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PREFACE

In this volume all the ruled surfaces in ordinary space of orders up to and
including the sixth are studied and classified. Tables shewing the different
types of surfaces are given towards the end of the book, and the tables for
the surfaces of the fifth and sixth orders are here obtained for the first time.

It seems that the results so obtained are of great importance; but the
incidental purpose which, it is hoped, may be served by the book is perhaps
of still greater importance. For there exists at present no work, easily
accessible to English readers, which tests the application of the general
ideas here employed in amsything like the same detail. One might mention
especially the use of higher space and the principle of correspondence, and
these two ideas are vital and fundazgpental in all modern algebraic geometry.
It is hoped therefore that the book may be of usc to a wide circle of readers.

I wish to express here my thanks to the staff of the University Press
for their unfailing accuracy in the printing and for the ready courtesy
with which they have accepted my suggestions.

Notwithstanding the large number of surfaces which are herein in-
vestigated, the book would be incomplete were I not to make an acknow-
ledgment of my obligations to Mr White, of St John’s College, and Professor
Baker. Even those who have only a slight knowledge of the multifarious-
ness of Mr White’s mathematical public services will be surprised to learn
that he found time not only to read the proof sheets but also to read
through the whole of the manuscript, and I am very grateful to him for
his criticisms and suggestions.

My gratitude to Professor Baker is something more than that of a
student to his teacher. He it was who first suggested that I should under-
take this work, and his encouragement has been given unsparingly—and
effectively—in times of difficulty. I have derived great benefit not only
from my personal conversations with him but also from attending his
courses of lectures. I thank him for many things; but especially for his
interest, which has never flagged, and for his trust, which has never
wavered.

W. L. E.

TRINITY COLLEGE
CAMBRIDGE

October 1930






CHAPTER I
INTRODUCTORY

SECTION I
PRELIMINARIES

1. The system of points on a line is determined by two of them,
any third point of the line being derivable from these two; the same line
is equally well determined by any two of its points. Similarly, if three
points are taken which are not on the same line they determine a plane,
the same plane being equally well determined by any three non-collinear
points of it. Proceeding in this way we say that » + 1 independent points
determine a lincar space of n» dim®nsions, the points being independent
when they are such that no one of them belongs to the space of less than
n dimensions determined by the others; the same space of n dimensions is
equally well determined by any » + 1 independent points belonging to it.

We shall use the symbols [#] and §,, to denote a space of n dimensions.
In [n] two spaces [m] and [n — m] of complementary dimensions have, in
general, one point in common and no more. A space [p] and a space [¢]
have, in general, no common points if p + ¢ < n, while if p + ¢ > » they
have, in general, a common [p + ¢ — n]. If they have in common a space
[r] where r > p -+ ¢ — n, then they are contained in a space [p + g — 7] or
[n — s], where s =7 — p — q¢ + n. For example: two lines in ordinary
space do not intersect in gencral; if they do so they lic in a planc. If we
call the intersection of |p] and [q] their meet and the space of lowest
dimension which contains them both their join, then the sum of the
dimensions of the meet and the join is p + ¢.

2. Just as we can project, in ordinary space, on to a plane so we can
project, in [n], on to [» — 1]; if O is the centre of projection and P any
point of [n] the line OP meets [n — 1]in a point P, which is the projection
of P. We can then project again from a point O, of [ — 1] on to a space
[» — 2] in [n — 1], the line O, P, mecting [» — 2] in a point P,. The
passage from P to P, can, however, be carried out in one step, simply by
joining P to the line OO, by a plane and taking P, as the intersection of
the plane with [z — 2]. We thus speak of projecting the points of [z] from
a line on to [n — 2]. Similarly, we can project from a plane on to an
[n — 3], from a solid on to an [# — 4], and so on; the sum of the dimensions
of the space which is the centre of projection and of the space on to which
we are projecting being always n — 1.

E I
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3. Just as the order* of a plane curve is the number of points in which
it is met by a line, and the order of a twisted curve is the number of points
in which it is met by a plane, so the order of a curve in [4] is the number
of points in which it is met by a solid{ and so on, the order of a curve in
[»] being the number of points in which it is met by a space [n — 1] of
complementary dimension. The order of a surface in [n] is the number of
points in which it is met by a space [» — 2], just as the order of a surface
in ordinary space is the number of points in which it is met by a line. It
is here implied that the space [n — 2] has a general position in regard to
the surface, otherwise it might meet it in a curve; a line in ordinary space
may itself lie on a surface. Similarly the order of a locus of » dimensions
is cqual to the (finite) number of points in which it is met by a space
[n — 7] of complementary dimension and of general position. A locus of
dimension r and order m will be denoted by a éymbol M or V. and if
r=mn — 1 the locus will be spoken of as a “primal.” A space [n — 1]

lying in [n] is called a *“prime’” of [n]s

4. If we have a curve in ordinary space its chords fill up the space;
there is a finite number of them passing through a point of general position.
But in [4] the chords of a curve do not fill up the space; they form a locus
of three dimensions whose order is the number of points in which it meets
aline. If we have a system of coordinates in [4], say five homogeneous or
four non-homogeneous coordinates, the locus is given by an equation in
these coordinates, and the order of the locus is the order of this equation.
In [n] the chords of a curve form a three-dimensional locus whose order is
equal to the number of points in which it meets an [n — 3]. The chords
of a surface form a five-dimensional locus.

5. Suppose that we have a curve of order N in [n]; there may be a
point of the curve such that any [» — 1] passing through it only meets
the curve in N — 2 other points. Such a point is called a double point of
the curve. In particular we have the double points of a plane curve; for
example, the point 2 = y = 0 is a double point on the cubic curve

x® + y® = 3xyz,
any line through it meeting the curve in only one further point. It is
known that a plane curve of order N cannot possess more than
PN -1)(N-2
double points, a k-ple point (i.e. a point such that any line through it
meets the curve only in N — & further points) counting as 3% (¢ — 1) double

* Tt is always to be understood that the curves and loci spoken of are algebraical.
+ The word solid will always mean a three-dimensional space. We shall sometimes
find it convenient to use the word solid as well as the symbols [3] and S,.
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points*. If d is the actual number of double points possessed by the plane
curve the number } (N — 1) (N — 2) — d was called by Cayley the de-
ficiency of the curve. This number is in fact the same as the genus of the
curve. The most fundamental property of the genus is that it is invariant
for birational transformation of the curve; the genus of a curve in space
of any number of dimensions can therefore be defined as the deficiency of
a plane curve with which it is birationally equivalent.

The explanation of what is meant by birational transformation must be
given here. Two curves are said to be birationally equivalent or to be in bi-
rational correspondence when the coordinates of a point on either curve are
rational functions of the coordinates of a point on the other. In this way
to a given point of either curve there will correspond one and only one
point of the other; but multiple points will prove exceptions to this rule,
to a multiple point on one of the curves there will correspond several
points on the other. Thus we can say that there is a (1, 1) correspondence
between the two curves, with certai reservations as to the multiple points.
But it appears that we can always regard a multiple point as consisting of
several points on different hranches of a curve, and if we regard the multiple
point in this way we can say that the correspondence is (1, 1) without
exception. Thus a birational correspondence and a (1, 1) correspondence
between two curves mean the same thing; and the fundamental property
of the genus is that it is the same for two curves which are in (1, 1) corre-
spondence.

If we are considering correspondences between the points of two curves,
or between the points of a single curve, then a double point must be re-
garded as two distinct points on different branches of the curve. At a
cusp, however, there is only a single branch.

In the quadratic transformation

1 1 1
-'l'="'\-’ !/=Ya z=z,
the rational quartic Y% + 2% ++ 2% =0,

with nodes at the three vertices of the triangle of reference, is transformed into
the conic
X4+ Y24+ 22=0,

and to cach node of the quartic there correspond two distinet points of the conic.
Corresponding to the node y = = == 0 we have the two points in which the conic
is met by the line X = 0; and to either of these points on the conic corresponds
the node y = z = 0 on the quartic, the two points on the conic giving points on
two distinct branches of the quartic.

* 1t may be equivalent to more than thisnumber of double pointsif the k tangents
aro not all distinct or are such that some of them incet the curve in more than & + 1
(instead of exactly & + 1) points at the multiple point.
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On the other hand, the rational quartic
y%? + 2% + 2%y? = 2xyz (x + y + 2)
has cusps at the three vertices of the triangle of reference, and is transformed
by the same transformation into the conic
X2+ Y24+ Z22=2(YZ + ZX + XY).

Then to each cusp of the quartic there corresponds only one point of the conie,
e.g. to the cusp y = z = 0 corresponds the point in which the conic is touched
by its tangent X = 0.

6. When two curves are in (1, 1) correspondence it is of course not
necessary that they should belong to spaces of the same number of
dimensions; either of them can belong to a space of any number of dimen-
sions. The genus therefore of a curve in [n] is simply the genus or deficiency
of the projection of this curve from a space [# — 3] on to a plane; the
correspondence between the curve and its projection will be (1, 1) if the
[n — 3] is of general position. A curve 2as the same genus as any curve of
which it is the projection.

For example, we may project the curve of intersection of two quadric surfaces
in ordinary space on to a plane from a point 0. If O is of general position in
regard to the curve there are two and only two of its chords * which pass through
O; the projection is a plane quartic with two double points and therefore of
genus 1. Hence the curve of intersection of two quadrics is also of genus 1.

Of the oo? possible positions of O there are four (not on the curve) for which
an infinity of chords of the curve pass through O, these being the vertices of the
four quadric cones which belong to the pencil of quadrics containing the curve.
The projection from one of these points does not give a (1, 1) correspondence but
a (2, 1) correspondence, and the genus of the curve is altered by such a projection.

A curve of genus zero is said to be a rational curve because the co-
ordinates of any point on it can be expressed as rational functions of a
parameter, and this parameter can be so chosen as to be a rational function
of the coordinates of a point of the curvet. Thus to each point of the curve
corresponds one and only one value of the parameter and to each value
of the parameter corresponds one and only one point of the curve. A
rational curve is birationally equivalent to a straight line and all rational
curves are birationally equivalent to one another.

A curve of genus 1 is said to be an elliptic curve; but it is not true that
all elliptic curves are birationally equivalent to one another. There is
belonging to an elliptic curve an invariant called its modulus; and in order

* Salmon, Geometry of Three Dimensions (Dublin, 1914), vol. 1, pp. 355, 356.

T If we have expressed the coordinates of a point of a curve as rational functions
of a parameter and this parameter is not a rational function of the coordinates, we
can always find a second parameter which is; the second parameter is a rational
function of the first and the coordinates are rational in terms of it. See Liiroth,
Math. Ann. 9 (1875), 163.
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that two elliptic curves should be birationally equivalent it is necessary
and sufficient that they should have the same modulus.

A curve of genus 2 is said to be hyperelliptic, although not all hyper-
elliptic curves are of genus 2*.

7. When we project a curve C of order N in [n] on to any lower space
the order of the projected curve is also N provided that the centre of pro-
jection does not meet C. If the centre of projection is a space [7] the space
on to which we are projecting is an [» — r — 1]; an arbitrary [ — r — 2]
in this space meets the projected curve in a number of points equal to its
order, and this number is the same as the number of points in which the
[n — 1] joining [n — r — 2] to [r] meets C. If C is met in M points
by the centre of projection the projected curve is of order N — M. If we
project on to a plane from,an {n — 3] which does not meet C' we know that
we shall obtain a plane curve of order N with } (N — 1) (N —2)—»p
double points, where p is the genus of C. But the space [n — 2] which
joins [n — 3] to any one of these Gouble points must, unless it contains a
double point of C itself, contain two different points of C'; so that we have
a chord of C meeting [#» — 3]. Conversely, any chord of C which meets
[n — 3] gives rise to a double point of the projected curve. Thus, if  is the
number of actual double points of C, there mustbe } (N — 1) (N —2)—p— 8
chords of C meeting an [# — 3] of general position; so that the chords of
C form a three-dimensional locus of order 3 (N — 1) (N — 2) — p — 8.

8. Normal curves. We now introduce the important concept of a
normal curvet. A curve is said to be normal when it cannot be obtained
by projection from a curve of the same order in space of higher dimension.
It is clear that no curve can lie in a space of higher dimension than the
order n of the curve, for taking any » + 1 points of the curve we determine
thereby a space of dimension »n at most, which contains the curve since
it meets it in a number of points greater than its order. For example:
a curve of the second order always lies in a plane.

The coordinates of a point of a rational curve of order » in [m] can
be expressed as rational functions of a parameter 6. If the coordinates
are homogeneous, and so m + 1 in number, the coordinates of a point of
the curve can be taken as polynomials in §. Further, 6 can be so chosen
that it is a rational function of the coordinates (§ 6) so that to any given
value of § there corresponds one and only one point of the curve. Then
none of the m + 1 polynomials can be of degree higher than n, for other-
wise a prime 8,,_,, which is given by a single linear equation in the

* A curve of genus 2 is the simplest example of a class of curves which are said
to be hyperelliptic. We can have hyperelliptic curves of any genus; but all curves
of genus 2 are necessarily hyperelliptic. See e.g. Severi, Trattato di Geometria

Algebrica, 1, 1, 169 (Bologna, 1926).
1 See Severi, ¢bid. 110-111.
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coordinates, would meet the curve in more than » points; while one
polynomial at least must actually be of degree n. Thus a rational curve of
order n cannot lie in a space of dimension greater than =, since we cannot
have more than n + 1 linearly independent polynomials of order = in 6.
On the other hand, a rational curve of order n can always be regarded as
the projection of a rational curve of order n in [n]*. If the curve is in [m]
we can suppose the homogeneous coordinates z,, 2, ..., z,, of any point
on it to be linearly independent polynomials of order n in a parameter 6.
We can then choose n — m further polynomials of order = in 6 such that
all the » + 1 polynomials are linearly independent; we then take a

curve in [n], the homogeneous coordinates z,, z,, ..., , of a point on it
being proportional to these polynomials. The former curve can be regarded
as lying in the [m] whose equations are Z,,,; = Zpys = ... = 2, = 0 and is

the projection of the normal curve from the [» — m — 1] whose equations
are ¥y = &, = ... = &, = 0.

We can, merely by means of a linear ‘transformation of the coordinates,
take the coordinates of a point on a rational normal curve of order = to be

Lo=0" =01 .. ,x,=0""..,x,,=0, z,=1.

The expressions (62, 8, 1) for a point on a conic and (63, 62, 6, 1) for a point
on a twisted cubic are well known.
The curve is given uniquely by the equations

xo_wl_ . Zz, . . Lpn-1
— = - T see ™ T see T —"’"
T, % Zri1 Zn
or Ty Zy.. Ty Xy ||=0.
Ly XyeeoXpyyoen Ty

Incidentally we have the equations of jn (n — 1) quadric primals con-
taining the curve; these are linearly independent and any other quadric
primal containing the curve is in fact linearly dependent from these.

The chords of the curve form the three-dimensional locus given by

xo xl oo xr cen xn_z =0,
xl xz cese x'+1 e :II,,_I
Xy Xyeeo Tpig ... &y

which is of order } (n — 1) (n — 2)t.

* Veronese, Math. Ann. 19 (1882), 208.
T The coordinates of a point on the three-dimensional locus of chords are of the
form
(6" + Ad™, 671 + A", L, 04 Ad, 14 Q)

and depend on the three parameters 6, ¢, A.
For the order of the system of equations given by the vanishing of the deter-
minants of a matrix see Salmon, Higher Algebra (Dublin, 1885), Lesson 19.
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In particular the rational quartic curve is normal in [4] and can be given by

X %y %Xy, = 04:0%:6%:0:1.
Its equations are T _ N % T
Ty ¥ X3 Ty

and it lies on six linearly independent quadric primals. It can be shewn that
there is one quadric primal which contains not only the quartic curve but all
its tangents; its equation is
oy — 4,25 + 37,2 = 0.
The chords of the curve form the cubic primal

z, % % |=0.

Xy Ty X3

Ty X3 X4

We now state a funde#mental result: A curve of order n and genus p is
normal in [n — p] if n > 2p — 2; that is to say, every curve of genus p
whose order n is greater than 2p -2 can be obtained by projection from
some curve of order n and genus p in [#n — p]*. In particular an elliptic
curve of order n can always be obtained by projection from an elliptic
curve of order n in [n — 1].

9. Ruled surfaces. A surface formed by a singly infinite system of
straight lines is called a ruled surface; the lines are called the generators of
the surface. If two different prime sections of the surface are taken it is
clear that they are in (1, 1) correspondence, two points corresponding
when they lie on the. same generator; the sections are met each in one
point by every generator. Hence all prime sections of the surface are of
the same genus, so that we can speak of the genus of a ruled surface,
meaning thereby the genus of its prime sections. We thus have rational
ruled surfaces, elliptic ruled surfaces and so on.

Incidentally we can speak of the genus of any singly infinite sev of elements,

meaning thereby the genus of a curve whose points are in (1, 1) correspondence
with the elements of the set.

10. Suppose now that we have a ruled surface of order » in [3]. It is
clear that the tangent plane at any point contains the generator which
passes through that point.

Consider the section of the surface by a plane passing through a
generator ¢; it consists of ¢ and a curve C,_, of order n — 1. We may

* See Clifford, ‘“On the classification of loci,”” Phil. Trans. 169 (1879), 663; and
Collected Papers (London, 1882), 329. Clifford’s result is obtained by the use of

Abelian integrals and states that p < g This same result is arrived at differently by

Veronese, Math. Ann. 19 (1882), 213.
For the complete statement with n > 2p — 2 see Segre, Math. Ann. 30 (1887),
207.
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assume that, for a general position of this plane, C,_, is irreducible and
does not touch g. Then it will meet g in » — 1 distinct points. C,_, is
simply the locus of the points in which the plane is met by the generators,
and every generator other than g meets C,_; in one point. Thus C,_, has
the same genus as the ruled surface ; to each point of C,_, there corresponds
a generator of the surface passing through it and conversely, the point of
C,_; corresponding to g being one of their » — 1 common points. Thus
through the » — 2 remaining intersections of g and C,_, there will pass other
generators, so that we conclude that every generator is met by n — 2 others.

If now we take a point P on C,_, the plane which contains the tangent
of C,_, at P and the generator which passes through P will be the tangent
plane of the ruled surface at P. In particular, the tangent plane of the
ruled surface at that intersection of C,_; and g which is not an intersection
of g with another generator is the plane of C,_, itself.

If we consider any generator g, every point of g is the point of contact
of a tangent plane passing through g,¢while every plane passing through
g is a tangent plane touching the surface at some point of g. There is thus
established a projectivity between the range of points on ¢ and the pencil
of planes through g; the range of points of contact is related to the pencil
of corresponding tangent planes. The particular case of this property of
a quadric is familiar; the generators of either system are met by those of
the other in related ranges of points.

11. We have scen that every generator of a ruled surface of order n
in [3] is met by » — 2 others. We thus have on the surface a double curve
meeting every generator in » — 2 points; this curve is the locus of inter-
sections of pairs of generators and at any point of it there are two tangent
planes to the surface, one containing each of the two generators which
intersect there.

Similarly we have a bitangent developable formed by the planes con-
taining pairs of intersecting generators; there are n — 2 planes of this
developable passing through each generator, and every plane of the
developable touches the surface in two points—one on each of the generators
lying in the plane.

The section of the ruled surface by any plane has double points at the
intersections of the plane with the double curve. The tangent cone to the
surface from any point has as double tangent planes those planes of the
bitangent developable which pass through the point.

If the ruled surface is of order » and genus p a plane section is a curve
of order » and genus p; such a curve has } (» — 1) (» — 2) — p double
points. Hence the plane must meet the double curve of the ruled surface
in these } (n — 1) (n — 2) — p points, so that the order of the double

curveis } (n — 1) (n — 2) — p.
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Those planes through an arbitrary point which contain the generators
of the surface form a singly infinite aggregate of genus p; they meet an
arbitrary plane in the tangents of a curve of class* » and genus p. Such
a curve has } (n — 1) (n — 2) — p double tangents; so that there are,
passing through an arbitrary point, } (» — 1) (» — 2) — p planes each
of which contains two generators of the surface. Hence there are
3 (n — 1) (n — 2) — p planes of the bitangent developable passing through
an arbitrary point, so that the bitangent developable is of class
% (n — 1) (n — 2) — p; the class of a developable in [3] being defined as
the number of its planes which pass through an arbitrary point.

We have thus shewn that, for a ruled surface of order » and genus p,
the order of the double curve and the class of the bitangent developable
are both equal to .

fn—1)(n—-2—p

12. The classification of ruled swrfaces in three dimensions. We shall
classify ruled surfaces in three dimensions according to:

(i) the order;

(ii) the genus;

(iii) the double curve;

(iv) the bitangent developable.

13. Correspondence formulae. The position of a point on a straight line
or on any rational curve is given by a single parameter, this being chosen
as in § 6. Suppose then that we have a correspondence between the points
of a rational curve; this means that there is an algebraic relation connecting
the parameters 6 and ¢ of corresponding points P and @, the correspondence
being given by equating some polynomial in 6 and ¢ to zero. If the poly-
nomial is of degree & in 6 and of degree B in ¢ we say that there is an
(@, B) correspondence between P and @; when P is given there are B
corresponding positions of @, and when @ is given there are ¢ corresponding
positions of P. It is then evident that there are ¢ + B points which co-
incide with one of their corresponding points; their parameters are simply
the roots of the equation of degree ¢ + B which is obtained by equating
the polynomial to zero after putting 6§ = ¢. We shall then say that on a
rational curve there are ¢ + B coincidences in an (e, B) correspondence.
This is Chasles’ principle of correspondenceft.

There will be certain points P for which two of the B corresponding
points @ coincide; the number of these is 2« (B — 1) since the condition
that an equation of order 8 should have a double root is of order 28 — 2

* The class of a plane curve is defined as the number of its tangents which

pass through an arbitrary point.
t Comptes Rendus, 58 (1864), 1175.
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in its coefficients*. Here it is not necessary that the correspondence
should be between the points of the same curve; 6 and ¢ may be the
parameters of points on two different rational curves. These points P for
which two corresponding points @ coincide are called branch-points of the
correspondence. Similarly, there are 28 (¢ — 1) branch-points @ for which
two of the a corresponding points P coincide.

We may have two correspondences between the points P and @ of
a rational curveror between the points P of one rational curve and the
points @ of another rational curve; suppose that we have an (e, 8) corre-
spondence between P and @ and an (¢, B’) correspondence between P’
and @’; P’ is on the same rational curve as P and @’ is on the same rational
curve a8 Q. Then for any given position of P and P’ the B positions of @
will, in general, be distinct from the B’ positions of @’; there are, however,
aB’ + oB positions such that if P and P’ togetfler take up one of them one
of the B corresponding points @ coincides with one of the B’ corresponding
points Q’. The condition that two &quations of orders 8 and B’ should
have a common root is of order 8’ in the coefficients of the first equation
and of order B in the coefficients of the second equationft.

14. These results which we have obtained for rational curves can be
generalised for curves of any genus p; in order to do this we must introduce
the idea of the valency} of a correspondence and the idea of a linear series
of sets of points on a curve.

If we have a curve in [n] then the family of primals§

o+t Mfi+ .. +Af=0
cuts out on the curve a linear series of sets of points. The primals f = 0 are
all of the same order and the equation of any primal of the system depends
linearly and homogeneously upon the  + 1 parameters A; we have a linear
system of primals. Thus on a plane curve a linear series of sets of points
is cut out by a linear system of curves; on a twisted curve a linear series
of sets of points is cut out by a linear system of surfaces, and so on. We
will then consider for definiteness a linear series of sets of points on a plane
curve.
The linear system of plane curves

Mo+ MNA+ oo+ Af,=0

contains co” curves and cuts out on a curve h = 0 a linear series of sets of
points. There may be an infinity of curves of the linear system passing

* Salmon, Higher Algebra (Dublin, 1885), 99.
+ Salmon, #bid. 69.
t Called Werthigkeit by Brill, Math. Ann. 7 (1874), 611.
§ fis a homogeneous polynomial in the n + 1 homogeneous coordinates
gy Tyy eeey Tpye
It is assumed that these » + 1 polynomials f are linearly independent.
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through a set of the linear series; it can be shewn that this happens when
and only when there are curves of the system containing the curve A = 0.
We can then always work with a reduced linear system of curves*, none of
which contains the curve & = 0 as a part. Then, supposing that we are
working with such a system containing the r + 1 parameters A, the linear
series of sets of points contains co” sets, each set containing the same number
n of points. Through r general points of the curve h = 0 there will pass
just one curve of the linear system, as we have just enough conditions to
determine the ratios of the parameters A. The linear series of sets of points
is then said to be of freedom r and is denoted by g,"; r general points of
the curve h = 0 determine just one set of ¢,”. The number # is called the
grade of the linear series.

If now we have an (¢, B) correspondence between the points P and @
of a curve of genus p, and if a point P of the curve counted y times, taken
together with the 8 points @ which correspond to it, gives a set of points
which varies in a linear series of se® of B + y points as P varies on the
curve, the correspondence is said to be of valencyt y. It is not necessary
that every set of the linear series should be given by the variation of P,
but merely that all the co? sets of points so obtained should belong to some
linear series of sets of B + y points. When this is so it can be shewn that
a point @ of the curve counted y times, taken together, with the a points
P which correspond to it, gives a set of points which vary in a linear
series of sets of & + y points as ¢ varies on the curve. On a general curve
every correspondence has a valency; correspondences without a valency
can only exist on curves which are special for their genusj.

We can, for example, set up a correspondence between the points P
and @ of a plane cubic without a double point; saying that the points
P and @ correspond when the tangent at P passes through . To any point
P corresponds one point @, since the tangent at P only meets the cubic in
one other point; to any point ¢ correspond four points P since four tangents
can be drawn to the cubic from any point of itself; thus the correspondence
is a (4, 1) correspondence. Also its valency is 2; the point P counted twice
together with the point @ which corresponds to it form the complete
intersection of the cubic with its tangent, and therefore vary, as P varies
on the curve, in a linear series of sets of three points, viz. that cut out by
the lines of the plane. The four points of contact of the tangents drawn to
the curve from any point @ of itself lie on the first polar of @, which is a
conic touching the curve at @; hence the point @ counted twice together
with the four points P which correspond to it form the complete inter-
section of the cubic with a conic and therefore vary in a linear series of

* See Severi, Trattato di Geometria Algebrica, 1, 1, 20 (Bologna, 1926).

1 Severi, bid. 198.
1 Hurwitz, Math. Ann. 28 (1887), 565.
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sets of six points as @ varies on the curve, viz. that cut out by the conics
of the plane.

The analogues of the formulae for rational curves are as follows.

If we have on a curve of genus p an (a, B) correspondence of valency y there
are ¢ + B + 2yp coincidences*. For example, there are nine coincidences
in the (4, 1) correspondence just mentioned on the cubic curve of genus 1;
these are simply the nine inflections of the curve. Again, the number of
branch-points P for which two of the B corresponding points Q coincidet ts
22 (B — 1) + 2 (@ — y?) p and the number of branch-points Q for which two of
the a corresponding points P coincidet is 28 (@ — 1) + 2 (B — ¥?) p. Finally,
if we have on the same curve of genus p an (a, B) correspondence of valency
v and an (¢/, B’) correspondence of valency " the number of pairs of points
common to the two correspondencesy is af’ + o' — 2yy’p.

As an example of this last result consider a plane quartic curve without
double points (p = 3). If P and @ correspond when the tangent at @
passes through P we have a (2, 10) co¥respondence of valency 2; if inversely
P’ and @’ correspond when the tangent at P’ passes through " we have
a (10, 2) correspondence of valency 2. Then the number of pairs of points
common to these two correspondences is

2.2410.10—-2.2.2.3=80=2 x 28 + 24.

The interpretation of this result is clear since the curve has 28 bi-
tangents and 24 inflections. If one of the points of contact of a bitangent
is taken as a position of P and P’ then the other point of contact is one
of the corresponding positions of @ and also one of the corresponding
positions of @’. Since there are two points of contact of each bitangent
we have in this way 56 pairs of points common to the two correspondences.
Again, if the point of contact of an inflectional tangent is taken as a position
of P and P’ this same point is one of the corresponding positions of @ and
also one of the corresponding positions of @’.

We must also mention the fact that the valency of a correspondence
can be negative; this is clear from other definitions of the valency but it
also arises naturally from the idea of the equivalence of sets of points on
a curve, two sets of points on a curve being equivalent when they belong
to the same linear series.

As an example of a correspondence with negative valency let us consider the
correspondence between the point P of a plane cubic without a double point and

* See Cayley, Comptes Rendus, 62 (1866), 586 = Papers, b, 542; Phil. Trans. 158
(1868), 146 = Papers, 6, 265. Brill, Math. Ann. 6 (1873), 33; 7 (1874), 607. Severi,
Memorie Torino (2), 54 (1904), 11; Trattato di Geometria Algebrica, 1, 1, 233
(Bologna, 1926).

+ This formula has been given by Professor Baker in lectures. It can be deduced
from Cayley’s formula (Papers, 6, 267). P and Q are on the same curve.

1 Brill, Math. Ann. 6 (1873), 42; 7 (1874), 611. Hurwitz, bid. 28 (1887), 568.
This result we shall in future call Brill’s formula.
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the point R which is the second tangential of P. If the tangent at P meets the
curve again in @, @ is called the tangential of P; if then the tangent at @ meets
the curve again in R, R is called the second tangential of P. Clearly to a given
point P there corresponds one and only one point R.

Now it is known that if conics are drawn through four fixed points of a cubic
curve the line joining their two remaining intersections with the curve meets
the cubic again in a fixed point*. In particular, the conics which have four-point
contact with the curve at P meet it again in two points whose join passes
through R.

Take then any point O on the cubic and join OR, meeting the cubic again in
R'. The conic through O which has four-point contact with the curve at P passes
through R’. Moreover, if P’ is any point whose second tangential is B’ we can
draw a conic having four-point contact with the curve at P’ and passing through
O and R.

Now the conics passing through O cut out on the cubic a linear series of sets
of five points; one set of this series consists of R’ taken with P counted four
times, while another consists of R taken with P’ counted four times. Thus these
two sets of points are equivalent, so that we write

4P + R’ =®4P' + R.
Writing this in the form
R — 4P =R — 4P,
we say that the correspondence from P to R has the valency — 4.

This exemplifies a general theorem which states that the  product’ of two
correspondences of valencies y, and vy, has the valency —vy,y,. The correspondence
from P to its second tangential is the <square’’ of the correspondence from P to
its first tangential, and this latter correspondence we have already seen to have
valency 2.

15. A correspondence has, of course, two senses; in the ‘“forward”
sense the f§ points @, @, ..., @, correspond to the point P, while in the
“backward” sense the « points P,, P,, ..., P, correspond to the point Q.
In calculating the number of pairs of points common to two correspondences
by Brill’s formula we imply that we take both correspondences in the same
sense: having chosen a point we proceed to the two sets which correspond
to it, either both in the forward sense or both in the backward sense; the
formula gives the number of positions of the chosen point for which a point
of one of the two sets coincides with a point of the other.

There is a special kind of correspondence which we shall call a sym-
metrical correspondence; in such a correspondence there is only one sense,
or there is only one way of passing from a given point to those points
which correspond to it. The two indices of such a correspondence are equal;
and if Q is one of the set of points corresponding to P then P is conversely
one of the set of points corresponding to Q. As an example of such a
correspondence let us consider, on a quadric S in ordinary space, the curve
C which is the intersection of § with another quadric; and suppose that
two points of C correspond when they lie on the same generator of S.

* Salmon, Higher Plane Curves (Dublin, 1879), 134.
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Every generator of S meets C in two points; so that to any point P of C
there correspond the two other points @,, @, in which C is met by the
generators of S through P. To @, correspond P and another point P,
while to @, correspond P and another point P,. We thus have a sym-
metrical (2, 2) correspondence.

The formulae giving coincidences and branch-points hold for sym-
metrical correspondences as for other correspondences; but it is important
to remark that the number of pairs of points common to two correspondences
as given by Brill’s formula must be halved when both the correspondences are
symmetrical*.

Still more special correspondences are those known as involutions; an
involution is a symmetrical correspondence in which a point P and the
m points Q,, @,, ..., @,, corresponding to it form a closed set; to any one
of them correspond the remaining m. A simple example of an involution
is the correspondence between the points of a plane curve of order » which
are collinear with a given point 0. IfP is any point of the curve there are
n — 1 points corresponding to P, namely, the remaining intersections of
the curve with the line OP. We thus have a set of n points such that to
any one point of the set there correspond the remaining » — 1; or we have
a symmetrical (n — 1, n — 1) correspondence which is an involution.

An involution, as consisting of co! sets of points, will have a genus
just as will a curve consisting of co! points. In the example given the
involution is rational, its sets being in (1, 1) correspondence with the lines
of a plane pencil. We can, however, have involutions of any genust.

16. Zeuthen’s formula. There is a formula due to Zeuthen concerning
a correspondence between the points of two curves which is of great
importance. If we have an (e, a’) correspondence between the points of
two curves C and C” whose respective genera are p and p’, so that to any
given point of C there correspond o’ points of ¢’ and to any given point
of ¢’ there correspond e points of C, and if the correspondence has 7
branch-points on C and %’ branch-points on C’, then we have the relation

71— =2(p'—1)— 2 (p—-1).
We shall always refer to this as Zeuthen’s formula}. A geometrical
interpretation of the formula has been given by Severi§.

If @ and o’ are both unity then n and %’ are both zero; and so two
curves in (1, 1) correspondence have the same genus.

* In this case Brill's formula includes each pair twice (from each end it might
be said).

t Severi, Trattato di Geometria Algebrica, 1, 1, 52 (Bologna, 1926).

t Zeuthen, Math. Ann. 3 (1871), 150.

§ Rendiconti del Reale Istituto Lombardo (2), 36 (1903), 495.
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The formula is at once verified when the curves are both rational; it
becomes then 7 + 2a = 5" + 2a’. But we have already seen* that in such a
correspondence 7 = 20 (¢’ — 1) and 5’ = 2a’ (o — 1), so that

7+ 2 =1+ 2 = 2aa’.

17. The genus of a simple curve on a ruled surface. One very important
application of Zeuthen’s formula is the calculation of the genus of a curve
on a ruled surface. We suppose that the curve is a simple and not a
multiple curve on the surface; so that through a general point of the curve
there passes only one generator of the surface.

Suppose that we have in a space [r] a ruled surface of order » and genus
p; and suppose that there is on this ruled surface a curve of order v meeting
each generator in k points. Suppose that this curve is of genus = and is
touched by 7 generators. Then Zeuthen’s formula gives

n=2(m—1)—2k(p—1),

there being a (1, k) correspondence between the points of a prime section
of the ruled surface and the points of the curve, two points corresponding
when they lie on the same generator.

If we take an arbitrary [r — 2] there is a pencil of primes passing through
it; we consider the correspondence between primes of this pencil, two
primes corresponding when they join [r — 2] to two points of the curve
lying on the same generator. Then, since any one of the primes meets
the curve in v points, there are v (k — 1) primes of the pencil which corre-
spond to it; we have a symmetrical correspondence between the primes of
the pencil in which both indices are v (£ — 1). Since Chasles’ principle of
correspondence can be applied to the primes of this pencil just as it can
to the points of a line there will be 2v (k — 1) coincidences of pairs of
corresponding primes.

Now these coincidences can occur in two ways; either by the prime
passing through one of the 5 points where the curve touches some generator
or by the prime containing one of the generators which pass through the
7 intersections of [r — 2] with the surface. On each of these generators
there are k points of the curve, and we count the prime joining [» — 2] to
such a generator k£ (k — 1) times among the coincidences. Hence

2v (k — 1) = + nk (k — 1),
so that, eliminating 7,
2(k—1)=2(m—1)— 2k (p— 1) + nk (k — 1),
whence} m= (v —1)(k— 1)+ pk — Ink (k — 1),
giving the genus 7 of the curve in terms of the other constants.

* §13. t Segre, Rom. Acc. Lincei Rendiconti (4), 32 (1887), 3.
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We have not mentioned the fact that the curve may have double

points. If it has, the formula
n=2(mr—-1)—2k(p—1)
is not altered ; but the prime joining [r — 2] to a double point P will count
twice among the coincidences provided that P is not also a double point
of the ruled surface. The double point must be regarded as two points
P, and P, on different branches of the curve ; these are on the same generator,
the prime joining [r — 2] to P, has the prime joining [r — 2] to P, among
its corresponding primes and the two coincide; and so with P, and P,
interchanged. Thus
2v(k— 1) =7+ nk (k— 1) + 2d,

or m=(v—1)(k— 1)+ pk — }nk (k- 1) — d,
where d is strictly the number of those point., of the curve which count
twice among the k intersections with a generator*.

18. The genus of a curve on a quadric. Suppose, for example, that we
have a curve on a quadric surface in [3]; it is clear that any two generators
of the same system of this quadric are met by the curve in the same
number of points, because planes can be drawn through them and any
generator of the opposite system. Suppose then that the curve meets all
generators of one system in ¢ points and is of order a + B, meeting all
generators of the other system in B points. Then its genus will be

T=@+B—-—1N@e—-—1)—a(@e—1)—4d
=@-1)(B-1-4d
where d is the number of double points of the curve. If the curve has no
double points then 7 = (@ — 1) (B — 1).

This result for the genus of a curve on a quadric surface is important
and will be of use subsequently. It is obtained at once by projecting the
curve from a point on the quadric into a plane curve; if the point of pro-
jection is not on the curve we obtain a plane curve of order ¢ + 8 with d
double points, a point of multiplicity ¢ and a point of multiplicity B, and
therefore of genus

1e+B-Ne+Bp-2)—d—fe@—-1)-$B(B—-1)=(e—1)(B—1)—d.
If the point of projection is on the curve we obtain a plane curve of order
@ + B — 1 with d double points, a point of multiplicity « — 1 and a point
of multiplicity 8 — 1 and therefore of genus
be+B-2)@+B-3)~d—}e-1e—-2)—2(B-1)(B—2)
—@-1)(B-1)-d
Zeuthen’s formula can also be used to find the genus of a curve on a
quadric cone. More generally, if we have a cone of order # and genus p

* Segre, Math. Ann. 34 (1889), 3.
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and on it a curve of order » meeting every generator in % points other than
the vertex, the genus of the curve is given by

m=v—1)(k— 1)+ pk — ink (k- 1)

with possibly a reduction for double points*.

19. The ruled surface generated by a correspondence between two curves.
If in a space [n] we have a correspondence between the points of two
curves the lines joining pairs of corresponding points are co! in aggregate
and form a ruled surface.

The order of this ruled surface can be calculated when the properties
of the correspondence and of the two curves themselves are known;
suppose that the correspondence is an (e, ¢’) correspondence between two
curves of orders m and m’® Let us then take a space [n — 2] of general
position; the order of the ruled surface is the number of its intersections
with [n — 2], i.e. the number of it generators which meet [» — 2], or
the number of pairs of corresponding points of the two curves whose joins
meet [n — 2].

We can set up a correspondence among the primes passing through
[n — 2], two primes corresponding when they join [n — 2] to corresponding
points of the two curves. It is clear that the indices of this correspondence
are m’a and me’, so that there are m’ae + ma’ coincidences of pairs of
corresponding primes. There is clearly a coincidence when the join of two
corresponding points meets [z — 2]; and, in general, these will be the only
coincidences. Hence, in general, the order of the ruled surface is m’e + me’.
Through every point of the curve of order m there pass o’ generators of
the surface, or we shall say that this curve is a multiple curve on the ruled
surface of multiplicity «’. Similarly the curve of order m’ is a multiple
curve on the ruled surface of multiplicity «.

In particular, the order of the ruled surface generated by joining pairs
of corresponding points in a (1, 1) correspondence between two curves is,
in general, the sum of the orders of the two curves.

The result which we have obtained for the order of the ruled surface
is always true except when the m’a + ma’ coincidences include primes
which do not contain generators of the ruled surface; this can happen only
when the curves have one or more intersections which are ‘united points”
of the correspondence. If P is an intersection of the two curves which is
a united point then the o’ points of the curve of order m’, which correspond
to P regarded as a point of the curve of order m, include P; and the
« points of the curve of order m, which correspond to P regarded as a point
of the curve of order m’, also include P. Thus the prime joining [z — 2]

* The result for a curve on a cone was first obtained by Sturm by application of
a coincidence formula due to Schubert, Math. Ann. 19 (1882), 487.
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to P counts among the m’a + ma’ coincidences; the generator of the surface
joining the pair of points which are united is indeterminate.

It is then clear that the order of the ruled surface is always m’e + me’
when the curves do not intersect; and it also has this value when the curves
do intersect unless there are united points. But if there are ¢ united points
the order of the ruled surface* is m’a + ma’ — i. Here again a still further
adjustment may be necessary, as the prime joining [# — 2] to a united
point may count more than once among the m’e + ma’ coincidences; it
may be that when P is regarded as a point of the curve of order m there
are more than one of the a’ corresponding points coinciding with it, and
inversely. This cannot happen however when we are dealing with a (1, 1)
correspondence; and we can always say that the order of the ruled surface
determined by a (1, 1) correspondence with © umted points between two curves

of orders m dnd m’ is m + m’ — i.

20. In order to exemplify this last 1esult let us consider in [3] a conic and
a line which intersect in a point X.

Suppose that there is a (1, 1) correspondence between them and suppose
first that X is not a united point. Then to X regarded as a point of the line there
will correspond a point Z of the conic and to X regarded as a point of the conic
there will correspond a point 7' of the line. The line itself will then be a generator
of the resulting ruled surface as joining the points X and 7', and the line ZX
will also be a generator. If the tangents to the conic at Z and X meet in Y, we
can take X YZT as the tetrahedron of reference; the equations to the conic are

xz—yt=1=0,
and to the line y=2=0.

Then any point of the conic has coordinates (62, 6, 1, 0), while any point of
the line has coordinates (¢, 0, 0, 1), and the (1, 1) correspondence will be deter-
mined by a bilinear relation

abd + bf + ch +d = 0.

But we already know that to ¢ = 00 must correspond 8 = 0 and that to
6 = o0 must correspond ¢ = 0; hence b = ¢ = 0 and 6¢ is constant. We can
therefore take
6 =1

* There are always united points if we consider the ruled surface generated by
a correspondence between the points of the same curve. If the curve is of genus p
and the correspondence of valency y it has a + a’ 4+ 2yp united points, and the order
of the ruled surface will be m (a + a’) — (a + a’ + 2yp), where m is the order of the
curve. But if the correspondence is a symmetrical correspondence of index a this
number will have to be halved; the order of the ruled surface is then a (m — 1) —
Thus, in particular, the order of the ruled surface formed by the joins of pairs of an
involution of pairs of points on a rational curve is m — 1, on an elliptic curve m — 2.
A curve which is neither rational nor elliptic and which possesses an ordinary
(rational) involution of pairs of points is always hyperelliptic; for such a curve the
order of the ruled surface ism — p — 1.
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as giving the correspondence, and a generator of the ruled surface joins the two
; .
points (63,0,1,0) and (1,0,0,6).
Hence the coordinates of any point of the ruled surface are of the form
(62 + A, 6,1, X0).
If 0 is constant we have the points of a generator of the surface, and if A is
constant we have the points of a conic on the surface lying in a plane through

XZ.
The coordinates satisfy the homogeneous cubic relation

ayz = Y3 + 22,
so that we have a ruled surface of the third order.

But suppose now that the (1, 1) correspondence between the line and conic
is such that X is a united point. Then to a definite point 7' of the line will
correspond a definite point & of the conic, and our coordinates are as before
with the bilinear relation

abp + b0 + cd + d = 0.

Now to 6 = oo corresponds ¢ = o0 %o that a = 0, and to § = 0 corresponds
¢ = 0so that d = 0; hence 8 is a constant multiple of ¢ and we can take without
loss of generality

0 =é¢.

Then a generator of the ruled surface joins the two points
(6%, 6,1,0) and (4,0,0,1),
and the coordinates of any point on the ruled surface are of the form
(6% + 29,06, 1, A).
These satisfy the homogeneous quadratic relation
1z = ?/2 + t?/ ’

s0 that when there is a united point the ruled surface is only of the second order.

21. Just as, given two curves of orders m and m’ in (¢, a”) correspondence
in [3], there are (subject to a deduction for united points) m’a 4+ me’ joins
of pairs of corresponding points which meet an arbitrary line; so, dually,
given two developables of classes m and m’ in (e, @’) correspondence in [3],
there are (subject to a deduction for united planes) m’e + ma’ intersections
of pairs of corresponding planes which meet an arbitrary line. Or we can
say that the two developables give a ruled surface of order m’a + ma’.

In space of three dimensions we have three fundamental constructs;
curves formed by singly infinite families of points, ruled surfaces formed
by singly infinite families of lines, and developables formed by singly
infinite families of planes. We have seen how a ruled surface can be
generated either by joining pairs of corresponding points on two curves
or by taking the intersections of pairs of corresponding planes of two
developables, and how the order of such a ruled surface is given in terms
of the orders of the two curves or the classes of the two developables and

the constants of the correspondence.
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22. Itis also clear that if a correspondence is set up between the points
of a curve and the generators of a ruled surface the planes so determined,
as joining the points of the curve to those generators of the ruled surface
which correspond to them, form a developable; and, dually, if a corre-
spondence is set up between the planes of a developable and the generators
of a ruled surface, the points of intersection of corresponding planes and
lines form a curve.

Let us consider then a curve of order m and a ruled surface of order u;
suppose that to any point of the curve there correspond a generators of
the ruled surface and that to any generator of the ruled surface there
correspond a points of the curve. Let us calculate the class of the develop-
able so formed; i.e. the number of its planes passing through any given
point O.

We set up a correspondence between the points P and @ of the curve;
the points P and @ corresponding when the line OP meets a generator of
the ruled surface which corresponds-to ¢. Then given a point P, the line
OP meets the ruled surface in p points, and each of the generators through
these points gives a points @ ; so that when P is given there are ua positions
of Q. Given a point @, we have a generators of the ruled surface, each of
which is joined to O by a plane meeting the curve in m points; so that when
@ is given there are ma positions of P. The correspondence from P to
is therefore an (me, pa) correspondence. The correspondence is of valency
zero; the points P corresponding to a given point ¢ form the complete
intersection of the curve with a set of « planes through O. Hence there are
me + pa coincidences of points P and @; and such a coincidence means
that the plane joining a point of the curve to a corresponding generator
of the ruled surface passes through O. This will be a plane of the develop-
able unless the point of the curve happens to lie on the corresponding
generator of the ruled surface; when this happens the plane of the
developable is indeterminate.

Hence, subject to a deduction for united elements of the correspondence,
the class of the developable is ma + pa.

In particular, if we have a (1, 1) correspondence between the points of a
curve of order m and the generators of a ruled surface of order p, and if there
are 1 points of the curve which lie on the corresponding generators of the ruled
surface, the planes joining corresponding elements form a developable of class
m+ p— 1.

If we have a (1, 1) correspondence between the points of a line and the
lines of a regulus* the planes joining corresponding elements give a develop-

* The word regulus is used to denote either system of generators of a quadric
surface. It is thus a ruled surface of the second order; the other system of generators
of the quadric are not, strictly speaking, generators, but directrices of this surface.
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able of the third class*, supposing that neither of the points in which the
line meets the regulus lies on the line which corresponds to it; if however
one of the two lines of the regulus which meet the line does so in the point
corresponding to it the developable is only of the second class; while if
both lines of the regulus which meet the line do so in the points corre-
sponding to them we have a developable of the first class. In the first case
we have the osculating planes of a twisted cubic, in the second the tangent
planes of a quadric cone and in the third a pencil of planes through a
line.

Analytically, let the line meet the regulus in the points X and Z; through
X there passes a generator of the quadric surface on which the regulus lies
meeting the line of the regulus through Z in T'; similarly, Y is the point in which
the line of the regulus through X is met by the generator of the complementary
regulus through Z.
Then any line of the regulus is given as the intersection of two planes
y=20z, ex=0t

the line XY being given by § = co and the line Z7 by § =0

Any point of the line XZ is given by (¢, 0, 1, 0), the point X being given by
¢ = o0 and the point Z by ¢ = 0.

We then set up a correspondence between 6 and ¢ and join lines of the regulus
to corresponding points of XZ by planes.

Ifd= - —ﬁ the planecs are given by

@+B(y—02)+00+y)(x—0)=0
and involve the parameter 6 in the third degree.

If $ = 6 + o then 6 = oo gives the point X of the line corresponding to the
line XY of the regulus. The planes are given by

@+a)(y—06z)+0(x—06)=0
and involve the parameter 6 in the second degree.

If ¢ = 0 then 6 = oo gives the point X of the line corresponding to the line
XY of the regulus, while § = 0 gives the point Z of the line corresponding to
the line ZT of the regulus. The planes are given by

Yy—60z+x—0t=0,
and involve the parameter 6 in the first degree.

23. Dually, if we have a (1, 1) correspondence between the planes of
a developable of class m and the generators of a ruled surface of order u,
and if there are 7 planes of the developable which contain the corresponding
generators of the ruled surface, the points of intersection of corresponding
elements form a curve of order m + p — 1.

A pencil of planes and the generators of a quadric cone when projectively
related give a twisted cubic, provided that no plane of the pencil contains

* von Staudt, Beitrdge zur Geometrie der Lage, 3 (Niirnberg, 1860), 303; Reye,
Geometrie der Lage, 2 (Stuttgart, 1907), 168.
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the corresponding generator of the cone. A regulus and a pencil of planes
when projectively related give a twisted cubic, provided that no line of
the regulus lies in the plane which corresponds to it.

24. We may observe still further that if we have three curves in corre-
spondence the planes joining corresponding triads of points, one point of
such a triad being on each curve, will form a developable; while if we have
three developables in correspondence the points of intersection of triads
of corresponding planes, one plane of such a triad belonging to each
developable, will form a curve. The generation of the twisted cubic by three
related pencils of planes is familiar.

SECTION II |

THE REPRESENTATION OF A RULED SURFACE IN
THREE DIMENSIONS AS A CURVE ON A QUADRIC
Q IN FIVE DIMENSIONS

25. The lines of three-dimensional space are oo ¢ in aggregate; a line
can be determined by four parameters or by the ratios of five parameters.
The most convenient representation of the lines of three-dimensional space
is, however, by means of the ratios of six parameters which are connected
by one relation, thus being reduced effectively to five*.

Using homogeneous coordinates, let (z,, ¥;, 2, ;) and (2;, ¥;, 25, t;) be
two points; and write

l=tix, — tyxy, m = 4Ly, — Ly, n = 42y — ly2,
"= 12 — Yo, m = 2,2, — 2,7y, n = 2,Y; — TaY,-

* See Cayley, “On a new analytical representation of curves in space,” Papers, 4
(1860), 446, where a curve is given by the complex of lines which meet it; Grassmann,
Ausdehnungslehre (Berlin, 1862), §§ 63-65; Pliicker, ““On a new geometry of space,”
Phil. Trans. 155 (1865) ; Cayley, ‘“ On the six coordinates of a line,” Papers, 7 (18069), 66.

From Grassmann it is clearly seen how to determine a system of coordinates for
spaces of any dimension in a space of dimension n.

If we take the two points (z;, ¥;, 2, &) and (%;, ¥., 2;, ;) of space and form the
combinatory product

(&1 + €1y + €32 + ety) (€17, + &Yz + €325 + €4t2),
where ¢,2 = 0 and e.e; = — ¢,¢,, we have a linear function of the six coordinates of the
line joining the two points.

Given a space [k] in [n], we take k£ + 1 independent points of the [£] and write
down the matrix of £ + 1 rows and n + 1 columns formed by the coordinates of
these points. Then the coordinates of [k] are simply the (k¥ + 1) -rowed determinants
of the matrix, which cannot all vanish if the points are independent. These deter-
minants also arise in combinatory products (Grassmann, ¢bid.). They are sometimes
spoken of as Grassmann coordinates.

The idea of a line in [3] being linearly dependent on the six edges of a tetrahedron
occurs in Grassmann’s Ausdehnungslehre (Leipzig, 1844), 167.
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Then the six quantities (I, m, n, I’, m’, n’) are called the coordinates of
the line joining the two points. We are justified in speaking of them in this
way because their mutual ratios are the same whatever two points of the
line are taken; if instead of (2, 4, 2, %) and (%, ¥,, 2., t;) we take the
points

(61 + 22, Oys + Py2, 021 + b2y, Ofy + i)
and 0"z, + d'wy, Oyy + ¢'y2, 02 + $'25, 0 + 1),
the six coordinates are each multiplied by 64" — 6'¢.

The lines whose coordinates satisfy a single relation are said to form
a complex of lines; in particular, the linear relation

a’l+b'm+cn+al’ + bm’ +cn’ =0
gives a linear complex*. The lines whose coordinates satisfy simultaneously

two linear relations are said to form a linear congruence of lines.
The six coordinates of any line satisfy the relation
o

W+ mm’ 4 nn” = 0.

Conversely, it can be shewn that any six quantities connected by this
relation can be taken as the coordinates of a line.

26. If the line A, joining (x;, ¥y, 2, ;) to (%3, ¥, 25, ¥,) has coordinates
(y, mq, my, &', my’, my”) and the line A, joining (&, 71, &y, 1) t0 (25 M2, Lo» 72)
has coordinates (I, my, n,, Iy, my’, ny’) the condition that the two lines
should intersect is the same condition that the four points should be
coplanar, or
T th w4 =0,
Ty Yo 2 U

& M L m
& M2 la ™ |
which is wp = L1l + momy + nyny’ + L'l + mymy + ny'ng = 0.

If this condition is satisfied, the six quantities

kily + Kkoly, Ky + KeMg, KMy KeMe, Kyl A+ KD
kimy' + Kkemy', Ky + Ky,
satisfy the condition
(rrly + kaly) (1l + koly) + (kymy + kams) (kymy” + Kamy)
+ (ka7 + Kap) (k10" + K7y) = O

* Geometrical properties of the linear complex were studied before the co-

ordinates of a line were introduced. See Mobius, “Uber eine besondere Art dualer

Verhiiltnisse zwischen Figuren im Raume,” Journal fir Math. 10 (1833), 317, or
Gesammelte Werke, 1, 491.
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for all values of «, : «,; they are therefore the coordinates of a line which
may be denoted symbolically by ;A + k;A;. Since the condition that
two lines should intersect is linear in the coordinates of each line, any line
which is met by both A, and A, must also be met by all the lines «; A + x32;.
Hence the line x;A; + xyA; is a line passing through the intersection of
A, and A, and lying in their plane; the different lines of this plane pencil
are given by the different values of the ratio «; : «,.
If we have three lines A;, A, A; the relation

(krly + Koly + w3ls) (krly’ + Kaly” + 1e3l5")
+ (kymy + Kgmy + Kgmg) (kymy” + kamy' + Kgmy')
+ (ka1y + KoMy + K3Mg) (k11 + KoMy + 3m3") = 0

is mzskgl('a + m:uKa Ky + m12K1 tlg = 0.

There are oo! sets of values of «, : k, : k3 satisfying this condition; and
for such a set of values we have a tine which may be represented sym-
bolically by x; Ay + xpA; + k3A3. This meets all the lines which meet A,, 2,
and A; and we thus obtain one system of generators of a quadric surface.

This supposes that the lines A;, A;, A; are of general position; but if
they all intersect one another we have w,; = w; = w3, = 0, and

KAy + Kady + K3
is a line for all the co? values of k; : ky: k5. Now A, A;, A, are either con-
current or coplanar; if they are concurrent x; A, + kA, + k34, will be a
line through their intersection, and the co? lines through their intersection
are obtainable in this way; if they are coplanar i A; + i A + K3A; will
be a line in their plane, and the co? lines in their plane are obtainable in this
way.

If we have a linear complex

a’l +b'm + ¢'n + al’ + bm’ 4+ cn’ = 0,
for which aa’ + bb" + ¢¢’ = 0,
the linear complex is said to be special. It consists of all the lines meeting
the line whose coordinates are (a, b, ¢, a’, ¥’, ¢).

27. Linegeometryin[3]considered as the point geometryof aquadric primal
in [5]. If we have six quantities (I, m, n, I’, m’, n’) satisfying the relation
' + mm’ + nn’ = 0 they can be regarded as the homogeneous coordinates
of a point in [5] which lies on a quadric primal Q. This quadric Q is a
general quadric; the left-hand side of its equation can be written as the
sum of six squares.

Thus we have a correspondence between the lines of [3] and the points
of Q; to every line of [3] corresponds a point of Q, while to every point of
Q corresponds a line of [3]. There are no exceptions. Hence line geometry
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in [3] 18 exactly the same as the geometry of a quadric primal Q in [5]*, and
it will be found that great simplifications arise from this point of view.

28. If we take a definite point (A, u, v, X’, u’, v') of Q and join it to an
arbitrary point (I, m, n, I, m’, n") of [56] the coordinates of any point on
the joining line are of the form

OA+Jl, Ou+dm, Ov+dn, OXN +¢l', Op’ + ¢m), 6 + ¢n'),
and this will lie on Q if

62 (AN + pp’ + w') + 0 (N + pm’ + vn’ + X1 + p'm + v'n)
+ 2 (I + mm’ + nn’) = 0.

This is satisfied by ¢ = 0 as we should expect; it will have a double
root ¢ = 0 if

N + mpe+ m’ + VA +m'p + n'v=0.

This equation, linear in (I, m, n, I’, m’, n’), is the equation of a [4];
this [4] is such that the line joining any point of it to (A, u, v, X, p’, v')
touches Q at this last point. Or the lines which touch Q at any point lie
in a prime—the tangent prime of Q at the point; and the equation to the
tangent prime at (A, u, v, X', p’, v') is

IN +mp” 4+ nv + VA4 m'p+ n'v=0.

Clearly if a point P; of Q lies in the tangent prime at a second point
P, of Q the point P, will lie in the tangent prime at P,. The line P, P, will
then lie entirely on Q; all tangents of Q which meet it in points other than
their points of contact must lie entirely on Q as meeting it in at least three
points. Two points of O which are such that either lies in the tangent
prime at the other will be spoken of as conjugate.

It is then clear from the condition @, = 0 that two lines A, A, of [3]
which intersect are represented on Q by two conjugate points P,, P,.
Then the six quantities

kily + Kkoly,  KyMy + oMy, KMy - KMy kil + kel kMg + Kemy,
Ky + Kny
are the coordinates of a point of the line P, P,; since this line lies on Q,
the point must lie on Q and therefore represents a line of [3] for all values
of «,:x,. Hence the points of a line on Q represent the lines of a plane
pencil in [3].

Corresponding to any line A of [3] we have a point P of Q; the lines of
[3] which meet A are represented on Q by its intersection with the tangent
prime at P.

* Klein, ‘“Uber Liniengeometrie und metrische Geometrie,”” Math. Ann. 5 (1872),
257, or Qesammelte Mathematische Abhandlungen, 1, 106 ; Cayley, Papers, 9 (1873), 79.
The theory is greatly developed by Segre in his paper ““Sulla geometria della retta e
delle sue serie quadratiche,” Memorie Torino, 36 (1883). See also Baker, Principles
of Geometry, 4 (Cambridge, 1925), 40 et seq.
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The lines of a linear complex are represented by the points of a prime
section of Q; but for a special linear complex we must take the section by
a tangent prime.

29. The planes* on Q. Consider now three points P,, P,, P; of €, each
pair of which is a pair of conjugate points. Then these represent three
lines A, A, Ag of [3] for which m,, = w5 = wy, = 0. The lines P,P,;, P, P,,
P, P, all lie on Q; so that the plane P, P, P; meets Q in a curve whose order
is greater than two, and lies on Q entirely. Then the point whose six co-
ordinates are of the form w;l; + Kyl + K3l; lies on Q for all values of
Ky : Ky ! kg and represents a line x, A; + xp Ay + k37, of [3]. We thus obtain
every point of the plane P, P, P,.

We thus have two systems of planes on Q;<he points of a plane of the
first system represent the lines through a point of [3], while the points of
a plane of the second system repregent the lines in a plane of [3]. We
shall call the planes of the first system, representing lines through points
of [3], w-planes and the planes of the second system, representing lines
in planes of [3], p-planes. Since there is one and only one line passing
through two given points of [3] two w-planes have one and only one point
in common; and since there is one and only one line lying in two given
planes of [3] two p-planes have one and only one point in common; two
planes of the same system on Q meet in a point. Given a point and a plane
of [3], there will not be a line passing through the point and lying in the
plane unless the point itself lies in the plane, so that two planes of Q of
opposite systems do not in general intersect. If however the point does
lie in the plane we have a pencil of lines passing through the point and
lying in the plane; hence if two planes of opposite systems on Q do intersect
they have a line in common.

On Q there are oo® planes of each system; through any point of Q
there pass oco! of each system. There are also on Q o5 lines, c0? passing
through any given point on Qf.

30. The quadric point-cone in [4]. We can now give a detailed de-
scription of the section of ) by the tangent prime at a point P. The point
P represents a line A of [3]; on A there are co! points and through A there
pass oo! planes. Hence there are co! w-planes on Q and co! p-planes on
Q all passing through P. Two of these planes which belong to the same
system will not intersect except in P, but two planes of opposite systems

* The two systems of planes on {2 are mentioned explicitly by Cayley, Papers, 9
(1873), 79.

t Cf. Segre, ‘‘Studio sulle quadriche in uno spazio lineare ad un numero qua-
lunque di dimensione,” Memorie Torino, 36 (1883), in particular p. 36.
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will intersect in a line through P. The section of Q by the tangent prime
at P is nothing but these two sets of planes, since any point of Q lying in
the tangent prime represents a line of [3] meeting A. Such a line in [3]
meets A in a point and is joined to A by a plane, so that the representative
point on Q lies in two planes, one of each system. The line of intersection
of these two planes joins the representative point to P.

If we take a section by a [3] lying in the tangent prime and not passing
through P we obtain two systems each of co! lines; two lines of the same
system do not intersect but every line of either system meets every line
of the other; in other words, we have the two systems of generators of a
quadric surface. Thus the section of Q by a tangent prime is the same locus
as is obtained by joining the generators of a quadric surface, by planes, to
a point outside the [3] in yhich the quadric surface lies. This locus in [4]
is called a quadric point-cone*.

If we have a curve lying on a quadric point-cone in [4] and project
it on to a [3] from the vertex of the foint-cone we obtain a curve lying on
the quadric in which [3] meets the point-cone. Thus, from a knowledge of
the properties of this projected curve, we shall be able to deduce certain
properties of the curve on the cone.

The section of a quadric point-cone by a [3] through its vertex is an
ordinary quadric cone, unless the [3] is that determined by two planes of
opposite systems of the point-cone; it then meets the point-cone simply
in these two planes. Such a [3] is called a fangent solid of the point-cone;
there are co® [3]’s through the vertex, co? of which are tangent solids.

31. The representation of a ruled surface. Since a line of [3] is repre-
sented by a point of Q, a ruled surface f in [3] formed by oo! lines will be
represented by the curve C on Q formed by the co! representative pointst.
There is thus a (1, 1) correspondence between C' and the generators of f,
so that the genus of C is equal to the genus of f. Moreover, the order of
the ruled surface, being equal to the number of its generators which meet
an arbitrary line A of [3], is equal to the number of intersections of C
with the tangent prime at an arbitrary point P of Q, and this is simply
the order of C. Thus we can say that a ruled surface f of order n and genus
p tn [3] is represented on Q by a curve C of order n and genus p.

We thus see how to begin the classification of ruled surfaces mentioned
in § 12. We have first to investigate how the double curve and bitangent
developable can be studied by means of the curve C on Q. Then, taking
C to be of a given order and genus, different positions of C' on Q will give
different kinds of double curves and bitangent developables for f.

* Cf. Baker, Principles of Geometry, 4 (Cambridge, 1925), 120-121.
+ Cf. Voss, “Zur Theorie der windschiefen Fliachen,” Math. Ann. 8 (1874), 54.
Segre, Memorie Torino, 36 (1883), 97.
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A given generator g of f is represented on Q by a point P of C. All
generators of f which meet g are represented on Q by points of ¢ which
lie in the tangent prime of Q at P; but this tangent prime, meeting C
twice at P, will meet it in n — 2 other points, where n is the order of f and
C. Hence every generator of f s met by n — 2 others (cf. § 10).

32. Torsal generators. If we set up a correspondence between the
points P and @ of C, saying that two points P and @ correspond when
the chord PQ lies on Q, we have a symmetrical (n — 2, n — 2) correspon-
dence. This correspondence is of valency 2 since the » — 2 points @ which
correspond to any point P, when taken together with P counted twice,
form the complete intersection of C with a prime. Hence the number of
coincidences in the correspondence is .

n—24+n—-242.2.p=2m+ 2p— 2),
where p is the genus of C.

This means that, for 2 (n + 2p — %) points P of C, there are only n — 3
chords of C passing through P and lying on Q; the tangent of C at P
lies on Q, and the tangent prime of Q at P meets C in three points there.

Then on the ruled surface f we can say that there are 2 (n + 2p — 2)
generators which meet their ““consecutive generators.”” Such generators
are called torsal generators; the tangent plane to the ruled surface is the
same for all points of such a generator. Thus a ruled surface of order »
and genus p has, in general*, 2 (n + 2p — 2) torsal generators.

Incidentally we have proved that, if a curve of order » and genus p
lies on a quadric primal in space of any number of dimensions, there are
2 (n + 2p — 2) tangents of the curve lying on the quadric*. This is easily
verified for simple curves on an ordinary quadric surface in [3].

33. The double curve and bitangent developable. The degree of the double
curve of the ruled surface f in [3] is the number of points in which it meets
an arbitrary plane. Now the lines of such a plane are represented by the
points of a p-plane on (, while the lines (including two generators of f)
which pass through a point of the double curve are represented by the
points of a w-plane (meeting C in two points). Thus corresponding to each
intersection of the double curve with a definite plane of [3] we have a
m-plane meeting C' twice and meeting a definite p-plane in a line; or we
have a chord of C lying on Q and meeting the p-plane. Conversely, corre-
sponding to each chord of ' which meets a definite p-plane (and incidentally
lies on Q as meeting it in at least three points) we have two generators of
f intersecting on a definite plane of [3]. Thus the order of the double curve
of f ts equal to the number of chords of C which meet any given p-plane of

* If C has « cusps then the number of tangents of C which lie on Q is only
2 (n + 2p — 2) — 2k, see § 349 below.



INTRODUCTORY 29

general position. Similarly, the class of the bitangent developable of f is equal
to the number of chords of C which meet any given w-plane of general position.
These two results are fundamental.

The chords of C which lie on Q form a ruled surface R, on which C is
a multiple curve of multiplicity n — 2. The two points of C on a chord which
lies on Q represent two intersecting generators of f, and conversely. The
generators of R, are thus in (1, 1) correspondence both with the points of
the double curve and with the planes of the bitangent developable of f.
A prime section of R, is thus a curve whose genus is equal to that of the
double curve of f and also to that of the bitangent developable of f. We
can calculate this genus in the general case.

Denote a prime section of R, by C’, and consider the (2, n — 2) corre-
spondence between C and (", two points of € and ¢” corresponding when
the line joining them is a chord of C. The gumber of branch-points of the
correspondence on C” is simply the number of tangents of C' which lie on
Q; this we have seen to be 2 (n 4+ 2p — 2). The number of branch-points
of the correspondence on C is equal to the number of points P of C' at
which two of the » — .2 generators of R, coincide. This is equal to the
number of times two of the n — 2 points @ coincide in an (n — 2, n — 2)
correspondence of valency 2 on a curve of genus p; this number* is

2m—2)(mn—3)+ 2 (n— 6)p.
Hence, applying Zeuthen’s formula to the correspondence between C
and C’, we have, if P is the genus of (’,
2m—2)(n—3)+2(n—6)p—2(n+ 2p — 2)
—4(P-1)-2(-2)(p—1),
or 2P — 2= (n — 5) (n + 2p — 2)t,
giving, for a ruled surface of order n and genus p, the genus P of the double
curve and the bitangent developable.

34. When the ruled surface f in [3] is not completely general for its
order and genus the double curve and bitangent developable may break
up; when this happens the ruled surface R, formed by the chords of C
lying on Q will have to break up correspondingly. For each part of the
double curve and bitangent developable we have a set of pairs of inter-
secting generators of f and thus a set of chords of C lying on Q and forming

* See § 14.

+ This result is deducible from formulae given by Salmon for the theory of
reciprocal surfaces; see his Geometry of Three Dimensions, 2 (Dublin, 1915), 301.
The application to a ruled surface is given by Cayley, Papers, 8 (1871), 396. If q
is the rank and b the order of the double curve

g=2b+2P -2 and b=3%}(n—-1)(n - 2) - p.
The actual form of the result as here stated is given by Wiman, Acta Mathematica,
19 (1865), 66.
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a ruled surface, say S,, which is the corresponding part of R,. The order
of this part of the double curve of f is equal to the number of generators
of S, which meet a definite p-plane, and the class of the corresponding part
of the bitangent developable of f is equal to the number of generators of
S, which meet a definite w-plane. The genus of the prime sections of S,
gives the genus of these parts of the double curve and bitangent develop-
able.

As well as investigating the properties of the component parts of the
double curve we can investigate their relations with one another, and
similarly for the parts of the bitangent developable. To do this we have
to study the relations between the different component ruled surfaces
which constitute R,.

35. Given a ruled surface in [3] there is, in general, a finite number of
points which are triple points of thq surface; through such points there
pass three generators of the surface and they are also triple points of the
double curve. Similarly we have, in general, a finite number of planes
which are tritangent planes of the surface; in such planes there lie three
generators of the surface and they are triple planes of the bitangent
developable.

When the ruled surface is represented as a curve C on Q the triple
points give w-planes of Q trisecant to C, while the tritangent planes give
p-planes of Q trisecant to C; there is a finite number of trisecant planes
of C lying on Q. There are co® planes on Q2; and since Qis a four-dimensional
locus one condition will be necessary in order that a plane and a curve
which lie on it should intersect; thus three conditions must be imposed
on a plane of Q to make it a trisecant plane of C, so that we naturally
expect a finite number of such planes.

Denote for the moment the curve C of order » and genus p by C,?; the
number of its trisecant planes lying on Q can be calculated directly by
correspondence theory.

If we take any point X on C,? there are n — 2 chords of C,? passing
through it which lie on Q; these meet C,? again in points X;, X,, ..., X, .
We have already noticed that the correspondence between X and X, is
a symmetrical (n — 2, n — 2) correspondence of valency 2.

In the same way each point X, gives rise to » — 2 points

X, X, W, .., X, 3,
Then the correspondence between X and X, is also symmetrical and

both its indices are (n — 2) (n — 3). The points corresponding to X are
found by taking the square* of the former correspondence and leaving

* See Severi, Memorie Torino (2), 54 (1904), 5-9.
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out the point X each of the n — 2 times it occurs. Hence the valency is*
—2)2+n—2=n—6.

Since both the correspondences are symmetrical the number of common
pairs of points is half that given by Brill’s formulat, and is therefore

N=3}{n—-2m—3)+@m—22n—3)—2.2n—6)p
=Mn—-2)?%n-—3)—2(n— 6)p.

This result means that there are N points X on C,? such that some
point X, coincides with some point X;™. In particular the suffixes a and
B may be the same; and then the tangent of C,? at X, lies on Q. There are
2 (n + 2p — 2) such points on C,?; and through each one of these there
pass » — 3 proper chords of C,? which lie on Q; each of these chords meets
C,? again in a point X whibh is included in the above N points. Thus the
remaining points X are in number

n—-—22n—-3)—2n—06)p—2(n—3)(n+ 2p— 2)
=Mm—-—2)(n—3)(n—4)— 6(n— 4)p.

Then for any one of these points X we have X, and X, coinciding,
where ¢ and B are not the same. This means that the chords XX,, XX,
X, X, all lie on Q; so that XX, X, is a trisecant plane of C,? lying on Q.

Thus these points X occur in groups of three, each group determining
a trisecant plane of C,? which lies on Q. Hence the number of trisecant
planes of C,? which lie on Q is

(n—4){§ (n — 2) (n — 3) — 2p}.
These trisecant planes of C' which lie on Q belong half to one system
of planes and half to the other. Thus, given a ruled surface of order » and
genus p in [3], the number of its triple points isf

tr—2)(n—-3)(n—-4) - (n—4)p,
and this is also the number of its tritangent planes.

36. A conic C on Q represents a ruled surface in [3] of the second order,
or the points of C represent one system of generators of a quadric surface.
We have in fact already noticed § that such a system of lines in [3] is
represented by coplanar points on Q. It is implied that the plane of C
does not lie entirely on Q. The coordinates of any point of C being of the
form iy l; + Kyly + x3ls, the equation to the tangent prime there is

16Ty 4+ 1Ty + 1Ty = 0,

* Severi, tbid. The “product” of two correspondences whose valencies are y,
and y, has the valency — 7, y,.

t § 15.

} See the references to Cayley and Wiman in § 33. Also Castelnuovo, Palermo
Rendiconti, 3 (1889), 33. '

9 §26. ’
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where T'; = 0, T, = 0, T'; = 0 are the tangent primes at three definite points
of C, so that the tangent primes of Q at all the points of C have in common
the plane 7', = T, = T'; = 0. This plane meets Q in a second conic ¢’, and
the tangent primes of Q at all the points of C” all contain the plane of C.
The lines represented by the points of C” meet all the lines represented by
the points of C and conversely; thus € and C’ give in [3] complementary
reguli on the same quadric surface. There is no double curve or bitangent
developable.

If the plane of C is a w-plane we have the generators of a quadric cone,
and if it is a p-plane we have the tangents of a plane conic. Clearly we can
have point-cones and plane-envelopes represented on Q in this way by
curves of all orders and genera; in future these will be ignored.

37. Cubic ruled surfaces. As an application of the theory we will
investigate the ruled surfaces of the third order in [3]. For this we have
to consider cubic curves on Q, and the only relevant curve is the twisted
cubic C of 8. The plane cubic is irrélevant, because if a plane cubic curve
lies on a quadric the whole of its plane must do so, and we have the case
mentioned at the end of § 36.

In general, S; meets Q in a quadric surface @; C will meet all the
generators of one system of @ in two points and all of the other system in
one point*. Through S, there pass two tangent primes of Q, touching it
in two points O and O’f. These two points represent two lines R and R’,
and every generator of the surface meets these two lines. The surface has
therefore two directrices, where we define a directrix to be a line which is
met by every generator of the surface.

The tangent prime at O meets Q in a quadric point-cone containing Q;
the two systems of planes on the point-cone passing through the two
systems of generators on . We may suppose that that system of generators
which are chords of C lie in the w-planes through O; these same generators
will then lie in the p-planes through O".

Hence through any point of R there pass two generators lying in a
plane through R’, while any plane through R’ contains two generators
meeting in a point of R.

Wehave thus established a geometrical connection between the facts that

(@) a twisted cubic on a quadric meets all the generators of one
system in two points and all of the other system in one point;

(b) a cubic ruled surface has two directrices; through each point of
one there pass two generators, while through each point of the other there
passes one generator.

* Salmon, Geometry of Three Dimensions, 1 (Dublin, 1914), 347.

1 Just as there are two tangent planes of an ordinary quadric passing through
a line of [3]. The poles of the primes which pass through S; all line on a line; this
meets 2 in the two points O, O’ at which the tangent primes contain S;.
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The double curve consists of the points of R, the bitangent developable
of the planes through R’. An arbitrary plane of Q meets S; in a point of
@, and there is only one chord of C lying on Q and meeting this plane—
that generator of @ which meets C twice and passes through the point
where the plane meets S;. Thus the double curve is of the first order and
the bitangent developable of the first class.

38. It may happen however that S; occupies a special position in
regard to Q, meeting it in a quadric cone with vertex V*. Then only one
tangent prime of Q passes through §;, this being the tangent prime
at V*. A cubic curve on the cone necessarily passes through V. Hence
the second species of cubic ruled surface has a directrix line R which is
also a generator. Any plane of Q passing through V lies in the tangent
prime at V and therefore meets S; in a line. This line will be a generator
of the cone and will meet the curve C in one point other than V. Thus
through any point of R there passes ode generator other than R, while any
plane through R contains one generator other than R.

This is in fact the cubic ruled surface of § 20.

We have thus obtained the two kinds of cubic ruled surfaces in [3]

given by Cayley f.

SECTION 111

THE PROJECTION OF RULED SURFACES FROM
HIGHER SPACE

39. Just as a curve is said to be normal when it cannot be obtained by
projection from a curve of the same order in space of higher dimension,
so a ruled surface is said to be normal when it cannot be obtained by
projection from a ruled surface of the same order in space of higher dimen-
sion.

It is well known how the descriptive theory of curves has been
amplified and simplified by considering curves as the projections of normal
curves, and it is natural to expect that the theory of ruled surfaces will
benefit similarly by considering ruled surfaces as projections of normal
ruled surfaces. There are, however, as we should again naturally expect,
more complicated relations to consider in the theory of ruled surfaces
than in the theory of curves; for example, the normal space for a curve of
order n and genus p is unique so long as n > 2p — 2, but for a ruled surface
of order n and genus p the normal space is only unique when p = 0 and

* The poles of the primes containing S; now lie on a line which touches Q at V.
t Papers, 5, 212-213.

E 3
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p = 1. Again, rational curves of order » are all projectively equivalent,
but rational ruled surfaces of order »n are not all projectively equivalent.

40. We shall, from this until § 50, be concerned solely with ruled
surfaces which are rational. A rational ruled surface of order % is normal
in [n + 1]*, all rational ruled surfaces of order » can be obtained as pro-
jections of these normal surfaces.

In the first place no surface of order n, whether ruled or not, can lie
in a space of dimension greater than» + 1. Ifit did so every prime section
would be a curve lying in a space of dimension greater than its order.

In the second place, given any rational ruled surface of order #, there
exists in [n + 1] a normal surface of which it is the projection. For con-
sider such a surface in [m], where 2< m < n + 1, and take two prime
sections. If the primes are of general position in regard to the surface the
sections will both be rational curves of order n; the m + 1 homogencous
coordinates of a point on either curve can be expressed as polynomials
of order n in a parameter. Since the curves are placed in (1, 1) corre-
spondence by the generators of the surface we can take the same parameter
A for both curves; so that for a point of the first curve

Z; = ¢; (A) (:=0,1,...,m),
and for a point of the second curve

z, =y, (A) (1=0,1,...,m),
where ¢ and ¢ are polynomials of order n.

Thus the coordinates of a point of the ruled surface can be expressed
as rational functions of two parameters A and v in the form

z, =, (A) + v, (A) (¢=10,1,...,m).

Now the two prime sections have n common points, viz. the points in
which the surface is met by the [m — 2] common to the two primes. Then
for these points the polynomials ¢, must be proportional to the polynomials
P, so that

¢1 (AJ) ¢2 (AJ) ¢'m ()‘J) k »
L N = =1,2,...,n—1,m),
W) )T T )T U nobm
where A}, A, ..., A, are the n values of A giving the common points of the

two prime sections. We can write the coordinates of a point on the ruled
surface in the homogeneous form

;= pd; (A, p) + v, (A, ) (¢=0,1,...,m).
Now let us choose further pairs of polynomials ¢ and ¢ of degree » in
A, the values of the ratios ¢/ being also equal to the quantities £ for the

* Veronese, Math. Ann. 19 (1882), 228, t Veronese, ibid. 166.
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n values of A giving the common points of the two prime sections; and then
take further expressions

(E,=,LL¢, (Ar f")+V¢t (A’ l") (”=m+ 1...).

If (A, u, v) are regarded as the homogeneous co-ordinates of a point in
a plane the quantities z, when equated to zero represent curves of order
n + 1; these curves all have:

(@) a multiple point of order n at A = u = 0,
(b) a common point at p = v = 0,
() common points at the » points u =1, A= A;, v = — k;.

Thus the number of coordinates z; it is possible to choose which
are linearly independent is the same as the number of linearly independent
plane curves of order n + ] which have in common 7 + 1 ordinary points
and have also a given point of multiplicity n. But the number of such
curves is

ln+l)(n+4)+ 11—+ D) —Inn+1)=n+ 2

We can therefore choose lincarly independent coordinates
xi=ll'¢; (A ®) + v, (A ®) (t=10,1,...,m+ 1),

n + 2 in number and no more.
Then these quantities x, are the coordinates of a point on a rational
ruled surface of order »n in [n + 1], the generators being given by

A/u = const.

This surface is normal and cannot be obtained by projection from a ruled
surface of the same order in higher space. The original surface lies in the
[m] whose equations are z,,,; = 2 = ... = Z,,; = 0 and is the projection
of the normal surface from the [n — m] whose equations are

Tog=12, = ... =2, = 0.

To a general point of the ruled surface there corresponds one point of the
plane, while to a general point of the plane there corresponds one point of the
ruled surface. The correspondence between the plane and ruled surface is
birational save for a certain number of exceptional points.

To a prime section of the ruled surface corresponds on the plane a curve of
order » + 1 with a fixed n-ple point and » + 1 other fixed points. To the points
in which the surface is met by a space of dimension two less than the space to
which it belongs we have the variable intersections of two such plane curves;
the number of these is

mM+1)2—-n2—n—-1=mn,
which is, as it should be, the order of the ruled surface.

A ruled surface of order » in [n + 1] is necessarily a rational surface
because its prime sections are rational curves.
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It can be shewn * that every surface of order n in [% + 1] is necessarily
a ruled surface except when # = 4.

41. The properties of the rational normal ruled surfaces were first
studied by Segre in his paper on rational ruled surfaces published at Turin
in 1884 . The results obtained by him are fundamental for our work, and
as we shall be using them constantly we give here some account of them.

In the first place we can immediately establish the existence of rational
ruled surfaces of order n in [n + 1] of several types which are projectively
distinct. For take two spaces [m] and [n — m]in [n + 1] which do not
intersect; in [m] take a rational normal curve of order m and in [n — m]
take a rational normal curve of order n — m. Then if the two curves are
placed in (1, 1) correspondence the ruled surface formed by joining pairs
of corresponding points is of order n}; it is rational and no two of its
generators can intersect §.

Take homogeneous coordinates (g, Z;, ..., Z,4;) 80 that the equations
of [m] are z,,,; = %9 = ... = Z,,; = 0 and the equations of [n — m] are
%o = % = ... = Z,, = 0. Then a point of the curve in [m] can be given by

Zo=A" 2, =A"1 2z . =12,.,=0,2,,,=0, ..., Z,,, =0,
while the corresponding point of the curve in [n — m] is given by

Zo=0,2,=0, ..., 2, =0, Zppyy = A"", 2, o= A""1 z,,=1
The coordinates of a point on the ruled surface are then given rationally
in terms of two parameters A and p by the equations
Zo=A", 2;=A""1 . x,=1, Tp =AU, Tpa=A""u ., T n=p,
go that the coordinates of every point of the ruled surface satisfy the
equations

To_ T T _Tma__ Tn

T T T Tmyz Tad
and conversely every point whose coordinates satisfy these equations is
a point of the ruled surface.

The equations to the ruled surface are therefore
= 0.

zo IEI cee xm_l x."i+1 cee x"

Ty XpeoiXyy  Lpygeee Tppy
In particular, a ruled surface of order 2 in [3] is obtained by a (1, 1) corre-
spondence between two skew lines. If the lines are z, = 2, = 0 and z, = 23 = 0
the equation to the ruled surface can be taken as
Lo %y
7 @
* Del Pezzo, ‘“Sulle superficie di ordine n immerse nello spazio di » + 1 dimen-
sioni,”” Rend. dell’ Accad. di Napoli, 24 (1885), 212.
+ “Sulle rigate razionali in uno spazio lineare qualunque,” Atti Torino, 19 (1884),

356.
1 §19. § For if they did the spaces [n] and [» — m] would also intersect.
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42. We shall always assume that the ruled surface in [n + 1] is not
a cone and that it does not break up into separate surfaces. Further, it
does not lie in any space of dimension less than n + 1.

If there is on the surface a curve of order less than or equal to n it
can only meet each generator of the surface in one point; for if it met
each generator in more than one point any space containing the curve
would contain the whole surface. But the surface lies in a space of dimen-
sion greater than n, whereas the curve must lie in a space of dimension
less than or equal to its order. Since then the curve only meets each
generator in one point it is a rational curve.

A curve on a ruled sarface meeting every generator in one point will
be called a directriz.

Thus on a ruled surfacé of order » in [n + 1] every curve C, of order
p < mn is a rational curve. But, further, every such curve is a rational
normal curve. For if it were contained in a [u — b], where b > 0, we could
take, through the curve and through any n — p + b generators, a space
[n] which would meet the surface in a curve of order

ptn—p+b=n+b>n;
and this is impossible.

Moreover, we cannot have on the surface two curves the sum of whose
orders is less than n. For if we have two curves C, and C,. of respective
orders p and u’, where u + pu’ < n, they are contained in spaces [n] and
[n’]: whence the space [p + u” + 1] containing these would contain the
whole surface, which is not contained in a space of dimension less
than n + 1.

Similarly, if we have on the surface two curves the sum of whose orders
is n they cannot intersect.

43. When we generate a normal ruled surface by means of two curves
of orders m and n — m we can always suppose, except when m =n — m = }n,

that
m< n—m,

or m<n
3

Then there can be no other curve on the surface of order as small as m;
or the curve of order m is the directriz of minimum order on the surface.
We can call it for brevity the minimum directriz.

Now in generating the surface we can clearly take any value for m

. such that 1 <m <g (ignoring m = 0 which gives a cone). Two surfaces

whose minimum directrices are of different orders cannot be projectively
equivalent.



38 CHAPTER 1, 43-46

Thus if n is odd we have n; !

normal ruled surfaces of order n in [n + 1]; each surface has a directriz of
.. . n—1
minimum order equal to m, where m is one of the numbers 1,2, ..., 5

projectively distinct types of rational

If n is even we have 7—2" projectively distinct types of rational normal ruled
surfaces of order n in [n + 1], one surface has minimum directrices of order

g, while the others have each a directriz of minimum order equal to m, where

n

9T 1.

m 18 one of the numbers 1, 2, .

44. We now shew that every rational normal ruled surface of order n in
[» + 1] ¢s of one of these types. To do this we must shew:
(@) that every ruled surface ox order % in [z + 1] has on it a curve

n
of order m < X

(b) that such a surface has on it curves of order n — m.

Then taking curves C,, and C,_, of these orders they cannot have
any intersections, and the ruled surface can be given by a (1, 1) corre-
spondence between these curves.

The proof of (@) is immediate; for taking a ruled surface of order » in

[» + 1] we know that a prime [n] can be taken to contain n + 1 inde-

1
pendent points. If then 7 is odd we can take a prime through ZL%

generators arbitrarily chosen; the remaining intersection of the prime with

. -1 .. .
the surface is a curve of order _nT which may or may not contain other

generators as parts of itself. It always includes, however, a curve which
is a directrix; so that on a ruled surface of odd order » in [n + 1] there

. . . -1 .
is always a directrix curve of order less than or equal to ?!IT" Similarly,
on a ruled surface of even order 7 in [n + 1] there is always a directrix

curve of order less than or equal to %

Consider now a surface F,* with a minimum directrix y™ of order m.
If a prime [n] contains more than m generators of F,* it will meet y™ in
more than m points and so contain it entirely, and its intersection with
the ruled surface will consist of y™ and n — m generators. This further
illustrates the fact that there are no curves, other than y™ itself, on F,»
of order less than n — m. If, however, a prime [n]is made to contain

exactly m generators of F,» (as it always can since m < n;— 1) it will
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not contain y™ and will meet F," furtherin a curve of order n — m ; unless,
however, every prime through the m generators necessarily contains a
further generator. But this cannot be; for we can take a prime through
m arbitrary generators and n — 2m + 1 arbitrary points of F,#; if such a
prime necessarily contained a further generator it would also contain y™
and therefore the n — 2m + 1 generators of F,” through the chosen points;
its intersection with F,” would then be a curve of order at least

m+m-+n—2m-4 1

or n + 1, which is impossible.

We have then clearly established the existence of curves of order
n — wn on F,"; so that all rational normal ruled surfaces of order » in
[7n 4+ 1] can be obtained as in § 41.

45. Since any directrix curve of order » — m and any m generators lie
together in an [z] all the curves of order n — m can be obtained by means
of primes through m generators arbitfarily chosen. We can now state the
following :

On the surface F," whose minimum directriz is of order m there are
oon~2m+l cyrves of order n — m. These curves are all obtained by primes
through any m fixed generators of the surface; and through any n — 2m + 1
points of general position on the surface there passes one such curve.

Any two curves of order n — m will have n — 2m intersections; a prime
containing one of them meets F," further in m generators and meets the
other curve in n — m points of which m are on these generators, the re-
maining n — 2m being intersections of the two curves.

In particular the ruled surface of even order which has mintmum directrices

of order g has oo! of them ; through any point of the surface there passes one

such curve and no two of them can intersect. The curves can all be obtained by
. n

means of primes through any 5 generators.

In a similar way it can be shewn that, if 0 < k < m, there are, on a
surface F," with a mintmum directriz y™ of order m, co® 2+l directrix
curves of order n — k such that through any n — 2k + 1 points of general
position on the surface there passes just one. All these curves can be obtained
by means of primes through any k fixed generators. Two directrices of
orders n — k and n — &’ intersect in n — k£ — %’ points.

46. A space [n — 1] of general position will meet F,” in = points;
we can, however, consider spaces containing generators of F,». If an
[n — 1] contains k£ generators it will contain % points of y™; so that if
k> m it will contain the whole of y™, and its intersection with F,* will
consist of y™ and a certain number of generators. If, however, k < m,
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[n — 1] will not contain y™ and its intersection with F,» will consist of the
k generators and a certain number of isolated points. A prime through
[n — 1] meets F,"in the k generators and a curve of order n — k; this curve
will meet [ — 1]in = — k points of which % lie on the generators, the re-
maining » — 2k giving the isolated intersections of F,* with [n — 1].
Hence an [n — 1] through k generators of Fy*, where k < m, meets F,", in
general, in these generators and in n — 2k points.

47. Having then such a knowledge of the properties of a normal
surface in [#» + 1] we can deduce the properties of a rational ruled surface
of order » in [3] by projecting from a space [# — 3]. The spaces [n — 2]
joining [n — 3] to the points of the normal surface F' meet the [3] in the
points of the projected surface f, while the spaces [#» — 1] joining [n — 3]
to the generators of F meet the [3] in the generators of f. Surfaces f de-
rived by projection from the same type of normal surface are projectively
equivalent; but surfaces f derived from different types of normal surfaces
are not. Knowing a method of generating F by a (1, 1) correspondence
between two directrix curves we can deduce a method of generating f, and
so if we wish obtain the equation to f.

In order to give a first illustration of this work we shall obtain the
two cubic ruled surfaces of [3], already met with in §§ 37, 38, by projection
of the normal cubic ruled surface in [4]*.

48. In [4] there is only one type of cubic ruled surface F'; it has a
directrix line A and co? directrix conics. Through any two points of F' (not
on the same generator and neither of them on A) there passes one directrix
conic; while any two directrix conics have a single intersection. Project
F from a point O of S, on to a solid X; we get a cubic ruled surface f in
Z. The lines joining O to the points of F meet X in the points of f, while
the planes joining O to the generators of F' meet X in the generators of f.

Through a general point of S, there passes one plane containing a
directrix conic of F. There cannot be more than one, because the inter-
section of two such planes is the intersection of the two directrix conics
which they contain, and this lies on #'. But there certainly exists one such
plane; for any solid through the point meets F in a twisted cubic, one
of whose chords passes through the point, and the two points in which
the chord meets F' determine a directrix conic whose plane contains the
chord.

If then O is a general point of S, there is a plane = passing through it
which contains a directrix conic I'; and = meets X in a line R which is a
double directrix of f, two generators of f passing through every point of R.
The plane joining O to A, the line directrix of F, meets X in a line R’ which

* Cf. Veronese, loc. cit. 229-232,
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is a second directrix of f; through any point of R’ there passes one generator
of f (see Fig. 1).

Any plane of X passing through R’ is joined to O by a solid containing
A and therefore meeting F in A and two generators ¢, and g,*. This solid
meets 7 in a line through O, and this line must meet I" in the two points
g, " and g, I". Then g, and g, project into two generators of f which intersect
in a point of R and lie in the plane through R’ from which we started.
Hence any plane through R’ contains two generators of f which meet in
a point of R. '

Fig. 1.

This shews that f is a cubic ruled surface in X belonging to the first
of our two species. Since F' can be generated by placing its directrix line
in (1, 1) correspondence with any of its directrix conics* we deduce at
once that f can be generated by placing two lines R, R’ in (1, 2) corre-
spondence.

49. This general type of surface has naturally been obtained by
selecting a general point of projection. Let us then take a point O in a
plane through A which contains a generator g of F, and project from O
on to a solid X. Then the plane OAg meets X in a line R which is a directrix
and also a generator of f.

It is clear from the projection that any plane through R contains one
other generator of f, while through any point of R there passes one other

* § 44,
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generator of f. Thus we have our second type of cubic ruled surface in
three-dimensional space.

From the known generation of F we deduce that f can be generated by
a line and conic with a point of intersection placed in (1, 1) correspondence
without a united point*. If we regard F as generated by a (1, 1) corre-
spondence between its directrix line A and one of its directrix conics I’
this point of intersection is the projection of the point gI'. The point of
intersection is not a united point because the two points in which g is
met by A and I' project into different points of R .

50. Irrational ruled surfaces. It is proved by Segrei that all ruled
surfaces of order n» which are elliptic (p = 1) can be obtained by projection
from normal surfaces in [» — 1]; he has made a complete study of these
surfaces, and we shall give some account of his results and apply them to
surfaces of the fifth and sixth orders. But when we come to surfaces for
which p = 2the normal space is no lofiger unique ; this is clearly exemplified
in our study of sextic surfaces. It can be shewn that all ruled surfaces of
order n and genus p which are not contained in a space of dimension less
than n — p + 1 are cones§; and on the other hand that all ruled surfaces
of order n and genus p have a normal space|| of dimension at leastn —2p+ 1.
Thus it would seem that, in order to obtain all the ruled surfaces of order
n and genus p by projection, we have to consider the possible normal sur-
faces in p different spaces.

51. The chords and tangents of a ruled surface. If we have a surface in
higher space then, just as in [3], all the tangent lines at a non-singular
point of the surface lie in a planeq. The tangent plane at any point of a
ruled surface must clearly contain the generator of the ruled surface which
passes through the point; and it is the fact that the tangent planes at the
different points of the generator form a pencil of planes related to the
range of points on the generator and all lie in a [3]Y. We shall speak of
this [3] as the tangent solid of the ruled surface along the generator.

We thus have a four-dimensional locus M, formed by these co! tangent
solids of the ruled surface; we can also regard M, as consisting of the oco?
tangent planes or of the o3 tangent lines of the ruled surface. If the ruled
surface lies in [4] there will be a finite number of its tangent solids (or
planes or lines) passing through any point of [4]. If the ruled surface lies

* Cf. § 20.

1 Concerning this surface we may also refer to Reye, Die Geometrie der Lage, 3
(Leipzig, 1923), 156.

1 “Ricerche sulle rigate ellittiche di qualunque ordine,” Atti Torino, 21 (1886),
868.

§ Segre, ibid. § 2. || Segre, Math. Ann. 34 (1889), 4.

9 Del Pezzo, Palermo Rendiconti, 1 (1887), 243-245.
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in [r], where r > 4, there will be a finite number of its tangents meeting
an [r — 4] of general position, and this number is the order of M,.

The chords of the ruled surface form a five-dimensional locus M
on which the locus M, formed by the tangents lies. If the surface is in
[4] there will be oo! chords of it through a general point of [4]. If the
surface is in [5] there will be a finite number of its chords passing through
a general point of [5]; this number is the number of ‘‘apparent double
points’’ of the surface. If the surface is in [7], where » > 5, there will be
a finite number of its chords meeting an [r — 5] of general position, and
this number is the order of M.

For example, on the rational ruled surface F," in [n + 1]

Ty Xy.eelmy Ty o &p = 0,
Xy Xy.o.Xy Xy eer Tpgy
the coordinates of any two points can be taken as
(@™, am-1,..,1, a"™b,...,ab, b),
and (@™, aem 1, ..., 1, a* "B, ...,aB, P).

Then the coordinates of any point on the line joining these are seen to
satisfy
Ty Ty .o.Xpy_g Tppyy e Ty || =0,

Xy Tyoeo Ty Lppig oon Xy

Ty Xy...Z, Zpigeer gy |

which represents a locus of five dimensions and of order } (n — 2) (n — 3).

52. In the actual projection of a ruled surface from higher space these
two loci M, and M; are useful for studying any double curve which there
may be on the projected surface. When the surface is in [r] we project on
to [3] from an [r — 4]; the locus M; meets [r — 4] in a curve &; through
each point of this curve there passes a chord of F and the [r — 3] joining
[r — 4] to such a chord meets the [3] X on to which we are projecting in a
double point of the projected surface f. We thus have the double curve
of fin (1, 1) correspondence with the curve in which M meets [r — 4].
The chords of F meeting [r — 4]give on F a curve C'in (2, 1) correspondence
with the double curve of f; the number of branch-points of this corre-
spondence on C is the number of tangents of C' which meet [r — 4], and
this is simply the order of M,. Thus the genus of the double curve of f is
the same as that of the curve § in which M; meets [r — 4]; it can also be
calculated by Zeuthen’s formula when we know the genus of C.

There will, of course, not be a curve in [r — 4] unless r > 5; if r =5
we have a finite number of chords of F' passing through each point of a
line, while if » = 4 we have an infinity of chords of F passing through a
single point: in both these cases, however, we still have the curve C on F'.
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The projection of the cubic ruled surface in [4] exemplifies this; the chords
of F passing through an arbitrary point O lie in a plane and meet F in the
points of a directrix conic I'. There are two tangents of I" passing through O.

53. We already know, by means of the representation of f as a curve
on Q, that f will have, in general, a finite number of triple points: this is
confirmed by the projection. The triple points of f must arise from spaces
[r — 3] passing through the centre of projection [r — 4] and meeting F
each in three points. Now the spaces [r — 3] in [r] which contain [r — 4]
are in aggregate co?, and one condition is necessary for an [r — 3] to meet
a surface in [r]. Hence there are, containing [r — 4], co? spaces [r — 3]
each meeting F in one point, oo! spaces [r — 3] each meeting F in two
points and a finite number of spaces [ — 3] each meeting ¥ in three points.
The first set simply joins [» — 4] to the c02 points of F'; the second set
contains the co! chords of F which meet [r — 4]; the third gives the triple
points of f. The singularities of a guneral ruled surface in [3] are a double
curve and a finite number of triple points, these points being also triple
points of the double curve.

For a ruled surface in [4] the only singularities, in general, are a finite
number of double points. If the surface is a projection of a non-singular
ruled surface in [5] this is clear at once, for we have already seen that
there is a finite number of chords of this surface passing through a general
point of [5]. If the surface is the projection of a surface in [r], when r > 5,
the centre of projection is an [r — 5], and this, if it is of general position,
meets the M formed by the chords of the surface in a finite number of
points.

54. Conclusion. We have now two powerful methods of obtaining the
different kinds of ruled surfaces in [3]; the first by considering the surfaces
as curves on (2, the second by projection of normal surfaces from higher
space. For surfaces which are the most general of their order and genus
we must choose the curve to have a general position on , and the centre
of projection to have a general position in regard to the normal surface.
To obtain the other surfaces we specialise the position of the curve on €,
and the position of the centre of projection in regard to the normal surfaces.

The first method is only applicable to the ruled surfaces in [3], whereas
the second is equally applicable to ruled surfaces in any space; but the
duality of the surface is lost in the second method, whereas it is retained
in the first; it is only in [3] that the line is the self-dual element. The two
methods will have to lead to the same results; and we may confidently
expect a greater efficiency than usual when we have two such different
methods confirming the workings of one another.

We proceed then to the main task of classifying ruled surfaces in [3],
beginning with those of the fourth order.



CHAPTER II
QUARTIC RULED SURFACES

INTRODUCTORY

55. The object of this chapter is to give a detailed and exhaustive
classification of the quartic ruled surfaces of three-dimensional space. The
most general type of surface is mentioned by Chasles*; the surfaces were
studied and classified, though not quite exhaustively, by Cayleyt, who
obtained his different types by means of directing curves and gave algebraic
equations for them. The complete classification was first given by Cremonaf,
who generated his surfaces by means of correspondences between two
curves.

We shall illustrate the general methods of this volume by obtaining the
quartic ruled surfaces of [3] in two ways:

(@) by regarding their generators as represented by the points of a
quartic curve on a quadric Q in [5] (§ 31);

(b) by regarding them as projections of normal quartic ruled surfaces
in higher space. '

56. Lines in [3] are co* in aggregate; there are thus co! lines satisfying
three conditions. It is one condition for a line to meet a curve; so that
the lines which meet each of three given curves C,, C,, C; are oo! in aggre-
gate and form a ruled surface. Salmon remarked § that if the curves C,, C,,
C, are of respective orders m,, m,, m; then the order of the ruled surface
is 2m,mymy; further, the three curves are multiple curves on the surface;
through every point of C, there pass m,m4 generators, through every point
of C, mgm, generators and through every point of C; m,m, generators.
Cayley added the further statement that if C, and C; have ¢ intersections,
C; and C, have B intersections and C, and C, have vy intersections, then the
order of the ruled surface is reduced to 2m,m,m; — mya — myB — myy,
while through every point of C; there pass mym; — @ generators, through

* Comptes Rendus, 52 (1861), 1094,

t Papers, 6 (1864), 214-219, and 6 (1868), 312—-328.

1 Memorie dell’ Accademia di Bologna (2), 8 (1868), 235; Opere, 2, 420. Concerning
quartic ruled surfaces we may refer also to Reye, Die Geometrie der Lage, 2 (Stuttgart,
1907), 301, and Sturm, Liniengeometrie, 1 (Leipzig, 1892), 48.

§ Cambridge and Dublin Mathematical Journal, 8 (1853), 45; cf. Geometry of
Three Dimensions, 2 (Dublin, 1915), 90.
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every point of C, mym, — B generators and through every point of C,
m,my — y generators*.

Cayley then chose sets of directing curves which would give ruled
surfaces of the fourth order. For example, one such set can be taken to
consist of two conics C; and C, with two common points and a line Cj
meeting one of the conics, say C,. Then

my = 2, my = 2, my =1,
a=1, B=0, v =2,
and we have a ruled surface of order 4 on which C, is a double conic and
O, a double line. He did not succeed however in discovering all the quartic
ruled surfaces in this wayt.

Incidentally we also have a ruled surface formed by the chords of one
curve which meet another given curve; or by the lines trisecant to a given
curve. Formulae can be given for the orders of such ruled surfaces; we
shall see below that a quartic ruleg surface is formed by the chords of
a twisted cubic which meet a given line.

57. Cremona on the other hand generated the quartic ruled surfaces
by means of a (1, 1) correspondence between two conics. In general the
conics will not degenerate and will not intersect; but further types of
surfaces are obtained if one or both of the conics degenerates into a line
counted doubly, and still further types can arise if the two curves intersect.

It can at once be shewn by elementary methods that the ruled surface
is of the fourth order. For let the two conics be C' and C” and suppose that
an arbitrary line meets their planes in p and q. Then an arbitrary plane
through the line gives a pair of points x, ¥ on C and a pair of points 2’, u’
on C’. Then as the plane varies in the pencil the pairs of points z, y will
describe an involution on C, the join of every pair of points passing through
p; while the pairs of points 2, #” describe an involution on C’, the join of
every pair of points passing through ¢; the pencils of lines through p and
¢ in the planes of the two conics are thus homographically related. But
to the points z, y of C there will correspond, in the (1, 1) correspondence
between the conics, points 2’, ¥’ of C’; and as the points z, y describe the
involution on C the points 2, ¥’ will describe an involution on C”. The
join of 2’ and y’ thus passes through a fixed point p’, and the pencil of
lines through »’ in the plane of C” is thus homographic with the pencil

* Papers, 5 (1864), 203.

t There are, as we shall see, ten species of quartic ruled surfaces with rational
plane sections and two with elliptic plane sections; in Cayley’s first paper we find
the two elliptic ones and six of the rational ones. This paper was seen by Cremona
before he published his own, and meanwhile Cayley discovered two other rational
quartic ruled surfaces. He did not know of the existence of the remaining two
species until he was informed of them by Cremona.
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of lines through p in the plane of C. We have then in the plane of ¢’ two
homographic pencils of lines with vertices p” and ¢; the locus of inter-
sections of corresponding lines is a conic. This conic meets ¢’ in four
points, and the plane joining any one of these four points to pg contains
a pair of corresponding points of C and ¢ and therefore a generator of the
ruled surface. We have thus four generators of the surface meeting pg, so
that the ruled surface is of the fourth order.

It is clear that the planes of C' and C” are bitangent planes of the ruled
surface, each meeting it in a conic and two generators. The plane of C, for -
example, meets C” in two points and therefore contains the two generators
which join those points to the corresponding points of C.

Further, there are three double points of the ruled surface in an
arbitrary plane. In the plane of C we have the intersection of the two
generators lying therein and two other points, namely, those intersections
of the generators with C which do not correspond to the two intersections
of the plane with ¢”. The double curve of the ruled surface is thus a twisted
cubic*.

The (1, 1) correspondence between C and C’ determines a projectivity
between their planes T; there are certain lines in either plane which intersect
their corresponding lines in the other plane, and the planes of such pairs
of intersecting lines are known to form a developable of the third class .
Such a plane necessarily contains two generators of the ruled surface; and
conversely every bitangent plane of the ruled surface will meet the planes
of C and €’ in lines which correspond to one another in the projectivity.
Thus we see that the quartic ruled surface has a bitangent developable of
the third class.

Just as the points of the surface which lie in a plane containing two
generators, but not themselves on either of the generators, lie on a conie,
so the tangent planes of the surface which pass through a point of inter-
section of two generators, but do not themselves contain either of these
generators, touch a quadric cone.

After these preliminary remarks we proceed to the classification of
the quartic ruled surfaces by the two methods; the reader is referred for
further investigations to Cremona’s paper.

* The double curve, being algebraic, meets every plane of the space containing
the ruled surface in the same number of points. It is then sufficient, in order to be
able to say that the double curve is & twisted cubic, to prove that it meets the plane
of C in three points.

t von Staudt, Geometrie der Lage, 2 (Niirnberg, 1857), 149; Reye, Geometrie
der Lage, 2 (Stuttgart, 1907), 10.

I von Staudt, Geometrie der Lage, 3 (Niirnberg, 1860), 326; Reye, Geometrie der
Lage, 2 (Stuttgart, 1907), 163.
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SECTION I

RATIONAL QUARTIC RULED SURFACES CON-
SIDERED AS CURVES ON Q

58. The generators of a rational quartic ruled surface are represented
on Q by the points of a rational quartic curve C. Such a curve necessarily
lies in a space S, and may be contained in a space S;, so that we consider
five possibilities as follows:

I. C is a rational normal quartic lying in an S, which has no special
relation in regard to Q.

II. C lies in a tangent prime 7 of Q.

III. Clies in a tangent prime 7 of Q and passes through O, the point
of contact of Q and 7'.

IV. C lies in an 8y, the intersection of tangent primes to Q at two
points O and O’. ™

V. Clies in an §; through which there passes only one tangent prime
of Q, S; meeting Q in a quadric cone with vertex V.

59. Let us now examine the general case I.

To find the degree of the double curve of the ruled surface we take a
plane p on Q and find how many planes @ there are which meet this plane
p in a line and also meet C in two points*. The chord joining the points of
C in such a plane w would have to meet p (on its line of intersection with
). But p meets §,in a line; and we know that any line in S, is met by three
chords of Ct, because when we project C from the line on to a plane we
obtain a rational quartic, i.e. a plane quartic with three double points.
A chord of C which meets the line lies entirely on Q as meeting it in three
points, and therefore a plane w passes through it. We therefore obtain
three planes @ such as we require.

Hence the double curve is of the third order.

Similarly the bitangent developable is of the third class.

The tangent prime of Q at any point P of C meets S, in a solid which
contains the tangent of C at P and meets C in two points other than P.
Hence every generator of the surface is met by two others. On any
generator there lie two points of the double curve, while through any
generator there pass two planes of the bitangent developable.

Since the points of C lie in an 8, which does not touch Q the generators
of the surface belong to a linear complex which is not special. The surface
was thus given by Cayley, as that formed by the chords of a twisted cubic
belonging to a linear complex f.

* §33. t Cf. § 8. 1 Papers, 6, 316.
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The chords of a twisted cubic are c0? in aggregate; they are therefore
represented on Q by the points of a surface V. Since one chord of the
cubic can be drawn through any point of the space [3] in which it lies, the
surface ¥V meets every plane w on Q in one point; and since there are
three chords of the cubic in any plane of the [3], the surface ¥V meets
every plane p on Q in three points. Hence V is of order 4, meeting an
arbitrary solid in four points. This surface V is in fact the surface known
as Veronese’s surface *.

The statement that the chords of a twisted cubic belonging to a linear
complex form a rational quartic ruled surface is the same as the statement
that the section of Veronese’s surface by a prime is a rational quartic curve.

60. Quartic ruled surfaces of type II. A tangent prime 7' of Q meets
Q in a quadric point-cone t; this contains the two systems of planes on Q
through the point of contact O. Any solid of 7' meets Q in a quadric
surface; and the lines joining O to evely point of this quadric surface lie
on Q. The rational quartic C is projected from O into a rational quartic
on this quadric. Remembering that the generators of the quadric lie on
the planes of the two systems through O we can at once subdivide type II
into three parts:

IT (A). C meets every plane w through O in three points and every
plane p through O in one point.

II (B). C meets every plane w through O in one point and every plane
p through O in three points.

IT (C). A chord of C passes through O; C meets every plane of Q
through O in two points.

The point O of Q represents a line R; this is a directrix of the quartic
surface, being met by every generator.

When the surface is of the type IT (A) there are three generators passing
through every point of R, while there is one generator lying in each plane
through R.

To find the double curve we take, as before, an arbitrary plane p, and
we consider those chords of C' which mect this plane. These are the three
chords of C' which meet the line of intersection of the plane p with the
tangent prime 7', and are therefore those chords of C which lie in the plane
@ joining this line to O.

If we now interpret this result in the space S; containing the ruled
surface the plane p represents an arbitrary plane of S;; and the three planes
w which represent the three intersections of this plane of S; with the double

* For this surface, regarded as representing the chords of a twisted cubic, see
Baker, Principles of Qeometry, 4, 52-55, where references to the literature concerning
it will also be found.

t Cf. § 30.

E 4
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curve all coincide in a single plane through O. Hence the three points of
intersection of the plane of S; and the double curve all coincide in the
intersection of this plane with the line R.

Hence the double curve is the line R counted three times.

To find the bitangent developable we take an arbitrary plane w; this
meets T in a line which is met by three chords of C, and the bitangent
developable of the surface is a general developable of the third class.

When the surface is of the type II (B) there is one generator passing
through each point of R and three generators lying in any plane through
R. The double curve is a non-degenerate twisted cubic, while the bitangent
developable consists of the pencil of planes through R counted three
times.

When the surface is of the type II (C) there are two generators which
pass through any point of R and two which lie in any plane through R.

An arbitrary plane p meets 7' in a line; one of the three chords of C
which meet the line is contained il the plane @ joining it to O. Hence the
double curve consists of R and a conic. R and the conic intersect; their
point of intersection is represented by the w-plane which contains the
chord of C passing through O. Similarly, the bitangent developable con-
sists of the pencil of planes through R together with the tangent planes of
a quadric cone, one tangent plane of the cone passing through R. This
tangent plane of the cone is represented on Q by the p-plane which contains
the chord of C passing through O.

61. Quartic ruled surfaces of type I11. We can subdivide III into two
parts; since the projection of € from O on to a solid in 7' is now a twisted
cubic we have:

IIT (A). C meets every plane @ through O in two points and every plane
p through O in one point other than O.

IIT (B). C meets every plane % through O in one point and every plane
p through O in two points other than O.

The point O represents a line R which is a directrix and also a generator
of the ruled surface.

In the type III (A) there are two generators other than R passing through
each point of R and one generator other than R lying in each plane through
R. An arbitrary plane p meets 7" in a line ; but the three chords of C' meeting
this line all lie in the plane w joining it to O. Hence the double curve is the
line R counted three times. An arbitrary plane @ meets 7 in a line, and
the plane p joining this line to O contains one chord of C. There will be
two other chords of C' meeting the line, so that the bitangent developable
consists of the pencil of planes through R together with the tangent planes
of a quadric cone.
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In the type III (B) there are two generators other than R lying in any
plane through R and one generator other than R passing through any
point of R. The double curve consists of R and a conic, the bitangent
developable of the pencil of planes through R counted three times.

62. Quartic ruled surfaces of type IV. In IV we have a rational quartic
C lying on the quadric surface in which Q is met by ;. We have then two
possibilities:

IV (A). C meets all generators of one system in three points and all of
the other system in one point.

IV (B). C has a double point and meets every generator in two points.

Through a general point of S; we can draw three chords to either of
these rational quartics; in the second case we include the line to the double
point.

The points O and O’ of Q represent lines R and R’, which are both met
by every generator; the surface has tWo directrices.

The planes of the two systems on Q which pass through O and O’ meet
8, in the two systems of generators of the quadric surface. Each generator
is the intersection of a plane of one system through O with a plane of the
opposite system through O’.

In IV (A) we may suppose that the generators trisecant to C lie in the
w-planes through O and in the p-planes through O’. Then through any point
of R there pass three generators lying in a plane through R’; any plane
through R’ contains three generators meeting in a point of R. The double
curve consists of the points of the line R counted three times; the bitangent
developable consists of the planes through the line R’ counted three times.

In IV (B) the double point of C represents a double generator ¢ of the
surface. Through any point of R there pass two generators lying in a plane
through R’ and through any point of R’ there pass two generators lying in
a plane with R. The double curve therefore consists of the points of R, R’,
G, while the bitangent developable consists of the three pencils of planes
through R, R’, G.

63. Quartic ruled surfaces of type V. In V C lies on a quadric cone Q
with vertex V and must therefore have a double point. If two quadrics
in 83 touch there are three cones through their curve of intersection, one
of which has its vertex at the double point; so that V can be subdivided
according as

V (A), the double point of C is not at V,
or V (B), the double point of C is V.

Through every generator of ¢ there passes a plane of Q of either system.

In V (A) the surface has a directrix line R; through any point of R there
pass two generators which lie in a plane with R, while any plane through

42
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R contains two generators meeting in a point of R. R is represented on
Q by the point V.

An arbitrary plane of Q meets S; in a point P on @, and it is clear that
the projection of C from P on to a plane of S; is a quartic curve with a
double point and a tacnode, the tangent at the tacnode being the inter-
section of the plane with the tangent plane of the cone along the generator
through P. Hence the three chords of C which pass through P consist
of the generator PV counted twice and the line to the double point.

Hence the double curve consists of the directrix R counted twice and
a double generator, while the bitangent developable consists of the planes
through R counted twice and the planes through the double generator.

InV (B) thesurface hasa directrix line B whichis also a doublegenerator.
C meets every generator of  in one point other than V; so that through
any point of R there passes one generator other than R, while every plane
through R contains one generator other than R.

An arbitrary plane of Q meets §; in a point P on @, and the projection
of C from P on to a plane of S; has a triple point. Hence the three chords
of C passing through P all coincide with PV. The double curve is therefore
the line R counted three times, while the bitangent developable consists
of the planes through R counted three times.

64. This completes the determination of the rational quartic ruled
surfaces of ordinary space. We have obtained in all ten species, and these
are the same as the ten species obtained by Cremona. A table of the sur-

faces is given on p. 303.

65. The representation of the double curve and bitangent developable.
Two generators of the surface which intersect are represented on Q by
two points of C such that the chord joining them lies entirely upon Q.
This chord will meet an arbitrary prime in a point which can be taken as
representative either of the point of the double curve in which the two
generators intersect or of the plane of the bitangent developable in which
the two generators lie*. Hence the chords of C which lie on Q trace out
in the prime a curve D which is in (1, 1) correspondence with both the
double curve and the bitangent developable.

We assume that C is general unless the contrary is stated.

The chords of C form a locus U, of three dimensions; any point of this
locus which is on Q and not on C must be on a chord of C that lies
entirely on Q. Hence these chords form a ruled surface in the §, containing
C, this ruled surface being the intersection of Q and Uj,. The section of
this ruled surface by a prime or, what is the same thing, by an S, lying

* Cf. § 33.
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in §,, gives us the curve D. The S; will meet Q in a quadric surface and
U, in another surface; and D is the intersection of these two surfaces.

If C is projected from a line in 8, on to a plane we have a quartic curve
with three double points, so that the line must be met by three chords of
C. Hence U, is of the third order and may be denoted by U,%. Moreover,
if C is projected from a line which meets it on to a plane we have a plane
cubic with one double point, so that the line is only met by one chord of
C besides those passing through its intersection with C. Hence C is a
double curve on U, Since no plane can meet C in four poirits no two chords
of C can intersect except on C itself, so that there is no double surface on
U,3. The section of U,® by an 8, is a four-nodal cubic surface.

The curve D in S, is therefore the intersection of a four-nodal cubic
surface with a quadric passing through the nodes; this is a sextic curve
with four double points. It lies on the quadric and meets every generator
in three points; so that if it is projected from a point of the quadric on
to a plane we obtain a sextic with two triple points and four double
points. This is a rational curve.

66. If the curve D should happen to break up into one or more parts
we expect the double curve and the bitangent developable to break up
into the same number of parts.

Let us consider in particular the case IT (C). C lies in a prime 7' touching
Q in a point O; a chord of C passes through O, while every plane of Q
through O meets C in two points.

Every chord of C' which lies entirely upon Q is such that the plane
joining it to O also lies entirely upon Q. Hence we can clearly separate
these chords into two distinct classes, those joined to O by planes w and
those joined to O by planes p. We therefore expect D to break up, and
moreover to break up into two similar parts.

Consider those points of an arbitrary S; of 7' lying on chords which
are joined to O by w-planes; they form a curve D, lying on the quadric
@ in which §; meets Q. One system of generators of @ is joined to O by
w-planes, and clearly there is one point of D, on each of these generators.
A generator of @ of the opposite system is joined to O by a p plane: this
plane contains one chord of C, so that the generator of  is met by two
other chords; these must be joined to O by w-planes. Hence on this generator
we have two points of D, .

Hence D, is a twisted cubic meeting the generators of @ in w-planes in
one point and the generators of @ in p-planes in two points.

Similarly, those points of §; lying on chords that are joined to O by
p-planes form a twisted cubic D, which meets the generators of @ in
w-planes in two points and the generators of @ in p-planes in one point.
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Through any point of C there pass two chords which lie entirely on Q,
and these will be joined to O by planes of opposite systems. This holds in
particular for the four points of intersection with S;.

Thus we have again the intersection of a quadric with a four-nodal
cubic surface; but here the intersection D breaks up into two twisted
cubics, D, and D,, each passing through the four nodes. D, and D, have
one other common point lying on the chord of C which passes
through O.

The pairs of generators of the surface which meet in the points of R
and whose planes touch a quadric cone are represented on Q by the pairs
of points of C which lie in the w-planes through O. The chords of C joining
these points form a cubic ruled surface ¢,*, so that the points of R and the
tangent planes of the cone are in (1, 1) correspondence with the generators
of ¢,. The section of ¢, by 8; is the twisted cubic D;. ¢, has a directrix
line !, and the plane w, passing through I, represents the vertex of the
quadric cone.

Similarly, the pairs of generators of the surface which lie in the planes
through R and whose points of intersection lie on a conic are represented
on Q by the pairs of points of C' which lie in the p-planes through O. The
chords of C joining these points form a cubic ruled surface ¢,, so that the
planes through R and the points of the conic are in (1, 1) correspondence
with the generators of ¢,. The section of ¢, by S; is the twisted cubic D,.
¢, has a directrix line /, and the plane p, passing through /, represents the
plane of the conic.

The planes w, and p, do not lie in 7'.

67. We can also consider in this way the curves C of type ITI. Suppose
for definiteness that C' is of the type III (B). The ruled surface formed by
the chords of C which lie on Q breaks up into two parts; the cubic cone
projecting C' from O and the cubic ruled surface formed by those chords
of C which lie in the p-planes through O but do not themselves pass through
O. The tangent of C at O belongs both to the cone and to the ruled surface,
and the plane w through this tangent represents a point of intersection of
R and the double conic. The plane of the double conic is represented on
Q by the p-plane which contains the directrix of the cubic ruled
surface.

* These chords join the pairs of an involution on C. The joins of the pairs of
points of an involution on a rational curve of order n form a ruled surface of order
n — 1 (see footnote to § 19).
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SECTION II

RATIONAL QUARTIC RULED SURFACES CONSIDERED
AS PROJECTIONS OF NORMAL SURFACES IN
HIGHER SPACE

68. The rational quartic ruled surfaces f of ordinary space can all be
obtained as projections of the rational normal quartic ruled surfaces F of
8S;; the projection will be from a line / not meeting F. There are two kinds
of surfaces F'; the general surface with co! directrix conics and the surface
with a directrix line.

We first confine our attention to the general surface F, and find that
by suitably choosing ! we can obtain six types of surfaces f. From the
known methods of generating F' we deduce methods of generating these
six types of surfaces; all these methods are given in Cremona’s paper.

The other four types are obtained by projection from the surface with
a directrix line.

69. The normal surface in [5] with directriz conics. The general surface
F has oo! directrix conics; any such conic is determined by one point of F
and no two conics intersect.

We first assume that / has a general position, and project from I on to
a solid X.

A prime through  meets F in a rational normal quartic curve, three of
whose chords will meet /. Hence in any prime through ! there are three
planes that pass through 7 and meet two generators of F. Projecting: on
any plane section of f there are three points through which two generators
pass. Thus the double curve of f is a twisted cubic.

The planes of the oo! conics on F meet any prime in lines forming a
ruled surface A. The prime meets F in a rational normal quartic, and the
gencrators of 4 must be chords of this curve since each one meets F in the
two points where it cuts the corresponding directrix conic. Further, these
chords join pairs of an involution on the curve because each conic is
determined by one point of F. Thus they form a cubic ruled surface. This
shews that the planes of the directrix conics form a locus V3.

The line 7, having a general position, does not meet the V32; but a plane
w drawn through ! meets the planes of three directrix conics I'y, T, T's.
w meets X in a point P. Then through = and I'; there passes a prime
which meets F in Iy and two generators; the projections of these two
generators will lie in a plane through P. There are two other bitangent
planes through P arising from the primes »I'; and wI';. Hence there are
three bitangent planes of f passing through a general point P of Z, so that
the bitangent developable of f is of the third class.

f is therefore of the type I.
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F can be generated by a (1, 1) correspondence between any two of its
directrix conics. Hence the most general quartic ruled surface of ordinary
space can be generated by a (1, 1) correspondence between two conics.

70. F contains co® directrix cubics, any such curve being determined
by three points of F. All these can be obtained as prime sections of F
residual to any given generator. Any one of these curves lies in a solid; it
is easily seen that for general positions of I none of these solids contains .

Suppose, however, that I is taken in one of these solids ¢. Then the
projected surface f has a directrix line R, the intersection of X and . A
plane through [ lying in o meets F in the three points where it meets the
directrix cubic of o'; hence through any point of R there pass three generators
of f. A prime containing o meets F' again in one generator; hence every
plane through R contains one generator of f.

Thus fis of the type II (A).

F can be generated by placing a directrix cubic and a directrix conic
in (1, 1) correspondence with a united point. Hence the surface f can be
generated by taking a line and a conic with a common point P and placing
them in (1, 3) correspondence with P as a united point. To P regarded as
a point of the conic corresponds P regarded as a point of the line; while
to P regarded as a point of the line correspond three points of the conic

of which P is one.

71. Now let I be taken so as to meet a plane y of V2, y containing a
directrix conic I'. The solid y meets X in a line R which is a directrix of f.
A plane through ! lying in the solid /y meets y in a line having two points
of intersection with I', and therefore meets two generators of . Hence
through any point of R there pass two generators of f. Moreover, a prime
through ly meets F' in " and two generators, so that any plane through R
contains two generators of f.

Thus f is of the type II (C).

f can be generated by placing a line and a conic in (1, 2) correspondence.

With this last choice of I the solid /y will not in general contain a
generator of F, but we may clearly choose ! so that it does. Then f has
a directrix line R which is also a generator. Any plane through R contains
one other generator, while through any point of R there pass two generators
other than R itself.

Here f is of the type III (A).

To determine a generation for f suppose that F is generated by means
of I and some other directrix conic I''; the solid ly containing a generator
g which meets I'in X and IV in X’ (Fig. 2).

The solid II" meets X in the directrix R, while the planes joining ! to
the points of IV meet X in the points of a conic C.



QUARTIC RULED SURFACES 57

Now consider the plane IX’. Since it lies in the solid /g or ly it meets
the plane y in a line, and therefore meets X in a point on R. Hence R and
C have a common point P. The point X’ on I gives the corresponding point
X on I, which is clearly projected into a point @ of R different from P.

Hence the (1, 1) correspondence between I' and I gives a (1, 2) corre-
spondence between R and C, P not being a self-corresponding point.

Thus f may be generated by taking a line and a conic with a common
point and placing them in (1, 2) correspondence without a united point.

Fig. 2.

72. Further, we may choose [ to meet two planes y and y” of V3, these
planes containing directrix conics I' and I". Then f has two directrices
R and R’, the intersections of the solids ly and ly” with X. Let ! meet y
and y’ in P and P’ respectively.

The lines of y through P give an involution on I'. This gives an involu-
tion of pairs of generators of ¥, and thus an involution on I'V also. But the
lines of y” through P’ give a second involution on I'V which will have a pair
of points in common with the former. This pair of points gives a pair of
generators g and g’ on F'; and clearly g, ¢’, I lie in a solid as having two
common transversals. Thus the projected surface f has a double generator.

A prime through !/ and y meets F' in I" and two generators which meet
IV in a pair of points collinear with P’. Thus a plane through R contains
two generators of f which intersect in a point of R’. Similarly a plane
through R’ meets f in a pair of generators which intersect in a point of R.

Hence f is of the type IV (B).
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We may clearly generate f by a (2, 2) correspondence between two lines
R and R’; but this will not be the most general (2, 2) correspondence, it
must be specialised so as to give the double generator.

Conversely, take two generators g and ¢’ of F; the solid g9’ does not
meet F again*. Take [ in the solid gg’.

Any point p of g determines a conic of F' meeting ¢’ in a point p’;
the plane of this conic meets the solid g¢’ in the line pp’. Also, through
p there passes a transversal of g, g’,  meeting ¢’ in a point ¢’.

The ranges (p’) and (¢’) on ¢’, both being homographic with the range
(p) on g, are homographic with each other; in general, they will have two
self-corresponding points. Thus [ is met by two planes of V3 as before.

P l P
N
g (3
r Io r
~— g'
///——-—_\\
/ z
R m
X X’
\_/o H
Fig. 3.

But it may happen that the two self-corresponding points coincide, so
that ! meets only one plane of V3. The surface f has now a double generator
and a directrix R, but B must be regarded as a coincidence of two direc-
trices. Any plane through R contains two generators, while through any
point of R there pass two generators, f being of the type V (A).

The V33 formed by the planes of the directrix conics meets an arbitrary
solid in a cubic curve passing through the four points of intersection of
the solid with F'. But a solid containing a pair of generators g and g’ of
F is met by the planes of the directrix conics in lines which give homo-
graphic ranges on g and g’ and therefore form a regulus.

A line ! in the solid meets the regulus in two points, and on projecting
we have a surface f of the type IV (B); but if [ is taken to touch the quadric
surface on which the regulus lies we have a surface f of the type V (A).

73. We can give another generation for a surface of type IV (B) which
can immediately be specialised to give the type V (A).

* § 46,
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We have generated f by placing its two directrices B, R’ in (2, 2)
correspondence with united elements X, X’ corresponding to one another;
whence the double generator X X".

Let C be the projection of T'y, a third directrix conic of F (Fig. 3).

The plane of C is the intersection of £ with the prime containing ! and
I'y. This prime meets y in a line through P and 9’ in a line through P’;
hence the two generators which it contains must be the pair g and g’ that
determine a solid containing /. Thus the plane of C contains the line X X".

We may therefore generate f by a (1, 2) correspondence between R and
C; to the point X in which R meets the plane of C there must correspond
two points of C collinear with X, these giving the double generator X X’.

To the points of R correspond pairs of points of ¢ which form an in-
volution ; thus the chords of C' which join these pairsof points all pass through
a fixed point. This point will lie on XX’ and is in fact X’. For the two
generators of f which issue from any pgint of R both meet R’, so that their
plane contains R’ and meets the plane of C in a line through X".

Similarly the points of R’ give rise to pairs of points on C whose joins
all pass through X.

This at once suggests the following generation for a surface of the
type V (A): take aline R and a conic C in (1, 2) correspondence, every point
of R giving a corresponding pair of points of C' whose join passes through
the point in which R meets the plane of C.

74. The normal surface in [5] with a directrix line. We now consider
the projections of the surface F which has a directrix line A.

Taking first a general position of /, the projected surface f has a directrix
line R, the intersection of X with the solid IA. A prime through IA meets
F in X and threc generators, so that any plane through R contains three
generators of f. A plane through [ lying in the solid /A meets A in one point,
so that through any point of R there passes one generator of f.

Hence f is of the type II (B).

F can be gencrated by a (1, 1) correspondence between A and a directrix
cubic. Hence f can be generated by a (1, 1) correspondence between a line
R and a twisted cubic.

The planes through A which contain the generators of F form a locus U
of three dimensions, which does not meet a line of general position.

But if  is chosen to meet a plane 7 of U the solid lr meets Z in a line
R which is a directrix and also a generator of f. The primes through the
solid IA now meet F in sets of three generators of which one is always the
generator in 7. Thus any plane through R contains two generators of f
other than R, while through any point of R there passes one generator of
f other than R.

Hence f is of the type III (B).
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By reasoning similar to that employed in obtaining the generation for
the type III (A) we see that f can be generated by a line and twisted
cubic with a point of intersection, placed in (1, 1) correspondence without
a united point.

Further, I may meet two planes of U. Then f has a directrix R which
is also a double generator. Any plane through R contains one other
generator, while through any point of R there passes one other generator.

Here f is of the type V (B).

f can be generated by taking a twisted cubic and one of its chords, and
placing them in (1, 1) correspondence without any united point.

It is easily seen that the locus U is of the third order, meeting an arbitrary

solid in the points of a cubic curve. If I met three planes of U it would lie
entirely on U and so meet F, so that we do not consider this possibility.

75. F contains co? directrix cubics, they can all be obtained as prime
sections residual to any given generator. In general ! does not lie in a solid
with any of these curves; if, however, it happens that I and one of the
cubics do lie in the same solid o the projected surface f will have two
directrices, R, the intersection of X with the solid /A, and R’, the intersection
of X with the solid o. '

A prime through /A meets F in A and three generators and meets o in
a plane through /. Hence any plane through R contains three generators
meeting in a point of R’. Through any point of R there passes one generator.

Thus f is of the type IV (A).

[ is generated by placing two lines R and R’ in (3, 1) correspondence.
This last generation is mentioned by Cremona.

We have now completed the determination of the rational quartic
ruled surfaces of ordinary space; the results obtained by the two methods
are in complete agreement with one another and also with Cremona’s
results.

SECTION III
ELLIPTIC QUARTIC RULED SURFACES

76. We must now give a short account of those surfaces which are
elliptic; i.e. those whose plane sections are elliptic quartic curves. The
generators of such a surface will be represented on Q by the points of an
elliptic quartic curve C, which necessarily lies in a solid S;.

77. In general, S, will be the intersection of the tangent primes to Q
at two points O and O’; these two points represent lines R and R’ which
are directrices of the surface. §; meets Q in a quadric @; every generator
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of @ is met by C in two points and is the intersection of a plane of Q
through O with a plane of the opposite system through 0’.

Hence through any point of R there pass two generators which lie in
a plane through R’, while through any point of B’ there pass two generators
which lie in a plane through R.

The double curve consists of the lines R and R’, while the bitangent
developable consists of the pencils of planes through R and R’. A plane
section of the surface is a quartic with double points on R and R’.

This is the surface which is generated by means of the most general
(2, 2) correspondence between two lines B and R’. It is Cayley’s first
species and Cremona’s eleventh.

This general type of elliptic quartic ruled surface is the most general type
of Segre’s ‘“‘rigate biquadratiche*.”

An elliptic quartic curve is determined by eight points on a quadrict;
hence a ruled quartic surface can be made to contain eight lines of a linear
congruence. o

78. Suppose now that only one tangent prime of Q passes through
S,, S; meeting Q in a quadric cone with vertex V. C lies on this cone
and does not pass through V. Each generator of the cone meets C in
two points and is the intersection of two planes of (2, one of each system.

The point V represents a line R which is a directrix of the surface.

Any plane of Q meets S5 in a point P of the cone. The projection of
C from P on to a plane of S; is clearly a quartic with a tacnode; so that
the two chords of C which can be drawn through P consist of the generator
PV counted twice.

The double curve is thus the line R counted twice, while the bitangent
developable consists of the planes through R counted twice. Through any
point of R there pass two generators which lie in a plane with R. A plane
section of the surface is a quartic with a tacnode on R.

This surface is Cayley’s fourth species and Cremona’s twelfth.

79. An elliptic quartic ruled surface cannot contain a simple directrix
or a conic; but if we take a plane through a generator we obtain a cubic
curve on the surface. We have in this way co2 cubic curves on the surface.
Through any two general points on the surface there pass two of these
curves, because the line joining the two points meets the surface in two
other points, and through either of the two generators passing through
the latter points there is a plane containing the former points. In general
two of the cubic curves will intersect in two points on the line of inter-
section of their planes; the other two points of intersection of this line

* Memorie Torino, 36 (1885), 142.
1 Salmon, Geometry of Three Dimensions, 1 (Dublin, 1914), 360.
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with the surface being on the generators which lie in the planes of the
cubic curves.

To generate the surface with two directrices we take a line R and a
plane cubic curve without a double point, the curve passing through the
point P in which R meets its plane. We then place the line and cubic in
(1, 2) correspondence with P for a united point. The pairs of points of the
cubic which correspond to the points of B must be collinear with a fixed
point P’ of the curve*; the range of points on R is related projectively to
the pencil of lines through P’, the point P of the range corresponding to
the ray P’P of the pencil. The planes joining the points of the range to the
corresponding rays of the pencil all pass through a line R’ which passes
through P’%.

From this we can deduce at once the generation for an elliptic quartic
ruled surface with one directrix. We take a line R and an elliptic cubic
curve with a point of intersection P and place them in (1, 2) correspondence
with P as a united point. But her¢ the pairs of points of the curve which
correspond to the points of the line are collinear with P itself; and the
two generators which pass through any point of R are co-planar with R.
The correspondence is at once determined by a projectivity between the
points of the range on R and the lines of the pencil through P, the point
P of the range corresponding to the tangent of the cubic curve at P. This
latter is the generator of the surface which liesin the plane of the cubic curve.

SECTION IV

ALGEBRAICAL RESULTS CONNECTED WITH
QUARTIC RULED SURFACES

80. We first obtain the equations of the different kinds of quartic
ruled surfaces by the methods which we have given for generating them.
The results may be compared with those in Salmon’s Geometry of Three
Dimensions .

The surface of the type I is generated by the chords of a twisted cubic which
belong to a linear complex.

We can take the coordinates of any point on the cubic to be (63, 62, 6, 1); the
six coordinates of the line joining the two points for which the parameter has
the values A and p are then

A2 4 Ap + pd, A+, 1, - Ap, An (A + p), — A2u2,

* The joins of the pairs of points of a g,! on a plane cubic without a double
point all meet the curve again in the same point.

+ If there were not a united element the planes would touch a quadric cone.

1 2 (Dublin, 1915), §§ 546-554.
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Suppose now that the chord belongs to the linear complex
bl + 2fm +cn — (b + 29) V' + 2hm' — an’ = 0.
Then
a2 +b A+ p)+c+2f(A+ p)+ 29 n + 2RAn (A + ) =0
Now the coordinates of any point on the chord are
A3+ kpd, A% + kp?, A+ kp, 1+k,
for which
wz—yPr=kpA-p? d-ygr=kQA+p)QA-p? yg-22=k@A-pp?
so that the locus of the chords is the quartic ruled surface
a (xz — y?)% + b (xt — y2)? + ¢ (yt — 2%)2% + 2f (xt — yz) (yt — 22)
+ 29 (yt — 2%) (w2 — y°) + 2h (22 — ¥®) (2t — y2) =
on which the existence of the twisted cubic as a double curve is clear. This then
may be taken to represent the general surface* of type I.

If, however, we have .
b+ 29) —4fh+ac=0
the surface degenerates into one formed by the chords of the cubic which meet
the line whose coordinates are o

{—0b+29), 2h, —a, b 2f c}
and is of the type II (B).

Let us now take the surface of the type II (A).

We take a line and a conic in (1, 3) correspondence with a united pointt.
The scts of three points of the conic which correspond to the points of the line
form a singly infinite set of triangles whose sides all touch another conic. The
two conics have four common tangents; these touching the first conic in double
points of four of the sets of three points. Take two of these four points as X and
Y; the plane of the conic being z = ¢ and the line being =y = 0. Let Z be
the point of the line which gives rise to the set of three points with the double
point X and T the point of the line which gives rise to the set of three points
with the double point Y. Let the equation of the conic be

yz+zx+axy=2—1%t=0.
Then any point of the conic can be written (6, 1 — 6, 62 — 6, 62 — 6), while
any point of the line is (0, 0, ¢, 1); and the general (1, 3) relation
¢ (@0® + b2 + c0 + d) = A6® + B6?2 + C8 + D
must become é (0 —1)%(ab + B) = 0% (af + y).
Any point of the surface is
6, 1-—6, 62—-60+4+2rp, 62—6+ 1),

so that z—Pt=x(0—-1)(1 —¢),
_ ez +y @@ +y)}

and ¢_y2{ax+ﬁ(x+y)}'

Thus @+y)(z—¢t) +2y (1 —¢)=0,

Wz +z+ay)y*lar+B@+y}={ey+i@@+y}a®{er+y@+y)
which divides by = + y, giving
2y*{ox + B (x + y)} — t2? {ax + y (@ + ¥)} = 2y {azx (x — y) + y2? — By?},
2{By® + (@ + B) xy% — t{ye®y + (y + a) 2% = 2y {(¥ + @) 2* — azy — By?}.

* Salmon, § 549. t §10.
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Writing thenz = { — zand ¢ = » — y we find *
L (ay® + bay?) + 7 (caly + do®) = ex?y?.

For a surface of the type II (C) we must take a line and a conic in (1, 2)
correspondence f. Let the line meet the plane of the conic in Y, and let X and
Z be the points of contact of the tangents from Y. Then the conic is

2 —yt=1t=0.
Take T on the line.

Then any point of the conic is (6%, 8, 1, 0), while any point of the line is
(0, ¢, 0, 1). The points of the line give rise to pairs of an involution on the conic;
one of these pairs will be on a line through Y, and we can take 7' to correspond
to this pair. Since this pair divides X and Z harmonically (the join passing
through the pole of XZ) we can take their parameters to be + 1 and — 1, so
that the (1, 2) relation will be of the form

¢ (ab + b0 + ¢) = 62 — 1.

Any point of the surface is (A0%, A0 + u¢, A, ), giving
21
af? + b0 + ¢

(y — 02) (a6% + b6 + c) = (6% — 1) ¢,
ax (y — 02) + byz0 — bzx + cz (y — 62) =t (x — 2);
or axy — bzx + cyz + £ (z — x) = 0 (azx — byz + c2?).
Squaring this we have the equation to the surface in the form
[eyz — bzx + axy + 2t — tx]? = a2 (ax — by + cz)2.
This clearly has the double line z = x = 0 and also a double conic, the inter-
section of the plane

z = 0%, y=0z+ ¢t =02+

b

ax —by +cz2=0
with the quadric
cyz — bzx + axy + 2t — tx = 0,
or with the quadric
by —z2zx)+t(z—2z)=0.
The planes z = 0 and cy + t = 0 give a torsal generator, as also do the planes
z = 0 and ay — ¢ = 0, the respective tangent planes being x = 0 and z = 0.
The intersection of the surface with the plane ¢ = 0 is given by
0 = (cyz — bzx + axy)? — xz (ax — by + c2)?
= {y (ax — by + ¢2)% — b (zx — y?)}* — 2z (ax — by + cz)®
= (zz — y*) [6* (22 — y?) — 2by (ax — by + c2) — (az — by + ¢2)’]
= (22 — y?) [(b% — 2ac) zx — a%x? — c%?],
which consists of the original conic together with two lines through Y.
The equation of this pair of lines can be written
(ax + by + cz) (ax — by + cz) + b2 (y® — zx) =0,
s0 that they pass through the two points of intersection of the double conic and
the conic zz — y* =t = 0; the two conics lying on a quadric.
For a surface of the type III (A) we take a line and conic with a point of
intersection and place them in (1, 2) correspondence without a united point .

* Cf. Salmon, § 546. t§7L
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The pairs of corresponding points on the conic form an involution; take the
two double points of this as X and Y, and let the corresponding points be Z
and 7T'. Then we can take the line to be x = y = 0 and the conic to be

yz+zx +xy=2z—1=0.
Any point of the line can be written (0, 0, ¢, 1) and any point of the conic
6,1 —6,6%—0, 62— 0). The (1, 2) relation must be of the form
é (6 — 1) = 6%.
Then the coordinates of any point of the surface are
@ 1—-6, -0+ 2rp, 2—0+ )

for which z—¢t=x0—-1)(1 - ¢),
so that 2(0—1)2—abt =2z (0 —1)[(0 — 1)2 — ad?],
or (® + v) (24* — ala?) = xy (a2® — y?).

Writing — t =y + 7 and z = { — x, we obtain
8 + a12?) (x + y) = may?,
and we take for the equation of the surface *
mxy? = (x + Y@ + y?2).
For a surface of the type III (B) we may take a line and a twisted cubic
with a point of intersection and place them in (1, 1) correspondence without a

united pointf. We will, however, obtain this surface as the reciprocal of III (A).
The equation of the surface III (A) is

pxPy? = (x + y) (2% + y?).

A tangent plane is lz + my + nz + pt =0,

where n=@+yy, p=@+yd
and lx + my = — (nz + pt) = — pady?
Also nx? + py? = 2x%? (x + y),

so that 2 (lx + my) (x + y) + p (na? + py?) = 0,

or, since this is homogeneous in « and y and z2:y% = p:n,
Ip +mn + (I +m)Vap + pnp =0,

or (Ip + mn + pnp)? = (I + m)2 np.

This being the tangential equation of the surface I (A), the point-equation
of the surface TII (B) can be written ]

(@t + yz + pat)* =zt (x + y)>

It has a double conic  + y = at + yz + pzt = 0 and a double line z = ¢ = 0

which meets the conic in (1, — 1, 0, 0).

To generate a surface of the type IV (A) we take two lines R and R’ in (3, 1)
correspondence||. There will be four points of R’ for which two of the three
corresponding points on R coincide. Take two of these four points as X and Y,
the corresponding coincident elements being Z and 7. Any point of R’ is
(8, 1, 0, 0), while any point of R is (0, 0, ¢, 1); the (1, 3) relation between 6 and
¢ is necessarily of the form

_ad® + Bg?

yé+8 -

* Cf. Salmon, § 548. t §74.
1 Cf. Salmon, § 548. Il §75.
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Then any point of the surface has coordinates (6, 1, Ag, A), or

[ad® + B4% v +3, Ab(yd +9), Alyp+9)].

r_ a2’[t} + B2%R  (az + f) 2°
Hence iRy Sy v O

and the equation of the surface is*
x (yz + 8t) 12 = y (az + Pt) 22,

To generate the surface of the type IV (B) we take two lines R, R’ in (2, 2)
correspondence, the correspondence being specialised so as to give a double
generatorf. In a general (2, 2) correspondence there will be four points of
either line giving rise to pairs of coincident points on the other; but here two of
the four points will themselves coincide. Take then X and Y as the corresponding
double elements; and let Z be another point on R which gives rise to a pair of
coincident points 7' on R’. Any point of R is (¢, 0, 1, 0) and any point of R’
is (0, 6, 0, 1), the (2, 2) relation will be of the form

b = ag? B0 + 50
Any point of the surface is (Ag, ub, A, ;.), whence

r_ y_
=% b
x  a? zy 'y
and E_az2+'357+yt2’
or x2? = ax¥? + Pryzt + yy’2?;

and we have for the equation of the surface }
y%? + maxyzt + 12 (axz + ba?) = 0.

There is a second generation which can be used for a surface of the type
IV (B)||; we take a line and conic in (1, 2) correspondence, making the two points
of the conic which correspond to the point in which the line meets the plane
collinear with this point. Take the point of intersection of the line with the
plane of the conic as Y; the points X and Z being the points of contact of the
tangents from Y. Then the conic is ¢ = xz — 2 = 0, with points (8%, 6, 1,0), and
we can take the parameters of the two points which correspond to Y as 4 1.
Any point of the line is (0, ¢, 0, 1), if we take 7' on the line. The pairs of
points of the conic which correspond to the points of the line form an involution;
we shall take 7' as the point which gives rise to the pair of the involution in-
cluding Z. Then the (1, 2) relation between ¢ and 6 must be of the form

$ (62 — 1) = A62 + BO.

Any point of the surface is (A62, A0 + ud, A, ), giving

62 + BO
x = 6%, y=0z+¢t=02+t‘ie2—jf—l——,

* Cf. Salmon, § 547. t §72.
3 Cf. Salmon, § 553. I §73



QUARTIC RULED SURFACES 67
ie. (y — 62) (02 — 1) = (462 + BO) t,
x(y — 02) —z (y — 6z) =t (Ax + Bz0),
xy — yz — Atx = 0 (Bzt + zx — 22);
and on squaring we have the equation of the surface in the form
(yz — xy + Atx)? = zz (x — 2z + Bi).

This surface has clearly the doublelines 2 = z = 0 and« — z = ¢ = 0. Writing
it in the form
{y (2 — x + Bt) + t (Az — By)}? = 2x (x — 2z + Bt)2,

we see that it has also a double line
x—2z+ Bt =Ax — By = 0.

The line z — z = ¢ = 0 is a double generator; it meets the other two lines

which are double directrices.
Now if B =0 the two dircctrices cojncide, and we have a surface of the

type V (A) whose cquation is
(yz — 2y + Atx)? = 22 (x — 2)%

The pair of points of the conic which corresponds to any point of the line

is now such that its join passes through Y.
The section by any plane ax + By + yz + At = 0 is a quartic curve with a
tacnode at x = z = 0 and another ordinary node.

To generate a surface of the type V (B) we take a twisted cubic and one of
its chords and place them in (1, 1) correspondence without any united points*,
Take X and Y to be the points where the line meets the cubic; any point of
the line is then (6, 1, 0, 0). Also, § may be taken as the parameter of the cubic,
and if Z and 7' correspond to X and Y respectively any point of the curve can
be taken to have coordinates

80—-p, 0(@0—-a), 6(0-a)(@-p, (0—0a)@-0H.
Any point of the ruled surface will have coordinates
00— pB) + A9, 00 —a)+ A, 0(0—a)@—p), 6 —a) (8 — B).

Then z2—at=(0—a)t, z—pt=(0-B)¢,
yz —xt =0t {62 — (@ + 1) 6 + B};
so that (yz — at) (z — at) (z — Bt) = 2t {22 — (a + 1) 2t + B2}

is the equation of the surface.
By taking two other planes of the pencil z 4+ k¢t = 0 instead of z =0 and ¢ = 0

we can reduce this equation to the form t
2%%= (az® + b2t + ct?) (yz — xt).
To generate the general elliptic quartic surface, which we may call a surface
of the type VI (A), we take two lines and place them in (2, 2) correspondence t.

* §74, + Cf. Salmon, § 548. 1§77
5-2
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On either line there will be four points for which the two corresponding
points coincide. Take, on one of the lines, two of these points as X and Y, the
corresponding double elements on the other line being Z and 7'. Any point of
the first line is (4, 1, 0, 0) and any point of the second is (0, 0, ¢, 1) with a (2, 2)
relation

af? + 0 (cp? + d + €) + bp? = 0.

Any point of the ruled surface is (A0, A, ug, ) so that 6 = gand ¢ = ; The

(2, 2) relation gives

2 zx/ 22 z 22
ai/—"+g}-<ct2+di+e>+bt—2_0’

and the equation of the surface is
ax?? + xy (c2® + dzt + ef?) + by%? = 0.

To generate the type of elliptic quartic ruled surface with one directrix,
which we may call the type VI (B), we take a linc R and a plane elliptic cubic
curve; this cubic passes through the point P in which R meets its plane. We
then place the line and the cubic in (1, 2) correspondence with P as a united
point, the pairs of points of the cubic which correspond to the points of R all
having their joins passing through P*. Let the cubic curve lie in the plane z = 0,
the point P being = y = z = 0 and the tangent to the curve there z =z = 0.
Then the equation to the curve may be written

xt? + (ax? + 2bxy + cy?) t + Ax® + 3Bx%y + 3Cxy? + Dy® = 0.

We take R, passing through P, to be the intersection of the planes z = 0 and
y = 0. We refer the points of R projectively to the pencil of lines z = ky,
z = 0 in such a way that the point P of R corresponds to the line = 0 of the
pencil, i.e. we take the point (0, 0, k£, 1) of R to correspond to the line x = ky,
z = 0 of the pencil. Then the coordinates of a point of the ruled surface are

(kn, =m, kA, 1+ ),
where 7 is a root of

k + (@k? + 26k + ¢) n + (AK® + 3Bk2 + 3Ck + D) 5 = 0.

If then (z, y, 2, t) denotes the point on the ruled surface we have

x  ax?+4 2bxy +cy? wy Ax® + 3Bx%y + 3Cxy? + Dy®  x%y?
e 2 7 3 2 =0,
Yy Yy xt —yz Yy (@t — yz)
and the equation to the surface ist
(xt — y2)? + (ax? + 2bxy + cy?) (xt — yz) + (Az® + 3Bx%y + 3Cxy? + Dy?)x = 0.

The section of this surface by a plane is a quartic curve having a tacnode at
the point where R meets the plane.

*§179. 1 Cf. Salmon, § 554.
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Thus the equations of the different types of quartic ruled surfaces are as
follows:
I  a(xz—y®24b(xt—yz)?+ c(yt —22)2
+ 2f (2t — yz) (yt — 2%) + 29 (yt — 2B) (@2 — y®) + 2h (xz — y?) (xt — y2) =O.

II (A) 2y? (ay + bx) + tx? (cy + dx) = ex?y?.
II (B) AsinI, but with the relation b2 + 2bg — 4Af + ac = 0.
II (C) (cyz — bzx + axy + 2t — tr)? = xz (ax — by + c2)2.
III (A) may? = (x + y) (2% + y%).
III (B) (@t + yz + pet)? =zt (x + y)%
IV (A) x (yz + 8t) 12 = y (az + Pt) 22.
IV (B) Y%22 + mayzt + 2 (az + bx)x =0 |
(yz — 2y + Atx)? = zx (x — 2 + Bt)z}'
V (A) (yz — xy + Atx)? = zx (x — 2)2.
V (B) 222 = (a2? + bzt + cl?) (yz — xt).
VI (A) ax¥? + xy (c2® + dzt + et?) + by%*? = 0.

VI (B) (2t — yz)? + (ax? + 2bxy + &?) (xt — yz) + (Ax® + 3Bx?y
+ 3Cxy? + Dy®) x = 0.

81. If in [5] we take two conics and place them in (1, 1) correspondence we
obtain the most general rational normal quartic ruled surface.

Let the planes of the conics be 2y =2, =, =0 and 2; = 2, = r; = 0. We
may then take a point of the first conic as (0, 0, 0, 62, 8, 1) and the corresponding
point of the second as (62, 6, 1, 0, 0, 0). Then any point on the ruled surface has
coordinates of the form

(63, 6, 1, A8%, A6, A),
so that the equations of the ruled surface are *
To X Ty _ T
X, Ty, X X

If 0 is constant we have a gencrator of the surface; if A is constant we have
a conic on the surface. We thus obtain oo! directrix conics. The equations to
the planc of any one of these are

Ty = Az, T, = Ay, Xy = Axy,
so that the equations of the V3 formed by the planes are
Lo Ty %y
T3 B “_’4 B x5

This clearly contains the quartic surface.

All directrix conics can be obtained as residuals of prime sections through
any two fixed generators. The equation of the prime, which contains the conic
whose points are (62, 6, 1, k6%, k0, 1) and the two generators given by (a2, a, 1,
Ao, Aa, 1) and (82, B, 1, uf2, pB, 1), is

k[xy — (@ + B) % + aBr] = 23 — (a + B) 2, + ofi5.

Take a point (&), &, &, &, &, &) on Vg8 and any other point whatever
(%o, @1, Xp, X3, Ty, %s).

« 548,
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Then the coordinates of any point on the line joining them are
(fo + py, & + pay, & + pay, fa + px,, &+ My s &+ Ks),
and if this point lies on V,® we have
fo+l‘%=§1+l‘3’1 &+ )
E+pwy &yt pwy L+ pas
These cquations are satisfied by u = 0 as they should be. There will be two
roots u = 0, or the line will touch the locus, if we have
b0y + o€y = &175 + 2163,
175 + 1, &5 = &34 + W€y,
&o%3 + 2y €3 = Eo%5 + %955
and in virtue of the equations satisfied by £ these may be written

Ty Ty _ 2'3 z,
+
L& & &
Ty , Ty “’4 Zy
+ + +-
& fl‘ f4 §2
T3 , Ly
+ =5 545
& & fs fo
so that the tangents of V33 at £ lic in a solid—the tangent solid of V3, whose
equations are

4+

To_T3_Ty Xy Ty X
fO £’i fl §4 §2 55.
This tangent solid will, of course, contain the plane of V,* which passes
through ¢; to find the points common to the solid and Vg® we write

B_ % _T_,

T3 Xy X5
in the equations of the solid, which become

B

</\ _ 17>.
f2 65 ’
and since £/&; = £,/é, = &,/és = «, say, we have

BG-)-a2G-)-56Y

Now these equations are satisfied by A = «; we have thus the plane of V,3
passing through ¢. But they are also satisfied by

§3 4 5
which make also, from the equations of the solid,
To Xy Zp

A
so that we obtain the points of a straight line.
Incidentally through every point ¢ of V3® there passes a line whose equations
are
Xy Xy X, Ty X, X

= = — _= == =,
fo 1 2’ §3 4 5
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We have thus oo? lines on V. Each of them is a directrix, meeting every

generating plane. The oo! generators of the quartic surface are a particular set
of these lines.

The coordinates of any point on the chord of the surface which joins the
points (62, 6, 1, A62, A9, A) and (¢2, ¢, 1, ud?, ud, u) may be taken as
(2 +vd% O0+vdh, 1+v, A2+ pvd? A0+ urvd, A+ wv),
and the equations of the chord can be taken as
xg — 2, (6 + 4) + 2,06 =0,
%5 — 3 (0 + §) + 2508 = 0,
A (@ — $y) = x4 — a5,
p (@ — bxy) = x4 — O,
the equation of any other prime through the chord being a linear combination
of these four.

These equations shew that through a general point of [5] there passes one
and only one chord of the surface; if the coordinates of the point are substituted
in the four equations the first two will gi%e 6 and ¢ and the last two A and p.

The only exception is when

To_T1_ 72
@y x, xg
or the point lies on V3, as is obvious geometrically.

Thus a general rational quartic ruled surface in [4] has one double point, but
there is also a rational quartic ruled surface in [4] with a double line. This latter
is obtained by projecting the normal surface from a point of V2 and is generated
by a line and a conic in (2, 1) correspondence.



CHAPTER III
QUINTIC RULED SURFACES

SECTION I

RATIONAL QUINTIC RULED SURFACES CON-
SIDERED AS CURVES ON Q

82. There is a classification of quintic ruled surfaces given by Schwarz*,
the surfaces being classified by means of their double curves. When this
has been obtained we can at once deduce, by the principle of duality, a
second classification of quintic ruled surfaces by means of their bitangent
developables. These two classificajions are quite different; two surfaces
which belong to different classes according to one classification can very
well belong to the same class according to the other—this is sufficiently
clear from Cremona’s table of quartic ruled surfaces and is quite evident
from the classification of the quintic surfaces themselves that we shall
obtain. Thus, although Schwarz’s classification is exhaustive, it is such
that another, which is not included in it, can be deduced immediately from
it. It is then surely desirable to obtain the more precise classification
which includes both of these; and when this has been obtained the applica-
tion of the principle of duality can only reproduce it.

The work is more complicated than that for the quartic ruled surfaces;
one cause of this is the higher degree of the double curve and class of the
bitangent developable. For the rational quartic ruled surface the double
curve is a twisted cubic, and if it breaks up it must contain a line as a part
of itself; this is always easy to detect when we represent the generators
of the ruled surface as the points of a curve C on Q. But for the rational
quintic ruled surface the double curve is a sextic, and if this breaks up it
does not necessarily contain a line.

It will, of course, be necessary to make use of the properties of quintic
curves; for some of these we can refer to a paper by Marlettat, while
others that are required will be obtained in the course of the work; certain
loci connected with the curve are investigated in so far as their properties
are required. At the end of his paper Marletta mentions this representation
of the generators of a rational quintic ruled surface, dividing the surfaces
into three main classes and referring to Schwarz’s paper.

* «Uber die geradlinigen Flachen fiinften Grades,” Journal fiir Math. 87 (1867),
23-517.

t ¢Sulle curve razionali del quinto ordine,” Palermo Rendiconti, 19 (1905), 94—
119.
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The rational quintic curves on a quadric Q in [5]

83. Any rational quintic curve may be regarded as the projection of a
rational normal quinticin[5]*. We may project on to a [4] from a point on
a chord of the normal curve; this shews that it is possible to have a rational
quinticin[4]with a double point. Similarly, by projecting from aline meeting
two chords of the normal curve, we may have a rational quintic in [3] with
two double points and, by projecting from a line in a trisecant plane of the
normal curve, we may have a rational quintic in [3] with a triple point.

We shall then divide the rational quintic curves on Q into seven
classes:

L. The rational normal curve in [5].

II. The curve lies in a prime which does not touch Q.

III. The curve lies in a tangent prime of Q but does not pass through
the point of contact.

IV. The curve lies in a tangent prime of Q and passes through the
point of contact.

V. The curve lies in a tangent prime of Q and has a double point at
the point of contact.

VI. The curve lies on the section of Q by an S, through which pass
two tangent primes of Q.

VII. The curve lies on the quadric cone in which Q is met by an S,
which touches it.

84. We can at once subdivide these classes. If a rational quintic C
lies in & tangent prime 7' touching Q in a point O then, when projected
from O on to any solid of T, it becomes a rational quintic lying on a
quadric surface. If the curve passes through O it becomes a rational quartic,
while if it has a double point at O it becomes a twisted cubic. The rational
curves of the third and fourth orders which lie on a quadric surface are
well known; we give here those of the fifth order. There are two kinds:

(@) The residual intersection of the quadric with a quartic surface
passing through three of its generators of the same system. This curve
meets all the generators of one system in four points and all of the other
system in one point.

(b) The residual intersection of the quadric with a cubic surface which
passes through a generator and touches the quadric in two points. This
curve has two double points; it meets all generators of one system in three
points and all of the other system in two points.

There are also two kinds of rational quintic curves which lie on a
quadric cone:

(a) The residual intersection of the cone with a cubic surface passing
through a generator and touching the cone in two points. This curve has

* §8.
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two double points; it passes through the vertex and meets every generator
in two points other than the vertex.

(b) The residual intersection of the cone with a nodal cubic surface
passing through a generator, the node being at the vertex of the cone. This
curve has a triple point at the vertex and meets every generator of the cone
in one point other than the vertex.

We are now in a position to give a more minute classification of the
rational quintic curves C on Q.

It may be remarked here that if we have a rational quintic curve in
[5] there is one trisecant plane passing through a general point of [5]*.
Hence the rational quintic in [4], if it has not a double point, has a trisecant
chord.

85. We now classify the rational quintic curves which lie on Q as
follows:
I. The rational normal curve ifi [5].
II. (A) C lies in a prime which does not touch Q.
(B) C lies in a prime which does not touch Q, and has a double
point.
III. C lies in a tangent prime 7' of Q but does not pass through the
point of contact O.
(A) C meets every plane @ through O in four points and every plane
p through O in one point.
(B) C meets every plane w through O in one point and every plane
p through O in four points.
(C) C meets every plane w through O in three points, every plane
p through O in two points, and has a double point; O Iying on a chord of C.
(D) C meets every plane @ through O in two points, every plane p
through O in three points, and has a double point; O lying on a chord
of C.
(E) C meets every plane o through O in three points and every plane
p through O in two points; two chords of C passing through O.
(F) C meets every plane m through O in two points and every plane
p through O in three points; two chords of C passing through O.
IV. C lies in a tangent prime 7' of Q and passes through the point of
contact O.
(A) C meets every plane » through O in three points and every
plane p through O in one point other than O.
(B) C meets every plane w through O in one point and every plane
p through O in three points other than O.
(C) C meets every plane of Q through O in two points other than O
and has a double point.

* Marletta, loc. cit. § 12.
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(D) C meets every plane of Q through O in two points other than O
and has its trisecant passing through O.
V. Cliesin a tangent prime 7' of Q and has a double point at the point
of contact O.
(A) C meets every plane w through O in two points and every plane
p through O in one point other than O.
(B) C meets every plane m through O in one point and every plane
p through O in two points other than O.
VI. C lies on the quadric @ in which Q is met by an §; through which
pass two tangent primes of Q.
(A) C meets all generators of @ of one system in four points and all
of the other system in one point.
(B) C meets all generators of  of one system in three points and
all of the other system in two points, and has two double points.
VII. C lies on the quadric cone in which Q is met by an S; touching
it in a point V. *
(A) C passes through ¥V, meets every generator of the cone in two
points other than V, and has two double points.
(B) C has a triple point at V and meets every generator of the cone
in one point other than V.

The general surface in [3]

86. The generators of a ruled surface of the fifth order in [3] will be
represented on Q, if the surface is general, by the points of a rational normal
quintic curve C. If C is projected from any plane on to another plane we
obtain a plane quintic curve which is rational, and has therefore six double
points. Hence, in the [5] containing C, a plane is met by six chords of the
curve. Thisis true in particular for a plane of Q.

Hence the double curve of the ruled surface is of order six, while the
bitangent developable is of the sixth class*.

87. The genus of the double curve. We have just seen that there are six
chords of C' meeting an arbitrary plane. Hence the chords of C' form a
locus U,?, of three dimensions and of the sixth order. If we project C from
a plane which meets it in one point on to another plane we obtain a rational
quartic with three double points; so that the plane is only met by three
chords of C other than those which pass through its point of intersection
with C. Hence C is a triple curve on U,8. There is no double surface on
U because no two chords of C can intersect in a point not lying on Ct.

* See § 33.
1 For if they did there would be a [4] meeting C' in more than five points. If
bhe curve is given by @g: @, : 2, @3: 2q: 5 = 65: 0%: 6%: 62: 6: 1, the equations of Ut are
Ty ® X3 w3 || =0.
Xy Xy T3 X4

Ty Ly Ty Tge
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The tangent prime to Q at any point of C' meets C in three other points;
hence through any point of C' there pass three chords lying on Q. The
chords of C lying on Q form a ruled surface with C as a triple curve; this
is merely the intersection of Q and U, The curve of intersection of this
ruled surface with a prime is in (1, 1) correspondence with the points of the
double curve and the planes of the bitangent developable *.

Now a prime S, meets C in five points a, b, ¢, d, e, and meets U in a
sextic surface with these five points as triple points and no other singu-
larities. Also S, meets Q in a quadric primal through a, b, ¢, d, e. Hence
the chords of C' which lie on Q meet S, in a curve of order 12 with these
five points for triple points.

Project this curve from the line ab on to a plane in 8,. We obtain a
sextic with three triple points. Any solid through ab will meet U,® in a
sextic curve of which ab is a part; but if the solid contains the plane abc
it will meet U, in the lines be, ca, ab and a twisted cubic passing through
a, b, c. This cubic can only meet a plane through ab in one other point.
Thus it is clear that no plane through ab can meet the curve of order 12 in
more than one point in addition to @ and b. Thus the plane sextic which we
obtain has no singular points other than three triple points, and is therefore
an elliptic curve. Hence the curve of order 12 is also an elliptic curve.

Thus we have proved that the double curve of the ruled surface is an
elliptic curve, while the planes of the bitangent developable form an elliptic
family.

88. The triple point and the tritangent plane. By a result already found ¥
for curves of any order and genus we see that if a rational quintic curve C
lies on Q there are two of its trisecant planes also lying on Q.

It is at once seen that these two planes cannot belong to the same
system of planes on Q. For suppose, if possible, that we have two planes
@, and o, of the same system, both trisecant to C. w, and , intersect in
a point A and lie in a [4], and since no [4] can meet C in more than five
points 4 must lie on C. But », and w, both lie in the tangent prime of
Q at A, which only meets C in three points other than 4. Hence our
supposition is false.

There is then one plane of each system of Q which is trisecant to C;
so that the rational quintic ruled surface has one triple point and one
tritangent plane.

89. We now know that the double curve of the ruled surface is an
elliptic sextic curve with a triple point. If we project this from a point
of itself on to a plane we obtain an elliptic quintic curve; this has a triple
point which is the projection of the triple point on the sextic and it must have

* Cf. §§ 33 and 65. T § 35.
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two further double points. Hence through any point of the double curve
there pass two of its trisecants. These are precisely the two generators of the
ruled surface which intersect in this point of the double curve; and we
can therefore generate the surface by the trisecants of an elliptic sextic
curve with a triple point*.

It is not difficult to see which are the three generators of the surface
passing through the triple point. The plane containing two of the tangents
at the triple point will meet the curve in a single further point P, and if
the curve is projected from P on to a plane the triple point becomes, on the
resulting quintic curve, a triple point at which two tangents coincide. Thus
this quintic curve will only have one other double point, so that only one
proper trisecant of the sextic curve passes through P. The line joining P to
the triple point is a generator of the ruled surface. The other two generators
passing through the triple point are at once determined similarly.

Further consideration of the surfaces whose generators do
not belong to a linear complex

90. Considering again the rational normal quintic C, let us take a plane
meeting C in a single point P. In general there are three points of this
plane, other than P, through which pass chords of C. But suppose that
there is an infinite number of chords of C' which meet the plane; the
plane then meets U,® in a curve I'.

If we project C from P on to a space [4] we obtain a rational normal
quartic, and there is no point of [4], which is not on the curve, through
which two chords of the curve can pass. Hence no line through P can
meet U,® in more than one point other than P. This shews that T, if of
order n, has a point at P of multiplicity » — 1, and n = 2.

If we project C from a line in the plane of I" on to a space [3] we obtain
a rational quintic with » double points. Hence we must have » < 2.

* For the degree of a ruled surface formed by trisecants of a curve see Zeuthen,
Annali di Matematica (2), 3 (1869), 183—-185.

The result given by Zeuthen is only true for curves having the singularities which
he prescribes; it does not hold, for example, for a curve with a triple point. In the
first correspondence proof given by Zeuthen a triple point gives rise to 6 (m — 3)
coincidences of the points # and n; and, taking an elliptic sextic curve with a triple
point, we find a quintic ruled surface as we should do.

If we have an elliptic sextic with three double points, then Zeuthen’s formula
gives four for the degree of the ruled surface formed by the trisecants. There are
two trisecants passing through any point of the curve, and this would seem at first
to be at variance with our work on quartic ruled surfaces, where we shewed that the
double curve was of the third order. But this quartic ruled surface is none other
than the unique quadric containing the curve, counted twice. The trisecants are the
generators of this quadric. Since a quadric which is made to contain 2n arbitrary
points of an elliptic curve of order n will contain the curve entirely, this quadric is
determined by the three double points and six other points of the curve.

There is no quadric containing the curve with a triple point.
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Thus n = 2, and T is a conic passing through P.

The chords of C through the points of I' form a ruled surface.

There is no doubt that such planes actually exist. For consider an
involution g,! of pairs of points on C. It is known that the chords joining
the pairs of g,! form a quartic ruled surface*. This ruled surface cannot
have a directrix line; for, if it had, any three of its generators, having a
common transversal, would belong to a [4]; and no [4] can meet C in six
points. Hence it has co! directrix conics, one conic passing through each
point of the surfacet. All these conics can be obtained as residuals of
prime sections through any two fixed generators, so that each conic meets
C in one point. )

The planes of these conics are planes such as we require; such a plane
will be called a secant plane (of U,®). There are co? involutions g,! on C;
each gives a quartic ruled surface lying on U4 and oo! secant planes of
U, There are thus oo® secant planes of U,. Through a general point of
[56] there will pass a finite number of these secant planes; but through a
point of U, there pass oo?, and through a point of C' there pass co2.

If any point X is taken in a secant plane which meets C in P, the line
XP meets the conic I'' in a second point P’ through which there passes
a chord k of C. The plane PkX is thus the trisecant plane of C which passes
through X. Hence if a secant plane passes through X it must contain
one of the three lines which join X to the three points of C lying in the
trisecant plane through X.

91. The geometry of the secant planes. There are co® secant planes, each
meeting C in one point; if we have a quadric Q containing C it will not,
in general, be possible to choose the parameters on which a secant plane
depends so that it lies entirely on Q. But the general quadric Q containing
C is linearly dependent from ten quadrics, so that we should be able to
choose Q to contain a secant plane.

The condition that a quadric in [5] should represent the lines of a space
[3]is simply that it should be a general quadric and not a cone; if we take a
general quadric passing through C, and containing a secant plane, to repre-
sent the lines of a space [3], the curve C will represent the generators of a
quintic ruled surface in [3] whose double curve and bitangent developable

* See footnote to § 19. If the g,! is given by 4 — B (6, + 6,) + C6,6,=0 on the
CUIVE &y %yt Xy Tyt Xy: L5 = 65: 0%: 63: 62:9: 1, the quartic ruled surface is

T @ @3 || = 0.
7 B
T2 T3 g
x3 X @
A B C
1 §43.
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break up, because the chords of C' which lie on the quadric form a ruled
surface which breaks up.

Suppose now that Q contains a secant plane meeting C in a point P,
this being a p-plane. The involution determined on C by the conic I' in
which the secant plane meets U,® gives a chord PA through P; this, in
common with all the other generators of the quartic surface, lies on Q.
Through P there pass two other chords P, PR which lie on Q (Fig. 4).

Through @ there passes a chord of ¢ meeting I" in Q" and through R
there passes a chord of C meeting I' in R’. Then the three lines PQ, QQ’,
P@’ lie on Q, so that PQQ’ is a plane w, which is trisecant to C. Similarly

R A

7

=3

Fig. 4.

PRR’ is a plane w, which is trisecant to C. But there is only one plane @
trisecant to C, so we must conclude that this plane is PQR, the chord
@R meeting T'.

Hence, if we have a quadric Q containing C and also a secant plane p
which meets C' in P, the plane o of Q which is trisecant to C' passes through
P.

Let this trisecant w-plane meet C in P, @, R and suppose that Q con-
tains two secant planes p, and p, through P. Each of these determines an
involution on C, the common pair of the two involutions being @, R.
Hence we have two other chords PP, and PP, through P and lying on Q,
one arising from each involution. But it is impossible for four chords PP,,
PP,, PQ, PR all passing through P to lie on Q.

Hence it is impossible for Q to contain two secant p-planes passing
through P,
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The planes of the directrix conics of a quartic ruled surface in [5] form
a locus V,® of three dimensions and the third order*, and therefore meet
an arbitrary solid 8; in the points of a twisted cubic.

Suppose then that Q contains C' and also the quartic ruled surface
arising from an involution g,! on C. Then a solid 8, meets Q in a quadric
@ and meets the V,® formed by the planes of the directrix conics in a
twisted cubic which meets @ in six points. Four of these six points will
be the points of intersection of S; with the quartic surface; the other two
give planes which lie on Q entirely, since each meets it in a conic and a
point. Since these two planes cannot intersect they are of opposite systems.

Hence, if Q contains a secant p-plane it must also contain a secant
w-plane; the two planes meet U in conics belonging to the same quartic
ruled surface. This secant m-plane will meet C in a point P’, this being one
of the three points in which C is met by its trisecant p-plane.

92. Since the quadrics containing C are linearly dependent from ten
quadrics there will be five linearly independent quadrics containing € and
a secant plane. We may then suppose that there is a general quadric Q con-
taining C' and two of its secant planes, these planes being of opposite systems
on Q and both arising from the same involution on C.

Then the ruled surface formed by the chords of C' which lie on Q breaks
up into a quartic ruled surface passing through C (and met by the secant
planes on Q in two of its directrix conics) and an octavic ruled surface
having C as a double curve. Through any point of C there pass one generator
of the quartic and two of the octavic; by considering the correspondence
thus set up on C it is seen that these ruled surfaces have two common
generators, say g and g’.

The section of the composite ruled surface by a [4] gives an octavic
curve with five double points and a quartic curve passing through these
points; both these curves are rational.

It is easily shewnt that any general plane of Q will meet the quartic
ruled surface in two points and the octavic in four points. Thus the points
of C represent the generators of a quintic ruled surface in [3]; the double
curve breaks up into a conic and a rational quartic, while the bitangent
developable breaks up into a quadric cone and a developable of the fourth
class whose planes form a rational family.

Suppose that PQR is the w-plane which is trisecant to C and let the
secant p-plane pass through P. Then PQ and PR are generators of the

* § 69.

t A plane @ of @ meets the secant @-plane in a point O. These two planes lie
in the tangent [4] of @ at O, which meets @ in a quadric point-cone and the quartic
ruled surface in a directrix conic and two generators. These two generators each
meet the first @-plane.
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octavic surface while QR is on the quartic. Thus PQR represents the triple
point of the ruled quintic; the double conic passes through this point while
the double quartic has a double point therd. Further, the two parts of
the double curve intersect in two other points, these being represented on
Q by the w-planes through g and g’ *.

Similarly the quartic developable has a double plane which touches
the quadric cone (this being the tritangent plane of the ruled quintic),
while they have also two other common tangent planes.

The plane of the double conic is represented on Q by the secant p-plane;
it therefore contains a generator of the ruled quintic passing through the
triple point. The vertex of the quadric cone lies on a generator which is in
the tritangent plane.

93. The surface with three double cotics. The quadrics containing C
and a secant plane are linearly depegdent from five quadrics. Such a
quadric meets any other secant plane in two definite points; one of these
is on C and the other on that chord of C' which belongs to both the in-
volutions determined on C' by the two secant planes. If the quadric is
made to pass through four further points of the second secant plane (not
lying on the same conic with the two fixed points) it will contain the
secant plane entirely. Thus there will be a quadric containing C' and two
secant planes.

Suppose then that Q contains C, a secant plane p, meeting C in P and
a secant plane p, meeting C in Q. There is a plane w of Q meeting C in
three points P, @, R. The ruled surface formed by the chords of C lying on
Q is in general of order 12 with C for a triple curve; here it consists of a
quartic ruled surface containing C and the chord @R, a quartic ruled surface
containing C' and the chord RP, and therefore also of a third quartic ruled
surface containing C' and the chord PQ. There is a directrix conic of this
last surface passing through R; the plane of this conic meets Q in the conic
itself and also in a line of the plane PQR; it therefore lies on Q entirely and
is a secant plane p;.

Q will also contain three secant planes w,, w,, w; belonging to the same
three quartic surfaces; these meet C in three points P’, @', R’ and the
trisecant plane P’Q’R’ is a p-plane of Q.

A general plane of Q of either system meets each quartic ruled surface
in two points. Thus the curve C represents the generators of a quintic
ruled surface in a space [3]; the double curve of this surface consists of
three conics and the bitangent developable of three quadric cones. The
planes of the conics intersect in the point represented on Q by the plane
PQR, these planes themselves being represented by the planes p,, p,, ps-

* Cf. Schwarz, loc. cit. p. 37.
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The intersection of the planes of the three conics lies on all the conics,
and is the triple point. Similarly the tritangent plane touches all the cones
and is the plane joining the three vertices.

Any two involutions on C have a common pair of points, so that any
two of the three quartic surfaces have a common generator. Thus any
two of the three double conics have a second common point on the line of
intersection of their planes, this point being represented on Q by the plane
w passing through the common generator of the two quartic surfaces con-
cerned *. Similarly any two of the three quadric cones have a second
common tangent plane passing through the line joining their two vertices.

Surfaces whose generators belong to a linear complex
which s not special

94, We turn now to the quintic ruled surface in [3] whose generators
are represented by the points of a curve C on Q, this curve lying in a space
[4] which does not touch Q. We'assume, unless the contrary is stated,
that C has not a double point; we are dealing then with a surface of the
type II (A).

If we project C from a line on to a plane in [4] we obtain a quintic
curve which, as a rational curve, must have six double points. Hence six
chords of C' meet the line, so that the chords of C form a locus V8 of three
dimensions and the sixth order.

Any plane of Q meets the space [4]in a line lying on Q; this line is met
by six chords of C, and no other chords of C can meet the plane. Hence
we have a quintic ruled surface whose double curve is of the sixth order
and whose bitangent developable is of the sixth class.

95. The locus V8. The curve C has a trisecant chord {1 meeting it in
three points P, @, R.

If we project C from a line which meets it on to a plane of [4] we obtain
a rational quartic with three double points; hence the line is met by three
chords of C other than those which pass through its point of intersection
with C. Hence C is a triple curve on V8.

If we project from a line meeting ¢ we obtain a rational quintic with a
triple point and three double points, so that the line is met by three chords
of C other than ¢#. Hence ¢ is a triple line on V8.

If we project from a line through P we obtain a rational quartic with
three double points, one of these arising from ¢. Hence the line is only met
by two chords of C' which do not pass through P, so that P, @, R are
quadruple points on V8.

If we project C from one of its chords on to a plane we obtain a cubic
with a double point; hence every chord of C is met by one other chord in

* Cf. Schwarz, loc. cit. p. 44. t Marletta, loc. cit. p. 101.
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a point not on C, these two chords lying in a quadrisecant plane of C. This
at once suggests a double surface F, on V. The order of F, is the number
of points in which it is met by a plane of [4]; the plane meets V,® in a
sextic curve having this same number of double points.

This number of double points is known when we know the genus of a
plane section of V8. Now, since C is the projection of a rational normal
curve in [5], V¢ is the projection of the locus U, of § 87. Hence the genus
of the plane sections of ¥ ,%is the same as that of the sections of U,® by solids.

We then consider in [5] the curve in which a solid Z is met by the
chords of a rational normal quintic curve C,. If we take any four trisecant
planes of C, then it is clear that the chords of C, are obtained as the inter-
sections of corresponding primes of four doubly infinite projectively re-
lated systems of primes, each of the four trisecant planes being the base of one
of the doubly infinite systems. The section by X then gives four projectively
related ‘““‘stars’’ of planes, each with a base point. If X is met by a chord
of C, the point of meeting is an intersection of corresponding planes of the
four stars. But the locus of such points is known to be a sextic curve of
genus three*, and this is then the sectionf of Uy by Z.

The plane sections of V,® are therefore also of genus three, and thus
have seven double points. Hence we have on V% a double surface F,” of
order seven.

The section of V;# by a quadrisecant plane of C' consists of the six
chords of C lying in the plane; the section of Fy consists of the four points
of C together with the three diagonal points of the quadrangle formed by
them.

A trisccant plane PXY of C meets V,® in the three chords PX, PY,
XY and a cubic curve having a double point at P. This curve meets XY
again in a point W; the section of F,7 by the plane PXY consists of the
points X, Y, W together with P counted four times. P, @, R are quadruple
points on Fy'.

A trisecant plane X YZ of C meets V8 in the three chords YZ, ZX, XY
and in a cubic curve passing through X, Y, Z and having a double point O.
This curve meets the lines YZ, ZX, XY again in points U, V, W. The
plane X YZ meets F,? in the seven points X, Y, Z, U, V, W, O.

* Schur, Math. Ann. 18 (1881), 15.

1 The surface which is the prime section of U is a sextic surface in [4] generated
by four doubly infinite systems of solids projectively related to each other. It is a
particular case of that considered by Veronese, Math. Ann. 19 (1882), 232-233. The
projection of this sextic surface in [4] on to a solid is the same as the surface which
is the section of V4 by a solid. This surface in [3] has a double curve of order 7 (the
section of F,7) and, on this double curve, a triplanar point, this being the inter-
section of [3] with the trisecant ¢ of C. Further, since the solid meets C in five points,
and the ten chords joining these points are lines of V8, the sextic surface has ten
lines on it.

6-2
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The section of V¢ by a plane through ¢ and a point X of C consists of
t counted three times together with the three chords XP, XQ, XR. The
point X is the only point of ¥y, other than the points of ¢, which can lie
in this plane. A solid containing ¢ will meet Fy’ in ¢ counted three times
and in a quartic curve passing through P, @, R.

¢ is a triple line on Fy7, but C is only a simple curve.

96. The genus of the double curve. A quadric containing C will also
contain ¢; its intersection with F,7 therefore consists of C, ¢ counted three
times, and a sextic curve; the total intersection being a curve of order 14.
Hence those chords of C which lie on Q form a ruled surface of order
12 in [4], the intersection of Q and V8. This ruled surface has C for a
triple curve and ¢ for a triple generator; it has also a double sextic curve
meeting every generator in one point and passing through P, @, R.

If we take the section of this ruled surface by a [3] we obtain a curve
in (1, 1) correspondence with the ‘double curve of the ruled quintic. The
curve is of order 12, having six triple points and six double points; it is
the intersection of a quadric and a sextic surface, so that it meets each
generator of the quadric in six points. If we project the curve from a
point of the quadric on to a plane of the [3] we obtain a curve of order
12 with six triple points, six double points, and two sextuple points; its
genus is therefore

55— 18 — 6 — 30 = 1,
so that it is elliptic.

Thus the ruled quintic has an elliptic double curve of order 6, while
the planes of its bitangent developable form an elliptic family of class 6.
Moreover, the double curve has a triple point; the three generators passing
through it lie in a plane and are represented on Q by the points P, @, R*.
Also the bitangent developable has a tritangent plane; the threc generators
therein pass through a point. For this surface the tritangent plane passes
through the triple point; the plane p of Q passing through ¢ represents the
tritangent plane, while the plane w of Q passing through ¢ represents the
triple point.

It is clear, either by the geometry of the planes on Q or by the geometry
of the linear complex, that at a triple point on any ruled surface whatever
whose generators all belong to a linear complex the three generators which
intersect there lie in a plane. Similarly, the three generators in any
tritangent plane pass through a point.

97. An associated ruled surface. We have just seen that the prime sections
of the ruled surface formed by the chords of C which lie on  are elliptic curves;
this enables us to shew that the sextic curve which forms part of the intersection

* Cf. Marletta, loc. cit. p. 117.
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of Q and F,” is also an elliptic curve*. Its points thus represent the generators
of an elliptic sextic ruled surface f¢ in the original space [3]; this passes through
the double curve of the quintic ruled surface and is touched by the planes of the
bitangent developable of the quintic surface, and it contains the three generators
which meet in the triple point and lie in the tritangent plane.

Suppose then that we have in [3] a rational quintic ruled surface whose
generators belong to a linear complex. Take any point x on the double curve,
and the plane of the two generators which meet in z. Then this plane meets the
surface again in a cubic curve. This cubic meets each generator in three points;
one point on each generator is a point where the plane (which is a bitangent
plane) touches the surface, the other two are points of the double curve. The
remaining point y in which the plane meets the double curve is a double point
on the cubic curve. If we had started with the point y instead of the point z
then the bitangent plane through y would have met the surface in two generators
and a cubic curve having a double point at z. The lines such as xy, chords of
the double curve and axes of the bitangent developable, generate an elliptic
sextic ruled surface f® whose generators belong to the same linear complex as
do those of the quintic surface.

The curve of intersection of the two ruled surfaces, in all of order 30, will
consist of the double curve of the quintic surface counted twice, a certain number
of common generators, and another curve. Since every generator of f¢ can only
meet the quintic surface in one point other than the two points in which it
meets the double curve, this other curve meets the generators of f® each in
one point and is therefore elliptic. Moreover, it meets each generator of the
quintic ruled surface in three points, and an elliptic curve on a rational quintic
ruled surface which meets each generator in three points is of order 91. Hence
the two ruled surfaces have in common this curve of order 9, the double curve
of the quintic ruled surface counted twice, and nine common generators. These
last consist of the three generators through the triple point of the quintic
surface and six othersi.

* There is a (1, 2) correspondence between the points of this curve and the
chords of C on 2, to which we can apply Zeuthen’s formula with a =1, o’ =2,
p’=193=9=0.

The assumption that 5 = 0 is the assumption that the two chords of C which
intersect at a point of the sextic curve never coincide. We shall see later that there
aro four special chords of C lying on F,7; if Q were to contain any of these chords we
could not assume 7 to be zero. But, in general, the assumption is true. The points
P, @, R do not count as branch-points of the correspondence.

If Q contained one or more of the special chords of C' we should not have a sextic
curve of intersection on Fy’.

+§17.

1 This result shews that the sextic curve of intersection of Q and F,” has six
intersections with C other than P, Q, R

In the first paper of Segre’s, referred to in § 17, we find a formula for the number
of intersections of two simple (non-multiple) curves on a ruled surface. There is a
corresponding formula for the number of intersections of two multiple curves on a
ruled surface, but it is subject to modification as certain intersections may be in-
cluded more than once. For two curves of orders m and m’ of multiplicities 8 and &’
on a ruled surface of order n, the curves meeting each generator of the surface in &
and %’ points respectively, the formula gives the number of intersections as

© = msk’ + m’s’k — nkk’.
If we apply this formula to the triple quintic curve and the double sextic curve
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98. Suppose that we take any point X on C; is there a line through
X which is not a chord of C and yet lies on V#? If we project C from X
on to a space [3] we obtain a rational quartic without a double point. If
such a line through X existed it would meet [3] in a point through which
an infinite number of chords of the quartic pass; this would then be the
vertex of a quadric cone containing the quartic, and there are no such
cones*. But this reasoning does not hold for the three points P, Q, R.
If we project from P we obtain a rational quartic with a double point;
there are two quadric cones containing this quartic whose vertices are
not at the double pointt, so that we expect two lines through P lying on
V8. We shall call these lines axes.

We can also obtain some information as to these axes by projecting
a rational normal quintic from a point on to a space [4]. If we project
from X (see the end of § 90) any axes of the projected curve must arise
from secant planes through X; s that we get a finite number of axes,
any one of which must pass through one of P, @, R. Further, since any
line in the secant plane through X meets the conic in that plane in two
points there are two chords of the projected curve passing through any
point of an axis.

The chords of C meeting any axis form a quartic ruled surface in [4]
on which the axis is a double line—the projection of a normal quartic
ruled surface in [56] from a point in the plane of one of its directrix
conics.

99. The geometry of the axes. We have two axes through each of the
points P, @, R, giving six in all; call them p, p’, ¢, ¢’, r, 7/, where p and
p’ pass through P. They lie not only on V¢ but also on F,7.

On any axis there are two points such that there is only one chord of C
passing through each of them ; if the axis is the projection of a conic I'" from
a point X in a secant plane in [5], these two points arise from the two tan-
gents of I which pass through X. We may call these “pinch-points.”

There is a cubic ruled surface ¢ containing C'; the directrix of ¢ is the
trisecant of C, while every generator of ¢ meets C in one point. The oo?
conics of ¢ give the co? quadrisecant planes of C}. No two quadrisecant

which lie on the ruled surface of order 12 formed by those chords of C which lie on
(2, it appears that the two curves have fifteen intersections. But these really consist
of the three intersections P, @, R and the six others each counted twice. See the
Note at the end of the volume.

* Salmon, Geometry of Three Dimensions (Dublin, 1914), p. 3569, and above § 63.

+ We can regard the quartic curve as the intersection of the two quadrics

2ry + 22 — 3 =0 and y? — m%? + n%? = 0.
t Marletta, loc. cit. pp. 101, 102. For the cubic ruled surface see § 48 above.
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planes of C can interséct except on ¢. The oo! quadrisecant planes of C
which pass through any point of ¢ lie on a quadric point-cone, and all
belong to one system of its planes.

Consider the V ;3 formed by the planes of the directrix conies of a normal
quartic ruled surface in [6]; project it on to a space [4] from a point O of
itself, O lying in the plane of a directrix conic I. We obtain a quadric
point-cone; one system of planes of this cone is the projection of the planes
of the directrix conics; the other system of planes is the projection of those
solids which contain pairs of generators of the quartic surface and pass
through O, meeting the plane of I' in lines through O*.

This result shews that the quadrisecant planes passing through the
points of an axis all intersect in the same point, forming one system of
planes of a quadric point-cone.

Any axis determines an involution on C; denote, for example, by (p)
the involution determined by p. Since any two involutions on C have a
common pair of points the involutions (p) and (r) give a chord joining their
common pair; this chord meeting both p and r. But any chord of C is met
by only one chord beside those passing through the two points in which
it meets C. Hence the chord must meet at least one of p and r in a pinch-
point.

The quadrics in [4] containing C' are linearly dependent from four
quadrics. Thus we can make such a quadric contain p by assigning two
points of p; there is a pencil of quadrics passing through C and p. More-
over, such a quadric, besides passing through @ and R, meets each of
g, ¢, r, v’ in fixed pointst. Hence we can find a quadric of the pencil
containing g. This quadric will contain the point of r which lies on the
chord common to (¢9) and (r), so that if this point is different from the
intersection of r with the chord common to (p) and (r) the quadric will
contain r entirely. There is a similar statement concerning . But it is
impossible for the quadric to contain p, ¢ and both the axes r and »’; for
then we should have chords of C lying on it and forming a ruled surface of
order at least 4 x 4 = 16, which is impossible. We must therefore conclude
that the quadric containing C, p, q contains one of » and 7/, say r, while the
chord common to (p) and (r’) and the chord common to (¢) and (r’) meet
7’ in the same point. We may denote the quadric by pgr.

Denote by (pq) r* the fact that the chord common to (p) and (") and
the chord common to (¢) and (') meet 7” in the same point.

* Through each point of V;® there passes a line meeting all its generating
planes. See the footnote to § 9 of Segre’s paper, ‘‘Sulle varietd4 normali a tre
dimensioni,” Atti Torino, 21 (1885), 95. Also § 81 above.

t It meets ¢ for instance in the point where it is met by the chord common to
(p) and (g). It does not, however, meet p’ in a fixed point, because the chord common
to (p) and (p’) is QR.
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There are four quadrics *
e,  pg7, Pel, P,
which contain C and three axes, and we have
@), (pd)r, @9r, @),
o, @)p, @nNp @70,
rp)g, (P)e, (P)g, (D),
the twelve elements of this array being determined by the first one.
Now from the three statements
(),  (@)p, ('P) g,
we see that the involutions (p), (q), (') have a common chord (we cannot
have three co-planar chords common to these pairs of involutions); this

meets the three axes p, ¢, 7 which must therefore lie in a solid since they
have two transversals. We have fo‘ur such solids which we may denote by

[pgr], [pgr], [Por], [P¢7].

Let us denote the four common chords of the sets of three involutions by

gy pgr, P, PO
The first of these, for example, is a transversal of the axes p, g, 7.
The points in which ﬁ’ meets the axes p, g, 7" are pinch-points on at
least two of them; since the six axes are on the same footing it is probable
that all the three points of intersection will be pinch-points.
We are thus led to the supposition that the unique quadrisecant plane

through pgr’ does not contain any other chord, but touches C at both ends

of the chord pgr’. Thus we find four pairs of intersecting tangents of C.

The existence of these pairs of intersecting tangents can be seen in
another way, for the tangents form a ruled surface which is the projection,
from a point, of the ruled surface formed by the tangents of a normal curve
in [5]. Now any surface whatever in [6] has a finite number of ‘apparent
double points’’ *; the number will be reduced by the existence of a cuspidal
curve on the surface, but we can still expect a certain number, and on
projection these give pairs of intersecting tangents of C.

The number of pairs of intersecting tangents of C can be found directly.

Take any point @ of C. The quadrisecant planes of C' which pass through @
are the planes of the oco! directrix conics of the cubic ruled surface ¢ which
pass through @. Since any one of these conics is determined by one point of any
generator of ¢ they cut out on C an ordinary involution of sets of three points,
and such an involution has four double points. Hence there are four quadrisecant
planes which pass through @ and contain tangents of C.

* The only surface in [5] without any apparent double points is the surface of
Veronese. See Severi, Palermo Rendiconti, 156 (1901), 41, 42.
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Now let us establish a correspondence between the points P and @ of C;
two points corresponding when the tangent at P meets a chord through @ other
than @P. We have just seen that to any position of @ there correspond four
positions of P. Also a tangent of C is met by one chord other than those passing
through its point of contact*, so that to any position of P there correspond two
positions of Q. We have then, on the rational curve C, a (4, 2) correspondence
between P and Q; there are eight points P for which the two corresponding
points @ coincidet. Hence there are eight tangents of C' which are met by other
tangents, and these divide into four pairs of intersecting tangents.

The tangents of C therefore form a (developable) ruled surface whose cuspidal
curve C is of order 5 and which has four double points.

The chords which join the points of contact of the pairs of intersecting
tangents are none other than the four chords

b, pyT,  Per,  pOT.

The four planes which touch C twicg can be taken in pairs in six ways;
the six solids formed by the six pairs of chords of contact each contain
one of the six axes.

The four chords of contact lie on F,’.

A bitangent plane of C' meets V8 in the two tangents together with the
chord of contact counted four times; it meets F,” in the chord of contact
and the point of intersection of the two tangents.

There is one more remark which may be made concerning the configuration
of the six axes.

It is easily shewn, in ordinary space, that in general there are four quadric
cones passing through the curve of intersection of two quadrics. But if the two
quadrics touch their intersection is a rational quartic curve with a double point;
the four cones become the cone projecting the curve from its double point (this
cone counting doubly) with two other cones. Now the plane of the two tan-
gents to the quartic at its double point contains the vertices of these last two
cones.

Hence the solid containing the tangents of C' at @ and R contains the axes
p and p’, with two other similar results. We thus have three solids which we
may denote by

[pp'tgtr],  [aq'trtel,  [r7'tplol.

100. Consider now the quintic ruled surface whose generators are
represented by the points of a rational quintic C in [4], C lying on a quadric
which contains also the axis pi.

* For on projecting C from the tangent on to a plane we obtain a cubic with &
double point.

1 If we have an (r, 8) correspondence between points P and @ on a rational curve
then there are 2r (8 — 1) positions of P for which two of the s points @ coincide (§ 13).

1 This quadric is regarded as a prime section of Q.
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The ruled surface formed by the chords of C which lie on the quadric
here breaks up into a quartic ruled surface passing through C, and having
p for a double line, and an octavic ruled surface having C for a double
curve. The trisecant ¢ lies on the first of these ruled surfaces and is double
on the second.

Every line of Q lying in [4] meets the quartic* in two points and there-
fore the octavic in four points. Hence we have a quintic ruled surface
whose double curve consists of a conic and a quartic and whose bitangent
developable consists of a quadric cone and a developable of the fourth
class.

The quartic has a double point which lies on the conic, this being re-
presented by the plane @ of Q through ¢; also the developable of the fourth
class has a double tangent plane which touches the quadric cone, this being
represented by the plane p of Q through ¢.

Through any point of C there pass one generator of the quartic ruled
surface and two of the octavic; by considering the correspondence thus
set up on C it is easily seen that the surfaces have two common generators.
Hence the quartic curve and the conic have two further common points,
while the developable of the fourth class and the quadric cone have two
further common tangent planes. The common generators of the quartic

and octavic ruled surfaces are pgr’ and pg'r.
The prime section of Q on which C lies now contains the two chords

W and pq’r. Hence the curve of order 14 in which it meets F,7 is made up
as follows

C+ p+ pgr’ + pg'r + 3t + cs,
where ¢, denotes a twisted cubic, which must be a double curve on the
octavic ruled surface.

The section of this ruled surface by a solid is thus a curve of the eighth
order lying on a quadric and meeting each generator in four points, the
curve having nine double pointst. This curve is rational; it represents the
double quartic curve of the ruled surface and also the bitangent develop-
able of the fourth class.

The section of the quartic ruled surface by a solid is a rational quartic
curve with a double point on p.

101. The surface with three double conics. Suppose that we have a
rational quintic ruled surface in a space [3] whose generators are repre-
sented by the points of a quintic C' lying on the section of Q by a [4]; the
axes p, ¢, r also lying on the quadric.

* A solid through the line meets (2 in a quadric with the line as generator and

the quartic in a quartic curve, with a double point, lying on this quadriec.
t Five arising from C, one from ¢, and three from c;.
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Then the ruled surface formed by the chords of C which lie on Q breaks
up into three quartic ruled surfaces; each of these passes through C and
has a double line, while any two of them have a common generator. A
line on Q lying in [4] meets each of these surfaces in two points, and ¢ lies
on each surface.

Hence the quintic ruled surface in [3] has three double conics which
all pass through one point, this being represented on Q by the plane w
through ¢, while any two of the conics have a second intersection. The
bitangent developable consists of three quadric cones all having a common
tangent plane, this being represented on Q by the plane p through ¢, while
any two of the cones have a second common tangent plane. The tritangent
plane passes through the triple point.

The quadric Q now contains the three lines pgr’, pqg’r, p’qr; these are,
in fact, the common generators of the three pairs of quartic ruled surfaces.

The tangent planes at the differen points of one of these lines, say

pgqr’, to either of the quartic surfaces on which it is a generator, are the
same ; the two tangents of C at the ends of its chord pgr’ intersect and their
plane touches both the quartic surfaces at all points of pgr’. We can say

that g?r’ is a torsal generator of both surfaces. The two quartic curves in
which the surfaces are met by an arbitrary solid will touch at the inter-

section of the solid with p_q;’
The curve of order 14 in which Q and F,? intersect is now

C+p+q+r+pg’ +pgr+ par + 3t

The section by a solid of the composite ruled surface formed by the
chords of C which lie on Q consists of three rational quartic curves lying
on the same quadric; each curve has a double point and there are six points
common to the three curves. Any two of the curves, besides having these
six points in common, touch each other at another point.

102. The surface with a double generator. If C lies in a non-tangent
prime S, of Q and has a double point P its points represent the generators
of a rational quintic ruled surface in [3]; the generators belong to a linear
complex and there is a double generator G represented by P. Any line of
8, is met by five proper chords of C.

Any plane of Q meets S, in a line [ lying on Q; this line is met by five
proper chords of C, and the plane /P meets Q in / and another line passing
through P. Hence we have a ruled surface whose double curve consists of
the points of a double generator G together with a quintic, while the
bitangent developable consists of the planes through a double generator G
together with a developable of the fifth class,
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The tangent prime of Q at P meets 8, in a [3] which meets C' in four
points at P and therefore in one other point . Thus @ is met by one other
generator g.

Through any point of C there pass three chords lying on Q; except
that through P we have the single chord PQ and through @ the chord QP
and one other chord.

Take the plane m, through P@Q. A plane p which meets @, in a line
must meet S, in a line intersecting PQ. This line is only met by three
chords of C other than PQ, for if we project C from the line on to a plane
of S, we obtain a rational quintic with a triple point and three double
points. The plane @, represents the point Gg, so that any plane through
this point meets the quintic double curve in only three other points.

Thus the quintic ruled surface has a double curve consisting of a double
generator @ and a quintic. These meet in a point which is a double point
of the quintic, while through this point there passes one other generator.

The bitangent developable consists of a developable of the fifth class
together with the planes through @. One of these planes is a double tangent
plane of the developable; this is the plane Gg and is represented on Q by
the plane p, through PQ.

Consider again a rational quintic C in S, with a double point P. Pro-
jecting from a general line of S, on to a plane we obtain a quintic with six
double points; hence the line is met by five chords. Projecting from a line
meeting C we obtain a quartic with three double points, so that this line
is met by two chords other than those which pass through its point of
intersection with C. Projecting from a line through P we obtain a cubic
with one double point, so that this line is met by one chord not passing
through P. Hence the chords of C form a locus ¥ of three dimensions
and of the fifth order, on which C is a triple curve and P a quadruple
point.

Further, if we take a chord of C passing through P, and project C' on
to a plane from a line meeting this chord, we see that the chord must be
double on V5. The chords of C' through P form a cubic cone which is a
double surface on V5.

Consider now a quadric @, containing C. It meets the cubic cone just
mentioned in C' and also in one of its generators PQ. The chords of C
which lie on @, form a ruled surface of order ten, the intersection of Qg
and V&, on which C is a triple curve and PQ is a double generator. The
section of this ruled surface by a solid is a curve of order ten with five
triple points and one double point; it is the intersection of a quadric
and a quintic surface, so that it meets every generator of the quadric in
five points. If it is projected from a point of the quadric on to a plane
we obtain a curve of order ten with five triple points, one double point and
two quintuple points, which is therefore a rational curve.
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The quintic double curve of the ruled surface is therefore also a rational
curve. If we project it from a point of itself on to a plane we obtain a
rational quartic with three double points. Hence there are two trisecants
of the quintic curve passing through any point of it, and the ruled surface
is formed by these trisecants.

Any line on Q meets the ruled surface formed by the chords of C lying
on Q in five points, but if the line passes through P it only has one other
intersection with the surface because P is a quadruple point thereon.
Now any plane p on Q which passes through P meets S, in such a line, so
that any plane passing through the double generator @ of the quintic ruled
surface meets the double quintic curve in only one point not on @. Hence
the quintic curve meets G in two points besides the double point; this
shews at once that the quintic curve is rational.

Similarly, there are two planes of the developable, other than its double
tangent plane, which pass through G. \

103. If we project C from a point of itself on to an S; we obtain a
rational quartic with a double point ; there are two quadric cones containing
this quartic whose vertices are not on the curve, so that we expect to find
two lines through any point of C' which lie on V% and are not chords of C.
These lines will form a ruled surface with C for a double curve.

The existence of these lines is also seen by projecting a normal quintic
in [5] from a point O on one of its chords. There are co! secant planes*
through such a point, one for each involution on the curve which contains
the extremities of the chord as a pair. Thus we have a finite number of
secant planes joining O to any point of the curve, and in S, a finite number
of lines through any point of C. The chords of C meeting such a line form
a cubic ruled surface, the projection of a quartic ruled surface in [5] from
a point O on it.

The quadrics of S, containing C are linearly dependent from five
quadrics. It would thus seem that there is a quadric containing C and
one of the lines, and so the ruled surface formed by the chords of C lying
on the quadric breaks up into a cubic ruled surface passing through C and
a septimic ruled surface having C for a double curve. It would, however,
be wrong to conclude from this that we have found a new species of quintic
ruled surface belonging to the type 1I (B); for it can easily be shewn that a
quadric in 8, which contains a cubic ruled surface is necessarily a point-cone.

Surfaces with a directriz line which is not a generator
104. Consider a ruled surface whose generators are represented by the
points of a curve C lying in a tangent prime 7' of Q. T touches Q in a
point O; O represents a line R which is a directrix of the ruled surface.
* Cf. § 90.



94 CHAPTER III, 104-106

If C is of the type III (A) it meets every plane @w through O in four
points and every plane p through O in one point. An arbitrary plane p
meets 7' in a line and the plane m» through this line is the plane joining it
to 0. This contains four points and therefore six chords of C, so that the
double curve of the ruled surface is the line B counted six times. There are
four generators passing through every point of R and there is one generator
lying in every plane through R.

An arbitrary plane @ meets 7' in a line and the plane p through this
line joins it to O. This contains only one point of C'; there will be six chords
of C meeting the line so that in general the bitangent developable is non-
degenerate and of the sixth class.

Similarly in IIT (B) we have a surface whose double curve is non-
degenerate and of the sixth order, while the bitangent developable consists
of the planes through R counted six times. Any plane through R contains
four generators, while through any point of R there passes one generator.

Remembering that C has a triSecant we see that in III (A) there is a
tritangent plane and in III (B) there is a triple point. Also the bitangent
developable in III (A) and the double curve in III (B) are seen to be
elliptic precisely as in § 96.

105. We have seen in § 99 that we can have a quadric point-cone con-
taining C' and an axis; we may then regard this cone as a section of Q by 7'.

Thus in ITIT (A) the bitangent developable may break up into a quadric
cone and a developable of the fourth class, this latter having a double
tangent plane which touches the former, and there being also two other
common tangent planes. The quadrisecant planes of C' meeting the axis
are the w-planes of the cone.

Also in IIT (B) the double curve may break up into a conic and a quartic;
the quartic has a double point lying on the conic and the curves have also
two other intersections. The quadrisecant planes of ¢ meeting the axis are
the p-planes of the cone.

106. We shall now shew how a rational quintic curve C can be found,
in [4], so that it lies, together with three axes, on a quadric point-cone.

Take two planes 7, 7’ in a space S, intersecting in a point O. Then taking
three arbitrary points 4, B, C in = and three arbitrary points 4’, B’, ¢” in
m’ there is thus defined a collineation between the planes; the points
A, B, C, O of = corresponding to the points 4’, B’, ¢V, O of #»’. If a conic
in 7 is drawn through O to have ABC as a self-conjugate triangle (there is
a pencil of such conics), then we have correspondingly in #’ a conic through
O with A’B’C’ as a self-conjugate triangle.



QUINTIC RULED SURFACES 95

Through any point of S, there passes a plane pencil of lines incident to
both 7 and #”; the plane of this pencil is the intersection of the solids which
join the point to 7 and #n’ and meets these planes in two lines passing
through O. These lines will not, in general, correspond to one another in
the collineation.

The three lines A4’, BB’, CC’ have a common transversal meeting
them in P, @, R. Now take S, any point of the line PQR; the plane of the
pencil of lines through S will meet = in a line I through O and #’ in a line
U through O. The three planes 7, 7/, OPQR determine a quadric point-cone
with vertex O, and the four planes OAA’P, OBB’Q, OCC’R, Oll’S are planes
of the opposite system of this cone. Hence the two pencils O {4 BCl} and
O {4’B’C’l’} are homographic, so that ! and I’ are corresponding lines in
the collineation between = and =’.

The pencil of lines through 8 incident to 7 and 7" meets 7 and I’ in two
ranges in perspective. For a general position of S on the line PQR there
will be two points of ! which are in pédrspective from S with their corre-
sponding points on I/, and these include O. Hence there is one line, other
than SO, through S which joins a pair of corresponding points of 7 and =’.

The lines BC, B’C’, @R lie in the solid determined by BB’Q and CC'R;
this solid contains P on the line QR. Hence there is a line PDD’ meeting
BC in D and B’C’ in D’. The plane PDD’4 A’ meets 7 in the line AD and
7’ in the line A’D’, so that AD, A’D’ must intersect in O. Then the lines
0OAD, OA’D’ are corresponding lines and the points DD, D’ are corresponding
points. We have therefore two lines PAA’ and PDD’ other than PO which
join P to a pair of corresponding points of = and #”; there must then be
an infinite number of such lines through P.

Through each of the points P, @, R there passes a pencil of lines incident
to = and =’ in corresponding points; every line through one of these three
points which meets both = and #" does so in a pair of corresponding
points.

If X is the harmonic conjugate of O in regard to 4 and D, any conic
through O having ABC as a self-conjugate triangle must pass through X.
Similarly we have X’ in #’, and XX’ passes through P. We also have
QYY’ and RZZ’ in the same way.

Returning to the point 8, let SUU’ be the line through it which
joins corresponding points U and U’ of = and #’. There is a definite conic
passing through O and U for which ABC is a self-conjugate triangle; to
this corresponds the conic through O and U’ for which A’B’C’ is a self-
conjugate triangle. The points of these two conics are in (1, 1) corre-
spondence with a united point O; hence the lines joining corresponding
points of the two conics form a cubic ruled surface in S,. The four lines
XX, YY’, ZZ’, UU’ are generators of this surface, so that P, Q, R, S are
on the surface. Hence PQRS is its directrix line.
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Through eight points of general position on this surface there passes a
rational quintic ¢ with the directrix for its trisecant*.

Take then points a, b, ¢, d on the conic OUX Y Z such that bc, ad pass
through 4 ; ca, bd pass through B; ab, cd pass through C. Similarly, take
points e, f, g, & on the conic OU’X’Y’Z’ such that fg, ek pass through 4’;
ge, fh pass through B’; ef, gh pass through C’. Then there is a rational
quintic passing through a, b, ¢, d, ¢, f, g, b with the directrix for its tri-
secant.

The lines PAA’, @QBB’, RCC’ must lie on the V¢ formed by the chords
of the curve, as each meets it in a triple point and two double points.
Hence these are three axes of the curve, which must meet its trisecant in
P,Q, R.

There is a quadric point-cone whose vertex is O and which contains
the planes OAA’P, OBB'Q, OCC’'R, as already mentioned above. The
planes =, #’, OPQR belong to the opposite system. The cone therefore
meets the quintic curve in at least éleven points, and so contains it entirely.
It is the cone projecting the cubic ruled surface from O.

Hence we have constructed in §, a rational quintic which lies, together
with three of its axes and trisecant, on a quadric point-cone.

This shews that for surfaces of the type III (A) we can have a bitangent
developable consisting of three quadric cones; all the cones having a
common tangent plane, while any two have a second common tangent plane.

Also in surfaces of the type III (B) we can have a double curve con-
sisting of three conics; all the conics have a point in common, while any
two of them have a second intersection.

107. In the type III (C) the curve C meets every plane » through O
in three points, every plane p through O in two points, and has a double
point, O lying on a chord of C.

An arbitrary plane p meets 7' in a line; the plane @ through this line
is the plane joining it to O, which contains three points and therefore three
chords of C. The plane joining the line to the double point P meets Q in
a second line through P, and there will be two further chords of C' meeting
the line.

Hence the double curve consists of the directrix R counted three times,
a double generator @, and a conic.

R and G intersect. R and the conic also intersect; their point of inter-
section is represented on Q by the w-plane which contains the chord of
C passing through O. The conic meets @ also.

* Marletta, loc. cit. p. 102. No five of the points must be on the same conic and
no two on the same generator.
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The tangent prime of Q at P meets 7' in a solid passing through O and
meeting C in four points at P. Thus it meets the curve in one further point
@, and the plane OPQ is a w-plane. Hence G is met by one other generator
g only, and this passes through the point RG.

Through any point of R there pass three generators.

An arbitrary plane w meets 7' in a line; the plane p through this line
is the plane joining it to O, which contains two points and therefore one
chord of C.

Hence the bitangent developable consists of the two pencils of planes
through R and G, together with a developable of the fourth class.

There is a plane of this developable passing through R; it is represented
on Q by the p-plane which contains the chord of C passing through O.
The developable has the plane Gg as a double tangent plane; this is
represented by the plane p, through PQ. Any plane w which meets p, in
a line meets 7" in a line intersecting P@; this line is met by three chords of
C other than PQ*, but one of these lies in the p-plane which joins the line
to 0. Correspondingly, through any point of the plane Gg there pass only
two planes of the developable besides Gyg.

108. The ruled surface formed by the chords of C which lie on a quadric
containing it is, in general, of order 10 with C for a triple curve, and has
a double generator *. But in surfaces of. the type III (C) this surface will
clearly break up into two distinct parts, one formed by those chords which
lie in w-planes through O and the other formed by those chords which
lie in p-planes through O.

The chords of C which lie in the p-planes through O join the pairs of
points of an involution on C and therefore form a cubic ruled surfacet.
There is a generator of this surface passing through P, and the plane @
through this generator represents the point of intersection of G with the
double conic. Thus the ruled surface formed by the chords of C' which lie
on Q breaks up into a cubic ruled surface and a ruled surface of the seventh
order, this latter having C for a double curve and having also a double
generator]. The section of this composite ruled surface by a solid consists of
a twisted cubic and a septimic having six double points. The two curves lie
on a quadric and form its curve of intersection with a surface of the fifth
order; the cubic meets all generators of one system in one point and all of
the other system in two points, so that the septimic meets all generators
of one system in four points and all of the other system in three points.
If then the septimic is projected on to a plane we obtain a curve with six

* Cf. § 102.

t The pair of points of C on its two branches at P is a pair of the involution, so
that we have a cubic ruled surface—the projection of a quartic ruled surface in [5]

from & point of itself.
t Cf. § 103.

E 7
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double points, one triple point and one quadruple point, and this curve is
of genus 16 — 6 — 3 — 6 = 0, so that it is rational.

The cubic passes through five of the double points of the septimic and
meets it in one other point. This other point is on the chord of C which passes
through O; this chord is a common generator of the two ruled surfaces.

109. In surfaces of the type III (D) the double curve consists of a
directrix R, a double generator G and a quartic. This quartic is rational,
having a double point on G, this being the point of intersection of G with
the only other generator which meets it. The quartic meets R. The bitangent
developable consists of the planes through R counted three times, the
planes through G, and a quadric cone; one tangent plane of this cone
passing through R and another through G.

Through each point of R there pass two generators; there is one point
of R at which the plane of the two generators contains R, it is represented
on Q by the w-plane containing the chord of C which passes through O,
and is the intersection of R with the double conic. Each plane through R
contains three generators.

110. In the type III (E) C meets every plane m» through O in three
points and every plane p through O in two points, while two chords of C
pass through O. We have a rational quintic ruled surface in [3] with a
directrix line R; through any point of R there pass three generators, while
any plane through R contains two generators. There are two and only two
planes through R such that the two generators in either plane intersect in
a point of R.

An arbitrary plane p meets 7' in a line; the plane w through this line
is the plane joining it to O, which contains three points and therefore three
chords of C. There are three other chords of C' meeting the line, so that the
double curve of the ruled surface consists of the directrix R counted three
times together with a twisted cubic. R is a chord of the cubic. The two
points in which R meets the cubic have, in fact, already been noticed ; they
are the two points of R in which pairs of generators meet and at the same
time lie in a plane with B. The tangents of the cubic at these two points
lie in the planes of the pairs of generators.

An arbitrary plane @ meets 7' in a line, and the plane p through this
line is the plane joining it to O, which contains two points and therefore
one chord of C. There will be five other chords of C meeting thc line.
Hence the bitangent developable consists of the planes through R together
with a developable of the fifth class. There are two planes of this develop-
able passing through R represented by the p-planes of Q containing the
two chords of C' which pass through O; it has also a tritangent plane, this
being represented on Q by the plane p through the trisecant of C.



QUINTIC RULED SURFACES 99

111. In the type III (F) we have a rational quintic ruled surface in
[3] with a directrix line R ; through any point of R there pass two generators,
while any plane through R ‘contains three generators. The double curve
consists of R and a quintic; this quintic has a triple point and meets R in
two points. The bitangent developable consists of the planes through R,
counted three times, together with a developable of the third class, two
planes of this latter developable passing through R.

112. Consider now the genus of this quintic curve; we know that it
must be rational, having a triple point.

The trisecant ¢ of C is joined to O by a p-plane; it therefore meets
every w-plane through O in one point. The chords of C form the locus V8
with the double surface F,7; a w-plane through O meets F,7 in two points
of C, one other point on the chord joining these two points, three points
at the intersection of the plane with ¢, and also in O; while a p-plane through
O meets F,? in three points of C, three dther points on the chords joining
the pairs of these, and also in O*.

The intersection of F,” with the quadric point-cone, vertex O, on which
C lies, consists of C, ¢ counted three times, and a sextic curve with a
double point at O and meeting every chord of C in one point{. It is clear
that this sextic meets every w-plane through O in one point and every
p-plane through O in three points other than O; it is thus a rational curve.

Here again the ruled surface formed by the chords of C which lie on Q
breaks up. The w-planes through O meet C in pairs of an involution, so that
the chords in these planes form a quartic ruled surface with a double point
at O, the projection of a normal quartic ruled surface in [5] from a point.
The section of this ruled surface by any solid lying in 7' is a rational quartic
lying on a quadric, meeting all generators of one system in three points
and all of the other system in one point.

The chords of C which lie in the p-planes through O form a ruled surface
of order 8 with C as a double curve and ¢ as a triple line. By considering
the intersections of the planes of Q through O with the surface F7 it is
easily seen that there is no other multiple curve on this ruled surface. The
section by a solid gives an octavic curve having five double points and one
triple point; it lies on a quadric, meeting all the generators of one system
in three points and all of the other system in five points. Hence the genus
of this curve is

21 —5—3—3—10=0,
so that it is a rational curve. Thus the quintic double curve of the ruled
surface in [3] is a rational curve.

The chords of C which lie in the w-planes through O correspond to the
points of the line R regarded as part of the double curve and to the planes
* Cf. § 95. t Cf. § 96.

7-2
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of the developable of the third class regarded as part of the bitangent
developable; the chords of C' which lie in p-planes through O correspond to
the points of the quintic curve and to the triple pencil of planes through R;
this last must be regarded as a rational family of planes.

The ruled surface is formed by the chords of the quintic curve which
meet R; clearly two such chords pass through any point of the curve and
three lie in any plane through B. We thus take a rational quintic with a
triple point and one of its chords, and we at once obtain a surface of this

type.
There are similar results for the surface of the type III (E).

Surfaces with a directriz line which is also a generator

113. In surfaces belonging to the type IV we have a directrix line R
which is also a generator, this being represented by the point O of Q; C lies
in the tangent prime of Q at O and passes through O.

In IV (A) C meets every m-plane through O in three points and every
p-plane through O in one point other than O. Through every point of R
there pass three generators other than R, while every plane through R
contains one generator other than R.

An arbitrary plane p meets 7' in a line, and the plane w through this
line is the plane joining it to O. This contains four points and therefore
six chords of C, and no other chords meet the line. Hence the double
curve is the line R counted six times. An arbitrary plane w meets 7' in a
line, and the plane p through this line joins it to 0. This contains two
points and therefore one chord of C'; there will be five other chords meeting
the line. Hence the bitangent developable consists of the planes through
R together with a developable of the fifth class. Two planes of this latter
pass through R, and it has a tritangent plane represented on Q by the
plane p passing through the trisecant of C. The w-plane through the tangent
of C at O meets C in two other points; the two p-planes containing the
chords of C' which join these points to O represent the two planes of the
quintic developable which pass through R.

In IV (B) we have another type of surface; R is both a directrix and
a generator, through any point of R there passes one generator other than
R, while any plane through R contains three generators other than E.
The double curve consists of R and a quintic with a triple point, B being
a chord of the quintic; the bitangent developable consists of the planes
through R counted six times.

114. In IV (C) C meets every plane of Q through O in two points other
than O and has a double point P; P will represent a double generator @
of the ruled surface. Through every point of R there pass two generators
other than R, while every plane through R contains two generators other
than R.
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Any plane of Q meets 7' in a line; the plane of the opposite system
through this line passes through O, containing three points and therefore
three chords of C. The plane joining the line to P meets Q in a second line
through P, while there are two other chords of C' meeting the line. The
double curve therefore consists of G, R counted three times, and a conic.
R and G intersect. The p-plane through the tangent of C' at O meets C in
another point, and the w-plane, which contains the line joining this point
to O, represents a point of intersection of R and the conic. G and the conic
also intersect. Similarly the bitangent developable consists of the planes
through G, the planes through R counted three times, and the tangent
planes of a quadric cone, one tangent plane of this cone passing through
R and another through G.

The ruled surface formed by the chords of C which lie on Q here breaks
up into a quartic cone with vertex O passing through C and having the
double generator OP, together with twg cubic ruled surfaces both passing
through C.

115. In IV (D) the trisecant of C passes through O, C' meeting every
plane of Q through O in two points other than O. Again, we have a surface
for which the line R is both a directrix and a generator; every plane through
R contains two generators other than R, while through every point of R
there pass two generators other than R. The difference between this surface
and one of the type IV (C)liesin thefact that thereis a plane through R which
contains two generators meeting in a point of R, while in the former type
of surface we only have the plane through R and a double generator.

Any plane of Q meets T' in a line; the plane of the opposite system
through this line joins it to O, containing three points and therefore three
chords of C. There are three other chords of C meeting the line. Hence the
double curve consists of the line R counted three times together with a
twisted cubic. R is a chord of the cubic. One of the common points of R
and the cubic is represented on Q by the w-plane through the trisecant of
C. The other is represented by the w-plane which contains that chord of
C which joins O to the remaining intersection of C' with the p-plane con-
taining its tangent at O. Similarly the bitangent developable consists
of the planes through R counted three times together with a developable
of the third class, two of whose planes pass through R.

116. If C lies in a tangent prime 7' of Q and has a double point at O
we have a rational quintic ruled surface in [3] with a directrix line B which
is also a double generator.

For the type V (A) C meets every wm-plane through O in two points and
every p-plane through O in one point other than 0. An arbitrary plane p
meets 7' in a line; the plane w through this line joins it to O, and meets
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C in the double point O and two points 4 and B. The chords 04, OB, AB
are the only chords of C' meeting the line, since 04 and OB are double on'
the locus V& formed by the chords of C*. Hence the double curve is the
line R counted six times. An arbitrary plane @ meets 7' in a line; the plane
p through this line joins it to O and contains one other point of C, so that
there will be three chords of C meeting the line which do not lie in this
p-plane. Hence the bitangent developable consists of R counted three
times and a developable of the third class. There are two planes of this
developable passing through R. The wm-plane through either tangent of C
at O meets C in one other point; the p-plane through the chord of C joining
this point to O represents a plane of the developable passing through R.

Through any point of R there pass two generators other than R, while
any plane through R contains one generator other than R.

For a surface of the type V (B) we have a directrix R which is also a
double generator; through any point of R there passes one generator other
than R, while any plane through R contains two generators other than R.
The double curve consists of the triple line R together with a twisted cubic
having R for a chord; the bitangent developable consists of the planes
through R counted six times.

The ruled surface, formed by the chords of € which lie on Q, breaks up
into the cubic cone which projects C' from O, counted twice, together with
a quartic ruled surface passing through C.

Surfaces whose generators belong to a linear congruence

117. Suppose now that C lies on the quadric @ in which Q is met by a
solid 8, the two tangent primes of Q through S; touching it in O and 0’.
Then O and O’ represent lines R and R’, in [3], which are both directrices
of the surface.

If C belongs to the type VI (A) it meets all generators of @ of one system
in four points and all of the other system in one point. We can suppose
that the generators of the first system lie in the w-planes through O and
the p-planes through O’; those of the other system lying in the w-planes
through O’ and the p-planes through O. Then through every point of R
there pass four generators of the ruled surface which lie in a plane through
R’, while conversely every plane through R’ contains four generators which
meet in a point of R.

The rational quintic in §; has six apparent double points. An arbitrary
plane p meets S; in a point of @; the six chords of C' through this point
all coincide with the generator of @ which is quadrisecant to C, the pro-
jection of C from this point on to a plane in §; being a quintic with a
quadruple point. The plane w through this generator passes through O,

* Cf. § 102.



QUINTIC RULED SURFACES 103

so that the double curve of the surface consists of the line R counted six
times. Similarly the bitangent developable consists of the line R’ counted
six times.

118. If C belongs to the type VI (B) it meets all generators of @ of one
system in three points and all of the other system in two points, having
two double points. These represent two double generators G and H of the
surface. Any point of R is the intersection of three generators lying in a
plane through R’, while conversely any plane through R’ contains three
generators meeting in a point of R. Through any point of R’ there pass two
generators lying in a plane through R, while any plane through R contains
two generators meeting in a point of R’.

An arbitrary plane p meets S; in a point of ; the six chords of C through
this point consist of the lines to the two double points, the generator of
@ meeting C in two points, together with the trisecant generator counted
three times. Hence the double curve consists of G, H, R’ together with R
counted three times. The bitangent developable consists of the planes
through @, H and R together with those through R’ counted three times.

119. Now suppose that C lies on the quadric cone in which Q is met by
a solid touching it at a point V.

In the type VII (A) C passes through V and meets every generator of
the cone in two points other than V. The surface has a directrix line R which
is also a generator. Since each generator of the cone is the intersection of
two planes of Q, of opposite systems, both lying in the tangent prime at V,
through each point of R there pass two other generators which lie in a plane
with R, while each plane through R contains two other generators meeting
in a point of B. C has two double points, so that the surface has two
double generators G and H.

Any plane of Q meets S; in a point of the cone. The projection of C
from this point on to a plane of S; gives a rational quintic with two double
points, and a triple point at which two branches touch each other. This
latter is equivalent to four double points, being formed by the union of
two double points and a tacnode. The six chords of C' which can be
drawn from any point on the cone consist of the generator of the cone,
counted four times, together with the lines to the two double points.

The double curve of the surface consists of @ and H with R counted
four times, while the bitangent developable consists of G and H considered
as pencils of planes together with the planes through R counted four times.

This surface is really a degeneration of the type VI (B) when the two
directrices B and R’ of that type coincide. The plane sections will be
rational quintic curves with double points on @ and H and triple points
(at which two branches have a common tangent) on R.
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120. In the type VII (B) C has a triple point at ¥ and meets every
generator of the cone in one point other than V. The surface has a
directrix line R which is also a triple generator; through any point of R
there passes one other generator, while any plane through R contains one
other generator. Clearly the double curve consists of the points of R
counted six times, the bitangent developable of the planes through R
counted six times.

121. We have now found twenty-four different kinds of rational quintic
ruled surfaces in [3]; these are exhibited in tabular form on p. 304.

SECTION 11

RATIONAL QUINTIC RULED SURFACES CONSIDERED
AS PROJECTIONS CGF NORMAL SURFACES 1IN
HIGHER SPACE

The general surface in [6]

122. The rational quintic ruled surface is normal in [6]; there are two
distinct kinds of surfaces, one with a directrix line A, and the most general
one with a directrix conic I'*.

The rational quintic ruled surfaces f of ordinary space X can all be
obtained by projection from the normal surfaces F in [6]. The projection
will be from a plane » which must not meet F'; the solids joining = to the
points of F meet X in the points of f, while the [4]’s joining @ to the
generators of F meet X in the generators of f.

Let us now consider the general surface F with a directrix conic I'.
A prime through w» meets F in a rational normal quintic, six of whose
chords meet w; so that there are six solids in this prime which pass
through @ and meet ¥ in two points. Projecting on to X we see that in
any plane there are six points in which two generators of f intersect, so
that the double curve is a sextic.

123. Consider now the five-dimensional locus M formed by the chords
of F.

This locus M contains any solid K which contains a directrix cubic
A of F; for through any point of K there passes a chord of A. Also M
contains any solid K’ which contains a pair of generators g, g’ of F; for
through any point of K’ there passes a transversal of g and ¢’.

Conversely, through any point of M there passes a chord of F; this
meets F in two points through whicht there passes a directrix cubic A,
while the points themselves lie on two generators g and g’. Hence every

* §43. T § 45.
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point of F lies in a solid K and alsoin a solid K, so that M; can be generated
either by the oo? solids K or by the co? solids K”.

If any solid K is taken, a prime through it will meet F in the directrix
cubic of K and in two generators; these two generators lie in a solid K’
which meets the plane of ' in the line joining the points where the two
generators meet I'. Taking three different solids K, each of them is
the base of a doubly-infinite system of primes; and we can establish a
projectivity between the primes of these three systems, two primes of
different systems corresponding when they join the respective solids K
to the same line in the plane of T'. Then corresponding primes of the three
systems meet in a solid K’, and all the solids K’ are given in this way.

Hence M;, being generated by the solids K’, is generated by three
doubly-infinite systems of primes projectively related to each other. This
proves that M is a cubic primal M 3; for if we take the section by an
arbitrary solid we obtain a surface generated by three projectively related
“stars” of planes, the vertices of the Stars being the points in which the
arbitrary solid is met by the three solids K. We have thus the well-known
generation of the cubic surface.

When the cubic surface in [3] is generated by three projective stars of
planes there are six sets of three corresponding planes of the stars which
have a line in common instead of a point only; these lines lie on the cubic
surface and form half of a double-six. Hence, given an arbitrary solid in
the [6] containing F, there are six solids K’ meeting it in lines. In par-
ticular, we may take this arbitrary solid to contain the plane w from which
we are projecting F' on to Z. Then, through a given point of T there pass
six planes, each of which contains a pair of generators of f; so that the
bitangent developable of f is of the sixth class. The projected surface f has
one tritangent plane; this being the intersection of ¥ with the prime
containing @ and T.

The chords of F meet w in the points of a cubic curve c,, this being the
intersection of @ with M,3. Since no two chords of F can intersect (except
on F itself or at a point in the plane of I') this curve has no double point
and is therefore elliptic. Hence the double curve and bitangent developable
of f are both elliptic; the points of the double curve and the planes of the
bitangent developable both being in (1, 1) correspondence with the points
of ¢,.

124. Algebraically, suppose that the surface is generated by a (1, 1) corre-
spondence between its directrix conic I in the plane z, = #, = 2, = #; = 0 and

one of its directrix cubics A in the solid #, = x; = 25 = 0. Then we may take the
coordinates of corresponding points to be

0,0,0,0,6%6,1) and (63,62, 6,1,0,0,0),
so that any point of F has coordinates
(63, 6%, 0, 1, A6%, M9, A),
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and the equations of the surface are

the generators being given by 6 = const.
The chords of F are oo* in aggregate and form a locus M whose equation
can at once be written down. For, taking any two points

(6% 62,0, 1, 262, A8, A) and (4% &2 &, 1, ud?, ud, p)
on F, the coordinates of a point on the chord joining them are
(6 + w02+ kg% O+ xd, 1+, AO%+ kpd®, A0 + kpd, A+ xp),
and these may be taken as the coordinates of any point of M. The coordinates
are thus expressed in terms of five parameters. They satisfy the relations
Zg — (0 + ¢) x; + O, = 0,
xy — (0 + ¢) x, + Oy = 0,
zy — (0 + @) x5 + O = O,
so that the equation of M is
Ty, X ¥ | =0,
X, Ty X
Ty 5 Zg
a primal M3 of the third order.

Since the equation of M3 is given by equating a determinant to zero it
follows at once that it can be generated by systems of spaces in two different
ways; it contains two doubly-infinite systems of solids.

The solid whose equations are

aZy + B, + y2y, = 0,
a; + Bry + yag = 0,
ax, + B + yrg = 0,
lies on M3 for all values of a : B :y. This solid meets F in points for which

.. ab? + B +y =0,
i.e. in two generators.

Conversely, the solid containing the two generators given by 6 = 6, and
0 = 8, is determined by the four points

63, 6,2 6,,1,0,0,0), (0,0,0,0,6286,1),
(62, 6,2, 6,,1,0,0,0), (0,0,0,0, 652, 6,, 1),
so that its equations are
Zy — (0; + 6,) 2, + 6,6,2, = O,
x, — (6, + 6,) x, + 6,0,25 = O,
&y — (0y + 6,) x5 + 6,6, = 0,
all other primes through the solid being linear combinations of these threc.

Thus the solid lies on M¥; M3 can be generated by the solids K'.
We also have the conjugate generation of M3; the solid whose equations are

axy + bz, + cxy = 0,
ax; + bx, + cxg = 0,
ax, + bxg + cxg = 0,
lying on M3 for all values of @ : b : ¢. This solid meets F in points for which § and

A are connected by the relation
ad + b+ cA = 0.
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Since this is linear in A it represents a directrix curve meeting each generator

6 = const. in one point; in fact it is a directrix cubic A given by
{c6® B2 b, ¢, —62(ab+b), —0(ad+b), — (ab+ b)}.

We have thus the 002 curves A on F, and M? can be generated by the solids
K containing these curves.

All these curves A can be obtained by means of prime sections through any
two fixed generators; for the prime, whose equation is
a{ry — () + ;) 7, + 6,0,5} + b {w; — (6, + 6,) x, + 0,0,25}

+ ¢ {zg — (6, + 6p) x5 + 6,0,2} = 0,

contains the curve and the pair of generators given by § = 6, and 8 = 6,.

If we consider the six primes
Ty = oz + Py + y1y = 0, Zy =axy + By + yay = 0, Ty = ax,y + B + 2 =0,
S, =azy+bxy +cxy; =0, S,=ax,+bx,+cx;=0, 8;=ax,+ bry+ cxg=0,
then aZ, + b, + ¢33 = a8, + BS, + ¥8S;,
8o that the six primes have a line in commpn. Thus a solid K and a solid K’ have

a line of intersection.
Since all the first minors of the determinant

To Ty Xy
Ty Ty %3
Xy T X

vanish at a point of ¥, F' must be a double surface on M;3. Since they also
vanish at a point of the plane of I" this plane must be a double plane on M 3.

It follows, as a consequence of the two methods of generating F, that an
arbitrary solid of [6] is met in lines by six solids K and also by six solids K’,
and that these lines

kl: k2! kss k«li ks’ ke’
ks ks k', K, k', K
form a double-six on the cubic surface which is the section of M2 by the

arbitrary solid.
The quintic ruled surface ¥ in [6] which has a directrix line has the equations

Ty Xy Ty Xy Xg
© o m m @ %
and its chords form the cubic primal
Ty % ¥
T %y %3
Ty X3 X4

125. Suppose now that we take two fixed generators, g and g’, of F.
Then the oot directrix quartics of F are obtained * by primes through g
and also by primes through ¢’, and the system of co* primes through g is
thus related projectively to the system of co* primes through g’. If we
take a pencil of primes through g we obtain on F a pencil of directrix

* § 45. This applies also to the normal surface F' with a directrix line A,
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quartics with three common points; these three points being in fact
the intersections (other than g itself) of F with the [4] which is the
base of the pencil of primes. Corresponding to this [4] we have a [4]
through ¢’ containing the same three points of F. T'he trisecant planes of
F are thus the intersections of corresponding [4]'s of the projectivity. The
system of oo? primes through g contains oo® pencils of primes, the bases
of these pencils being the [4]’s through g; these, with the corresponding
[4]’s through ¢, give the co® trisecant planes of F. The surface F itself is
generated by the intersections of corresponding planes of the projectivity;
there are co* planes through g and co* corresponding planes through g’,
and, since two conditions are necessary in order that two planes in [6]
should have a common point, there will be c0? planes through g which
meet their corresponding planes through ¢’; these co? points are the points
of the surface F.

126. We now enquire how many trisecant planes of F there are which
meet an arbitrary plane @ of [6] in lines; we expect that there will be a
finite number*.

The generator g and the plane w determine a [4] S;; corresponding to
this we have a [4] S,” through ¢’ meeting 8, in a trisecant plane of F, and
this trisecant plane, lying in the [4] S, with @, meets @ in a point P;.
Similarly, the generator g’ and the plane @ determine a [4] S,’; corre-
sponding to this we have a [4] S, through g meeting S,’ in a trisecant plane
of F, this trisecant plane meeting @ in a point P,.

Suppose now that there is a trisecant plane 7= of F which meets @ in
a line. There is then a [5] through S, which contains 7, so that there must
also be a [5] through S,” containing 7. Hence 7 meets S,’ in a line, and this
line will have to meet the line of intersection of = with @, and therefore
must pass through P,, the point of intersection of S,” and w. Hence =
must pass through P;, and similarly 7 must pass through P,. If then
there is a trisecant plane meeting @ in a line, this line must be P, P,.

There are threet chords of F meeting P, P,, and these do in fact lie in
a plane. For consider one of these chords meeting F in B and C. We have
a [4] containing g, P, P, and BC. Now the plane gP, is the intersection of
8, and 8,, so that the corresponding plane through g’ is the intersection
of 8, and §,’, i.e. the plane ¢’P,. Hence the [4] through ¢’ which corre-
sponds to the [4] through g containing P, and BC must contain P; and
BC, and therefore the plane P, P, BC. We thus have corresponding [4]’s
through g and g’ meeting in the plane P, P,BC, which is therefore a tri-
secant plane of F. If 4 is its third point of intersection with F the three
chords of F which meet P, P, are BC, CA, AB.

There is then one trisecant plane of F which meets w in a line.

* §53. t §123.
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127. Any prime through @ contains six chords of F, so that those
chords of F which meet w meet F in the points of a curve Cy, of order 12;
this projects from @ into the double curve of f. C; has three double points
at 4, B, C, and, since the [4] through @ and any generator meets F in three
further points, C;; must meet each generator of F in three points. It
cannot have any other double points, so that it is a curve C,* of
genus* 4.

The (3, 1) correspondence between C,* and I' shewst that there are
twelve generators of F touching C),*; hence there are twelve generators of
f touching the double curve.

Also the (2, 1) correspondence between Cj,* and c,, the elliptic cubic
curve in @, shewst that there are six tangents of C,* meeting w. Hence
the tangents of F form a locus M8 of the sixth orderi.

128. Rational quintic ruled surfaces in [4]. Before proceeding to in-
vestigate the surfaces f of [3] it will be convenient to interpolate here a
few remarks upon the rational quintic ruled surface in [4]; this is obtained
by projecting the general surface F' in [6] from a line ! which does not
meet it. Some of the properties that we shall obtain are given by Severi||,
but it is instructive to deduce them directly by projection.

We have seen that there are three points a, b, ¢ on I through which
there pass chords aa,a,, bbb,, cc,c, of F. The S, determined by these
three chords must meet F in a directrix quartic, and on projecting from
! on to the space [4] this becomes a plane quartic curve with three double
points.

There is a solid K containing a directrix cubic of F which passes through
a, and a,; K containing the chord aa,a,. On projection this cubic becomes
a plane cubic curve with a double point, this being at the same point as
one of the double points of the quartic. We thus obtain three rational
plane cubic curves on the surface in [4]; any two of these cubics intersect
in the point of intersection of their planes, this being the projection of the
point of intersgction of the corresponding twisted cubics on F'.

* §17. t By Zeuthen’s formula, § 16.

1 The order of M, is obtainable at once by elementary methods. For suppose
F to be generated by a (1, 1) correspondence between I' and one of the directrix
cubics A. The tangents of I' and A are also in (1, 1) correspondence, and the
tangent solids of F' are determined by the pairs of corresponding tangents. But
the ! solids determined by corresponding generators of two ruled surfaces, of
orders 4 and 2, whose generators are in (1, 1) correspondence, form & locus of
order 4 + 2 = 6.

Similarly, the tangents of a rational ruled surface of order n form an MM 2n—4.

|I See the footnote on p. 49 of his paper, “Intorno ai punti doppi impropri di
una superficie generale dello spazio a quattro dimensioni e a’ suoi punti tripli
apparenti,” Palermo Rendiconti, 16 (1901* 33,
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Thus the general rational quintic ruled surface in [4] has three double
points. It has a plane quartic on it; this lies in the plane of the three double
points and has double points itself at these points. There are, further, three
plane cubics, each of which has a double point at one of the double points
of the surface. Further still, there is a directrix conic.

Of course we can obtain other surfaces in [4] by specialising the position
of I in regard to F. If [ lies in a solid K the projected surface has a triple
line and is generated by a (1, 3) correspondence between a line and a conic.
If [ lies in a solid K’ the projected surface has a double generator and
contains ool plane cubics with double points on this generator. If [ is an
axis of a directrix quartic £ the projected surface has a double conic.
It is generated by two conics in (1, 2) correspondence with a united point.
We can also project the surface with a directrix line.

Similarly, ruled surfaces in [5] are obtained by projecting F from a
point of [6]; a general point of [6] does not lie on M3, so that the general
rational quintic ruled surface in [56] has no double points. But if the point
of projection does lie on a chord of F we obtain a surface in [5] with one
double point and having a plane cubic on it with a node there, while if
the point of projection lies in the plane of I' we obtain a surface in [5]
with a double line, generated by a (1, 2) correspondence between a line
and a cubic curve.

The surfaces in [3] derived by projection from the
general surface in [6]

129. We now proceed to obtain the rational quintic ruled surfaces of [3]
by projection from the two normal surfaces in [6], and also to give methods
for generating them. Of the twenty-four types which we have enumerated
seventeen are obtained from the general surface F, the other seven arise
from the surface F' with a directrix line.

We have already shewn how to obtain the most general surface f. Since
F can be generated by placing its directrix conic I in (1, 1) correspondence
with any one of its directrix cubics A, the most general surface f is generated
by a conic and a twisted cubic in (1, 1) correspondence.

130. Suppose that we take an ordinary involution I of pairs of
generators on F. If we take any directrix quartic £ on F, I will determine
an involution on X; the chords of £ joining the pairs of the involution
form a cubic ruled surface lying in the S, determined by E. This has a
directrix line 7, and a general plane @ will not contain this line*; but let
us choose @ to pass through such a line.

The plane w will meet M® in ! and a conic 4. The chords of F which
meet I will meet F in the points of the quartic Z, while those which meet

* The lines of [6] are o0 10 in aggregate and include oo ¢ lines 1.
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9 will meet F in the points of an octavic Cg, meeting each generator of F
in two points. The involution on & has two double points, so that there are
two tangents of E which meet 7; hence thére must be four tangents of Oy
meeting &, the (2, 1) correspondence between Cy and & having four double
points. Applying Zeuthen’s formula to this correspondence we at once
find that C; is an elliptic curve, and then applying Segre’s formula for the
genus of a curve on a ruled surface we see that Cs has one double point 4.
There are two chords of F' passing through 4, meeting Cy again in B and
O, and as these cannot be double points on Cy they must be intersections
of C; with E. The two chords of F which pass through the points common
to I and 9 are chords both of Cy and £, so that we have four other inter-
sections of these curves. There are, in fact, precisely six intersections *.

Projecting from @ on to the solid X we obtain a surface f with a double
curve consisting of a conic (the projection of E) and a quartic (the pro-
jection of Cy); the quartic is rational since its points are in (1, 1) corre-
spondence with those of 9; it has a double point (the projection of 4, B
and C) lying on the conic and meets the conic in two other pointst.

F can be generated by placing I' and ¥ in (1, 1) correspondence with
a united point. Hence f can be generated by two conics I'; and I'y in (1, 2)
corrcspondence with a united point P. To P, regarded as a point of I'},
there correspond two points P, P’ of I', one of which is P; to P regarded
as a point of I', corresponds the point P of T',.

I'; meets the plane of I'; in a second point @ ; to @ there correspond two
points @’, @” of I'y. The pairs of points of I'y which correspond to the points
of T, are the pairs of an involution; their joins all pass through O, the
intersection of PP’ and @’Q”. The planes of the pairs of generators which
intersect in the points of the double conic T\, are therefore formed by the
points of I, and the corresponding lines of a plane pencil in (1, 1)
correspondence with I';; there is one united element, the point P of I
lying on the line PP’ of the pencil which corresponds to it. Thus} these
planes touch a quadric cone E,. This quadric cone is part of the bitangent
developable of the surface.

The plane of I'y is a tritangent plane of the ruled surface since it
contains the three generators PP’, QQ’, QQ”. It is a tangent plane of E,
as joining @ to the line 0Q’Q’". The vertex of the cone E, is O.

131. If any directrix quartic ¥ is taken on F all the axes [ arising from
this lie on the cubic locus formed by the chords of £, and no two involutions
on £ can have the same axis||.

* See the formula for ¢ given in the footnote to § 97.

+ Cf. § 92. +§22.

|l For the configuration of the axes of E see Segre, ‘“Sulle varieta cubiche dello
spazio a quattro dimensioni,” Memorie Torino (2), 39 (1889), 3; in particular § 43.
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Any two directrix quartics B, E’ intersect in three points; the plane
of these three points is the plane of intersection of the two [4]’s which
contain the curves. If then an axis of E coincided with an axis of B’ it
would lie in a trisecant plane of either curve, which is impossible.

If a plane @ contains two axes of the same curve E it must be contained
in the S, to which E belongs; it then occupies a special position. The type
of surface f arising by projection from such a plane will be subsequently
considered.

Thus to obtain a surface f with two double conics we try to find a plane
w containing an axis /; of a directrix quartic & and an axis /, of a directrix
quartic E’. This we can certainly do; we have merely to take a common
chord of £ and E’ and an axis of each curve passing through any point
of this chord*. The plane w meets M? in the lines {, and /, together with
a third line /;, and the chords of F' which pass through the points of /; meet
it in a third directrix quartic E’’. The curves £’ and E'’ have a common
chord passing through the intersection of /, and I/; and have also a third
common intersection 4, and we have similar points B and C arising from
the other two pairs of curves. The plane ABC meets w in a line; the
chords BC, CA, AB all meeting w.

Projecting from @ on to a solid X we obtain a rational quintic ruled
surface f with three double conics. The conics all pass through one point,
while any two of them have a second intersection.

The surface F' can be generated by a (1, 1) correspondence between
E and E’ with three united points. Thus to generate a surface f with two
(and therefore three) double conics we take two conics I'; and I'; in X
with two common points P, @ and place them in (2, 2) correspondence.
To the point P regarded as a point of I'; there correspond two points of
I'; which both coincide with P, while to the point P regarded as a point of
T’y there correspond two points of Iy which both coincide with P. To the
point @ regarded as a point of I'; there correspond two points of Iy, one of
which coincides with @, while to the point @ regarded as a point of I’
there correspond two points of I';, one of which coincides with Q. The lines
joining corresponding points of I'; and I'; generate a rational quintic ruled
surface with two double conics I'; and T,.

132. We have seen that the prime w»I' contains three generators of F;
in general there will not be a solid passing through @ and meeting each of
these generators. But we may clearly choose w so that this happens, and
then the surface f, instead of being of the type I, is specialised and is of
the type II (A).

* There are two axes of each curve passing through any point of the chord
(Segre, loc. cit.).
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Take any three points of I" and the three generators through them.
These determine a prime containing I'; take points X, Y, Z one on each
of the three generators and a line ! lying in the plane X Y Z. Then if we take
any plane w passing through ! and lying in the prime and project from it
on to X we obtain a surface f of the type II (A), having three generators
passing through a point and lying in a plane.

When a surface f is generated by a conic and a twisted cubic in (1, 1)
correspondence the plane of the conic is the tritangent plane. But, if we
specialise the correspondence so that the lines which join the three
points in which the cubic meets the plane of the conic to their corre-
sponding points are concurrent, the three generators in the tritangent
plane meet in the triple point.

This type of surface can be further specialised so as to have one or
two double conics.

If, in the generation given in § 130, the correspondence between I'y and
I'; is so specialised that PO passes through ¢ we obtain a surface with
a double conic I'; which is of the type II (A).

In the generation at the end of § 131 the point @ is a triple point of the
ruled surface; one generator through @ lies in the plane of I'; and a second
in the plane of I';. As a point approaches @ along one conic one of its
corresponding points on the other conic must also approach @; the limiting
position of the line joining the two points is the third generator through Q.
If the correspondence is specialised so that these three generators lie in
a plane we have a surface belonging to the type II (A).

133. A solid K’ through two gcnerators does not meet F again. If we
choose @ to pass through a line 7 of K’ which does not meet either generator,
and then project on to X, we obtain a surface f with a double generator G.

w meets M3 in a line I and a conic 9; the chords of F which meet @
will meet F in two generators and a curve C,, of order 10 meeting each
generator in three points; €, meets every solid K’ in six points and every
solid K in four points.

There are six tangents of C), meeting 9, and applying Zcuthen’s
formula to the (2, 1) correspondence between C,, and & we find that Oy
is a hyperelliptic curve of genus 2; the g,! on C,, consists of the pairs of
points which correspond to the points of 9. Applying Segre’s formula we
sec that C), must have one double point 4.

There are two chords of C,, passing through 4 and meeting w; these
meet O}y again in points B and C which must be intersections of C}, with
the two generators of F' that we originally selected. The chord BC meets
l. On projecting we have a surface f with a double generator and a double
quintic curve having a double point on the double generator. The quintic
is rational since its points are in (1, 1) correspondence with those of 9.

E 8
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Further, the quintic meets the double generator in two other points, these
arisinig from the chords of F which pass through the intersections of I
and 9. The generators of f are trisecants of the quintic*. The bitangent
developable consists of the planes through G, and a developable of the fifth
class whose planes form a rational family in (1, 1) correspondence with
the points of 9. This developable has one double tangent plane and two
ordinary tangent planes passing through G.

The prime mI' necessarily contains the two chosen generators of F,
assuming that the planes of w and I do not meet.

Hence to generate this surface f in X we take a conic and a twisted
cubic in (1, 1) correspondence, but we so specialise the correspondence
that two of the points in which the cubic meets the plane of the conic have
for corresponding points those two points of the conic which lie on the line
joining them.

134. Suppose now that @ is chosen to meet the plane of I' in a point
O. Then the projected surface f has a directrix line R, the intersection of
X with the [4] containing w and I'. A prime through the [4] wI' contains
three generators of ¥, so that a plane through R contains three generators
of f. A solid passing through w and lying in the [4] @I meets two generators
of F, so that through any point of B there pass two generators of f. This
plainly indicates the types III (D) and III (F).

Suppose that there is a point X on R such that the two generators
g, and g, of f which intersect there are co-planar with R.

The two generators of F' which give rise to g; and g, must clearly
lie in a prime containing w and I'. Such primes form a pencil, and each
meets F in I" and three generators; they thus cut a g;! on any directrix
curve of F, the two generators in question passing through two points of
a set of this g,;1.

Further, the two spaces [4] which project the generators from @ must
meet the [4] @l in the same solid and therefore must meet the plane of
I' in the same line through O. The lines through O meet T" in the sets of
a g¢g,! and the pairs of generators so determined give a g, on any
directrix curve.

Now, if we are given a g,! and a g5! on a rational curve, there are two
sets of the g,! belonging to sets of the g;!. Hence there are, in general, two
pairs of generators of F such as we require.

* Cf. § 102,

+ The g;! may be regarded as a (1, 1) correspondence, and the g;' as a (2, 2)
correspondence; both these correspondences are symmetrical, and are, in fact,
involutions. Hence the number of common pairs of corresponding points is 2—
half the number given by Brill’s formula (see § 15). More generally, the number
of pairs of points common to a g,! and a g,! on a curve of genus p is
m—-1)(n—-1)—p. .



QUINTIC RULED SURFACES 115

Hence, in general, there will be two points X on R such that the two
generators of f which intersect there are co-planar with R, and then f is
of the type III (F).

It may, however, happen that one of the two pairs of generators of
F ig such that there is a [4] through » containing them. The surface f has
then a double generator and is of the type III (D).

If both pairs of generators are special in this way it appears that there
is a directrix cubic A of F for which the solid K meets w in a line; f is
then a type of surface which will be subsequently considered.

For let g9’ and %A’ be the two pairs of generators; the solids gg” and kb’
meeting w in the lines z and y. Take a point P on g and the transversal
through P of g¢’x, meeting ¢’ in @ and z in R. The two points P and @
determine a directrix cubic A meeting » and »’in S and 7'. Through S there
passes a transversal of Ah’y, mecting y in U and 4’ in 7",

Fig. 5.

Then the ranges (7') and (7") on 2’ are homographic, and have two
common corresponding points. One of these is clearly on I'; the other gives
a curve A for which the solid K meets @ in a line.

135. The generation of the surfaces f of the preceding article is at
once obtained, since F' can be generated by a (1, 1) correspondence between
I" and any of its directrix cubics. We take in X a line and a twisted cubic
in (1, 2) correspondence; the joins of corresponding points give a quintic
ruled surface with the line as a double directrix.

The pairs of points of the cubic which correspond to the points of the
line form an ordinary rational involution; the chords joining the pairs
therefore form a regulus. Hence there will be two of these chords meeting
the line in points 4 and B. Through A passes a chord Aaa’, the pair of
points aa’ corresponding to a point ¢ of the line; through B passes a chord
Bbb’, the pair of points bb’ corresponding to a point B of the line. In general,
the surface is of the type III (F); but if either « coincides with 4 or B with

8-2
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B we have a surface of the type III (D) with a double generator. If
a coincides with 4 and B coincides with B the surface f degenerates into
a type with two directrices.

If a (1, 1) correspondence has been established between the points of
a line and the lines of a regulus then the planes containing corresponding
elements form a developable of the third class*. If one of the two lines
of the regulus meets the line in the point which corresponds to it the
planes touch a quadric cone, while if both lines of the regulus which meet
the line do so in their corresponding points the planes all pass through a
line. This confirms the result found for the bitangent developables of the
surfaces III (F'), I1I (D) and VI (B).

136. When w has been chosen to meet the plane of I' in a point the
[4] @I’ will not, in general, contain a generator of F, but we may clearly
choose @ so that it does. Then the projected surface f will have a directrix
line R which is also a generator; any plane through R contains two other
generators, while through any point of R there pass two other generators.

It is easily seen that, in general, there is one point of R at which these
two other generators are co-planar with R; f is then of the type IV (D).
We have to consider two linear series on a directrix curve of F; one g,!
and a second g,! which arises from a g¢;! having a fixed point. These have
one pair of points in common.

It may, however, happen that the common pair of these two linear
series gives two generators which lie in the same [4] with w; we may clearly
choose @ so that this happens. Then f has a double generator and is of the
type IV (C).

137. We again consider /' as generated by a (1, 1) correspondence
between I" and one of its directrix cubics A. The [4] @I contains a generator
g, and, when we project on to X, I and A become a line and a twisted cubic
which intersect in a point P, the projection of the point gA. Thus to generate
f we take a line and twisted cubic meeting in a point P and establish a
(1, 2) correspondence between them. To any point of the line correspond
two points of the cubic, while to any point of the cubic corresponds one
point of the line, P not being special in any way. We have a surface f of
the type IV (D).

The pairs of points of the cubic which correspond to the points of the
line give rise to lines forming a regulus meeting the line in two points P
and @. The planes of the pairs of generators issuing from the points of the
line thus form a developable of the third class which is part of the bitangent
developable of f.

* See § 23 above.
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Through @ there passes a chord @Qaa’ of the cubic; @ and a’ forming the
pair of points corresponding to some point e of the line. If then & coincides
with @ we have a surface f with a double generator of the type IV (C);
this has a quadric cone as part of its bitangent developable.

138. Further, when w meets the plane of I' in a point, it may happen
that the [4] »I" contains two generators of F. Then f has a directrix line
R which is also a double generator; any plane through R .contains one
other generator, while through any point of R there pass two other
generators. Hence f is of the type V (A).

To generate f we take a twisted cubic and one of its chords and place
them in (2, 1) correspondence without united points. Those planes of the
bitangent developable which do not pass through the chord form a
developable of the third class.

139. We have seen that of the co? solids K there is a singly infinite set
meeting a general plane w in points but that there is none meeting it in a line.
If, however, we choose @w to meet a solid K in a line the projected surface
f has a directrix line R, the intersection of X with the [4] @wK. Since any
prime through the [4] @K meets F in a directrix cubic A and two generators
we see that any plane through R contains two generators of f, and since
any solid passing through @ and lying in the [4] wK meets F in three
points there will be three generators of f passing through any point of R.
This indicates the types III (C) and III (E).

Suppose that there is a plane x through R such that the pair of
generators which it contains intersect in a point on R.

The two spaces [4] joining w to the two generators of F from which
these arise must meet the [4] @K in the same solid, and must therefore
meet K in the same plane. This plane will contain the line of intersection
of w and K, so that the two generators of ¥ meet A in a pair of points
belonging to a set of a g,! cut out on A by planes of K passing through a
line. Also the two generators of ' must lie in a prime through @ and K;
such primes form a pencil, each meeting F in A and two generators, giving
thus a g,! on A. But the g,! has two sets belonging to sets of the g,!. Hence,
in general, there are two planes x through R such as we are seeking, and
[ is of the type III (E).

It may happen that one of these two pairs of generators of F is such
that there is a [4] through @ containing them. Then f has a double
generator and is of the type III (C).

If both pairs of generators are special in this way it appears that =
must meet the plane of I' in a point; the surface f then belongs to a type
which will be subsequently considered.
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For let one pair of generators be g and ¢’, the other pair 2 and 4’
The solid gg’ will meet @ in a line z; the solid Ak’ will meet @ in a line y.
Let @, G’, H, H’ be the points of intersection of I" with the four generators.
Then GG’ and HH’ intersect, and this point of intersection is the point
common to the two solids gg’ and hh’ and is therefore also the point of
intersection of the lines z, y.

140. Since F is generated by a (1, 1) correspondence between A and
T, f can be generated by a (1, 3) correspondence between a line and a
conic; to any point of the line R correspond three points of the conic, while
to any point of the conic corresponds one point of the line R.

We have an involution of sets of three points on the conic, and the sets
of three joins of all such triads are known to touch a conic I'y*. There are
two tangents to I'y from the point in which the line R meets its plane; these
give the two pairs of generators' of f which lie in planes through R and
intersect in points of R. The surface is, in general, of the type III (E).

The point of intersection of R with the plane of the conic gives three
corresponding points of the conic. If two of these happen to be collinear
with the point on R we have a surface f of the type III (C) with a double
generator.

141. When o is chosen to meet a solid K in a line the [4] @K will not,
in general, contain a generator of ¥, but we may clearly choose @ so that
it does. Then, on projecting, the surface f has a directrix R which is also
a generator. Any plane through R contains one other generator, while
through any point of R there pass three generators. Hence F' is of the
type IV (A).

To generate f we again take a line R and a conic in (1, 3) correspondence,
but here they have a point of intersection. This point does not specialise
the correspondence in any way.

The point of intersection of R and the conic is the projection from =
on to X of the point of intersection of I' with the generator of F which
lies in the [4] wK.

142. We now investigate a type of surface f to which we have already
twice referred. Suppose that @ is chosen to meet a solid K in a line
and also to meet the plane of I' in a point O. Then the projected surface
J has two directrices; R, the intersection of X with the [4] wK, and R’, the
intersection of T with the [4] wI".

Any prime through » and K meets F in A and two generators which
-nust meet I in a pair of points collinear with O. Also any solid through

* Cf. Baker, Principles of Geometry, 2 (Cambridge, 1922), 137.
!
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w lying in the [4] oI’ meets I" in two points collinear with O; there is
then a prime containfng these two generators and w, which necessarily
contains K also. Hence any plane through R contains two generators of
f meeting in a point of R’, while through any point of R’ there pass two
generators of f lying in a plane with R. Similarly, any plane through R’
contains three generators of f meeting in a point of R, while through any
point of R there pass three generators lying in a plane with R’.

Now let us enquire whether f has any double generators. This is the
same question as whether there exist spaces S, through w which contain
two generators of F. Such an S; would have to meet the plane of I' in
a line through O and the solid K in a plane. Conversely, if we have a pair
of generators of F such that the chords of I' and A determined by the pair
both meet @, there is an S, through @ containing the pair of generators.
Now the chords of I' through O determine an involution on I' and thus
also a g,! on A; while the planes of K pagsing through its line of intersection
with @ determine a g;' on A. Hence there are two pairs of generators
of F such as we require, and f has two double generators. f is of the
type VI (B).

The (1, 1) correspondence between A and I clearly gives rise to a (2, 3)
correspondence between R and R’, and f can be generated by means of
this correspondence. But this is not the most general (2, 3) correspondence
between two lines; it must be specialised in order to give the two double
generators.

143. We can give another method of generating this surface of the
type VI (B) which leads at once to a generation for a surface of the type
VII (A).

w and a generator of F determine a space S;; any prime through
this meets ¥ in the generator and in a directrix quartic £; E meets I' in
one point and A in two points. The [4] containing @ and A will meet the
prime containing @ and £ in a solid which contains @ and the two inter-
sections of K and A. Hence the line joining these two points must meet =.
The 8, containing E meets @ in a line which is met by three chords of E,
one of these being already accounted for.

When we project, E gives rise to a plane quartic with three double
points; it passes through the point in which R’ meets its plane and one
of its double points lics at the point in which B meets its plane.

Now F can be generated by means of a (1, 1) correspondence between
I' and E with a united point. Hence, to generate f, we take a plane
quartic with three double points and a line R’ meeting it in a point P. To
any point of R’ there correspond two points of the quartic, while to any
point of the quartic corresponds one point of R’, P being a united point.
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But it is necessary that the two points which correspond to any point
on R’ should be collinear with one of the double points. For, returning to
the surface F in [6], we have seen that the prime containing w and two
generators ¢ and g/, which meet I' in a pair of points collinear with O, also
contains K. It therefore meets & in four points; one on g, one on g’, and
the two on A already mentioned. This shews on projection that, given a
point of R’, the two corresponding points on the quartic are collinear with
the double point on R.

The two other double points of the quartic determine two double
generators of f.

The line joining the points in which R and R’ meet the plane of the
quartic is the generator of f which lies in this plane.

This method of generation at once suggests the following for a surface
of the type VII (A).

Take a plane quartic with three double points 4, B, C and a line R,
not in the plane of the quartic, passing through 4. Establish a (1, 2)
correspondence between R and the quartic, with a united point, such that
to any point of R there correspond two points of the quartic collinear with
A: this is at once secured by referring the range of points on R to the pencil
(A) of lines through A in the plane of the quartic. The point 4, regarded as
a point of R, must give rise to two points of the quartic, one of which is 4
itself: this is secured by making the point A on the range R correspond
to one of the tangents of the quartic at A considered as a line of the pencil
(A4). There will be a second point on R which corresponds to 4 ; this being
that point of the range which corresponds to the other tangent of the curve
at A4 considered as a line of the pencil (4). Then we have a ruled surface
f with a directrix line which is also a generator; through each point of B
there pass two generators lying in a plane with R, while each plane through
R contains two generators intersecting in a point of R. There are two
double generators passing through the points B and C. This is the surface
of the type VII (A).

144. We can examine in closer detail the way in which @ may be chosen
80 as to give a surface of the type VII (A).

Take any two generators g and g’ of ¥ meeting I' in the points G and
G&’, and any point O on the line GG’; also a point X on F. Then there are
oot directrix cubics passing through X and their solids K meet the solid
g9’ in lines forming a regulus. G@ belongs to this regulus; this line arises
from the degenerate cubic consisting of I" and the generator g, through X.
Any line through O lying in the solid gg’ will meet the regulus in a second
point O’, the line of the regulus through O’ being a chord of a directrix
cubic A. There are planes through OO’ meeting the solid K containing
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A in lines, and on projection from such a plane we obtain a surface f of the
type VI (B).

But suppose that we take a tangent, at O, of the quadric surface on
which the regulus lies; and then a plane @w through this tangent, con-
taining a line passing through O, and lying in the solid g,I". On projecting
we have a surface f with a directrix R which is also a generator.

Through » and two generators of F which meet I' in two points
collinear with O there passes a prime, which necessarily contains I" and
go; so that through any point of R there pass two other generators which
lie in a plane with R, and f is of the type VII (A).

145. F has oo* quartic directrices, and » will meet the [4] containing
such a directrix in a point. There are, however, co? quartic directrices such
that the [4]’s containing them meet m in lines; in fact, any line of
w lies in such a [4], determined by the three chords of F which meet the
line. But, in general, there is no [4] so arising which contains w entirely;
this is evident when we remember that all directrix quartics can be
obtained as residuals of prime sections of ¥ through any fixed generator.

Let us suppose, however, that w is chosen to lie in a space S, containing
a directrix quartic . Then the projected surface f has a directrix line R,
the intersection of X with §,. Since a prime through S, meets F' in £ and
one generator there will be one generator of f contained in any plane passing
through R, and since any solid lying in S, and passing through = meets
E in four points there are four generators of f passing through each point
of R. Hence fis of the type III (A).

The cubic locus in S, formed by the chords of E is none other than the
section of M® by S,; in general, @ meets this locus in an ordinary non-
degenerate elliptic cubic curve, and the bitangent developable of f is non-
degenerate and of the sixth class, having a tritangent plane. The planes of
the developable form an elliptic family, since they are in (1, 1) corre-
spondence with the points of the cubic curve in w. The tritangent plane
is, of course, the intersection of X with the prime =I".

But @ may be chosen to pass through an axis I of E; the chords of £
through the points of I determining an involution on £ and thus an in-
volution I of pairs of generators of . @ meets M3 in [ and a conic &.
We have already seen (§ 130) that the bitangent planes of f which arise
from I touch a quadric cone. The residual developable is of the fourth
class, with two ordinary tangent planes and one double tangent plane
which touch the cone also. This last plane clearly arises from the prime
wl'; the other two are determined by the chords of F' which pass through
the two points of intersection of / and 9.

Further, @ may be chosen to contain two, and therefore three, axes
of B, say I, l,, l;. Then the bitangent developable of f consists of three
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quadric cones. The prime »I" meets T in a plane which touches each cone.
Also the chord of F which passes through the intersection of /; and [,, say,
meets a pair of generators which give on projection a common tangent
plane of the two cones which arise from , and /;; thus any two of the three
cones have a second common tangent plane.

146. F can be generated by placing I" and E in (1, 1) correspondence
with a united point. Hence to generate this type of surface f we take a
line R and a conic which meets it, and place them in (1, 4) correspondence
with their intersection as a united point. Any plane through R contains
one generator, while through every point of R there pass four gencrators.
The plane of the conic contains three generators all passing through the
point in which R meets it; it is thus a tritangent plane.

But if the plane w contains an axis of £ then, corresponding to each
point of R, we have four points pf the conic as before; but two of these
four points form a pair of a certain involution, so that the line joining
them passes through a fixed point O. The bitangent developable of f
breaks up into two parts.

The pencil of lines through O in the plane of the conic is related
to the range of points on R, and the planes joining the rays of the pencil
to the corresponding points on R touch a quadric cone with vertex O,
which touches the plane of the conic. Hence the bitangent developable
breaks up into this cone and a developable of the fourth class having the
plane of the conic for a double tangent plane.

The joins of the sets of an involution of sets of four points on a conic
are known to touch a curve of the third class. In this degenerate case the
curve will consist of the point O and a conic, and two tangents of this last
conic will pass through 0. This shews that the quadric cone and the de-
velopable of the fourth class have two other common tangent planes.

Now suppose that the plane @ contains three axes of Z. Any solid
through w meets the cubic locus of chords of X in a four-nodal cubic surface,
the nodes being the four points in which the solid meets E. The three axes
are the three lines on this surface other than the six edges of the tetra-
hedron formed by the nodes, and it is a well-known property of the four-
nodal cubic surface that each of these three lines meets a pair of opposite
edges of the tetrahedron. If, then, any point 4 is taken on E the solid
@wA meets E again in three points B, C, D such that AB and CD meet
one axis, AC and BD meet another, while AD and BC meet the third.

Thus in the correspondence between R and the conic if a, b, ¢, d are
the four points of the conic which correspond to some point of R we have
ab and cd belonging to one fixed involution, ac and bd belonging to a second
and ad and bc belonging to a third. We thus have three points 0,, 0,, O,
forming a self-conjugate triangle in regard to the conic; these being the
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three points through which the joins of pairs of the three involutions
respectively pass. The envelope of the third class formed by the joins of
the sets of four points here degenerates into the three points O,, O,, O;.

Thus the bitangent developable of f consists of three quadric cones with
vertices O,, 0,, O, all touching the plane 0,0,0;. Any two of the cones
have a second common tangent plane.

This completes the determination of those surfaces f which are pro-
jections of the surface F with a directrix conic.

The surfaces in [3] derived by projection from the surface in [6]
with a directrix line

147. Take now a rational quintic ruled surface F in [6] with a
directrix line A. Any chord of F lies in a solid through A containing two
generators of F, so that the locus Mg of the chords of F is a five-
dimensional cone having a line-vertex and oco? generating solids. If we
take a directrix quartic £ of F the [4] in which it lies meets M in the
cubic locus formed by the chords of £ ; we have thus a cubic line-cone M ;3.

No two generating solids of the line-cone can intersect, unless on the
three-dimensional locus formed by the planes through A containing the
generators of F. Since a general plane » does not meet this locus it will
meet M2 in a cubic curve without a double point.

Take now a general plane @ of [6] not meeting F' and project from w on
to a solid X. We obtain a rational quintic ruled surface f with a directrix
line R, the intersection of ¥ with the [4] wA. Since a prime through = and
A meets F in A and four generators there are four generators of the surface
f which lie in any plane through R, and since a solid passing through =
and lying in the [4] @A meets A in a point there is one generator of f passing
through any point of R. Hence f is of the type III (B).

It is seen as in § 127 that the chords of F which meet @ meet F in
the points of a curve C), of order 12 and genus 4, having three double
points whose plane meets @ in a line, C;, meeting each generator of F in
three points. The double curve of f is an elliptic sextic curve with a triple
point.

The locus M,* formed by the tangents of F is here again of the sixth
order, but it is now a line-cone with A for vertex and has oo! generating
solids all passing through A. It is of the sixth order, because the [4] which
contains any directrix quartic & meets M,® in the ruled surface formed by
the tangents of &, and this is known to be of the sixth order *.

This type of surface F' contains co* directrix quartics £; any one of
these is determined by four points of F, and any two intersect in three

* Cf. the footnote to § 127.
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points. They can all be obtained as residuals of prime sections of F' through
any fixed generator. Each curve E determines a space [4] containing it.
In general, such a space [4] will meet @ in a point, but there are co? of
them meeting o in lines, one passing through each line of w. For a general
position of @ no [4] will contain it entirely.

Now @ may clearly be chosen to pass through an axis I of one of these
curves K, meeting M¢® in I and a conic 9. The chords of F' meeting ! meet
F on E itself, those meeting & meet F in an elliptic curve of the eighth
order, with one double point, which meets each generator in two points.
On projecting we have a surface f of the type III (B) whose double curve
consists of a conic and a rational quartic; this quartic has a double point
lying on the conic and meets the conic in two other points.

Further, @ may be chosen to pass through an axis , of a quartic B
and an axis [, of a quartic E’. It meets M, in three lines I, l,, 5, and
I, is an axis of a quartic £”. The surface f has a double curve consisting
of three conics with a common point, any two of the conics intersecting
in one other point*.

148. F can be generated by means of a (1, 1) correspondence between
A and any of its directrix quartics E. Hence to generate the most general
surface f belonging to the type III (B) we take a line and a rational skew
quartic and place them in (1, 1) correspondence.

If, however, @ contains an axis of £ then E becomes on projection
a double conic of f, so that to generate this surface we take a line and
a conic in (2, 1) correspondence.

The construction of the quintic surface with a directrix line and two
double conics can be deduced from that for the quintic ruled surface with
two double conics without a directrix linet simply by making the (2, 2)
correspondence between I'; and T, express the condition that the generators
should all meet a line. Or we can deduce a construction from that of the
dual surface; we take a line lying in a tangent plane of a quadric cone and
place the planes through the line and the tangent planes of the cone in
(1, 4) correspondence. The four planes of the cone which correspond to any
plane through the line form pairs of three involutions.

149. Suppose now that w is chosen to lie in a space [4] with one of the
directrix quartics E. Then the projected surface f has two directrices; R,
the intersection of X with the [4] w), and R’, the intersection of = with the
[4] wE. A prime through @ and A meets F in A and four generators, and
these must meet E in four points lying in a solid through w. Also, if a
solid through @ meets E in four points the four generators of F
passing through these points all meet A\. Hence any plane through R

* Cf. § 131, t § 131.
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contains four generators of f which meet in a point of R’, while through
any point of R’ there pass four generators of f lying in a plane with R.
Similarly any plane through R’ contains one generator of f which meets
R, while through any point of R there passes one generator of f meeting
R’. Hence f is of the type VI (A).

Since F can be generated by a (1, 1) correspondence between A and E,
the surface f can be generated by a (1, 4) correspondence between R’ and
R.

150. Any prime meets F in a rational normal quintic curve, one point
of which lies on A; the chords of the curve passing through this point form
a cone of the fourth order. This shews that the co! planes joining A to the
generators of F form a locus M of three dimensions and the fourth order.
In general this has no point in common with a plane w. But if w does
meet a plane of M,t we have on projection a surface f with a directrix
line R which is also a generator.

Since a prime through @ and A now meets F in three variable generators
there are three generators of f which lie in a plane through R other than
R itself. Also through any point of R there passes one gencrator of f other
than R. Hence f is of the type IV (B). To generate f we take a line and
a rational quartic in X which meet, and place them in (1, 1) correspondence
without a united point.

We may choose w to meet two planes of M % Then the surface
f has a dircctrix R which is at the same time a double generator.
Any plane through R contains two generators of f other than R, while
through any point of R there passes one gencrator other than R. Hence
J is of the type V (B). To generate f we take in X a rational quartic and
a line meeting it in two points, and place them in (1, 1) correspondence
without any united points.

Further, we may choose @ to meet three planes of M % Then f has a
directrix R which is also a triple generator. Any plane through R contains
one other generator, while through any point of R there passes one other
generator. Hence f is of the type VII (B). To generate f we take in X
a rational quartic and one of its trisecants, placing them in (1, 1) corre-
spondence without any united points.
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SECTION III

QUINTIC RULED SURFACES WHICH ARE NOT
RATIONAL

Elliptic quintic ruled surfaces considered as curves on Q

151. Elliptic quintic curves on Q. The elliptic curve of the fifth order is
normal in [4]*. Also we can have on a quadricin [3] an elliptic quintic curve
meeting all the generators of one system in three points and all of the other
system in two points, the curve having a double point; it is the intersection
of the quadric with a cubic surface passing through one of its generators and
touching it in a point. Similarly we can have an elliptic quintic curve lying
on a quadric cone; the curve has a double point and passes through the
vertex, meeting every generator of the cone in two points other than the
vertex. °

We can thus write down the following types of elliptic quintic curves
C which lie on Q, numbering them consecutively with the types of rational
quintic curves.

VIII. The normal elliptic quintic curve C lying in a [4] which does not
touch Q.

IX. C lies in a tangent prime 7' touching Q in a point O but does not
pass through O.

(A) C meets every plane w through O in three points and every
plane p through O in two points, a chord of C passing through O.

(B) C meets every plane w through O in two points and every plane
p through O in three points, a chord of C passing through O.

X. C lies in the tangent prime 7' touching Q in a point O and passes
through O, meeting every plane of Q in two points other than O.

XI. C lies on the quadric @ in which Q is met by a space 8, through
which pass two tangent primes. C has a double point, meeting all the
generators of one system of @ in three points and all of the other system
in two points.

XII. C lies on the quadric cone in which Q is met by a space S; which
itself touches Q in a point V. C has a double point, passes through V, and
meets every generator of the cone in two points other than V.

152. The general type of surface. Suppose that we have a normal
elliptic quintic C in [4]. The projection of C from any line on to a plane
is a quintic curve with five double points, so that any line is met by five
chords of C. Hence the chords of C form a locus V¢ of three dimensions
and the fifth order.

* §8.
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Hence if C belongs to the type VIII any plane of Q2 meets the [4] con-
taining C in a line which is met by five chords of C. Hence we have a
ruled surface in [3] whose double curve is of the fifth order and whose
bitangent developable is of the fifth class.

If C is projected on to a plane from a line which meets it we obtain
a quartic with two double points, so that the line is met by two chords
other than those passing through its intersection with C. Hence C is triple
on V8. If O is projected from one of its chords on to a plane we obtain an
elliptic cubic without a double point; thus there will not be any double
surface on V5.

The intersection of Q with V® is a surface F,1° on which C is a triple
curve; this is the ruled surface formed by the chords of C which lie on Q,
three such chords passing through any point of C. The section of this
ruled surface by a solid is a curve of order 10 with five triple points;
the curve lying on a quadric and meeting every generator in five points.
Projecting from a point of this quadric on to a plane we obtain a curve
of order 10 with five triple points and two quintuple points which is
therefore of genus

36 — 156 — 20 = 1.

But this curve is representative of the double curve and bitangent
developable of the surface in [3]; hence the double curve is an elliptic
quintic curve, while the planes of the bitangent developable form an
elliptic family.

If we take an elliptic quintic curve in ordinary space then, on pro-
jecting it from a point of itself on to a plane, we obtain a quartic with two
double points; hence there are two trisecants of the curve passing through
any point of it, assuming that the curve itself has not a double point.
The surface is, in fact, generated by the trisecants of an elliptic quintic
curve without a double point *.

153. Suppose now that C belongs to the type IX (A). The point O
represents a line R which is a directrix of the ruled surface.

An arbitrary plane p meets 7' in a line which is met by five chords of
C. The plane @ through this line joins it to O and contains three points
and therefore three chords of C. There are two other chords meeting the
line. Hence the double curve of the corresponding ruled surface consists
of the line R counted three times and a conic. R and the conic intersect,
their point of intersection being represented on Q by the w-plane through
the chord of C which passes through O.

An arbitrary plane w meets 7' in a line, and the plane p through this
line contains two points and therefore one chord of C. Four other chords

* See the reference to Zeuthen in § 89.
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of C meet the line. Hence the bitangent developable consists of the planes
through Rand a developable of class four. There is a plane of this developable
passing through R; it is represented on Q by the p-plane which contains
the chord of C passing through O.

154. The ruled surface formed by the chords of ¢' which lie on Q must
clearly break up into two parts; one will consist of the chords joined to
O by p-planes and the other of the chords joined to O by w-planes.

The chords of C which lie in p-planes join the pairs of an ordinary
rational involution on C; hence they form a cubic ruled surface*. The
plane p which passes through the directrix of this surface represents the
plane of the double conic. Then the chords of C which lie in w-planes
must form a ruled surface of order seven with C for a double curve.

We now take the section of this composite ruled surface by a solid
lying in 7'; the solid meets Q in a quadric, and we have on this quadric
a cubic curve meeting every generator of one system in two points and every
generator of the other system in one point, together with a septimic curve
meeting every generator of the first system in three points and every
generator of the other system in four points. This septimic has five double
points through which the cubic passes. The cubic isrational but the septimic
is elliptic, for on projecting it from a point of the quadric on to a plane we
obtain a plane curve of order seven with one quadruple point, one triple
point and five double points, and therefore of genus

156—-6—-3-5=1.

Two points of C which lie in a p-plane through O represent two
generators of the ruled surface whose plane passes through R and whose
point of intersection lies on the double conic; the conic is a rational curve
and the pencil of planes through R is a rational family. But R regarded
as a triple line must be considered an elliptic curve, while the planes of the
developable of the fourth class form an elliptic family.

If we apply a general result for the number of intersections of two curves
lying on the same quadrict we find that the cubic and septimic intersect
in eleven points; ten of these are accounted for by the five double points
on the septimic, the other arises from the chord of C passing through O.

155. If C is of the type IX (B) we have a ruled surface with a directrix
line R; through every point of R there pass two generators, while every
plane through R contains three generators. The double curve consists of

* See the footnote to § 19.

+ If there are two curves on a quadric of which one meets all generators of one
system in z points and all of the other system in y points, while for the second curve
the corresponding numbers are z’ and y’, the number of intersections of the two

curves is 2y’ + z'y.
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the line R and an elliptic quartic curve which meets R; the bitangent
developable consists of the planes through R counted three times together
with the tangent planes of a quadric cone, one tangent plane of this cone
passing through R.

This surface can be generated by taking an elliptic quartic curve and a
line R meeting it in a point; the generators of the surface are those chords
of the curve which meet R.

156. Suppose now that C is of the type X. Then the ruled surface has
a directrix line R which is itself a generator; through each point of R there
pass two generators other than R, while each plane through R contains
two generators other than R.

Any plane of Q meets T in a line and the plane of the opposite system
through this line joins it to O; this contains three points and therefore
three chords of C, so that two other chogds will meet the line. Hence the
double curve consists of R counted three times and a conic, while the
bitangent developable will consist of the planes through R counted three
times together with the tangent planes of a quadric cone. The conic will
meet R and a tangent plane of the cone will pass through R.

The ruled surface formed by the chords of C' which lie on Q here breaks
up into two cubic ruled surfaces and the elliptic quartic cone projecting
C from O.

157. Now let C be of the type XI. There are two tangent primes
of Q through S;, which touch it in points O and O’. These represent
two lines B and R’ which are both directrices of the ruled surface. C has
a double point P which represents a double generator G.

Suppose that the generators of @ which are trisecants of C lie in the
w-planes through O and the p-planes through O’. Then the generators of the
other system will lie in the p-planes through O and the w-planes through 0’.
Through any point of R there pass three generators of the surface which
lie in a plane through R’; any plane through R’ contains three generators
meeting in a point of B. Any plane through R contains two generators
meeting in a point of R’, while through any point of R’ there pass two
generators lying in a plane through R.

Any plane of Q meets S; in a point of Q. C has five apparent double
points, but the five chords which can be drawn from a point of Q consist
of the trisecant generator through the point counted three times, the
other generator through the point, and the line to the double point.

The double curve of the ruled surface consists of B’ and G together
with B counted three times; the bitangent developable consists of the
planes through R and @ together with those through R’ counted three
times.

E 9
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158. Finally, suppose that C is of the type XII. Then the ruled surface
has a directrix R which is itself a generator; through any point of R there
pass two generators other than R which lie in a plane with R; any plane
through R contains two generators which intersect in a point of R.

C has five apparent double points. But if C is projected from a point
of the cone on to a plane we obtain an elliptic quintic with a double
point, and a triple point at which two branches touch. Hence the five
chords of C which pass through a point of the cone consist of the line to
the double point P, and the generator counted four times.

The double curve of the ruled surface thus consists of the double
generator @, together with the directrix R counted four times; the bitangent
developable consists of the planes through @G, and the planes through R
counted four times.

A plane section of the surface is an elliptic quintic curve with a double
point on @ and a triple point, at which two branches touch, on R.

159. We have now obtained six different types of elliptic quintic ruled
surfaces in [3]; these are exhibited in tabular form on p. 305.

Elliptic quintic ruled surfaces in [3] considered as projections of
normal surfaces in higher space

160. A ruled surface of the fifth order which belongs to a space [6]
ig rational, its prime sections being rational normal quintic curves.

Suppose now that we have a ruled surface of the fifth order belonging
to a space [5]. If the surface is elliptic a prime through one of its
generators meets it again in an elliptic quartic curve, unless the surface
is a cone. The elliptic quartic curve lies in a [3]; through this [3]
there passes a pencil of primes. The surface must be contained in one
of these primes, since otherwise each prime of the pencil would contain
a generator of the surface, which would then be rational*. Hence an
elliptic quintic ruled surface which is not a cone belongs to a space of
dimension 3 or 4.

Suppose now that we have an elliptic quintic ruled surface in [3]; a
quadric which contains one of its generators g will meet it again in a curve
C, of order 9. This curve meets each generator of the surface in two points,
and those two points where it meets g are points of contact of the quadric
and the ruled surface. The quadric can be chosen so that it does not touch
the ruled surface elsewhere, so that the only double points of Cy will be
on the double curve of the ruled surface. Hencet C, will be of genus 5.

* The generators would be in (1, 1) correspondence with the primes of a pencil
and therefore with the points of a line.

t §17.
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Now a curve C, of genus 5 in [3] is the projection* of a normal curve
of order 9 and genus 5 in [4]. The generators of the ruled surface in [3]
join pairs of points of an elliptic involution on Cg5; these are the
projections of the joins of pairs of points of an elliptic involution on the
normal curve, and these joins are generators of an elliptic ruled surface in[4].
Since we have on this ruled surface a curve of order 9 and genus 5 meeting
each generator in two points the surface must be of ordert 5; the elliptic
quintic ruled surface in [3] is then the projection of this elliptic quintic
ruled surface in [4]. Hence we have the result: the elliptic quintic ruled
surface is normal in [4]; and any elliptic quintic ruled surface in [3] can be
obtained as the projection of a normal surface in [4].

We now consider the normal elliptic quintic ruled surfaces F of [4].
We find that there are two types of surface, on one of which no two
generators intersect, while on the other the generators intersect each other
in pairs. By projection we obtain from the first surface two of the types
of elliptic quintic ruled surfaces which we have just obtained in [3]; the
other four types of surfaces in [3]are obtained by projection from the normal
surface with a double line.

161. Suppose then that we have, in [4], an elliptic quintic ruled surface

F, of which no two generators lie in a plane. The section of F by a solid
will be a direedrix (i.e. a curve meeting each generator of the surface in
one point) together with, perhaps, a certain number of generators. But
since the directrix must be an elliptic curve it cannot be a line or a conic,
so that no three generators of ¥ can lie in the same solid.
L Any two generators of F determine a solid which must meet F further
in a pldhe cubic curve without a double point ; we have co?solids determined
by the pairs of generators of F, while through the plane of any cubic curve
on F there pass oo! solids each meeting F again in two generators. We
have therefore co! cubic directrices on F; these will be the directrices of
minimum order and there will be a finite number of them passing through
any point of F.

Every cubic curve lics in a solid with any fixed generator g of F'; to
obtain then the cubic curves passing through any point P of F we have
to take those solids which contain the plane gP and meet F in another
generator. The number of such solids is clearly the number of remaining
intersections of the plane gP with F. Now any plane « through g meets
F in three points not on g; for a solid through ¢ meets F' again in an
elliptic quartic curve which meets « in four points, one of these four points
is on g and the other three give isolated intersections of ¢ with F. Hence
the plane gP meets F in two further points, so that through P there pass
two of the cubic curves.

*§8. 1 By the formula of § 17.
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We have then the following result: the normal elliptic quintic ruled surface
F without double points has, as directrices of minimum order, co' plane
elliptic cubic curves; through each point of F there pass two of these curves.

Any two of the cubic curves are put into (1, 1) correspondence by the
generators of F'; this correspondence must have a united point*, so that
any two of the cubic curves intersect. We notice that, in the (1, 1) corre-
spondence between any two of the cubic curves, three collinear points of
one curve do not correspond to three collinear points of the other; for if
they did we should have three generators of F lying in the same solid.

The planes of the cubic curves form a locus W of three dimensions.
The section of this locus by a solid consists of the trisecants of the elliptic
quintic curve in which the solid meets F, and is therefore an elliptic quintic
ruled surface . Hence W is a locus W5 of the fifth order. It is elliptic
when considered as a family of co! planes; the planes of W5 are in (1, 1)
correspondence with the generators of F, since, if any cubic curve of F is
taken, there is one plane of W3¢ passing through each point of it. The point
of intersection of two planes of W is the intersection of the two cubic
curves which they contain and therefore lies on F'; F is a double surface
on W,

162. Now project F from a point O on to a [3] Z. The lines joining O
to the points of F meet X in the points of an elliptic quintic ruled surface
£, while the planes joining O to the generators of F' meet X in the generators
of f.

A solid through O meets F' in an elliptic quintic curve; this has five
apparent double points, or five of its chords pass through O. Hence the
double curve of f is of the fifth order, a plane section of f being an elliptic
quintic curve with five double points.

The class of the bitangent developable of f is the number of solids
which contain a given line through O and also two generators of F. Such
a solid meets F further in a cubic curve, whose plane must then meet the
line through O. Hence the class of the bitangent developable of f is equal
to the order of W5; we have a bitangent developable of the fifth class.

We have a surface in [3] of the type VIII.

Since F is generated by two elliptic cubic curvesin (1, 1) correspondence
with a united point, f is also generated by two elliptic cubic curves (whose
planes both lie in ) in (1, 1) correspondence with a united point.

163. This surface f is the most general type of elliptic quintic ruled
surface in [3] and has been obtained by projecting F from a point O of
general position in [4]. But suppose now that for O is taken a point of W8,

* §19, t §152.
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Then the plane w of W in which O lies meets X in a line R which is a
directrix of f. Since any line of w passing through O meets F in three points
there are three generators of f passing through each point of R, and, since
any solid through @w meets F' in two generators, there are two generators
of f lying in any plane through R. Hence we have a surface f of the type
IX (A).

We can ge