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Set-up:

X is a holomorphic symplectic manifold (not necessarily compact
or algebraic), that is, X is a complex manifold with a closed
holomorphic 2-form σ which is non-degenerate at every point.
Consequently, dim(X ) = 2n is even and the canonical class
KX = 0.

Z ⊂ X is a compact lagrangian submanifold, that is, σ = 0 on Z
and dim(Z ) = n.

EXAMPLE: for any Z , X = T ∗Z has a natural symplectic
structure coming from (local) splitting TX = p∗TZ ⊕ p∗T ∗Z
(where p : X → Z is the projection), as follows:

σ((x , f ), (x ′, f ′)) = f ′(x)− f (x ′)

Weinstein’s neighbourhood theorem: A neighbourhood U of Z in
X is symplectomorphic to a neighbourhood of the zero section of
Z in its cotangent bundle.
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Main Result

Warning: in general this is not holomorphic!

EXAMPLE: X is a non-isotrivial elliptic K3 surfaces and Z is a
smooth fiber of the elliptic fibration. Then TZ is trivial, but a
neighbourhood of Z in X is not a product.

We assume that Z is contractible, that is, there exists a proper
holomorphic map f : X → X ′ which is an isomorphism outside Z ,
and f (Z ) is a point.

By Grauert-Riemenschneider theorem, R i f∗O(KX ) = 0 for i ≥ 1,
so R i f∗OX = 0 for i ≥ 1: X ′ has a rational singularity.

MAIN RESULT: Z ∼= Pn. Moreover, a neighbourhood of Z in X is
holomorphically symplectomorphic to a neighbourhood of the zero
section in T ∗Z with its standard symplectic structure.
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Remarks

REMARKS 1. Pn ⊂ X is always contractible: indeed it is
lagrangian so N∗Pn/X

∼= TPn is ample. Grauert 1962: a compact
submanifold with ample conormal bundle is contractible. In the
same paper, Grauert remarks that a contractible submanifold does
not need to have ample conormal bundle.
2. Z ∼= Pn is well-known when X is projective.
3. Once we know that Z ∼= Pn, Grauert’s criterion implies that a
neighbourhood of Z in X is biholomorphic to a neighbourhood of
the zero section in T ∗Z .

Grauert’s conditions:

H1(Z , SymrN∗Z/X ) = H1(Z ,TZ ⊗ SymrN∗Z/X ) = 0 ∀r > 0

Easy to check because when Z is lagrangian, the symplectic form
induces an isomorphism N∗Z/X

∼= TZ (see e.g.

Cho–Miyaoka–Shepherd-Barron)
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Reminder about the proof in the projective case (Kebekus,
C-M-SB)

Step 1. By MMP, Z is covered by rational curves (Kawamata,
Nakayama).

Step 2. Estimate for the dimension of the parameter space T of
maps f : P1 → X 2n, KX = 0:

dim(T ) ≥ χ(P1, f ∗TX ) = 0− 2n(0− 1) = 2n

So every rational curve deforms in a family of dimension at least
2n − 3.

Z. Ran ’85: when X is holomorphic symplectic, the dimension is at
least 2n − 2!

Remark: We don’t even need that X is projective here.
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Projective case (end). Goal

Step 3. Since Z is contractible, the deformations of the rational
curves in Z remain in Z .
Z (n-dimensional) has really many rational curves
(≥ 2n − 2-dimensional families)!

Take a family of minimal rational curves (i.e. such that through a
general point, all irreducible). There is an n− 1-dimensional family
through a general point =⇒ Z ∼= Pn (Kebekus).

TO DO TODAY

1) Prove that Z ∼= Pn in general (X not necessarily compact or
algebraic);

2) Prove that a neighbourhood of Z is holomorphically
symplectomorphic to a neighbourhood of the zero section in T ∗Pn.



Grauert’s question

OBSERVATION (Grauert 62): if Z is contractible, N∗Z/X does not

have to be ample (even if Z is a divisor), nor satisfy “weak
positivity” (that is, the zero-section is not necessarily contractible
in the total space of N∗Z/X ).

QUESTION (Grauert 62): If Z ⊂ X is contractible, is it true that
there is an ideal J ⊂ OX , such that Supp(OX/J) = Z , and J/J2 is
ample?

In other words, if Z is contractible, is there some scheme/analytic
space structure on Z such that its conormal sheaf is positive?
This question has been answered in the affirmative by Ancona and
Vo Van Tan (around 1980).
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Positivity properties of coherent sheaves

The following results are due to Vo Van Tan and Ancona:
THEOREM 1 The following properties are equivalent for a coherent
sheaf A on a compact irreducible complex analytic space Y :
a) Ampleness: for any coherent sheaf F and k ≥ k0(F), SkA⊗F
is globally generated;
b) Cohomological positivity: for any coherent sheaf F and
k ≥ k0(F), H i (Y ,SkA⊗ F ) is globally generated;
c) Weak positivity: The zero section of the relative spectrum of∑

k S
k(A) is contractible.

THEOREM 2 There exists a torsion-free ample coherent sheaf on
Y if and only if Y is Moishezon.

(Compare to Grauert’s result that Y has a positive vector bundle if
and only if Y is projective.)
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Contractibility

THEOREM 3, answer to Grauert’s question A compact subvariety
Z ⊂ X in a complex analytic space is contractible if and only if
J/J2 is positive for some coherent ideal sheaf defining Z as a set.

In particular, contractible =⇒ Moishezon.

Once we know this, there are two ways to prove that Z ∼= Pn.
WAY 1: BACK TO MMP

THEOREM (Shokurov, Villalobos-Paz) Let Z be Moishezon, then
either Z is projective, or Z has rational curves.

If Z has rational curves, go back to steps 1-3 (note that Kebekus’
arguments carry over verbatim to Moishezon case).

CLAIM If f : X → X ′ is a contraction of a projective Z to a point
p, then some ample line bundle on Z extends together with its
sections to a neighbourhood f −1(U), p ∈ U.

Hence f is projective and one gets rational curves on Z from MMP.
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Uniruledness from Campana-Paun

Another approach (our original one): denote by JZ the ideal sheaf
of Z , and let J be the ideal sheaf obtained from contractibility.
Then J ⊂ JZ . Let k be the maximal number such that J ⊂ JkZ .
The natural map J ⊂ JkZ/J

k+1
Z is zero on J2 and so induces a

non-trivial morphism

J/J2 → Sk(JZ/J
2
Z ) = Sk(N∗Z/X ) = Sk(TZ ).

Define a movable curve as a member of a dominating family of
irreducible curves.

THEOREM (Campana-Paun) If SkTZ has a subsheaf E which is
of positive degree on a movable curve, then Z is uniruled.

Remark Campana and Paun formulate the theorem in the
projective setting but stress its birational nature.
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Moser’s isotopy lemma

We turn to the question about normal forms. One way to
construct symplectomorphisms is the following result by Moser.

LEMMA (Moser) Let ωt be a smooth family of symplectic forms
on a compact manifold M. If the class of ωt in H2(M) is constant,
there is a flow of diffeomorphisms φt , φ

∗
tω0 = ωt .

Verbitsky and Soldatenkov have discovered that Moser’s lemma
has a holomorphic analogue. Their point is to consider
C-symplectic forms on a smooth 4n-manifold M: there are 2-forms
Ω such that Ωn+1 = 0 and Ωn ∧ Ωn is a volume form.

THEOREM (Bogomolov-Deev-Verbitsky) The kernel of Ω defines a
complex structure on M. In this complex structure, Ω is
holomorphic symplectic.
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Holomorphic Moser lemma

Holomorphic Moser lemma needs one extra assumption.

THEOREM (Verbitsky-Soldatenkov) Let Ωt be a family of
C-symplectic form on M, with constant cohomology class, and It
the corresponding complex structures. Assume H1(M,OIt ) = 0 for
all t. Then there exists a family of holomorphic diffeomorphisms
φt , φ

∗
t Ω0 = Ωt .

We have an adaptation to a family of neighbourhoods of
lagrangian submanifolds.

THEOREM (Soldatenkov-Verbitsky) In the situation of the
preceding theorem, take M not necessarily compact and let
Et ⊂ (M, It) be a family of lagrangian submanifolds. Then Et have
open neighbourhoods Ut such that (Ut ,Ωt ,Et) is trivialized by a
flow of holomorphic diffeomorphisms.
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Deformation to the normal cone

Note that the condition on cohomologies is satisfied when M is a
small neighbourhood of a lagrangian Pn (note that this Pn is
always contractible, then use Grauert-Riemenschneider).
So to prove the “holomorphic Weinstein theorem”, we just need to
construct a family of holomorphic symplectic manifolds including a
neighbourhood of Z in X and a neighbourhood of the zero section
in T ∗Z = NZ/X as members. This is a classical construction called
deformation to the normal cone.

Consider M = X ×∆ where ∆ is the unit disk, and let M ′ be its
blow-up up along Z × 0. The fiber of this blow-up over 0 has two
components, the proper preimage D1 of X × 0, and the exceptional
D2. It is easy to see that D2\(D1 ∩ D2) is isomorphic to the total
space of NZ/X . So discarding D1 from the blow-up gives the

desired deformation M̃ → ∆, and we conclude with the following
PROPOSITION: If t is the coordinate on ∆ and σ the symplectic
form on X , σ/t is a holomorphic form on the central fiber.
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