we know that the module in the RHS is Cohen-Macaulay of dimension $k+r$.

Now we have:

- $\operatorname{dim} F_{1}(F) / J_{y}(G)=k+r$, i.e., codimension 3 in \mathscr{O}_{3+k+r}.
- $\mathscr{O}_{3+k+r} / F_{1}(F)$ is Cohen-Macaulay of codimension 2 (Mond \& Pellikaan, 1989).
- $J_{y}(G)$ is generated by 3 elements.

By a lemma of Pellikaan (1988), the three conditions above imply that $F_{1}(F) / J_{y}(G)$ is also Cohen-Macaulay.

Finally, we use the depth lemma:

$$
\text { depth } \begin{aligned}
M_{r e l}(G) & \geq \min \left\{\operatorname{depth}\left(\frac{F_{1}(F)}{J_{y}(G)}\right), \operatorname{depth}\left(\frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{n+r}}\right)+1\right\} \\
& =\min \{k+r, k+r+1\}=k+r .
\end{aligned}
$$

Finally, we use the depth lemma:

$$
\text { depth } \begin{aligned}
M_{r e l}(G) & \geq \min \left\{\operatorname{depth}\left(\frac{F_{1}(F)}{J_{y}(G)}\right), \operatorname{depth}\left(\frac{C(F)}{J_{y, z}(G) \cdot \mathscr{O}_{n+r}}\right)+1\right\} \\
& =\min \{k+r, k+r+1\}=k+r .
\end{aligned}
$$

On the other hand,

$$
\operatorname{depth} M_{r e l}(G) \leq \operatorname{dim} M_{r e l}(G) \leq k+r,
$$

therefore

$$
\operatorname{depth} M_{r e l}(G)=\operatorname{dim} M_{r e l}(G)=k+r,
$$

so $M_{\text {rel }}(G)$ is Cohen-Macaulay.

Example

Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be the IHS defined by $x^{3}+y^{3}-z^{2}=0$.

Example

Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be the IHS defined by $x^{3}+y^{3}-z^{2}=0$.
Let $f:(X, 0) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be the mapping $f(x, y, z)=\left(x, y, z^{3}+x z+y^{2}\right)$.

Example

Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be the IHS defined by $x^{3}+y^{3}-z^{2}=0$.
Let $f:(X, 0) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be the mapping $f(x, y, z)=\left(x, y, z^{3}+x z+y^{2}\right)$.
The minimal unfolding with smooth base is $\hat{f}:\left(\mathbb{C}^{3}, 0\right) \rightarrow\left(\mathbb{C}^{4}, 0\right)$

$$
\hat{f}(x, y, z)=\left(x, y, z^{3}+x z+y^{2}, x^{3}+y^{3}-z^{2}\right) .
$$

It turns out to be a stable mapping and hence, a stabilisation.

Example

Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be the IHS defined by $x^{3}+y^{3}-z^{2}=0$.
Let $f:(X, 0) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be the mapping $f(x, y, z)=\left(x, y, z^{3}+x z+y^{2}\right)$.
The minimal unfolding with smooth base is $\hat{f}:\left(\mathbb{C}^{3}, 0\right) \rightarrow\left(\mathbb{C}^{4}, 0\right)$

$$
\hat{f}(x, y, z)=\left(x, y, z^{3}+x z+y^{2}, x^{3}+y^{3}-z^{2}\right) .
$$

It turns out to be a stable mapping and hence, a stabilisation.
That is, the stable perturbation is $\left(X_{t}, f_{t}\right)$, where $f_{t}(x, y, z)=\left(x, y, z^{3}+x z+y^{2}\right)$ and $X_{t}=\left\{x^{3}+y^{3}-z^{2}=t\right\}$.

Example

Let $(X, 0) \subset\left(\mathbb{C}^{3}, 0\right)$ be the IHS defined by $x^{3}+y^{3}-z^{2}=0$.
Let $f:(X, 0) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be the mapping $f(x, y, z)=\left(x, y, z^{3}+x z+y^{2}\right)$.
The minimal unfolding with smooth base is $\hat{f}:\left(\mathbb{C}^{3}, 0\right) \rightarrow\left(\mathbb{C}^{4}, 0\right)$

$$
\hat{f}(x, y, z)=\left(x, y, z^{3}+x z+y^{2}, x^{3}+y^{3}-z^{2}\right) .
$$

It turns out to be a stable mapping and hence, a stabilisation.
That is, the stable perturbation is $\left(X_{t}, f_{t}\right)$, where $f_{t}(x, y, z)=\left(x, y, z^{3}+x z+y^{2}\right)$ and $X_{t}=\left\{x^{3}+y^{3}-z^{2}=t\right\}$.

With Singular, one easily obtains that $\operatorname{codim}_{\mathscr{A}_{e}}(X, f)=6$ and $\mu_{I}(X, f)=\operatorname{dim}_{\mathbb{C}} M(g)=6$.

