On rank theorems for morphisms of local rings

André Belotto da Silva

Université Paris Cité, IMJ-PRG

Algebraic Geometry, Lipschitz Geometry and Singularities

14 December, 2023

Rank Theorems

Collaborators

Octave Curmi

Guillaume Rond

< □ > < □ > < □ > < □ > < □ >

Belotto da Silva (IMJ-PRG)

Rank Theorems

December 2023 2 / 18

э

Preliminary

Let $\mathbb K$ denote the field of real or complex numbers.

We consider germs of \mathbb{K} -analytic mapping :

$$egin{array}{rcl} \Phi:&(\mathbb{K}^m,0)&\longrightarrow&(\mathbb{K}^n,0)\ &u&\mapsto&\Phi(u) \end{array}$$

Recall that Φ induces a morphism of \mathbb{K} -convergent power series:

$$\begin{array}{rcl} \Phi^* := \varphi : & \mathbb{K}\{x\} & \longrightarrow & \mathbb{K}\{u\} \\ & f & \mapsto & f \circ \Phi \end{array}$$

where $u = (u_1, ..., u_m)$ and $x = (x_1, ..., x_n)$ are indeterminates. Question: what can be said about $Im(\Phi)$? Is it an analytic set?

Generic and Analytic ranks

In general, $Im(\Phi)$ is **not** an analytic subset of \mathbb{K}^n .

We consider the germ of the analytic closure of the image, generated by:

$$\mathsf{Ker}(\varphi) = \{ f \in \mathbb{K}\{x\}; f \circ \Phi \equiv 0 \}.$$

Definition

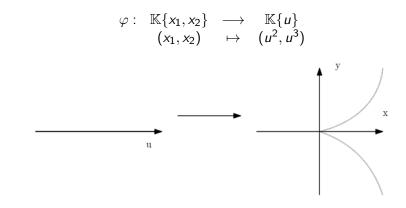
Let $\varphi : \mathbb{K}\{x\} \longrightarrow \mathbb{K}\{u\}$ be a morphism of convergent power series:

$$\begin{array}{ll} \text{the Generic rank:} & \mathsf{r}(\varphi) := \mathsf{rank}_{\mathsf{Frac}(\mathbb{K}\{u\})}(\mathsf{Jac}(\Phi)), \\ \text{the Analytic rank:} & \mathsf{r}^{\mathcal{A}}(\varphi) := \mathsf{dim}\left(\frac{\mathbb{K}\{x\}}{\mathsf{Ker}(\varphi)}\right) \end{array}$$

Remark: $r(\varphi) \leq r^{\mathcal{A}}(\varphi)$.

Example 1

Consider the morphism:



r(φ) = 1; its image is generically of dimension 1;
r^A(φ) = 1; in fact Ker(φ*) = (x³ - y²).

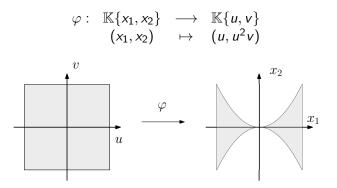
Belotto da Silva (IMJ-PRG)

Rank Theorems

December 2023 5 / 18

Example 2

Consider the morphism:



r(φ) = 2; its image is generically of dimension 2;
r^A(φ) = 2; in fact Ker(φ) = (0).

э

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Chevalley 43, Tarski 48)

If $\varphi : \mathbb{K}[x] \longrightarrow \mathbb{K}[u]$ is polynomial or algebraic, then:

$$\mathsf{r}(\varphi) = \mathsf{r}^{\mathcal{A}}(\varphi)$$

Theorem (Remmert's proper mapping, 58)

Let $\Phi : X \to Y$ be a proper analytic morphism between complex analytic reduced spaces. Then the image $\Phi(X)$ is an analytic space.

< 回 > < 三 > < 三

Osgood Example (1916)

Theorem (Osgood, 1916)

There exists a morphism $\varphi : \mathbb{K}\{x_1, x_2, x_3\} \longrightarrow \mathbb{K}\{u, v\}$ such that:

$$r(\varphi) = 2, \quad r^{\mathcal{A}}(\varphi) = 3$$

Consider the morphism:

$$\begin{aligned} \varphi : \mathbb{K}\{x_1, x_2, x_3\} & \longrightarrow & \mathbb{K}\{u, v\} \\ (x_1, x_2, x_3) & \mapsto & (u, uv, uve^v) \end{aligned}$$

and note that $Ker(\varphi) = (f)$ where:

$$f(x) = x_3 - x_2 \exp(x_2/x_1)$$

but f is not analytic; it does not even admit a Taylor expansion at 0!

$$r(\varphi) = 2, \quad r^{\mathcal{A}}(\varphi) = 3$$

Belotto da Silva (IMJ-PRG)

Formal rank and a question of Grothendieck (1960)

Definition

Let $\varphi : \mathbb{K}\{x\} \longrightarrow \mathbb{K}\{u\}$ be a morphism of \mathbb{K} -convergent power series. Let $\widehat{\varphi} : \mathbb{K}[\![x]\!] \longrightarrow \mathbb{K}[\![u]\!]$ be the extension of φ to the completion.

Formal rank:
$$r^{\mathcal{F}}(\varphi) := \dim\left(\frac{\mathbb{K}[\![x]\!]}{\operatorname{Ker}(\widehat{\varphi})}\right)$$

Remark: $r(\varphi) \leq r^{\mathcal{F}}(\varphi) \leq r^{\mathcal{A}}(\varphi)$.

Question (Grothendieck, 60): Is it true that $r^{\mathcal{F}}(\varphi) = r^{\mathcal{A}}(\varphi)$? In particular,

If
$$\exists F \in \mathbb{K}[x]$$
 such that $F \circ \hat{\varphi} \equiv 0$,
does it $\exists f \in \mathbb{K}\{x\}$ such that $f \circ \varphi \equiv 0$?

Context

This type of results includes the Newton-Puisseux's Theorem and:

Theorem (Artin Approximation, 1958/59) Let $f \in (\mathbb{K}\{x\})^m$ be an analytic function. Suppose that \exists formal power series $H_1(u), \ldots, H_n(u) \in \mathbb{K}[\![u]\!]$ such that:

$$\widehat{f}(H_1(u),\ldots,H_n(u))\equiv 0.$$

Then, $\forall c \in \mathbb{N}$, \exists analytic functions $h_1^{(c)}(u), \ldots, h_n^{(c)}(u) \in \mathbb{K}\{u\}$ such that:

$$f(h_1^{(c)}(u),\ldots,h_n^{(c)}(u))\equiv 0 \ \text{and} \ \widehat{h_i^{(c)}}(u)-H_i(u)\in (u)^c.$$

Grothendieck's question can be seen as a dual to Artin's approximation.

Belotto da Silva (IMJ-PRG)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gabrielov's rank Theorem

Question (Grothendieck, 60): Is it true that $r^{\mathcal{F}}(\varphi) = r^{\mathcal{A}}(\varphi)$?

Theorem (Gabrielov's rank Theorem)

Let $\varphi : \mathbb{K}\{x\} \longrightarrow \mathbb{K}\{u\}$ be a morphism of \mathbb{K} -convergent power series.

$$\mathsf{r}(\varphi) = \mathsf{r}^{\mathcal{F}}(\varphi) \implies \mathsf{r}(\varphi) = \mathsf{r}^{\mathcal{F}}(\varphi) = \mathsf{r}^{\mathcal{A}}(\varphi).$$

But no in general: Gabrielov (1971) provides a map

$$\psi: \mathbb{K}\{x_1, x_2, x_3, x_4\} \quad \longrightarrow \quad \mathbb{K}\{u, v\}$$

such that

$$\mathsf{r}(\psi) = 2, \quad \mathsf{r}^{\mathcal{F}}(\psi) = 3, \quad \mathsf{r}^{\mathcal{A}}(\psi) = 4.$$

Belotto da Silva (IMJ-PRG)

History and Interest

Proofs in the literature:

- Gabrielov, Izv. Akad. Naut. SSSR. (73);
- Output Description (200) Provide a state of the state
- Selotto, Curmi, Rond, JEP (21).

Applications and/or connected works:

- Study of map germs: Eakin, Harris (77); Izumi (86, 89);
- Foliation Theory: Malgrange (77), Cerveau, Mattei (82);
- Subanalytic geometry: Bierstone, Schwarz (82), Bierstone, Milman (82), Pawlucki (90, 92).
- Counter-examples in real-analytic geometry: Pawlucki (89), Bierstone, Parusinski (20), Belotto, Bierstone (23).

Let \mathcal{K} be an uncountable algebraically closed field of characteristic zero. A Weierstrass family (over \mathcal{K}), denoted by $\mathcal{K}\{\{x\}\}$, is a family

 $\mathcal{K}[x_1,\ldots,x_n] \subset \mathcal{K}\{\!\{x_1,\ldots,x_n\}\!\} \subset \mathcal{K}[\![x_1,\ldots,x_n]\!], \quad \forall n \in \mathbb{N},$

of \mathcal{K} -algebras closed by permutation of coordinates, intersection with hyper-planes, division by units and Weierstrass division.

Basic properties: Henselien, Noetherien, UFD, closed by Weierstrass Preparation and Noether normalization.

Theorem (Denef, Lipschitz, 1980)

Artin's approximation holds true for Weierstrass families.

イロト 不得 トイヨト イヨト 二日

W-temperate families

A Weierstrass family $\mathcal{K}\{\{x\}\}\)$ is said to be temperate if it is:

- Closed by local blowings-down of points;
- Olosed by the Abhyankhar-Moh generic hyperplane section criteria;
- Temperateness:

Hypothesis: Let $\Gamma(t, z) \in \mathcal{K}[t, z]$ be an irreducible polynomial:

$$\Gamma(t,z) = z^d + \sum_{i=0}^{d-1} a_i(t) z^i = \prod_{i=1}^d (z - \gamma_i(t)), \text{ where } \gamma(t) \in \mathcal{K}\{\!\{t\}\!\}$$

Let $x = (x_1, x_2)$, $\alpha \in \mathbb{N}^*$ and consider

$$P(x,z) = \sum_{k \in \mathbb{N}} x_1^k p_k(x_2,z) \in \mathcal{K}[\![x]\!][z],$$

where $p_k(x_2, z) \in \mathcal{K}[x_2, z]$ is such that $\deg_{x_2}(p_k) \leq \alpha k, \forall k \in \mathbb{N}$. **Thesis:** $P(x, \gamma(x_2)) \in \mathcal{K}\{\{x\}\} \Longrightarrow P(x, \gamma'(x_2)) \in \mathcal{K}\{\{x\}\}.$

Belotto da Silva (IMJ-PRG)

Rank Theorems

December 2023 14 / 18

Rank Theorems for morphisms of local rings

Let ${\mathcal K}$ be an uncountable algebraically closed field of characteristic zero.

Theorem (Belotto, Curmi, Rond, preprint) Let $\varphi : \mathcal{K}\{\{x\}\} \longrightarrow \mathcal{K}\{\{u\}\}$ be a morphism of W-temperate power series.

$$\mathsf{r}(\varphi) = \mathsf{r}^{\mathcal{F}}(\varphi) \implies \mathsf{r}(\varphi) = \mathsf{r}^{\mathcal{F}}(\varphi) = \mathsf{r}^{\mathcal{W}}(\varphi).$$

- The proof follows from commutative algebra and algebraic geometry.
- **2** Complex analysis is only used to show that $\mathbb{C}\{x\}$ is W-temperate.
- Solution Weight Stress Str

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Corollary 1: Rank Theorem for convergent power series

Let \mathcal{L} be a complete valued field of characteristic zero. For example:

- \mathbb{K} (that is, \mathbb{R} or \mathbb{C});
- non-archimedean fields such as \mathbb{Q}_p , \mathbb{C}_p , $\mathbb{C}((t))$.

Recall that $f \in \mathcal{L}[x]$ is \mathcal{L} -convergent, if $\exists A, B > 0$ such that:

$$f = \sum_{\alpha \in \mathbb{N}^n} f_{\alpha} x^{\alpha} \implies |f_{\alpha}| < A^{|\alpha|} B \,\forall \, \alpha.$$

Corollary (Belotto, Curmi, Rond, preprint)

Let $\varphi : \mathcal{L}\{x\} \longrightarrow \mathcal{L}\{u\}$ be a morphism of \mathcal{L} -convergent power series.

$$\mathsf{r}(\varphi) = \mathsf{r}^{\mathcal{F}}(\varphi) \implies \mathsf{r}(\varphi) = \mathsf{r}^{\mathcal{F}}(\varphi) = \mathsf{r}^{\mathcal{A}}(\varphi).$$

Remark: The proof depends on complex (or non-archimedean) analysis.

Belotto da Silva (IMJ-PRG)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Corollary 2: Rank Theorems in families

We consider Eisenstein power series, going back to Zariski (79). Let \mathcal{O} be an UFD (such as $\mathcal{O}(D)$, where $D \subset \mathbb{C}^n$ is a polydisc, Dales 74). Let $\mathcal{K} = \overline{\operatorname{Frac}(\mathcal{K})}$ and:

$$\mathcal{K}\{\{x\}\} := \bigcup_{c \in \mathcal{K}} \bigcup_{f \in \mathcal{O}} \mathcal{O}_f[\![x]\!][c]$$

where \mathcal{O}_f is the localization by $\{1, f, f^2, \ldots\}$. $\mathcal{K}\{\{x\}\}$ is W-temperate. As a Corollary, we provide a new proof of:

Theorem (Pawłucki 92)

Given an analytic map $\Phi : M \to N$, let Z be the set of non-regular points (in the sense of Gabrielov). Then Z is a proper analytic subset of M.

Algebra is the offer made by the devil to the mathematician. The devil says: "I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvellous machine."

> Sir Michael Atiyah, (Collected works. Vol. 6. Oxford Science Publications, 2004).

Thank you for your attention!