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WORST SINGULARITIES OF PLANE CURVES OF GIVEN DEGREE
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thresholds of reduced plane curves of degree d > 3. I describe reduced plane curves of degree

d whose log canonical thresholds are these numbers. I prove that every reduced plane curve of

degree d > 4 whose log canonical threshold is smaller than % is GIT-unstable for the action

of the group PGL3(C), and I describe GIT-semistable reduced plane curves with log canonical

thresholds %. I prove that %, (Z‘ij”z, dfi:}), d22:i?;i5+1 and d%‘;:g) are the smallest values of the

a-invariant of Tian of smooth surfaces in P of degree d > 3.

and

are the smallest log canonical

All varieties are assumed to be algebraic, projective and defined over C.

1. INTRODUCTION

Let Cy be a reduced plane curve in P? of degree d > 3, and let P be a point in Cy. The curve
Cy can have any given plane curve singularity at P provided that its degree d is sufficiently big.
This naturally leads to

Question 1.1. Given a plane curve singularity, what is the minimal d such that there exists Cy
having this singularity at P?

The best general answer to this question has been given by Greuel, Lossen and Shustin who
proved

Theorem 1.2 ([12] Theorem 2]). For every topological type of plane curve singularity with
Milnor number p, there exists Cg of degree d < 14,/p that has this singularity at P.

For special types of singularities this result can be considerably improved (see, for exam-
ple, [13]). Since Cy can have any mild singularity at P, it is natural to ask

Question 1.3. What is the worst singularity that C; can have at P?

Denote by mp the multiplicity of the curve Cy at the point P, and denote by p(P) the Milnor
number of the point P. If I use mp to measure the singularity of Cy at the point P, then a
union of d lines passing through P is an answer to Question [[.3] since mp < d, and mp = d if
and only if Cy is a union of d lines passing through P. If T use the Milnor number p(P), then
the answer would be the same, since u(P) < (d — 1)2, and u(P) = (d — 1)? if and only if Cy is
a union of d lines passing through P. Alternatively, I can use the number

letp (Pz, C’d) = Sup{)\ eQ ‘ the log pair (Pz, )\C’d) is log canonical at P}

that is known as the log canonical threshold of the log pair (P?,C,) at the point P or the log
canonical threshold of the curve Cy at the point P (see [0, Definition 6.34]). The smallest
lct p(IP?2, Cy) when P runs through all points in Cy is usually denoted by lct(P2, Cy). Note that

1 2
— <letp(P?, Cq) < —.
mp mp

This is well-known (see, for example, [I8, Lemma 8.10] or [9, Exercise 6.18 and Lemma 6.35]).
So, the smaller lct p(P?, Cy), the worse singularity of the curve Cy at the point P is.
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Example 1.4 ([19, Proposition 2.2]). Suppose that Cy is given by x7'z) (:Elfml +25"")=01in
an analytic neighborhood of the point P, where k, n1, ng, m1 and my are arbitrary non-negative

integers. Then
1 1
1 1 —+ =
letp(P%,C,) = mind —, —, — 2 M2__ &
P ) {nl ny' k+ b+ 72

Log canonical thresholds of plane curves have been intensively studied (see, for example, [19],
[0, [11], [16], [14], [21], [20], [10]). Surprisingly, they give the same answer to Question [[3] by

Theorem 1.5 ([I, Theorem 4.1], [I1, Theorem 0.2]). One has lctp(P?,Cy) > 2. Moreover,
lct (P2, Cy) = % if and only if Cy is a union of d lines that pass through P.

In this paper I want to address
Question 1.6. What is the second worst singularity that Cy; can have at P?

To give a reasonable answer to this question, I have to disregard mp by obvious reasons. Thus,
I will use the numbers p(P) and letp(P?,Cy). For cubic curves, they give the same answer.

Example 1.7. Suppose that d = 3, mp < 3 and P is a singular point of C3. Then P is a
singular point of type Ai, Ay or Ag. Moreover, if C3 has singularity of type Az at P, then
C3 = L + (5, where (s is a smooth conic, and L is a line tangent to Cy at P. Furthermore, I

have
1 if C5 has A singularity at P,

u(P) = ¢ 2if C3 has Ay singularity at P,
3 if C'5 has Ag singularity at P.
Similarly, I have
1 if C3 has A; singularity at P,
let p (]P2 03) _ % if C3 has Ag singularity at P,
Z if C3 has Ag singularity at P.

For quartic curves, the numbers p(P) and lct p(P2, Cy) give different answers to Question

Example 1.8. Suppose that d = 4, mp < 4 and P is a singular point of Cy. Going through
the list of all possible singularities that Cp can have at P (see, for example, [15]), I obtain

6 if Cy has Dg singularity at P,
6 if C4 has Ag singularity at P,
u(P) = ¢ 6if C4 has Eg singularity at P,
7 if C4 has Ay singularity at P,
7 if C4 has E; singularity at P,

and u(P) < 6 in all remaining cases. Similarly, I get
if C4 has A7 singularity at P,
if C4 has Dy singularity at P,

letp (IP’2, C’4) = if C4 has Dg singularity at P,

3 U W 00| Ut oo| e

2 if C4 has Eg singularity at P,

5
9 if Cy has E7 singularity at P,

and lctp(P?,Cy) > 2 in all remaining cases.



Recently, Arkadiusz Ploski proved that p(P) < (d—1)2— L%J provided that mp < d. Moreover,
he described Cy in the case when pu(P) = (d — 1) — L%j To present his description, I need

Definition 1.9. The curve Cy is an even Ploski curve if d is even, the curve Cy has %l > 2 irre-
ducible components that are smooth conics passing through P, and all irreducible components
of Cy intersect each other pairwise at P with multiplicity 4.

Ploski curve of degree 6 looks like

Definition 1.10. The curve Cy is an odd Ploski curve if d is odd, the curve Cy has dizl >3

irreducible components that all pass through P, d;21 irreducible component of the curve Cy are
smooth conics that intersect each other pairwise at P with multiplicity 4, and the remaining
irreducible component is a line in P? that is tangent at P to all other irreducible components.

Ploski curve of degree 7 looks like

N\, ~

Each Ploski curve has unique singular point. If d = 4, then C} is a Ploski curve if and only
if it has a singular point of type A7. Thus, if d = 4, then u(P) = (d — 1)% — L%J = 7 if and only
if either Cjy is a Ploski curve and P is its singular point or Cy4 has singularity E; at the point P
(see Example [[8)). For d > 5, Ploski proved

Theorem 1.11 ([23, Theorem 1.4]). If d > 5, then u(P) = (d — 1) — [ %] if and only if C, is a
Ploski curve and P is its singular point.

This result gives a very good answer to Question Surprisingly, the answer given by log
canonical thresholds is very different. To describe it, I need
Definition 1.12. The curve Cy has singularity of type T, (resp., K, ﬁ‘r, ]INQT,) at the point P if
the curve Cy4 can be given by z§ = x1a% (resp., 2] = a:gH, azgx’i_l = z12}h, xga;g_l = a:SH) in
an analytic neighborhood of P.

The main purpose of this paper is to prove

Theorem 1.13. Suppose that d > 4 and mp < d. If P is a singular point of the curve Cy of
type Tgq—1, Kg—1, Tg—1 or Kgq_1, then

2d —
ﬁ if Cy has T4—1 singularity at P,
2d—1 . . .
——— if C4 has K41 singularity at P,

letp (P2, Cy) = d(d —1)

’ 2d—5 . _ .

3357 | Cahas Tay singularity at P,
2d — ~
d(di_;)) if Cy has K;_1 singularity at P.
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If P is not a singular point of the curve Cy of type Ty_1, Ky_1, 'fd_l or ]Kd_l, then either
lctp (P2, Cy) > %, or d =4 and Cy is a Ploski quartic curve (in this case lctp(P?, Cy) = 2).
__ This result fits well Examples [.7] and [L.8] since Ty = A3z, Ky = Ao, Ty =Ky = A1, K3 = Ds,
Tg = Dﬁ, Kg = EG and T3 = E7. Note that

2 - 2d — 3 < 2d —1 < 2d —5 < 2d — 3

d (d—1)2 dd-1) d>—-3d+1 d(d-2)
provided that d > 4. Thus, Theorem [I.13] describes the five worst singularities that C,; can have
at the point P. In particular, it answers Question [L.LBl Moreover, this answer is very explicit.

Indeed, the curve Cy has singularity T,, K,, T, or K, at the point [0: 0: 1] if and only if it can
be given by

ar®™ 1z 4 Byz=2z = oy + oyt + Ed: aixlyd,
i=2
where each a; is a complex number, and
(1,0,1,0) if Cyq has Ty singularity at [0: 0 : 1],
(1,0,0,1) if Cyq has K;_1 singularity at [0: 0 : 1],
(0,1,1,0) if Cy has Ty4_; singularity at [0: 0 : 1],
(0,1,0,1) if C has K,_; singularity at 0:0:1].

(o, B,7,0) =

Remark 1.14. If Cy is a Ploski curve and P is its singular point, then it follows from Example [[.4]
or from explicit computations that
5 2d -3
letp(P?,04) = — > —
ctp (P, Ca) = 5 d(d—2)
provided that d > 5. This shows that Theorems[L. 1] and [[.13] gives completely different answers
to Question

The proof of Theorem [[L13] implies one result that is interesting on its own. To describe
it, let me identify the curve Cy with a point in the space |Opz(d)| that parameterizes all (not
necessarily reduced) plane curves of degree d. Since the group PGL3(C) acts on |Op2(d)], it is
natural to ask whether Cy is GIT-stable (resp., GIT-semistable) for this action or not. This
question arises in many different problems (see, for example, [16], [I4] and [20]). For small
d, its answer is classical and immediately follows from the Hilbert—Mumford criterion (see, for
example, [22, Chapter 2.1], [14, Proposition 10.4] or [16, Lemma 2.1}).

Example 1.15 ([22, Chapter 4.2]). If d = 3, then C3 is GIT-stable (resp., GIT-semistable) if
and only if C5 is smooth (resp., has at most A; singularities). If d = 4, then Cy4 is GIT-stable
(resp., GIT-semistable) if and only if Cy has at most A; and As singularities (resp., it has at
most singular double points and Cj is not a union of a cubic with an inflectional tangent line).

Paul Hacking, Hosung Kim and Yongnam Lee noticed that the log canonical threshold
lct(P?,Cy) and GIT-stability of the curve Cy are closely related (cf. [I0, Theorem 1.1]). In
particular, they proved

Theorem 1.16 ([14, Propositions 10.2 and 10.4], [I6, Theorem 2.3]). If lct(P?,Cy) > 2, then
the curve Cy is GIT-semistable. If d > 4 and lct(P?,Cy) > 3, then the curve Cy is GIT-stable.

This gives a sufficient condition for the curve Cy to be GIT-stable (resp, GIT-semistable).
However, this condition is not a mecessary condition. Let me give two examples that illustrate
this.
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Example 1.17 ([31, p. 268], [14, Example 10.5]). Suppose that d = 5, the quintic curve Cj is

given by
2
x5 + (y2 —a:z) (% +y+2> :x2<y2 —a:z) (m+2y),
and P =1[0:0:1]. Then Cj is irreducible and has singularity A;s at the point P. In particular,

it is rational. Furthermore, it is well-known that the curve C5 is GIT-stable (see, for example,
[22, Chapter 4.2]). On the other hand, it follows from Example [ 4 that

1 1 15 3

3725
Example 1.18. Suppose that Cy; is a Ploski curve. Let P be its singular point, and let L be a
general line in P2. Then

let(P?, C5) = letp(P?,C5) =

) 3

lct (Pz, Cq+ L) = lct (P2, Cd) = lctp (Pz, Cd) 2 < P
by Remark [[LT4l If d is even, then Cy is GIT-semistable, and C;+ L is GIT-stable. This follows
from the Hilbert—Mumford criterion. Similarly, if d is odd, then Cy is GIT-unstable, and Cy+ L

is GIT-semistable.

Ifmp > 2??, then Cy is GIT-unstable by the Hilbert—-Mumford criterion. In particular, if d >
and lct (P2, Cy) < dZ(Z g) then Cy is GIT-unstable by Theorem [[L.T3] unless Cy is a Ploski quartlc
curve. Arguing as in the proof of Theorem [[.T3] this necessary condition can be considerably
improved. In fact, I will give a combined proof of Theorem [[.T3] and
Theorem 1.19. If lct(P?, Cy) < %, then Cy is GIT-unstable. Moreover, if lct(P2,Cy) < %,
then Cj is not GIT-stable. Furthermore, if lct(P?, Cy) = %, then Cy is GIT-semistable if and
only if Cy is an even Ploski curve.

Example [[.I8] shows that this result is sharp. Now let me consider one application of Theo-
rem [[L.T3] To describe it, I need

Definition 1.20 ([30, Appendix A}, [5, Definition 1.20]). For a given smooth variety V' equipped
with an ample Q-divisor Hy, let o/‘j‘/ : V' — Ry be a function defined as
the pair (V,ADy ) is log canonical at O
ozg"(O)zsup Ae@Q P ( . ) g
for every effective Q-divisor Dy ~q Hy

Denote its infimum by «(V, Hy).

Let Sy be a smooth surface in P? of degree d > 3, let Hg , be its hyperplane section, let O
be a point in Sy, and let Tp be the hyperplane section of Sy that is singular at O. Similar to
lctp(IP?2, Cy)), I can define

leto (Sd, TO) = sup{)\ 0) ‘ the log pair (Sd, )\TO) is log canonical at O}.
Then aisd(O) < leto(Sg, To) and Tp is reduced. In this paper I prove
Theorem 1.21. If ozgdsd(O) < d( ) then

ag1(0) = leto (Sa, To) € {

2 2d-3 2d—1 2d—5
dd=—1)2dd—1)d>—3d+1

Corollary 1.22. If a(Sy, Hg,) < d2(§ g’) then

' 2 2d-3 2d—1 2d-5
oS4, Hs,) = olélgd{ICtO(Sd’TO)} € {E’ d—1)2dd—1) d®—3d+ 1}

Corollary 1.23 ([5, Corollary 1.24]). Suppose that d = 3. Then aIS{f3 (0) =lcto(Ss3,To).
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By [28, Theorem 2.1], this corollary implies that every smooth cubic surface in P? without
Eckardt points admits a Kahler—Einstein metric. In [29], Tian proved that all smooth cubic
surfaces are Kéhler—Einstein (see also [26] and [7]). This follows from his

Theorem 1.24 (|29, Main Theorem]). Smooth del Pezzo surface is Kéhler—Einstein if and only
if its automorphism group is reductive.

It should be pointed out that I cannot drop the condition agisd (0) < % in Theorem [L.2]]
for d > 4. For d = 4, this follows from

Example 1.25. Suppose that d = 4. Let S, be a quartic surface in P? that is given by
32+ t2yz +xyz(y +2) =0,
and let O be the point [0:0:0: 1]. Then Sy is smooth, and Tp has singularity A; at O, which
implies that lcto(Ss,To) = 1. Let L, be the line 2 = y = 0, let L, be the line z = z = 0,
and let C be the conic y + 2 = ot +yz = 0. Then L,, L, and Cy are contained in Sy, and
O = Ly N L, N Cy. Moreover,
1
Ly + LZ + 502 ~ 2HS4,
because the divisor 2L, + 2L, + C3 is cut out on Sy by tx 4+ yz = 0. Furthermore, the log pair
(Sa; Ly + L, + %02) is not log canonical at O. Thus, ozgs“ (0) < 1.

4
For d > 5, this follows from

Example 1.26. Suppose that d > 5 and Tp has A; singularity at O. Then leto(Sq,To) = 1.
Let f: Sq — Sg be a blow up of the point O. Denote by E its exceptional curve. Then

(f*(Hsd) - 1—51E)2 =5——>0.

Hence, it follows from Riemann-Roch theorem there is an integer n > 1 such that the linear
system |f*(5nHg,) — 11nE| is not empty. Pick a divisor D in this linear system, and denote by
D its image on S;. Then (Sy, %D) is not log canonical at P, since multp(D) > 11n. On the

. H
other hand, %D ~q Hg, by construction. Hence, ozsdd (0) < 1.

Cool and Coppens called the point O a star point in the case when T is a union of d lines
that pass through O (see [8, Definition 2.2]). Theorems [[.I3] and [L2T] imply

Corollary 1.27. If O is a star point on Sg, then a?dsd (O) = 2. Otherwise a?dsd(O) > (?ﬁ—_l;’g.

This work was was carried out during my stay at the Max Planck Institute for Mathematics
in Bonn in 2014. I would like to thank the institute for the hospitality and very good working
condition. I would like to thank Michael Wemyss for checking the singularities of the curve Cf
in Example [[.T7l I would like to thank Alexandru Dimca, Yongnam Lee, Jihun Park, Hendrick
Sifl and Mikhail Zaidenberg for very useful comments.

2. PRELIMINARIES

In this section, I consider results that will be used in the proof of Theorems [[.13] and 1211
Let S be a smooth surface, let D be an effective non-zero Q-divisor on the surface S, and let P
be a point in the surface S. Put D = >"7_; a;C;, where each C; is an irreducible curve on S,
and each a; is a non-negative rational number. Let me start recall

Definition 2.1 ([I8, Definition 3.5, [9, § 6]). Let m: S — S be a birational morphism such that
S is smooth. Then 7 is a composition of blow ups of smooth points. For each Cj, denote by C;
its proper transform on the surface S. Let Fi,..., F, be m-exceptional curves. Then

r n
Kg —I—Zaié’i —I—ijFj ~Q 7T*(KS —I—D)
i—1 =1
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for some rational numbers by, ..., b,. Suppose, in addition, that S°7_, C; + > j—1 Fj is a divisor
with simple normal crossing at every point of UJ_; Fj. Then the log pair (S, D) is said to be log
canonical at P if and only if the following two condltlons are satisfied:

e q; < 1 for every C; such that P € Cj,

e b; <1 for every Fj such that m(F};) = P.
Similarly, the log pair (S, D) is said to be Kawamata log terminal at P if and only if a; < 1 for
every C; such that P € C;, and b; < 1 for every F} such that 7(F;) = P.

Using just this definition, one can easily prove

Lemma 2.2. Suppose that r =3, P € C; "CyN (4, the curves C1, Cy and C3 are smooth at P,
a1 < 1, as < 1 and ag < 1. Moreover, suppose that both curves C; and Cs intersect the curve
C5 transversally at P. Furthermore, suppose that (S, D) is not Kawamata log terminal at P.
Put £k = multp(Cy - C). Then k(ay + az) + az = k + 1.

Proof. Put Sy =S and consider a sequence of blow ups

Tk T—1 T3

T2
Sk ————— Sk—1

1

52 51 507

where each 7; is the blow up of the intersection point of the proper transforms of the curves C;
and Cy on the surface S;_; that dominates P (such point exists, since kK = multp(C; - C3)). For
each 7;, denote by Ef the proper transform of its exceptional curve on Sy. For each C;, denote

by C’-l‘C its proper transform on the surface Si. Then
Ksg, + ZazCkJrZ < a1 + az) + ag —J)E ~q (T omo- Oﬁk)*<Ks+D),

and 1, OF + E ;=1 Ej is a simple normal crossing divisor in every point of Z?:l E;. Thus,
it follows from Definition 2.1] that there exists [ € {1,...,k} such that I(a; + a2) +ag > [ + 1,
because (S, D) is not Kawamata log terminal at P. If [ = k, then I am done. So, I may assume
that | < k. If k(a1 +a2) + a3 < k+ 1, then a; +ay <1+ % - CL3%, which implies that

l l l l l l
< — —az— =1+ —— | <1+ = — | =
l+1\l(a1+a2)+a3<<l+k a3k>+a3 l+k+a3<1 k>\l+k+<1 k) I+1,

because az < 1. Thus, k(a1 +az) + a3 > k+ 1. O

Corollary 2.3. Suppose that r = 2, P € C; N Cs, the curves C and Cs are smooth at P,
a; < 1and ag < 1. Put k = multp(C; - Cy). If (S, D) is not Kawamata log terminal at P, then
k(ar +a2) > k+ 1.

The log pair (S, D) is called log canonical if it is log canonical at every point of S. Similarly,
the log pair (S, D) is called Kawamata log terminal if it is Kawamata log terminal at every point

of S.

Remark 2.4. Let R be any effective Q-divisor on S such that R ~g D and R # D. Put
D. = (1 + €)D — €R for some rational number e. Then D, ~g D. Since R # D, there exists
the greatest rational number ¢y such that the divisor D, is effective. Then Supp(D,) does not
contain at least one irreducible component of Supp(R). Moreover, if (S, D) is not log canonical
at P, and (S, R) is log canonical at P, then (S, D, ) is not log canonical at P by Definition 2.1]

because )
€0
D=——D —
14+¢ @ + 1+ ¢
ﬁ + 1i050 = 1. Similarly, if the log pair (S, D) is not Kawamata log terminal at P, and
(S, R) is Kawamata log terminal at P, then (S, D) is not Kawamata log terminal at P.

R

and

The following result is well-known and is very easy to prove.
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Lemma 2.5 ([9, Exercise 6.18]). If (S, D) is not log canonical at P, then multp(D) > 1.
Combining with

Lemma 2.6 ([24], [9, Lemma 5.36]). Suppose that S is a smooth surface in P3, and D ~¢ Hg,
where Hg is a hyperplane section of S. Then each a; does not exceed 1.

Lemma 2.7 gives

Corollary 2.7. Suppose that S is a smooth surface in P3, and D ~q Hg, where Hg is a
hyperplane section of S. Then (S, D) is log canonical outside of finitely many points.

The following result is a special case of Shokurov’s connectedness principle (see, for example,
[9, Theorem 6.3.2]).

Lemma 2.8 ([27, Theorem 6.9]). If —(Kg + D) is big and nef, then the locus where (S, D) is
not Kawamata log terminal is connected.

Corollary 2.9. Let Cy be a reduced curve in P? of degree d, let O and Q be two points in Cy
such that O # Q. If lcto (P?, Cy) < %, then letg (P?,Cy) > %.

Let m1: S1 — S be a blow up of the point P, and let E; be the m-exceptional curve. Denote
by D! the proper transform of the divisor D on the surface S; via 7. Then

Kg, + D' + <mult p(D) — 1) By ~g 7t (Ks + D).

Corollary 2.10. If multp(D) > 2, then (S, D) is not log canonical at P. If multp(D) > 2, then
(S, D) is not Kawamata log terminal at P.

The log pair (S1, D! + (multp(D) — 1)E4) is called the log pull back of the log pair (S, D).

Remark 2.11. The log pair (S, D) is log canonical at P if and only if (51, D!+ (multp(D)—1)E})
is log canonical at every point of the curve Ej. Similarly, the log pair (S, D) is Kawamata log
terminal at P if and only if (S, D! + (multp(D) — 1)E;) is Kawamata log terminal at every
point of the curve Fj.

Let Z be an irreducible curve on S that contains P. Suppose that Z is smooth at P, and
Z is not contained in Supp(D). Let p be a non-negative rational number. The following result
is a very special case of a much more general result known as Inversion of Adjunction (see, for
example, [27, § 3.4] or [9, Theorem 6.29]).

Theorem 2.12 ([27, Corollary 3.12], [9, Exercise 6.31], [3, Theorem 7]). Suppose that the log
pair (S, uZ + D) is not log canonical at P and p < 1. Then multp(D - Z) > 1.

This result implies

Theorem 2.13. Suppose that (S, uZ + D) is not Kawamata log terminal at P, and (S, uZ + D)
is Kawamata log terminal in a punctured neighborhood of the point P. Then multp(D-Z) > 1.

Proof. Since (S, uZ + D) is Kawamata log terminal in a punctured neighborhood of the point P,
I have p < 1. Then (S, Z + D) is not log canonical at P, because (S, uZ + D) is not Kawamata
log terminal at P. Then multp(D - Z) > 1 by Theorem 2.12] O

Theorems 2.12] and 2.13] imply

Lemma 2.14. If (S, D) is not log canonical at P and multp(D) < 2, then there exists a unique
point in Ej such that (Sy, D' + (multp(D) — 1)Ey) is not log canonical at it. Similarly, if (S, D)
is not Kawamata log terminal at P, multp(D) < 2, and (S, D) is Kawamata log terminal in
a punctured neighborhood of the point P, then there exists a unique point in E; such that
(S1, D' + (multp(D) — 1)E}) is not Kawamata log terminal at it.
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Proof. If multp(D) < 2 and (51, D' + (Amultp(D) — 1)E}) is not log canonical at two distinct
points P; and Pj, then

2> multp(D) = D'+ i > mulep, (D' By ) +multp, (D' By ) > 2

by Theorem 2121 By Remark 2111 this proves the first assertion. Similarly, I can prove the
second assertion using Theorem [2.13] instead of Theorem 2.12 O

The following result can be proved similarly to the proof of Lemma Let me show how to
prove it using Theorem 2.131

Lemma 2.15. Suppose that (S, D) is not Kawamata log terminal at P, and (.5, D) is Kawamata
log terminal in a punctured neighborhood of the point P, then multp(D) > 1.

Proof. By Remark 11, the log pair (S1, D! + (multp(D) —1)E}) is not Kawamata log terminal
at some point P; € Ej. Moreover, if multp(D) < 2, then (Si, D' + (multp(D) — 1)Eq) is
Kawamata log terminal at a punctured neighborhood of the point P;. Thus, if multp(D) < 1,
then multp (D) = D' E; > 1 by Theorem 2.I3] which is absurd. O

Let Z7 and Z3 be two irreducible curves on the surface S such that Z; and Zs are not contained
in Supp(D). Suppose that P € Z; N Zy, the curves Z; and Z, are smooth at P, the curves Z;
and Zs intersect each other transversally at P. Let u; and po be non-negative rational numbers.
A crucial role in the proofs of Theorems [[.13] and [[.21] is played by

Theorem 2.16 ([3, Theorem 13]). Suppose that the log pair (S, 121 + u2Zs + D) is not
log canonical at the point P, and multp(D) < 1. Then either multp(D - Z1) > 2(1 — ug) or
multp(D - Z3) > 2(1 — p1) (or both).

This result implies

Theorem 2.17. Suppose that (S, u1 21 + poZs + D) is not Kawamata log terminal at P, and
multp(D) < 1. Then either multp(D - Z1) > 2(1 — pg) or multp(D - Z3) > 2(1 — py) (or both).

Proof. Let A be a rational number such that m > A > 1. Then (S, D+ A1 Z1 + Ao Zs) is
not log canonical at P. Now it follows from Theorem that either multp(D-Z71) > 2(1— Aua)
or multp(D - Z3) > 2(1 — Apq) (or both). Since I can choose A to be as close to 1 as I wish, this

implies that either multp(D - Z1) > 2(1 — pg) or multp(D - Z3) > 2(1 — py) (or both). O

3. REDUCED PLANE CURVES

The purpose of this section is to prove Theorems [[.I3] and [LT9 Let C,; be a reduced plane
curve in P2 of degree d > 4, and let P be a point in Cy. Put my = multp(Cy).

Lemma 3.1. One has

% if mg =d,

(fld—i_l:);? if Cy has T4_1 singularity at P,
lctp ([pﬁ, C d) — % if Cy has K;_1 singularity at P,

#_di—l if Cy has ’f‘d_l singularity at P,

% if C has Kd—l singularity at P.

Proof. The required assertion follows either from [I8, Lemma 8.10] or from Example [[.4. Alter-
natively, one can easily prove it directly using only Definition 2.1l This is a good exercise. [
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Put A\ = m and \g = 5 d. By Lemma [3.I] to prove Theorem [[.13] I have to show that if
the log pair (P2, \1C}) is not Kawamata log terminal, then one of the following assertions hold:
e my =d,
e C, has singularity Ty_1, Kg4_1, :]fd—l or Kd—l at the point P,
e d =4 and C} is a Ploski curve (see Definition [L.0]).
To prove Theorem [[.I9] I have to show that if (P2, \yCy) is not Kawamata log terminal, then

either Cy is GIT-unstable or Cy is an even Ploski curve, which is GIT-semistable (see Exam-
ple [LTI8). In the rest of the section, I will do this simultaneously. Let me start with

Lemma 3.2. The following inequalities hold:
: 2

(1) )\1 < a—1>

(il)) A1 < 2k+1 for every positive integer k < d — 3,
(iii) if d > 5 then A< i@ii for every positive integer k < d — 4,
(iv)
(V) Al < d—62,
(Vl) )\1 < 3d—4°
(vii) if d > 5, then A; < Ao.

Proof. The equality ﬂ =M+ W implies (1) Let k be positive integer. If £k = d — 2,
then A\ 2k+1 . This implies (ii), because 21251 =7 2 + k S isa decreasing function on k for k > 1

Similarly, if k‘ =d—4and d > 4, then \; = iﬁlii qa= 2)(d2 5 < igii This implies (iii),
2k+1

since z705 = % + % is a decreasing function on k for k: 1. The equality \; = 3 — -4=3

4~ dqd-2)
proves (iv). Note that (v ) follows from (i). Since 5 =2 > 2 (vi) also follows from (i). Finally,
the equality A1 = A2 — 5 d( - 2) implies (vii). O

I may assume that P = [0:0: 1]. Then Cjy is given by Fy(x,y,2) = 0, where Fy(x,y,2) is a
homogeneous polynomial of degree d. Put x1 = 7, x5 = % and fy(z1,22) = Fy(x1,22,1). Then

fa(wr,w) = Y eyriad,
120,520,
mo<i+j<d
where each ¢€;; is a complex number. For every positive integers a and b, define the weight of
the polynomial fi(z1,z2) as

Wh(qp) (fa(z1,22)) = min {az’ +bj

€ij 75 O}
So, that wt 1) ( fa(z, xg)) = myg. Then the Hilbert—Mumford criterion implies

Lemma 3.3 ([I6, Lemma 2.1]). Let a and b be positive integers. If Cy is GIT-stable, then

d
Wt(a,b) (fd(ﬂfi,mz)) < g(a +0).
Similarly, if Cq is GIT-semistable, then wt ) (fa(z1,22)) < d(a+1b).

This result can be used to give a sufficient condition for the curve Cy to be GIT-stabile (resp.,
GIT-semistabile) (for details, see [I4, Proposition 10.4] and the proof of [16, Theorem 2.3]).

Corollary 3.4. If my > 22, then Cj is GIT-unstable.
Hence, to prove Theoreml]:E{I and [[.19] I may assume that Cj is not a union of d lines passing

through the point P. Suppose that

(A) either (P2, A\;C,) is not Kawamata log terminal,
(B) or (P%,\yCy) is not Kawamata log terminal and Cy is GIT-semistable.
10



I will show that (A) implies that either Cy has singularity Ty_1, Kg_1, 'fd_l or }Kd_l at the
point P, or Cy is a Ploski quartic curve. I will also show that (B) implies that Cy is an even
Ploski curve. If (A) holds, let A = A\;. If (B) holds, let A = Aso.

Remark 3.5. If d = 4, then A\ = X\y. If d > 5, then \; < Ay by Lemma B.2[vii). Since Cy is
reduced and A < 1, the log pair (P?,A\C}) is Kawamata log terminal outside of finitely many
points. Thus, it is Kawamata log terminal outside of P by Lemma 2.8

Let f1: S1 — P2 be a blow up of the point P, and let E; be its exceptional curve. Denote by
Ccll the proper transform on S of the curve Cy. Put mg = multp(Cy). Then

Ko, +XCy+ (Amo = 1) By ~q fi (Kpe +ACa).

By Remark 2Z10], the log pair (S1, AC} + (Amg — 1)E1) is not Kawamata log terminal at some
point P, € Fy.

Lemma 3.6. One has Amg < 2.

Proof. Since Cy is not a union of d lines passing through P, I have my < d—1. By Lemma[3.2(i),
(A) implies Amg < 2, because d > 4. Similarly, it follows from (B) that mgy < %d by Lemma[3.4]
which implies that Amg < % < 2. O

Thus, the log pair (S1,AC} + (Amg — 1)E;) is Kawamata log terminal outside of P, by
Lemma 2.4 Put m; = multp, (C}).

Lemma 3.7. One has mg + mq > % and m; > 1.

Proof. The inequality mg+mq > % follows from Lemma[2. 15l The inequality my > 1 is obvious.
Indeed, if m; = 0, then (S, (Amo—1)E7) is not Kawamata log terminal at P;, which contradicts
Lemma O

Let L be the line in P? whose proper transform on S; contains the point P;. Such a line exists
and it is unique. By a suitable change of coordinates, I may assume that L is given by x = 0.

Lemma 3.8. Suppose that Cy is GIT-semistable. Then mg+ m1 < d.

Proof. Note that wt 1y(fa(w1,72)) = mo. For every (a,b) € N2 different from (1,1), the
number wt, 4)(fa(z1,72)) depends on the choice of (global) coordinates (x,y, z). For instance,
Wt(m)(fd(xl,a:g)) is a sum of mg and the multiplicity of the curve C’é at the point in F; that
is cut out by the proper transform of the line given by y = 0. Similarly, wt(y1)(fa(z1,22)) is a
sum of mg and the multiplicity of the curve C’é at the point in F; that is cut out by the proper
transform of the line given by x = 0. Since I assumed that L is given by x = 0, I have

wte,1) (fa(z1,22)) = mo + m1.

Thus, mg + m; < d by Lemma B3] because Cy is GIT-semistable by assumption. O
Denote by L! the proper transform of the line L on the surface Sj.

Lemma 3.9. Suppose (A) and mg = d — 1. Then Cj has singularity K;_1, Kd_l, Ty—1 or ﬁ‘d—l
at the point P.

Proof. 1 have A = ;. Let me prove that

e if L is not an irreducible component of the curve Cy, then either C; has singularity K,_1
at P, or Cy has singularity Kd_l at P,
e if [ is an irreducible component of the curve Cy, then either C,; has singularity Ty_1 at
P, or Cy has singularity T, ; at P.
11



Suppose that L is not an irreducible component of the curve Cy. Then mgy+ mq < d, because
d—1—mo=Cy-L' >my.

Since mg = d — 1, this gives m; = 1, because m; # 0 by Lemma 37l Then P; € Ccll_l and the
curve C} | is smooth at P;. Put k = multp, (CL - Ey). Applying Corollary 23] to the log pair
(S1,MCY + (A\imo — 1)Ey) at the point Pp, I get

kAimg > k41,
which gives A\; > %. Then k > d — 2 by Lemma [B2((ii). Since
kSCé-Elsz:d—l,

either k =d—1or k=d—2. If k=d— 1, then Cy has singularity K;_; at P. If k = d — 2,
then Cy has singularity K, at the point P.

Thus, to complete the proof, I may assume that L is an irreducible component of the curve
Cy. Then Cy = L+ Cy_;, where Cy_; is a reduced curve in P? of degree d — 1 such that L is not
its irreducible component. Denote by C’;_l its proper transform on S;. Put ng = multp(Cy_1)
and ny = multpl(Ccll_l). Then ng = mg—1 =d— 2 and n; = m; — 1. Note that the log pair
(S1, M LY + (\ymg — 1)Ey) is Kawamata log terminal at P by Lemma This implies that
P e Cé_l. Hence, ny > 1. One the other hand, I have

d—1—-ng=C} |- L' >ny,

which implies that ng +n; < d — 1. Then n; =1, since ng =d — 2 and n1 # 1.
I have P € C’Cll_l and C’Cll_l is smooth at P;. Moreover, since

l=d—1-ng=L"-C) ,>n =1,

the curve C’Cll_1 intersects the curve L' transversally at the point P;. Put k = mult P (C’é_1 -FEy).
Then k > 1. Applying Lemma 2.2 to the log pair (S1,\C}_; + M L' + (A1 (ng + 1) — 1)E4) at
the point P, I get

k‘()\l(no+2) - 1) F A kAL
Then A\; > % Then k > d — 3 by Lemma B.2{(iii). Since
k<E -Cl =ny=d-2,

either k =d — 2 or k = d — 3. In the former case, P must be a singular point of type T4_;. In
the latter case, P must be a singular point of type Ty_1. O

By Corollary B4 and Lemma 3.9, T may assume that mg < d — 2 to complete the proof of
Theorems [[.13] and Let me show that (A) implies that Cy is a Ploski quartic curve, and
(B) implies that Cy is an even Ploski curve. In fact, to complete the proof of Theorems [[.13]
and [LT9] it is enough to show that Cy is a Ploski curve (see Examples [LT8]).

Lemma 3.10. Suppose (A). Then the line L is not an irreducible component of the curve Cjy.

Proof. T have A = Ay. Suppose that L is an irreducible component of the curve Cy. Let me see
for a contradiction. Put Cy = L 4+ Cy_1, where Cy_; is a reduced curve in P? of degree d — 1
such that L is not its irreducible component. Denote by Cé_l its proper transform on S;. Put
ng = multp(Cy—1) and ny = multp, (CL ). Then (Si, (Mi(no +1) — 1)E; + M L' + \CL ) is
not Kawamata log terminal at P; and is Kawamata log terminal outside of the point P;. In
particular, nq # 0, because (S1, (A1 (ng+1) —1)E; + A\ L') is Kawamata log terminal at P;. On
the other hand,
d—1-—nog=L"Cj_; >n,

which implies that ng + ny < d — 1. Furthermore, I have no = mg—1<d — 3.
12



Since ng +ny = 2nq, I have n; < %. Then Any < 1 by Lemma [3.2(i). Thus, I can apply

Theorem [ZI7 to the log pair (S1,(A\1(ng + 1) — 1)Ey + M LY + )\105_1) at the point P;. This
gives either
N (d=1=n0) = \Chy - L' >2(2 = X (no+1))
or
)\1710 = )\105_1 . El = 2(1 - )\1)
(or both). In the former case, I have A\j(d+1+ng) > 4. In the latter case, I have A\1(ng + 2) > 2.
This implies A1 (d—1) > 2 in both cases, since ng < d—3. But A\;(d—1) < 2 by LemmaB.2(i). O

Let fo: S5 — S1 be a blow up of the point P;, and let E5 be its exceptional curve. Denote
by Cfl the proper transform on Sy of the curve Cy, and denote by E? the proper transform on
Sy of the curve E1. Then

Ks, + AC3 + (Amg — 1) E? + (\(mo +m1) — 2) By ~g f3 (Kgl +ACE+ (Amg — 1)E1>.

By Remark Z1T] the log pair (S, AC2 + (Amg — 1) E? + (A(mo +m1) — 2) E2) is not Kawamata
log terminal at some point P» € Fo. Moreover, it is Kawamata log terminal outside of the point
P, by Lemmas 2.T4] since A\(mg + my) < 3 by

Lemma 3.11. One has mg + mq < d.

Proof. By Lemma B8 (B) implies mg + m; < d. If L is not an irreducible component of the
curve Cy, then

d—mo=C)-L' >my.
Thus, the assertion follows from Lemma B.10 O
Put mg = multp, (C3).
Lemma 3.12. One has P, # E% N Es.
Proof. Suppose that Py = E? N Ey. Then

2 2
mo—mlel-Cdng,

which implies that mo < %, since 2mo < my + mo. On the other hand, mg < d — 2 by

assumption. Thus, I have my < d;22.
Suppose (A). Then A = A\; and A\yms < 1 by Lemma [3:2(v). Thus, I can apply Theorem 217
to the log pair (S, \1C?% + (A\imo — 1)E? + (A1(mo + m1) — 2)Ey). This gives either

)\1(TTLO — ml) = )\103 . E% > 2(3 — )\1(’171,0 +m1))

or
)\1777,1 = )‘1Cc2l . E2 = 2(2 — Almo)

(or both). The former inequality implies Aj(3mg 4+ m;) > 6. The latter inequality implies
A1(2mg + my) = 4. On the other hand, mg + m; < d by Lemma BII] and my < d — 2 by
assumption. Thus, 3mg + m; < 3d — 4 and 2mg + m; < 2d — 2. Then A\;(3mg +m1) < 6 by
Lemma[32(vi), and A;(2mg+m1) < 4 by Lemma[3.2[i). The obtained contradiction shows (A)
does not hold.

I see that (B) holds. Then A = Ay and Cy is GIT-semistable by assumption. Moreover,
arguing as in the proof of Lemma [3.8] T see that

wt(3.2) <fd($175172)> = 2mgo + my + mo.

Thus, 2mg + mq + mo < %d by Lemma 3.3 because Cy is GIT-semistable by (B).
13



Let f3: S3 — Sy be a blow up of the point P, and let E3 be its exceptional curve. Denote
by C’C?l’ the proper transform on S3 of the curve Cy, denote by E$ the proper transform on S3 of
the curve Fy, and denote by E3 the proper transform on S3 of the curve Fy. Then

KSg + )\203 + ()\2m0 — 1)E? + ()\Q(TTLO + ml) — Z)Eg + ()\Q(QTTLO +m1 + m2) — 4)E3 ~Q
~q f3 (Ksz + XC3 + (Aamg — 1) ET + (A2(mo + m) — 2)E2>.

Moreover, Ao(2mg + mq + mg) — 4 < 1, since 2my + my + my < %d. By Remark 2.17] the log
pair (Sg, )\203 + ()\Qm() — 1)Ei)’ + ()\g(m(] + ml) — Q)Eg’ + ()\Q(QTTLO +mq + mg) — 4)E3) is not
Kawamata log terminal at some point P3 € F3 and is Kawamata log terminal outside of this
point.

If P3 = E3 N Ej3, then it follows from Theorem 213 that

)\g(mo —mq —mg) = )\ch’Eg > 5—)\2(2m0+m1+m2)

which implies that mg > 3§ = 3 , which is impossible by Corollary B4l If Py = E3 N Es3, then

it follows from Theorem [2]3] that
A2 (my —ma) = AoCi - E3 > 5 — Ag(2mg +my + ma),
which implies that mg + mq > % = d, which is impossible by Corollary 3.1l Thus, I see that
P; ¢ E3 U ES. Then the log pair (S3, \aC3 + (A2(2mo + my +ma) — 4) E3) is not Kawamata log
terminal at P3. Hence, Theorem 2.13] gives
Aoy = A\oC3 - B3 > 1,
which implies that mo > /\% = 2d One the other hand, I proved earlier that ms < 22, Thus,

mo > %, which is impossible by Corollary 3.4l The obtained contradiction completes the proof
of the lemma. O

Denote by L? the proper transform of the line L on the surface Ss.
Lemma 3.13. One has P, # L? N E».
Proof. Suppose that P, = L?> N Ey. If L is not an irreducible component of the curve Cy, then

d—mo—m1:L2ﬂEg>m2,

which implies that mg+mj+ms < d. Thus, if (A) holds, then A = A\; and L is not an irreducible
component of the curve Cy by Lemma [3.10, which implies that

Ad > Al(mo—l—ml—l—mg) >3

by Lemma [2.15] On the other hand, A\id < 3 by Lemma B.2{(iv). This shows that (B) holds.

Since \ = )\2 2d <3 3 and )\g(mo—l—ml +mg) > 3 by Lemma [2.15] T have mg+ mq +mg > d.
In particular, the line L must be an irreducible component of the curve Cj.

Put Cy = L + Cy_1, where Cy_; is a reduced curve in P? of degree d — 1 such that L is not
its irreducible component. Denote by C’é_l its proper transform on S1, and denote by 03—1 its
proper transform on Sp. Put ng = multp(Cy_1), n1 = multpl(Ccll_l) and ng = multpz(Cg_l).
Then (S2, (A2(ng +n1 +2) — 2)Ey + Ao L' + AQCé_l) is not Kawamata log terminal at P and is
Kawamata log terminal outside of the point P,. Then Theorem 2.13] implies

Xp(d—1—=mng—n1) =XCh - L* > 1— (Aa(no+n1 +2) —2) =3 — Aa(ng +n1 +2),

which implies that 5(d+1) = Xa(d+1) > 3. Hence, d =4. Then A = \g = 3
By Lemma B8] ng + n1 < 2. Thus, ng = ny = ng = 1, since
5
é(no—l—n1+n2—|—3) = )\g(m()—l-ml—l-mg) >3
by Lemma [2.151 Then Cj is a irreducible cubic curve that is smooth at P, the line L is tangent
to the curve C3 at the point P, and P is an inflexion point of the cubic curve C3. This implies
14



that lctp (P2, Cy) = % Since % > g = Ao, the log pair (P?, \2Cy) must be Kawamata log terminal
at the point P, which contradicts (B). O

Let f3: S3 — Ss be a blow up of the point P, and let E3 be its exceptional curve. Denote
by Cg the proper transform on S3 of the curve Cy, and denote by Ej the proper transform on
S3 of the curve Ey. Then

Ks, + X053 + (M(mo +m1) — 2) E3 + (A(mo +m1 +ma) — 3) E3 ~q
~q f3 (K32 +ACE + (A(mg +my) — 2)E2>.

By Remark ZT1] the log pair (S3, AC3 + (A(mo + m1) — 2)E3 + (A(mo + mq + mg) — 3)E3) is
not Kawamata log terminal at some point P € Fs.

Lemma 3.14. One has A(mg + mi +ma) < A(mg + 2mq) < 4.

Proof. By Lemma B.11] mg + m1 < d. Since 2mq < mg + m1, I have my < %l. Then

3d 3d 15
A(m0+m1+m2) <)\(m0—|—2m1) gA? <)\2? — Z <4’
because A < A9 and may < my. 0

Thus, the log pair (S5, A\C3 + (A(mg +m1) — 2)E3 + (A(mg +mq +m2) — 3)E3) is Kawamata
log terminal outside of the point P3 by Lemma 214l Put mg = multp,(C3).

Lemma 3.15. One has P; # F3 N Es.
Proof. If Py = E3 N E3, then Theorem 213 gives
)\(ml —mg) = )\C’g’-Eg’ >1-— <)\(m0—|—m1 —|—TTL2) —3) :4—)\(m0+m1+m2),
which implies that A\(mg + 2m1) > 4. But A(mg + 2m1) < 4 by Lemma [3.14] O

Let f4: S4 — S3 be a blow up of the point Ps, and let E4 be its exceptional curve. Denote
by Cfil the proper transform on Sy of the curve Cy, denote by Ej the proper transform on Sy
of the curve Ej3, and denote by L* the proper transform of the line L on the surface S;. Then
(84, AC5 + (M(mo + m1 + m2) — 3)E3 + (A(mo + m1 + ma + m3) — 4)Ey) is not Kawamata log
terminal at some point Py € E4 by Remark 2.17], because

Kg, + )\Cfi + ()\(mo +m1 + mg) — 3)E§ + ()\(mo +my +mg + ms3) — 4)E4 ~Q
~g f (K33 +ACH + (\(mo + mq +ma) — 3) E3>.

Moreover, I have

2L+ By + 2By + By ~ (fro fa0 f30 fa)* (011»2 (2)) -
—(fao fzo fa)*(Er) — (f3 0 fa)" (E2) — fi (E3) — Ea.

Lemma 3.16. The linear system \2L4 + Ey + 2FE5 + E3| is a pencil that does not have base
points. Moreover, every divisor in |2L*+ F; +2F>+ F3| that is different from 2L*+ Ey +2FE5 + F3
is a smooth curve whose image on P? is a smooth conic that is tangent to L at the point P.

Proof. All assertions follows from P, ¢ E? U L? and P3 & E3. O

Let Cél be a general curve in [2L* + E1 +2E, + E3|. Denote by Cy its image on P2, and denote
by L the pencil generated by 2L and C3. Then P is the only base point of the pencil £, and
every conic in £ except 2L and Cj intersects Co at P with multiplicity 4 (cf. [5, Remark 1.14]).

Lemma 3.17. One has mqg+mq +mo+m3z < mg+mq+2mo < % If mg+mi+me+ms = %,
then d is even and Cy is a union of %l > 2 smooth conics in £, where d = 4 if (A) holds.
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Proof. By Lemma B.11] T have mgy + m3 < 2ma < mg +m1 < d by Lemma 311l This gives
) )
— <=
Ao A

To complete the proof, I may assume that mo+mi+mo+mg = % Then all inequalities above

mgo +mi +mg +mg < mg+mq +2my < 2d =

must be equalities. Thus, I have mo = mg = %l and A\ = A\g. In particular, if (A) holds, then
d = 4, because A\| < Ay = 2—5d for d > 5 by Lemma [B.2(vii). Moreover, since mg > my = mg = %

and mg + mq < d, I see that mg =mq = %l. Thus, d is even and
d
Ci~ 5 (20" + Bu 2B + By ),

where d = 4 if (A) holds. Since |2L* + E; + 2E; + Ej3] is a free pencil and C3 is reduced, it
follows from Lemma B.I6] that C] is a union of % smooth curves in [2L* + E; + 2E; + E3|. In

particular, L* is not an irreducible component of Cfl. Thus, the curve Cy is a union of % smooth
conics in £, where d = 4 if (A) holds. O

Thus, if mg + m1 + mg + mg = %, then Theorems [[.13] and [[.T9] are proved. Let me show
that the inequality mg + mq + mo + ms < % is impossible. Suppose that it holds. Then the log
pair (Sg, A\C§ + (A(mo +m1 4+ ma) — 3)E3 + (A(mo + m1 + ma + mg3) — 4)Ey4) is Kawamata log
terminal outside of the point Py by Lemma 2.14]

Lemma 3.18. One has P, # E§‘ N Ey.
Proof. By Lemma B.17, mqg + mq + 2mo < ; If Py = E3 N Ey, then Theorem 2.I3] gives
A(ma —mg) = ACj - E3 > 5 — X(mg +my +ma +m3),
which implies that mg + mq + 2mey > % This shows that Py # Egl N Ey. O

Corollary 3.19. The log pair (Ss, A\C3 + (A(mg +my +ma +m3) — 4)Ey) is not Kawamata log
terminal at P, and is Kawamata log terminal outside of the point Pj.

Let Z* be the curve in ]2L4 + Ey + 2E5 + E3| that passes through the point Py. Then Z% is
a smooth irreducible curve by Lemma [3.I3l Denote by Z the proper transform of this curve on
P2. Then Z is a smooth conic in the pencil £ by Lemma [3.16

Lemma 3.20. The conic Z is not an irreducible component of the curve Cy.

Proof. Suppose that Z is an irreducible component of the curve C;. Then Cy = Z+ Cy_5, where
Cjy_o is a reduced curve in P? of degree d—2 such that Z is not its irreducible component. Denote
by C’Cll_2, 03_2, 03_2 and 03_2 its proper transforms on the surfaces S1, So, S3 and Sy, respec-
tively. Put ng = multp(Cy—_2), n1 = multp, (C}_,), no = multp,(C3_,), ng = multp,(C3_,) and
ng = multp,(C]_,). Then (Ss, ACG_o +AZ4+ (A(no+n1 +ng+n3+4) —4)E,) is not Kawamata
log terminal at P; and is Kawamata log terminal outside of the point Py by Corollary B.19
Thus, applying Theorem 2.13] T get

A(2(d=2) =no—m = s —ng) = AChy- Z* > 5= Ao +m1 +ny +ng +4),
which implies that A > %. This is impossible, since A < Ay = %. O

Put my = mult p4(C’§). Since Z is not an irreducible component of the curve Cy, I have

3
Qd—zmi:Z4'C§ 2’171,4,
i=0
which gives Z?:o m; < 2d. On the other hand, Z?:o m; > % by Lemma [2.T5] Thus, I have

A > %, which is impossible, since A < Ay = %. The obtained contradiction completes the proof

of Theorems [[.13] and
16



4. SMOOTH SURFACES IN P?

The purpose of this section is to prove Theorem [L2Il Let S be a smooth surface in P3 of
degree d > 3, let Hg be its hyperplane section, let P be a point in S, let Tp be the hyperplane
section of the surface S that is singular at P. Then Tp is reduced by Lemma2.6l Put A = %.

Proposition 4.1. Let D be any effective Q-divisor on S such that D ~g Hg. Suppose that
Supp(D) does not contain at least one irreducible component of the curve Tp. Then (S, \D) is
log canonical at P.

If d = 3, then Proposition 1] is [5, Corollary 1.13] that implies two important results. It
implies [26, Theorem 1.3], which implies that all smooth cubic surfaces are Kdhler—Einstein by
[7, Theorem 2]. By [I7, Corollary 3.2], [5, Corollary 1.13] also implies that affine cones over
smooth cubic surfaces do not admit effective actions of the additive group G,. On the other
hand, Proposition 1] and Theorem [[L.T3] imply Theorem [L211

Proof of Theorem [I.21l. Suppose that ags (P) < A. Put pp = lctp(S,Tp). By Theorem [L.T3] it

is enough to show that ozgs (P) > p in order to prove Theorem [L2Il Suppose that ags (P) < p.
Then there exists an effective Q-divisor D on the surface S such that D ~qg Hg and (S, D)

and (S, uD) are not log canonical at the point P, since ags (P) < A. Put
l)E = (1 + E)D - GTP

for some rational number e. Since Tp # D, there exists the greatest rational number ¢y such
that the divisor D, is effective. Put D’ = D.,. Then Supp(D’) does not contain at least
one irreducible component of Supp(7Tp). Thus, the log pair (S,\D’) is log canonical at P by
Proposition €Il On the other hand, the log pair (S, uTp) is log canonical at P, which implies
that (S, puD’) is not log canonical at P by Remark 24l Then p > A. In particular, (S, \Tp)
is log canonical at P. Then (S,A\D’) is not log canonical at P by Remark 2.4l The latter is
impossible, since I already proved that (S, AD’) is log canonical at P. O

In the remaining part of the section, I will prove Proposition 41l Note that I will do this
without using [5l, Corollary 1.13]. Let me start with

Lemma 4.2. The following assertions hold:
(i) A< 7,
(ii) if d > 5, then A <
(iii) if d > 5, then A < 5
(iv) Ifd > 6, then \ <
(v) A
) A

(vi

2_ o
d+1 = A+ % implies (ii), and

implies (iii). Similarly, (iv) follows from m =+ Cg—@gi—j;)ﬁ, (v) follows

Proof. The equality d21 =+ m implies (i),
4 A4 2d?—11d+9
3

d+ d(d+3)(d—2)
2
from m =+ m and (vi) follows from 3 = X + d(cfi 32) O

Let n be the number of irreducible components of the curve Tp. Put Tp = 11 +- - -+ 1}, where
each T; is an irreducible curve. For every T;, denote its degree by d;, and put t; = multp(7;).

Lemma 4.3. Suppose that n > 2. Then T; - T; = —d;(d — d; — 1) for every T;, and T; - Tj = d;d;
for every T; and T} such that T; # T}.

Proof. The curve Tp is cut out on S by a hyperplane H C P2. Then H = P?. Hence, for every
T; and T} such that T; # T}, I have (T; - T})s = (T; - Tj)m = did;. In particular, I have

dy=Tp Ty =T2+» T;-T) = T1+de1 +(d—dy)dy,
=2
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which gives Th - T} = —di(d — dy — 1). Similarly, I have T;-T; = —d;(d — d; — 1) for every T;. O

Let D be any effective Q-divisor on S such that D ~g Hg. Suppose that Supp(D) does not
contain at least one irreducible component of the curve Tp. To prove Proposition 1], T must
show that (S,\D) is log canonical at P. Suppose that this is not the case. Let me seek for
a contradiction. Without loss of generality, I may assume that Supp(D) does not contain the
curve 1r,.

Lemma 4.4. Suppose that n > 2. Let k£ be a positive integer such that £k < n — 1. Write
D = Zle a;T; + A, where each a; is a non-negative rational number, and A is an effective Q-
divisor on S whose support does not contain the curves 77, ..., . Put kg = multp(A). Then

k
Zaididn < d, — tyko.

In particular, Zle a;d; < 1 and each a; does not exceed d%-'

Proof. Since T, is not contained in Supp(D), it is not contained in Supp(A). Then

dn:Tn-D:Tn-<§:aiTi+A> Zazdd + T, A > Za,dd + tnko,
i=1

i=1 i=1
which implies the required inequality. O
Put mo = multp(D).
Lemma 4.5. Suppose that P € T,,. Then d,, > %=1, If n > 2, then T}, is smooth at P.
Proof. Since T}, is not contained in the support of the divisor D, I have
d}dn:T-D tnmo,

Since mgp > + by Lemma 27 I have d, > 421 by Lemma E2i).

which implies that mg < t—”
tn, > 2, then it follows from Lemma [2.5] that

Moreover, if n > 2 and

1< <dn<al—1<d—1

N myxs — X X T 54

) 03 t 2

which is impossible by Lemma [.2(i). O

Corollary 4.6. The point P is not a star point.
Now I am ready to use Theorem 2.16] to prove

Lemma 4.7. Suppose that n > 3 and P is contained in at least two irreducible components of
the curve Tp that are different from 7, and that are both smooth at P. Then they are tangent
to each other at P.

Proof. Without loss of generality, I may assume that P € T1 NT5 and t; = to = 1. I must show
that 77 and T, are tangent to each other at P. Suppose that this is not the case. Let me seek
for a contradiction. Put D = a1y + bTo + A, where a and b are non-negative rational numbers,
and A is an effective Q-divisor on the surface .S whose support does not contain the curves T}
and T5. Then ad; + bdy < 1 by Lemma 4]

Put ko = mult(A). Then

di+adi(d—dy —1) —bdidy = ATy > ko
by Lemma 43l Similarly, I have

do — adyds + bdg(d —dy — 1) ATy > k.
Adding these two inequalities together and using ad; + bdy < 1, I get

2]{70\dl—l—dg—l—(adl—l—adg)(d—dl—dg—l)\dl—l—dg—l—(d—dl—dg—l):d—l.
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Thus, ko < + by Lemma F2(i).

Since Akg < 1, I can apply Theorem to the log pair (S, \aT} + A\bTs + AA) at the point
P. This gives either AA - T7 > 2(1 — Ab) or AA - Ty > 2(1 — Aa). Without loss of generality, I
may assume that AA - T5 > 2(1 — Aa). Then

(4-8) dg—l—bdg(d—dg—l) —adide =N -Th > ;—2&.

Applying Theorem 213 to the log pair (S, AaTy + \bT» + AA) and the curve T} at the point P,
I get

1
di+ady(d—di—1) = (WL +AA) T3 > 1.
Adding this inequality to (8], I get

d+1>d—1+2a> d1+d2+(ad1+bd2)(d—d1—d2—1)—|—2a>;,

because ad; + bds < 1. Thus, it follows from Lemma [£.2(ii) that either d = 3 or d = 4.
If d =3, then n = 3 and dy = dy = d3 = A = 1, which implies that a + b > 1 by (48]). Since
ady + bdy < 1, 1 see that d = 4. Then \ = % and dy +dy < 3. If dy = dy = 1, then (48] gives

2b+a > L Ifd; =1 and dy = 2, then(@)givesb>3. If di = 2 and dy = 1, then (43

gives b > 151 All these three inequalities are inconsistent, because ad; + bds < 1. The obtained

contradiction completes the proof of the lemma. O

ot

Note that every line contained in the surfaces S that passes through P must be an irreducible
component of the curve Tp. Moreover, the curve T,, cannot be a line by Lemma [£5l Therefore,
Lemma [£.7] implies

Corollary 4.9. There exists at most one line in S that passes through P.
Corollary 4.10. One has n < d.
To apply Lemma 7, T need

Lemma 4.11. Suppose that n > 3 and P is contained in at least two irreducible components
of the curve Tp that are different from T,,. Then these curves are both smooth at P.

Proof. Without loss of generality, I may assume that P € T} NT; and t; < to. I have to show
that ¢t = t5 = 1. By Corollary 10, d # 3. If d = 4, then n < 4, and the curves 17, Ty and
Ty are either lines or conics. So, I may assume that d > 5. Put D = a7} + b15 + A, where a
and b are non-negative rational numbers, and A is an effective Q-divisor on the surface S whose
support does not contain the curves T} and T5. Put ky = multp(A). Then mg = ko + atq + bto.
Moreover, ady + bdy < 1 by Lemma 44 On the other hand, it follows from Lemma [4.3] that

d=1>di +dy+ (ady +ady) (d —dy —dy = 1) = A+ (Ty + T3) > ho(tr +12),

because ady + bds < 1. Thus, kg < . Thus, if t; + t3 > 4, then

t+t

1 1
Cadyrbdy < 2T 43

=k t bty <k d bd
mo o+ at1 + 0te < kg + ady + bde < G 6 1

because ad; + bdy < 1. Since mg > 3 by Lemma 2.5 the inequality mg < d+3 gives A > 43
which is impossible by Lemma Mlll) Thus, t1 +t2 < 3. Since t1 < to, I have tl =1andty <

To complete the proof of the lemma, I have to prove that to = 1. Suppose to # 1. Then
to = 2, since t1 + t9 < 3. Since kg < d—1 = % and ady + bdy < 1, I have

t1+t2
d—1 d—1 d+2
m0:k0+at1+bt2<k0+adl+bd2<3—2+adl+bd2<t1+t2+1:T-

On the other hand, mg > + by Lemma[Z5 So, A > %. Then d = 5 by Lemma [L2(iv).
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Since d =5, T have n = 3, d; = 1, do = 3 and d3 = 1, because t; = 1 and t; = 2. Applying
Theorem 2.T3] to the log pair (S, \aTy + AT + AA), T get
1 1
1+3a:d1+ad1(d—d1—1) = ()\ng-FAA) Ty > X = 75,

which gives a > %. On the other hand, a + 3b < 1, because ad; + bdy < 1. Since mg > )\ =15

T
by Lemma [2.5] I see that
_5_1_g>8—5a_3—a+7(1—3‘“)_3—a+7b_3—3a+3b+a+2b_
79 63 3 2 N 2 B 2 -
mult (A : Tg) tako 15
= —— L ta+2> T+ a+2b=ko+a+2b=mo>—,
which is absurd. O

Now I am ready to prove

Lemma 4.12. One has mgy < %.

d+1

Proof. Suppose that mg > . Let me seek for a contradiction. If n = 1, then

d=1T, -D >=2mg,

which implies that mg < 2 Thus, n > 2. Then either ¢,, = 0 or t, = 1 by Lemma [ Hence,
there is an irreducible component of Tp that passes through P and is different from 7,,, because
Tp is singular at P. Without loss of generality, I may assume that ¢; > 1.

Put D = aT7 4 2, where a is a non-negative rational number, and 2 is an effective Q-divisor
on the surface S whose support does not contain the curve 7. Then a < 1 by Lemma 4l Put
no = multp(2). Then my = ng + aty.

By Lemma[44] t,ng < d,, — ad1d,,. By Lemma [4.3] I have

(4.13) d1 + adl(d - dl - 1) Q- Tl tlno,

Adding these two inequalities, I get (t1 +t,)no < d1 +dyp +adi(d—dy —d, —1). Hence, if n > 3
and t, = 1, then

2ng < (tl—l—tn)no d1+dn—|—ad1(d—d1—dn—1)<d—1<d—ad1,

< L
1°

because a < Similarly, if n =2 and ¢,, = 1, then

N d
2ng < (tl—i-tn)n <d1+d2+ad1(d—d1—d2—1) =di+dy —ady =d— ady.
Thus, if ¢, = 1, then ny < 4= “dl . On the other hand, if ng < &= “dl , then
d+1 d— ad; d+ ady d+1

T<m0—n0+at1 <ng+adp < +ad; = 5 < 5
because a < g-. This shows that ¢, = 0.
If t1 > 2, then it follows from (A.I3)) that
d+1 d di(d—d; —1 d di(d—di +1 d+1
%<m0—no+at1 notad; < 1ta 1(2 ! )+ad1: Lta 1(2 Lt )g ;— )

because a < 5. This shows that ¢ = 1.

Since t1 = 1 and t, = 0, there exists an irreducible component of the curve Tp that passes
through P and is different from 77 and 7T,. In particular, n > 3. Without loss of generality, I
may assume that this irreducible component is T5. Then T5 is smooth at P by Lemma [4.17]

Put D = a1y + 015 + A, where b is a non-negative rational number, and A is an effective
Q-divisor S whose support does not contain the curves 77 and T». Put kg = multp(A). Then
ady + bdy < 1 by Lemma [£.4l Thus, it follows from Lemma that

2o <A (T +To) = di+da + (ady +ada) (d — dy —dy — 1) <d — 1,
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which implies kg < %. Then
d+1 d—1 d—1 d+1

T<m0—k‘o+at1+bt2 < kg + ady + bdy < T+ad1+bd2<7+1:?7

because ady + bdy < 1. The obtained contradiction completes the proof of the lemma. O

Let fi1: 51 — S be a blow up of the point P, and let E; be its exceptional curve. Denote by
D' the proper transform of the Q-divisor D on the surface S;. Then

Ks, +AD' + (\mo — 1) By ~g fi (Ks + D),
which implies that (S1, A\D! 4+ (Amg — 1)E}) is not log canonical at some point P; € E.
Lemma 4.14. One has Amg < 2.

Proof. By Lemma 12l mg < d+1 By Lemma [£.2[v), A This gives Amg < O

d+l
Thus, the log pair (S1, AD! + (Amg — 1)E}) is log canonical at every point of the curve Ej
that is different from P; by Lemma 214l Since (S, AD) is log canonical outside of finitely many
points by Lemma 2.6, I see that the log pair (S1,AD! 4+ (Amg — 1)E7) is log canonical at a
punctured neighborhood of the point P;. Put m; = multp, (D!). Then Lemma gives

Corollary 4.15. One has mg +mq > %

For each curve T;, denote by TZ-1 its proper transform on S;. Put T}D =3, Til.
Lemma 4.16. One has P, ¢ T}.

Proof. Suppose that P, € T}). If Tp is irreducible, then d — 2mgy = T}) - D' > my. On the other
hand, if my + 2mg < d, then
3
N < mq 4+ 2mg < d,
because 2mg > mg+my > % by Corollary Thus, n > 2, because A < 2 by Lemma EL2(vi).
Similarly, P, € T,,. Indeed, if P, € T},, then
d—l—mo d — ozdn—motn:Té-DIZ ma,

which is impossible, because mg +m; > 2 by Corollary I8, and A < 72 by Lemma E21i).

Without loss of generality, I may assume that P, € T{. Put D = aTl + Q, where a is a non-
negative rational number, and €2 is an effective Q-divisor on S whose support does not contain
the curve 7. Put ng = multp(Q2). Then mg = ng + at;.

Denote by ! the proper transform of the Q-divisor {2 on the surface S;. Put n; = multp, (Q!)
and #§ = multp, (T}). Then noty + nitt < dy + ady(d — dy — 1), because

dy +ad1(d—d1 — 1) —not1 = Tll Ol > = tl’l’Ll
Note that t} < t1. Moreover, a < by Lemma 4l Thus, if # > 2, then
2(710—!—’111) <t1(n0+n1) notl—l—nltl d1+ad1(d dl—l) <d1—|—(d—d1—1) =d-—1,

which implies that ng+mnq < % Moreover, if ng+mn7 < %, then it follows from Corollary 4.15]
that

d+3 d—1 d—1 d—1 2

% :2+T 22ad1+? 22&?51—1—7 2a(t1+t%)+no+n1:mo+m1 > N
which only possible if d < 4 by Lemma E2(iii). Thus, if d > 5, then #§ = 1. Furthermore, if
d < 4, then d; < 3, which implies that t% < 1. This shows that t% = 1 in all cases. Thus, the
curve 7, 11 is smooth at P;.

Applying Theorem B.T2 to the log pair (S1, AQ + AaT! + (A(ng + at1) — 1)E;) and the curve
T! at the point P; gives

)\(d—l—notl) > )\(dl +ad1(d—d1 —1) —notl) :)\Ql 'Tll > 2—)\(n0—|—at1),
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because a < T . Thus, I have d—1+at; —ng(t; —1) > % But mg = at; +ng > % by Lemma 251
Adding these inequalities, I get

(417) d—1+4 2at; — n(](tl — 2)

ylo::

If t1 > 2, this gives
3

d+1>2d—-1+2ad; >d— 1+ 2at; >d—1—|—2at1—n0(t1—2) > X
because a < d . One the other hand, if d > 5, then A < d+1 by Lemma [4.2(ii). Thus, if d > 5,
then ¢; = 1. Moreover, if d =3, then dy < 2, which implies that t; = 1 as well Furthermore, if
d=4andt; #1,thend; =3,t, =2, A\ = %, which implies % = dl a > 20 by (@IT). Hence,
the curve T} is smooth at P.

Since a < %, I have

d—1—ng>di +ad(d—d —1) —ng=Q" T} >ny,

which implies that n; < % < d%. Then Any < 1 by Lemma [£2(i). Hence, I can apply
Theorem to the log pair (S1, AQ! + XaT} + (A(ng + at1) — 1)Ey) at the point Py. This gives
either

Ql-Tll > % —2(no+a)
or

2
Ql-E1>X—2a

(or both). Since a < %, the former inequality gives

4
d—l—no d1+ad1(d dl—l)—no—Ql Tl >X—2(’I’L0—|-a).

The latter inequality gives
2
n():)\Ql'El > X—2a.

Thus, either d — 14 2a + ng > % or 2a + ng > % (or both).
If t, > 1, then d,, # 1 by Lemma .5l Thus, if ¢, > 1, then

d—12>d, > adid, +ng = 2a + ng

by Lemma 44l Therefore, if tn, > 1, then 2(d 1)>2d—-1+2a+ny > )\ or d—12>2a+ng > )\,
because d — 1 + 2a + ng > or 2a + ng > )\ In both cases, I get A > =1 Wthh is impossible
by Lemma [£.2(i). Thus, tn =0, so that P ¢ T,,.

Since T7 is smooth at P and P ¢ T}, there must be another irreducible component of Tp
passing through P that is different from 77 and T,. In particular, n > 3. Then d > 4 by
Corollary 10 Without loss of generality, [ may assume that P € T5. Then T is smooth at P
by Lemma [£.11l Moreover, 17 and 175 must be tangent at P. This shows that P; € T21 as well.

Put D = a1y + 015 + A, where b is a non-negative rational number, and A is an effective
Q-divisor on the surface S whose support does not contain 7 and Tp. Put ky = multp(A).
Then mg = ko + a + bta, and ad; + bdy < 1 by Lemma .4l Denote by A! the proper transform
of the Q-divisor A on the surface S;. Put k; = multp, (A!). Then

d—1=2ky > di +dy + (ady + ady) (d = dy — dy = 1) = 2k = A+ (T} +T3 ) > 2k
because ady +bdo <1 and d —dy —de — 1 > 0, since n > 3. This gives kg + k1 < d;21. On the
other hand, I have 2a + 2b + ko + k1 = mg + m1 > % by Corollary Thus,

d+3 d—1 d—1 d—1 2
%:2—1——22(ad1+bd2)+T>2a+2b+T>2a+2b+k‘o+k‘1>—

2 A
because ad; + bdy < 1. By Lemma [£.2(iii) this gives d = 4.
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Since d = 4 and n > 3, I have n = 3 by Corollary 10, Without loss of generality, I may
assume that dq < do. By Corollary [4.9], there exists at most one line in S that passes through
P. This shows that dy = 1, do = 2 and d3 = 1. Thus, 77 and T3 are lines, 15 is a conic, T}
is tangent to Ty at P, and T3 does not pass through P. In particular, the curves 7} and T7
intersect each other transversally at P;.

By Lemma [d3] 71 - Ty = Ty - T» = —2 and T3 - 15 = 2. On the other hand, the log pair
(S1, AaT! + AbT)} + AAY + (M(a + b + ko) — 1)Ey) is not log canonical at P;. Thus, applying
Theorem to this log pair and the curve T}, I get

AM1+2a—2b—ko) = AAY- T > 2 — Na+ b+ ko) — \b,
which implies that 3a > % —1= %, because A = %. Similarly, applying Theorem to this
log pair and the curve T, I get

A2 —2a+2b—ko) = AAY- Ty > 2~ Na+b+ ko) — Aa,

which implies that 3b > % -2 = g. Hence, I have a > % and b > %, which is impossible, since
a+ 2b = ady + bds < 1. The obtained contradiction completes the proof of the lemma. O

Using Lemma [£.16] I can easily prove

Lemma 4.18. One has multp(7p) = 2. Moreover, if the curve Tp is reducible, then n = 2,
dy < do, P €Ty N1y, and both curves T} and T5 are smooth at P.

Proof. 1f Tp is irreducible and multp(Tp) > 3, then
d= Tp -D = 3m0,

which implies that mg < %l On the other hand, I have % > %l by Lemma [£.2(vi). Thus, if
Tp is irreducible, then multp(Tp) = 2, because mgy > % by Lemma Hence, I may assume
that n > 2. Then ¢, = 0 or t, = 1 by Lemma In particular, there exists an irreducible
component of the curve Tp different from T,, that passes through P. Without loss of generality,
I may assume that P € T7.

Put D = o114+, where a is a non-negative rational number, and €2 is an effective Q-divisor on
the surface S whose support does not contain the curve Ty. Put ng = multp(£2). Denote by Q!
the proper transform of the Q-divisor €2 on the surface S;. Then (S1, AQ' + (A(ng+at1)—1)E) is
not log canonical at Py, since P, ¢ T} by Lemma[I6l In particular, it follows from Theorem 2.13]
that

Ang = AQ- o >1,
which implies that ng > % Thus, if t; > 2, then it follows from Lemma [4.3] that

l}d—l>d1+ad1(d—d1—1):Q-T1>t1n0> 17
A 2 2 2 2 A
because a < d—ll by Lemma 4] and A\ < del by Lemma[4.2(i). Thus, t; = 1. Similarly, if P € T,,
and n > 3, then
2 2
T2d-1>di+dy+adi(d—di—dy—1) = Q- <T1+Tn) > 29 > T

Thus, if P € T,,, then n = 2.

If P € T,, then n = 2, and T}, is smooth at P. If n = 2, then T;, must pass through P, because
T1 is smooth at P. Furthermore, if n = 2, then d; < d,, because d,, > % by Lemma
Therefore, the required assertions are proved in the case when n = 2. Thus, [ may assume that
n > 3. In particular, P &€ T,. Then every irreducible component of the curve Tp that contain
P is smooth at P by Lemma 411l Hence, there should be at least two irreducible components
of the curve Tp that pass through P. Since P ¢ T,,, the point P is contained in an irreducible
component of Tp that is different from 77 and 7T;,. Without loss of generality, I may assume
that P € T5.
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Put D = a1y + 015 + A, where b is a non-negative rational number, and A is an effective
Q-divisor on the surface S whose support does not contain 7 and Tp. Put ky = multp(A).
Then ady + bdy < 1 by Lemma [£4l Thus, it follows from Lemma [4.3] that

2ko < A- <T1+T2) =d —I—d2+(ad1+ad2)(d—d1—d2—1) < d1+d2+(d—d1—d2—1) =d-1

because ad; + bdy < 1. Hence, I have ky < d;21. Denote by A! the proper transform of the
Q-divisor A on the surface S;. Then the log pair (S1, \A! + (A(ko + a + b) — 1)Ey) is not log
canonical at Py, since P ¢ T} and P, ¢ Ty by Lemma In particular, it follows from
Theorem that

Meo = AA By > 1,
which implies that ko > 4. This contradicts Lemma I2(i), because ko < %. The obtained
contradiction completes the proof. O

Later, I will need the following marginal
Lemma 4.19. Suppose that d = 4. Then mg < %
Proof. If n =1 or d; = ds =n = 2, then

2ty > dn =Ty - D> tnmo,

which implies that mg < 2. Hence, I may assume that neither n = 1 nor d; = do = n = 2. Then
it follows from Lemma [£I8 that n = 2, d; = 1, dy = 3, P € T NT5, and both curves T} and
T are smooth at P. Put D = a1} + €2, where a is a non-negative rational number, and € is
an effective Q-divisor whose support does not contain the line 77. Put ng = multp(Q2). Then
ng + 3a < 3 by Lemma 4.4l Moreover, I have

14+2a=1T1-Q > nyg.

The obtained inequalities give mg =ng + a < % O

Let fo: S5 — S7 be a blow up of the point P;. Denote by Fs the fo-exceptional curve, denote
by E? the proper transform of the curve Ej on the surface Sz, and denote by D? the proper
transform of the Q-divisor D on the surface S3. Then

K52 + \D? + ()\m(] — 1)E% + <)\(TTLO + ml) — Q)Eg ~Q f; (Ksl + AD! + ()\m() — 1)E1).

By Remark 2.TT], the log pair (S2, AD?+ (Amo — 1)E? + (A(mg+m1) — 2) E) is not log canonical
at some point Py € Fj.

Lemma 4.20. One has mg + mq < %
Proof. Suppose that mg 4+ mq > % Then 2mg > mg + mq > % But mg < di21 by Lemma [4.12]
Then A > di-q-l' Thus, d < 4 by Lemma [£2)ii). If d = 4, then
22 S 9 > N - 3 24
— 22mg=mo+mg >~ = —
5 R W
by Lemma [£19]1 Thus, d = 3. Then A = 1. By Corollary [£10l n < 2. If n = 1, then

3
3:Tp-D>2mo>m1—|—mo>X

which is absurd. Hence, n = 2. Then d; = 1 and dy = 2 by Lemma Hence, P € T1 N'1T5.

Put D = aT1 + (), where a is a non-negative rational number, and €2 is an effective Q-divisor
on S whose support does not contain the line 77. Put ng = multp(2). Then mg = ng + a, and
ng + 2a < 2 by Lemma [£.4] Moreover, I have

1+CL:T1-Q>TIQ,
which implies that ng —a < 1. Adding ng —a <1 to ng+ 2a < 2, I get

3,

3
3>2no+a=no+mo:m1+mo>xz3,
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because P; € T} by Lemma [£.10] O

Thus, the log pair (Sa, AD?+(Amg—1)E? 4+ (A(mg+m1)—2)E») is log canonical at a punctured
neighborhood of the point P. The log pair (S2, AD? + (Amg — 1)E? + (A(mg +my) — 2)E») is
log canonical at every point of the curve Fy that is different from P by Lemma [2.14]

Lemma 4.21. One has P, # Ef N Es.
Proof. Suppose that P, = E? N Ey. Then Theorem gives
A(mo —m1) = AD? - Ef >3 — X(mo +m),

which implies that mg > % But mg < % by Lemma [4.12] Therefore, A > d—il, which implies
that d < 4 by Lemma [£2[ii). If d = 4, then % = % <mp < 1—51 by Lemma 419l Thus, d = 3.
Then A = 1. By Corollary 10l n < 2. If n = 1, then
3
3:TP'D>2m0>X:3a

which is absurd. Hence, n = 2. Then dy = 1 and dy = 2 by Lemma I have P € T\ NTs.

Put D = aT} + 2, where a is a non-negative rational number, and €2 is an effective Q-divisor
on S whose support does not contain the line 77. Put ng = multp(£2). Then my = ng + a, and
ng + 2a < 2 by Lemma [£.4] Then 2ng + a < 3, because

l+a=D-Q = nyg.

Denote by Q! the proper transform of the divisor  on S;. Put n; = multp, (Q2'). Then
ny = my, since P; € T} by LemmalI6. Thus, the log pair (S2, (no+a—1)E?+(no+ni—a—2)E»)
is not log canonical at P,. Applying Theorem .12l to this pair and the curve E7, T get

ng —ny :Q2E% >3 —ng—ny+a,
which implies that 2ng + a > 3. But I already proved that 2ng + a < 3. O

Thus, the log pair (S2, AD?+ (A(mg+m1)—2)E») is not log canonical at P». Then Lemma ZH]
gives

Corollary 4.22. One has mg + m1 + mg > %

Denote by TI% the proper transform of the curve Tp on the surface S?. Then
T3+ EY ~ (fi0 f2)*(0s(1)) = f5(E1) — En,
because Th ~ f{(Os(1)) — 2E; by LemmalLI8| and P, ¢ T5 by Lemma AI0]
Lemma 4.23. The linear system |73 + E?| is a pencil that does not have base points in Es.

Proof. Since |T5+E | is a two-dimensional linear system that does not have base points, | T3+ E?|
is a pencil. Let C be a curve in |T} + E;| that passes through Py and is different from T} + Ej.
Then C' is smooth at P, since P € f1(C) and f;(C) is a hyperplane section of the surface S that
is different from Tp. Since C'- E1 = 1, I see that T}; + F1 and C intersect transversally at Pj.
Thus, the proper transform of the curve C' on the surface S, is contained in ]T}) + E1| and have
no common points with 72 + E? in Fs. This shows that the pencil [T} + Ey| does not have base
points in Fj. O

Since |T113+E1| does not have base points in Es, no curves in |T]£ + F4| has F5 as an irreducible
component, because (T} + E1) - E5 = 1. Moreover, the only divisor in [T} + E| that contains
E? as an irreducible component is 7% + E7.

Remark 4.24. Let C be a curve in |Th + Ey]. Then Py € fo(C), and f1 o f2(C) is a hyper-
plane section of the surface S that passes through P. In particular, the curve C' is reduced by
Lemma[Z6l Furthermore, if C' # T2+ E?, then C is smooth at CNE, the curve f2(C) is smooth
at Pp, and the curve f; o fo(C') is smooth at the point P.
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Let Z?2 be the curve in [T} + Ey| that passes through the point P». Then Z% # T3 + E?,
because Py # E? N Ey by Lemma 2Tl Then Z is smooth at P,. Put Z = f; o fo(Z?%) and
Z' = f5(Z?). Then P € Z and P, € Z'. Moreover, the curve Z is smooth at P, and the curve
Z1 is smooth at P;. Furthermore, the curve Z is reduced by Lemma

Lemma 4.25. The curve Z is reducible.

Proof. Suppose that Z is irreducible. Let me seek for a contradiction. Since Z is smooth at P,
the log pair (S, A\Z) is log canonical at P. Moreover, Z ~g D. Thus, it follows from Remark 2.4]
that I may assume that Supp(D) does not contain the curve Z. Then

d—mo—ml :Zz'D2 ng,
which implies that mg+mq+ms < d. One the other hand, mg+mq+mgo > % by Corollary [4.22]
This gives A > 3, which is impossible by Lemma E2(vi). O
The log pair (S,AZ) is log canonical at P, because Z is smooth at P. Since Z ~qg D,
it follows from Remark [2.4] that I may assume that Supp(D) does not contain at least one

irreducible component of the curve Z. Denote this irreducible component by Z, and denote its
degree in P? by d. Then d < d.

Lemma 4.26. One has P ¢ Z.

Proof. Suppose that P € Z. Let me seek for a contradiction. Denote by Z? the proper transform
of the curve Z on the surface Sy. Then

d—mo—m1>d—m0—m1222-D22m2,

which implies that mg+mq+msy < d. One the other hand, mg+mq+mgo > % by Corollary [4.22]
This gives A > %, which is impossible by Lemma [£.2(vi). O

Denote by Z the irreducible component of the curve Z that passes through P, denote its
proper transform on the surface Sy by Z 1 and denote its proper transform on the surface Sy by
Z2. Then Z #+ Z, P, € Z' and P, € Z2. Denote by d the degree of the curve Z in P3. Then
d + d < d. Moreover, the intersection form of the curves Z and Z on the surface S is given by

Lemma 4.27. Onehas Z-Z = —d(d—d—1), Z-Z =—d(d—d—1) and Z - Z = dd.
Proof. See the proof of Lemma [4.3] O

Put D = aZ + Q, where a is a positive rational number, and 2 is an effective Q-divisor on
the surface S whose support does not contain the curve Z. Denote by Q! the proper transform
of the divisor Q on the surface S;, and denote by 2 the proper transform of the divisor 2 on
the surface So. Put ng = multp(Q2), n1 = multp, (Q) and ny = multp,(2?). Then my = ng + a,
mi = n1 + a and mg = ng + a. Then the log pair (S2, NaZ? + 202 + (A(ng +nq1 + 2a) — 2)E5)
is not log canonical at P, because (S2, AD? + (A(mg + m1) — 2)E») is not log canonical at P.
Thus, applying Theorem 2.12] I see that

)\(Q-Z—no—nl) :AQ2-Z2>1—<)\(n0+n1+2a)—2) :3—)\(n0+n1+2a),

which implies that

(4.28) Q-Z> ; — 2a.
On the other hand, I have
d=D-Z7 = <aZ+Q>' 7>CLZA'Z:adAd_
by Lemma, This gives
1
4.29 a< =.
(4.29) y



Thus, it follows from ([@.28)), (£.29) and Lemma .27 that
3 3 . .
S92 - —d—1)<d—
S-2<5-2<0-2 d+ad(d d 1)\d 1,

which implies that A > 727. Then d < 4 by Lemma E2(ii).
Lemma 4.30. One has d # 4.

Proof. Suppose that d = 4. Then \ = %. By Lemma 25, d < 3. By Lemma 16, Z is not
a line, since every line passing through P must be an irreducible component of the curve Tp.
Thus, either Z is a conic or Z is a plane cubic curve. If Zis a conic, then Z2=_%2and a < 1

by (@29). Thus, if Z is a conic, then
24
242a=Q- Z>§—2a—€—2a

Wthh implies that 1 Za> 10 This shows that Z is a plane cubic curve. Then Z2 = 0. Since

L by [@29), 1 have

which is absurd. O

Thus, I see that d = 3. Then Z us either a line or a conic by Lemma E25 But every
line passing through P must be an irreducible component of Tp. Since Z is not an irreducible

component of Tp by Lemma FL16] the curve Z must be a conic. Then Z - Z = 0. Therefore, it
follows from (4.28]) that

3 U . R
3—2a_X—2a<Q-Z—d—|—ad<d—d—1>_d_

which implies that a > % But a < é = % by ([@29]). The obtained contradiction completes the
proof of Theorem [[.211

APPENDIX A. LOG CANONICAL THRESHOLDS OF HYPERSURFACES

In this appendix, I will present some known results about hypersurfaces and pose one conjec-
ture. Let V; be a reduced hypersurface in P” of degree d such that d > n+ 1 > 3, and let P be
a point in V. Put mp = multp(Vy). The log canonical threshold of the log pair (P, Vy) at the
point P is the number

Ictp (IP’”, Vd) = Sup{)\ cQ ‘ the log pair (IP’", )\Vd) is log canonical at P}.
Then mip <letp(P™, Vy) < 5% by [18, Lemma 8.10]. Thus, if Vg is a cone with vertex in P, then
letp(IP", V) < 5. Moreover, Tommaso de Fernex, Lawrence Ein and Mircea Mustata proved

Theorem A.1 ([II, Theorem 0.2]). Suppose that the log pair (P",%5Vy) is Kawamata log
terminal outside of the point P. Then lctp(P", Vy) > o If letp (P, Vi) = 7, then V; is a cone
with vertex in P.

Let X, be a smooth hypersurface in P"*! of degree d > n+1 > 3, and let Tp be the hyperplane
section of X, that is singular at O. Then Tp has isolated singularities (see, for example, [24]).

Definition A.2 ([8, Definition 2.2]). The point O is a star point if Tp is a cone with vertex in O.
Hx H
If O is star point, then oy *4(0) < % (see Definition [L20). Moreover, aX:d(O) > 5 by
(

Theorem A.3. Let Dx be an effective Q-divisor on X4 such that Dx ~q Hx,. Then (X,5Dx)
is not Kawamata log terminal at O if and only if Dx = Tp and O is a star point.
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Proof. Suppose that (X, 5 Dx) is not Kawamata log terminal at the point O. By Theorems [[.T3]
and [[2T] T may assume that n > 3. Then Pic(X) = Z[Hx|. Hence, I may assume that Dx =
%Dm for a prime Weil divisor D,,, on X such that D ~ mHyx, where m € N. Then O € D,,,
and it follows from [24] that multc(D,,) < m for every irreducible curve C' C X. In particular,
the log pair (X, ’;—:ﬂle) is Kawamata log terminal outside of finitely many points in X. On the
other hand, there exists a sufficiently general linear projection «v: X — P"~! such that ~ is etale
in a neighborhood of the point O, the induced morphism ~|p,. : Dy, — v(D,,) is birational and
is an isomorphism in a neighborhood of the point O. Then (P"!, 2=1~(D,,)) is not Kawamata
log terminal at v(O) and is Kawamata log terminal in a punctured neighborhood of the point

v(O). Since y(Dy,) is a hypersurface of degree dm, the divisor —(Kpn—1 — Z2v(D,,)) is ample.
Then the locus where (P"~!, 2=1y(D,,)) is not Kawamata log terminal must be connected by

the connectedness principle of Kollar-Shokurov (see, for example, [9, Theorem 6.3.2]). Hence,
the log pair (P"~!, 2=1y(D,,)) is Kawamata log terminal outside of 7(O). By Theorem [A1]

> dm
¥(Dy,) is a cone with vertex in v(0). This implies that D,, is a cone with vertex O. Then
D,, = Tp, which implies that O is a star point. O

Thus, (X4, Hx,) > 5. Moreover, if X; contains a star point, then a(Xy, Hx,) = 5. If
n = 2, then Corollary [.27 implies that a(Xg4, Hx,) > 5 if and only if Xy does not have star
points. So, it is natural to expect

Conjecture A.4. If X; does not contain star points, then a(Xg4, Hx,) > 5.

By [8, Theorem 2.10], X contains at most finitely many star points. If X, is general, it does
not contain star points at all. In particular, if Conjecture [A.4lis true, then a(Xg4, Hx,) > 5§
provided that X, is general enough. If d = n + 1, the latter is indeed true by

Theorem A.5 ([2, Theorem 1.7], [25] Theorem 2], [4, Theorem 1.1.5]). Suppose that X is a
general hypersurface in P"*! of degree d = n +1 > 3. If n = 2, then a(Xy, Hy,) = %. If n=23,
then a(Xy, Hx,) > £. If n =4, then a(Xy, Hx,) > 3. If n > 5, then a( Xy, Hx,) = 1.

By [28, Theorem 2.1] and [6, Theorem A.3], this result implies that every general hypersurface
in Pt of degree n+1 > 3 admits a Kéhler-Einstein metric. Similarly, Conjecture [A.4] implies
that every smooth hypersurface in P**! of degree n+1 > 3 without star points admits a Kéhler—
Einstein metric. Note that Conjecture [A.4] follows Theorem [A.3] and [30, Conjecture 5.3].
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