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PREFACE

THIS VOLUME is concerned with a locus—itself very interesting
to explore geometrically—which exhibits in a simple way the
structure of the group of the lines of a cubic surface in ordinary
space, regarded as the group of the tritangent planes of thesurface.
Incidentally certain quite elementary results for the substitu-
tions of 4, 5 and 6 objects are necessary; and, for the sake of
completeness, these are explained in detail. Historically the
linear expression for the group of transformations considered,
and of the different linear expression briefly sketched in Note 2,
of the Appendix, both arose from the theory of the linear trans-
formations of the periods of theta functions of two variables; but,
beyond references to the literature, this is nov dealt with. It is
hoped that the Introduction to the text, and the list of headings
of the sections, will make sufficiently clear what is included. A
brief index of notations is also appended. The argument of the
text requires frequent reference to the Scheme of synthemes
given as frontispiece of the volume.

To some it may seem that such a theme—at this time—is
futile. It is possible, however, to take the view that the primary
purpose of the pursuit of science is not the advancement of
technology, but the widening of the horizon of the human mind.
In this mathematics has always borne an honourable, often a
decisive part; indeed, many cases could be cited to support the
more extreme view that the development of mathematical ideas,
and the emergence of new physical conceptions, are intimately
related.

The general theory of linear groups has developed widely on
the algebraic side since the group considered here—one of the
earliest—was established; and even of this the present is a very
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incomplete account. The writer has had the advantage of the
co-operation, in the reading of the proof-sheets, of Dr J.A.Todd,
who has himself written on the matter, and is very greatly in-
debted to him. He would wish also to acknowledge his obligation
to the Staff of the University Press, especially at this time of
difficulty in the printing of books.

H.F.B.

26 November 1945

INTRODUCTION

In his monumental volume on the theory of substitutions (7'raité
des substitutions, Paris, 1870), Jordan considers the group of the
lines of a cubic surface in ordinary space, which he regards
primarily as the group of the substitutions of the tritangent
planes of the surface. Later in the same volume, with acknow-
ledgements to Kronecker, he considers the group of the trisection
of the periods of a theta function of two variables, proving that
the study of this group is essentially the same problem as that of
the group of the lines of a cubic surface. In a series of papers® on
hyperelliptic functions of two variables, in the Math. Ann.,
Burkhardt obtains five theta functions which are linearly trans-
formed among themselves by the group of the trisection, thus
incidentally obtaining for the first time the expression of the
group of the lines of a cubic surface by linear equations (which
arises also in a different form in his fourth memoir); and he in-
vestigates the homogeneous polynomials in these five functions
which are invariant under the resulting linear group. The simplest
of these invariants is of the fourth order in the five functions.
When equated to zero, this represents a primal in space of four
dimensions, which, considering the thoroughness of Burkhardt’s
work in the four memoirs quoted, may be described as Burkhardt’s
Primal. The geometrical properties of this primal are very inter-
esting; and they form a vivid and simple concrete representation
of the group of the lines of a cubic surface, and its more important
subgroups; and incidentally illustrate the elements of the theory

* Burkhardt, Math. Ann. xxxv (1889), pp. 198-296; xxxvr (1889),
pPp- 371-434; xxxvir (1890), pp. 161-224, 309-12; xur (1892), pp. 313-
43. It is the third of these memoirs xxxvir (1890), which mainly con-
cerns us here, but reference is made to the fourth memoir in Note 2 of the
Appendix at the end of this volume.
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of the substitutions of five and six objects. After Burkhardt
there are two interesting papers by A. B. Coble (American J.
Math., xxvix (1906), pp. 333-66, and Trans. Amer. Math. Soc.
xvix (1917), pp. 331-72), in which the geometrical properties of
the primal are considered. Coble gives explicitly a symmetrical
form of the equation of the primal (to which the equations of
transformation are given by Burkhardt, Math. Ann. XXviI,
P. 205). On account of its symmetry this form is adopted here
as fundamental. Still later Dr J. A. Todd (Quart. J. Math. vix
(1936), pp. 168-74) has added to his other papers on quartic
primals in four dimensions a masterly proof that Burkhardt’s
primal is rational (that is, that its four independent coordinates
are expressible rationally in terms of three rational functions of
themselves), without, however, obtaining the explicit reverse
equations. It is remarked here that this rationality is obvious
when it is seen that there exist on the primal (many) sets of three
planes of which every two have only a point in common; and the
reverse equations are obtained in one of the possible 72.40 ways.

The present account is primarily a study of the geometrical
properties of the primal; and, to be intelligible, must needs con-
tain many results that are not novel. But there are two features
which, so far as I know, are new. The first is a notation for the
forty-five nodes of the primal (and, therefore, effectively, for the
tritangent planes of a cubic surface) which enables the relations
of these nodes to be simply described and verified. The second is
the reference to the projections into itself of which the primal
is capable, of which I have seen no mention. All Burkhardt’s
fundamental transformations are expressed here in terms of these
projections. Burkhardt’s proof that these fundamental trans-
formations generate the group depends upon their derivation
from linear transformation of the periods of the hyperelliptic
functions, and so belongs to the theory of linear transformation of
the periods. It would seem that what is advanced below in regard
to the geometrical projections is sufficient to enable us to dispense

7*—_'—?
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with reference to these periods; but a formal proof of this requires
further elaboration. The elementary results which arise for the
substitutions of five and six objects will not be new to those who
have studied the theory of groups of substitutions, but may be
welcome, from their concrete character, to those less familiar
with the theory.

One remark should perhaps be added here to make the general
statements of this introduction more precise: The group of the
lines of a cubic surface is of order 2¢.3%. 40; this group has a sub-
group of order §(2*.3%.40) or 22.3%.40, which, as Jordan proved,
is simple. This subgroup, regarded, as by Jordan, as a group of
substitutions of the tritangent planes, contains only even sub-
stitutions of these. It is this subgroup which is considered here.
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(1) The fundamental notation. In a space of four dimen-
sions we may use for homogeneous coordinates the six

xl: xz: xa: xti) xs: xs:

connected by the equation z; +x,+ ... + x4 = 0. Throughout we
shall use e for the cube-root of unity, exp (2mi/3). If I, m, n, p, q, r
denote the numbers 1, 2, 3, 4, 5, 6, in any order, the symbol
(lp.mg.nr) shall denote the point for which z, ==z, =1,
z,, = x, = €, ¥, = &, = €% The same point is then represented by
the symbol (mq.nr.lp), or by the symbol (nr.lp.mg). Occasion-
ally, a couple such as [, p may be spoken of as a duad, and the
symbol (Ip.mg.nr), whose three duads contain all the numbers
1, 2, ..., 6, may be spoken of as a syntheme (after Sylvester).
Similarly the symbol [Ip.mg.ni] shall denote the linear function
of the coordinates w;+,+e(x, +2,)+€eX(x,+2,); the prime
represented by [Ip.mg.nr] = 0 is the same as either of those
denoted by [mg.nr.lp] =0, or [ar.lp.mg]. Further (lp) shall

denote the point whose coordinates are z, = 1, x, = —1, with
%, = &, = x, = x, = 0, and [Ip] shall denote the linear function
Xy — %y

We consider the square scheme of synthemes which, for
facility of reference, is printed as frontispiece of the volume, of
which the columns are denoted respectively by {4}, {B}, {C}, {D},
{E}, {F} and the rows by {4}, {B,}, {Co}, {Dy}, {Eo}, {Fy}- In each
column, and in each row, all the fifteen duads of two numbers
from 1, 2, 3, 4, 5, 6 occur, each once; the thirty synthemes which
occur are all different, but to a syntheme occurring in any row and
column there corresponds a syntheme, occurring in the same
column and row, differing from the former syntheme by the

BL I




2 §l. THE FUNDAMENTAL NOTATION

interchange of the order of the second and third duads. Such a
scheme is referred to by Sylvester (Coll. Papers, 1 (1844), p. 92,
and Coll. Papers, 11 (1861), p. 265), and may be used in connexion
with the theory of the Pascal lines of six points of a conic (Baker,

Principles of Geometry 11 (1930), p. 221). But in both these cases

the order of the duads in any syntheme is indifferent, while here
this order is of the essence of the notation. In this scheme, any
duad occurs once in any row, and once in any column; and any
two duads that occur once together occur also together in another
syntheme, but in reverse order. The scheme thus represents
thirty points, each of which can also be characterized by the row
and column in which it appears, and denoted by a symbol
(PQ,), or (Q,P), where P is one of 4, B, ..., F, and @, is one of
A, B,, ..., F,. Forinstance (14.36.25) may be denoted by (4.B,)).
1t will be convenient then to denote [14.36.25] by [A B,]; and so in
general.

It may then be verified that in any column, as in any row, the
five points represented by the synthemes form a simplex in the
space of four dimensions, any four of these defining a prime (or
space of three dimensions). In fact, the points in the first column,
other than the first of these, (14.36.25), or (4B,), define the
prime [14.25.36] = 0, or [4,B] = 0; and the points in the first
row, other than the first of these, (14.25. 36), or (4, B), define the
prime [14.36.25] =0, or [AB;] = 0. Or, generally, if P, @
denote two of the letters 4, B, ..., F, the points of the column { P}
other than (P@,) determine the prime [F @] = 0; and the points
of the row {Q,} otherthan (P@,) equally lie in this prime [F, @] = 0.
(This prime, [F, @] = 0, thus contains eight points, and we shall
see that it also contains the point (F, @), as well as the three points
(Ip), (mq), (nr), if (PQ,) = (Ip.mq.nr).) As we have said, in all
cases the synthemes (F, @), or [F, @], are obtained respectively
from (PQ,), or [P@,], by interchange of the second and third
duads of the syntheme.

Weshall speak of the simplex, whose angular points are those of
the column { P}, as a pentahedron { P}, and equally of the simplex,
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whose angular points are those of the row {,}, as the pentahedron
{Q,}. Thus the pentahedron {4} has, for its angular points, the
points (4 B,), (4C,), ..., (4 F,), and has for prime faces respectively
opposite tothese the primes[4,B] = 0,[4,C] = 0, ...,[4,F] = 0.
Similarly the pentahedron {B,} has for its angular points
(AB,), (CB,), (DB,), ..., (FB,), and for opposite prime faces
respectively [4,B] = 0, [C,B] = 0, ..., [F, B] = 0. We shall also
speak of the twelve pentahedra so arising as Jordan pentahedra,
since the angular points of any one of these essentially occur,
associated together, in Jordan’s theory of the group of the lines of
a cubic surface.

We shall also consider, however, fifteen other Jordan penta-
hedra. Suppose that the syntheme (P@),) is (Ip.mg.nr), so that
(B Q) is (Ip.nmr.mgq). It can then be verified that the five points
(PQ,), (B @), (Ip), (mgq), (nr) form a simplex, with prime faces
respectively opposite to these given by [FQ] =0, [P@,] =0,
[lp] = 0, [mg] = 0, [nr] = 0. This simplex we speak of as the
pentahedron {P@}. In addition then to the forty-five points
(PQ,), (Ip), we consider, in all, twenty-seven pentahedra,
{P}, {Qo}, {PQ}. An angular point of one of these pentahedra will
be called the pole of the opposite prime face of this pentahedron,
this being spoken of as the polar prime of the opposite angular
point. If &,,£,,...,&s be the coordinates of one of the forty-five
points, and the equation of its polar prime be written

Wy By + UsXp+ ... + U = 0,
where the indefiniteness of u,, ..., us which arises from
Ty +Tot...+a;=0

is removed by making the condition u, + %, + ... + %4 = 0, then, in
every case, u, is the conjugate imaginary of £;, or, say u; = £;. If
one of the forty-five primes, say the polar of (£, £,, ..., &), contain
a particular one, (7;,%,. ..., %), of the forty-five points, then the
polar prime of this point contains the poleof the prime in question;
for if £, 2, + ... + £g2; = 0 contain (9, ..., %), then

Eimt+ ... +Em=0,

I-2




4 §l. THE FUNDAMENTAL NOTATION

and this involves 7,& +...+7& = 0, where £; denotes the
conjugate imaginary of £;, ete. Each of the forty-five points is an
angular point of three of the pentahedra; for instance (4 B,) is an
angular point of the three pentahedra {4}, { B}, {4 B}; and (14) is
an angular point of {4 B}, {CD} and {EF}, since, as the funda-
mental scheme given above shews, the duad 14 occurs in the
synthemes (4 B,) or (4,B), (CD,) or (CyD), (£F,) or (E, F); and
we have in fact 3.45 = 5.27. Dually, the opposite prime faces of
the three pentahedra which have a common angular point
coincide in the polar prime of this point, which thus contains the
twelve angular points of these three pentahedra other than their
common angular point. For instance, if the angular point be
(4B,), the twelve points (AC,), (4D,), (AE,), (4F,); (B,C),
(BoD), (By E), (ByF); (44 B), (14), (36), (25), all liein [4,B] = 0;
or again, if the angular point be (14), the twelve points (4.B,),
(40B), (36), (25); (CDy), (CoD), (23), (56); (EF,), (B, F), (26), (35),
which can be written down by the fundamental scheme, since
(AB,) = (14.36.25), (CD,) = (14.23.56), (EF,) = (14.26.35),
all lie in the prime [14] = 0. Algebraically,if (&, ..., &), (91, .-, 76)
be two angular points of the same pentahedron, we have

it ...+ &7 =0.

Dually, each of the forty-five primes contains three sets of four,
of the forty-five points, each set consisting of the angular points
of a pentahedron whose other angular point is the pole of the
prime. Any one of these forty-five primes may be spoken of as a
Jordan prime.

(2) The equation of the Burkhardt pfimal. Now consider .

the locus, in the space of four dimensions in which the coordinates
are &y, ¥, ..., & subject to x;+x,+ ... +ax4 = 0, which is repre-
sented by the equation f = 0, where

f TR lexmxnxp

is the sum of the fifteen products of four different coordinates. As
has been said, this explicit equation is given by Coble (loc. ¢it.),

§2. THE EQUATION OF THE PRIMAL 5

but such coordinates as x,, ..., 2, were suggested by Burkhardt,
and their expression given in terms of the coordinates he em-
ployed (Math. Ann. xxxviii, p. 205).

Then it is easy to verify that the forty-five points, consisting of
the thirty points (PQ,), and the fifteen points (Ip), are all conical
nodes of the primal. For the equation f = 0 is of the form

(.’E[ =+ Ty, + 11':,") xp qur G p (xp + xq + mr) x[ xm z,

+ (X T, + 2, Ty + 2y Tpp) (X %, + 2,2 + 2, %) = O,
where I, m, n, p, q, r denote 1,2, ..., 6 in any order. And the con-
ditions for a node (in virtue of the relation z;+ ...+ 2, = 0) are
that all the first derivatives 3f/dz; should be equal; also

of [0y = x, %%, + (%, + 2, + 2,) Ty Ty

+ (@ 4+ 2,) (2,2, + 2,2, + T, 7,),
af/axp = (¥ +2,+2,) ZgZp + 2 T Ty,
i+ (xmxn + 2,2+ :Um) (xq iy xr);
thus, at the point (Ip.mgq.nr), for which
(T2 s Ts Tps X %) = (1, 8,62, 1,6, €%),
since
x,%,%, =1, 2,+x,+x. =0, x.+22,+2,%,=0,

L+ %+ 2, =0, BTy, = 1, @, +2,5+22, =0,
we see that all the six derivatives are equal to 1; and at the point
(Ip), for which ;,=1, z, = -1, 2, =2, =%, =2, =0, all the
six derivatives vanish. )

Conversely it is easy to verify, from a more compendious form
of the equation of the primal in terms of five homogeneous
variables, which occurs below (§ (13)), that the primal has no
other nodes than these forty-five.

(3) Similarity, or equal standing, of the forty-five
nodes, and of the twenty-seven pentahedra. Itis clear, from
the symmetry of the equation of the primal, that the thirty nodes
(Ip.mq.nr) are entirely similar to one another, and the fifteen
nodes (Ip) are likewise similar to one another. Likewise that the
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twelve pentahedra {P}, {€),} are similar to one another, and the
fifteen pentahedra {P@} are similar to one another. In fact, any
two of the nodes, and any two of the pentahedra, are similar to
one another, notwithstanding the difference of notation. This will
appear at once if we put down a linear transformation of the co-
ordinates which leaves the equation of the primal unaltered and
changes any chosen one of the fifteen pentahedra {PQ}, say the
pentahedron {4 B}, into one of the twelve pentahedra {P}, {@Q,}.
Many such transformations are possible; we choose that given by

X = Xy +EXy+ €Ty, —Xg = Ty + 205+ %0,

Xy = €+ Xy +6x3, —x5 = €24+ X5+ €%,

Xy = €T+ EXy+ Ty, —Xg= €0,+ €25+ g,
where, as before ¢ = exp (27¢/3). These equations, which we shall
in future denote by (z') = y(z), lead to

i+ xp+ ..+ 2 = (1+2€) (@, + 2o+ ... +2) = 0,
and, if f(x,,...,2¢) = 0 be the equation of the primal, lead to
f@y, ..., %) = 9f(xy,...,xg) = 0, as may be verified without
difficulty. The primes of the pentahedron {4 B} in the new co-
ordinates, say
[AB,]' =0, [4,B]) =0, [14]' = 0, [25]) = 0, [36])' = 0,
that is .
@y + 2y Fe(@g+ag) +€X(ap+25) = 0, ..., 21 —a3 = 0, ...,
are easily seen to be given by
[ABy]" = (1—€)[CAol, [4gB] = (1-€)[CB,], [14] = [CD,],
[25] = e[CE,], [36] = e[CE,].
Thus the primes of {4 B} are changed into the primes of {C,}, and
consequently the angular points of {4 B} into the angular points
of {Cy}. For instance, the point (C,D), or (14.56.23), with co-
ordinates (2, ..., %) = (1,€% €2, 1, ¢, ¢€), gives rise to
= —t,=3, #=—aj-ah=a4=0,

that is (14)".
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This is sufficient for our purpose. In fact the similarity of the
twenty-seven pentahedra, and of the forty-five nodes, will be
continually in evidence in what follows.

(4) The Jacobian planes of the primal. If 7, j, k be any
three of the numbers 1, 2, ..., 6, the equations z;/1 = z;/e = x;/e®
represent a plane; and this plane lies entirely on the primal. For,
these equations lead to x;+a;+a); = 0, 22+ 2,24+ 2;2; = 0,
and, if /, m, n be the three numbers of 1, 2, ..., 6 other than i, j, k,
we also have 2+, +, = 0; so that the equations identically
satisfy the equation of the primal. There are twenty sets 4, j, k;
and the plane x;/1 = x;/e? = x;/e equally lies on the primal.
There are thus forty planes, with equations of these forms, which
lie on the primal.

It is found on examination that every one of these forty planes
contains nine of the forty-five nodes of the primal, these nodes
being arranged like the inflexions of a plane cubic curve, so that
they lie in threes upon twelve lines, of which four pass through
every one of the nine nodes, the joining line of any two of the
nodes containing a third node, and the twelve lines form four
triangles such that the nine nodes lie in threes upon the three sides
of any one of these triangles. As this configuration of nine points
was studied by Jacobi, we shall call any one of the forty planes a
Jacobian plane, to facilitate reference to them.

Consider, for instance, the plane /1 = x,/¢ = @,/e2. This
evidehtly contains the collinear points P, @, R, respectively
(56), (64), (45), for every one of which #, = x, = 2, = 0. Also it
contains the points

(ByC), or (15.26.34); (C,4), or (16.24.35);
_ (44, B), or (14.25.36),
with respective coordinates
(1,6,€%¢% 1,¢€); (l,e,€%¢6,€%1); (l,¢ 6% 1,6 6),
which we denote by L, M, N. These are connected by
L+e2M +eN =0,
so that they are collinear.
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It also contains the points L', M’, N’, given respectively by
(EF,), or (14.26.35); (FD,), or (16.25.34);

(DE,), or (15.24.36),
with coordinates

(Le, €%, 1,6%,¢); (1,662,626, 1); (1,6,€% ¢, 1,63,

which equally lie on a line, since L' +e2M'+¢N' = 0. And the
three lines joining any one of P, @, R to the three points L, M, N,
each contain one of the points L', M’, N'. The twelve lines each
containing three of the points are, in fact,

PQR, PMN',: PNL, PLI,

LMN, QNM', QLN', QML,

L'M'N', RLL', RMM', RNN’,
of which the three lines in any one of the four columns contain all
the nine nodes, and four of the lines pass through any one of the
nodes. The existence of the nine lines containing one of the points
P, @, R, one of the points L, M, N,and one of the points L', M', N",
is at once seen if we notice such facts as that, for two points
(lp.mgq.nr), (Ip.mr.ng), of which the symbols are obtained from
one another by transposition of the numbers ¢, », we have the

identity (Ip.mq.nr)—(Ip.mr.ng) = (e—€2) (q7).

Moreover, eight such Jacobian planes pass through any one of
the forty-five nodes. For through the node (Ip.mgq.nr) there pass
the eight planes ;/1 = 2;/e = /€%, in which ¢ may bel or p, and j
may be m or ¢, and k may be n or r. While, through (for instance)
the node (56), there pass the eight planes x;/1 = 2;/e = a;/e?,
/1 = x;/e® = 2 /e, in which 4, j, k are any three of the four
numbers 1, 2, 3, 4. :

If, for a moment, we use non-homogeneous coordinates,
X=0, Y=0, Z=0, T=0 being four primes which pass
through a chosen node, the equation of the primal will be of the
form U,+ U;+ U, = 0, where U; is a homogeneous polynomial of
order i in X, ¥, Z, 7. And, if a plane containing this node lie
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entirely on the primal, any line in this plane, through this node,
will lie entirely on the primal, and so will lie on every one of the
cones U, = 0, U, = 0, U, = 0; the plane therefore lies on each of
these cones. In particular, then, the eight Jacobian planes
through the node lie on the quadric cone U, = 0, and are thus
identified as the intersection of this cone with the primal. This
cone we call the asymplotic cone at the node. A quadric cone such
as U, = 0, in space of four dimensions, contains two systems of
planes, each consisting of co! planes, with the property that two
planes of the same system have in common only the point-vertex
of the cone, while two planes of different systems meet in a line
passing through this vertex; in fact the cone meets a threefold
space in a quadric surface whose generating lines are projected
from the vertex by the planes of the cone. It can at once be
verified that the eight Jacobian planes through any node of the
primal consist of four planes of the asymptotic cone of one
system, together with four planes of the other system; so that
there are sixteen lines through the node, lying on the primal,
through each of which two Jacobian planes pass. For instance,
consider the Jacobian planes through the node (14.25.36): the
planes /1 = x,/e = 23/e® and 24/1 = x;/e = 3/e® meet only in the
node, whose coordinates are (1, ¢, €2, 1, ¢, €2), but the planes

/1 = 2yf6 = z3/e® and zf1 = z,/e = x,/e®

meet in the line 2,/1 = x,/1 = x,/e = a3/e®. Or again, considering
the planes through the node (56), the planes /1 = x,/e = x5/e?
and /1 = x,/e® = x3/e meet only in the node, for which
X, = &, = 3 = 2, = 0, while the planes ,/1 = 2,/e = z,/¢* and
Z4/1 = 26 = 2,/e* meet in the line z,/1 = z,/1 = x,/e = 2,/e2.
The same fact will appear later from another form of the equation
of the primal. Also it will appear immediately that the four lines
in which a Jacobian plane, «, through a node, is met by the four
planes of the opposite system of the asymptotic cone at that
node, are the lines, in the plane ¢, through the node, the vertex of
the cone, which each contain two other nodes of the plane c.
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The Jacobian planes considered have each twelve lines con-
taining three nodes apiece. More generally, it is true that, if an
arbitrary plane be drawn through any line which contains three
nodes of the primal, its residual intersection with the primal is a
cubic curve having an inflexion at each of the three nodes. For
instance, consider the three collinear nodes (56), (64), (45), at all
of which z; = &, = 2, = 0. Let a, b, ¢ be arbitrary numbers and
Py =a+b+e, py=be+ca+ab, p, =abc. The equations of the
general plane containing these three nodes are z,/a = x,/b = /¢,
and for the intersection with the primal each of these fractions is
equal to — (2, + x5 + ) /p;- Thus, from the equation of the primal,
we find that the residual intersection of the plane lies on the cubic
curve obtainable from '

PR 56+ Paly + 25+ 24)
— P1 P2+ X5+ Xg) (X525 + X2y + 24 25) = 05

interpreting x,, x5, 2 as coordinates in a plane, this curve has an
inflexion at each of the three points (0,1, —1), (—1,0,1),
(1, —1,0), the inflexional tangent at the first of these having the
equation pix, — po(@y+ 25+ 2¢) = 0; and so on.

(5) Thex-lines of the primal. It may easily be verified that
through any line containing three nodes in a Jacobian plane
there passes also another Jacobian plane. For instance, recurring
to the enumeration of the nodes in the plane z,/1 = z,/e = z;/e?
given in the preceding §(4), the nodes P, @, R also lie on the
Jacobian plane ,/1 = a,/¢* = x,/e, the nodes L, M, N also lie on
the Jacobian plane z,/1 = 25/e = x¢/e?, and the nodes L', M', N’
on the plane z,/1 = x;/e® = z¢/e. Likewise the nodes P, M, N’, or,
respectively, (56), (1, €, €2, ¢,¢€2, 1), (1,¢, €2, €, 1,€2), lie on the plane
%,/1 = ,4/€® = x,/e; the nodes P, N, L' or, respectively, (56),
(1,€,62 1,€,€%), (1,€,€2, 1,62, €), lie on the plane a,/e = x,/e% = z,/1;
and the nodes P, L, M’, or, respectively, (56), (1,¢,¢€% €% 1,¢),
(1,€,€% €% ¢, 1), lie on the plane z;/1 = z,/e = 2,/e?; and so on—
and, in virtue of the symmetry of the equation of the primal, this
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formulation is quite general. Thus, taking the four Jacobian
planes of one system lying on the asymptotic cone at a particular
node of the primal, and, in each of these planes, the four lines
through the node which each contain two other nodes, we obtain
sixteen lines through the node, each the intersection of two
Jacobian planes; the aggregate of the Jacobian planes thus arising
must then coincide with the eight Jacobian planes passing through
the node, which form the complete intersection of the primal with
the asymptotic cone considered. The sixteen lines which are the
intersections of these planes are therefore such that each contains
three nodes. From the property of a quadric cone in space of four
dimensions the two Jacobian planes which intersect in any one
of these lines determine the tangent prime of the asymptotic
cone at any ordinary point of this line; it will appear later that
this prime also touches the Burkhardt primal at any ordinary
point of this line. In this way then we obtain {40.12,0r15.16, or
240 lines, lying on the primal, of which each contains three nodes,
this number being also § 45.16. Conversely,anyline on the primal
which contains three nodes can be shewn to lie on two Jacobian
planes (cf. § (4)). Thus 240 is the total number of such lines. Such
lines on the primal, containing three nodes, we shall call k-lines.

And, as there are sixteen x-lines through each of the forty-five
nodes, so there are in fact sixteen x-lines in each of the forty-five
polar primes of these nodes, or, as we say, in each of the Jordan
primes which are the prime faces of the twenty-seven Jordan
pentahedra. We have seen that there are, in each such prime,
three sets of four points, each such set consisting of four angular
points of one of the three pentahedra which have the pole of this
prime as common angular point. These sets form three tetrahedra
in this prime. It is the case that the four lines joining any one of
the angular points, of one of these tetrahedra, to all the angular
points of another tetrahedron, pass each through an angular
point of the third tetrahedron. The sixteen lines so obtained each
contain three nodes, the angular points of three tetrahedra. We
may verify this statement in two representative cases:—
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() The prime [4,B] = 0, polar of the node (4 B,), contains
the other angular points of the three pentahedra {4 B}, {4}, { B},
which have (4B,) as a common angular point, as we have re-
marked. The prime thus contains the three tetrahedra whose
angular points are

(ByC), (ByD), (ByE), (ByF),
which we may denote respectively by
P,QR S, LM NT; L, M N,T,

it is then found that these lie in threes on the sixteen lines
(PLL', PUM', PNN', PTT"); (QLM', QML', QNT', QTN');
(RLT', RMN', RNM', RTL"); (SLN', SMT', SNL', STM").
The verification of this, with help of the scheme in § (1), depends
on the two facts thatif U, V, W be any three of 4, B, C, D, E, F,
then the three nodes (UT), (VW,), (W}) lie on a line (for instance
we find (4B,)+¢e(BC,)+eX(C4,) =0); and, if (Ip.mg.nr),
~ (lp.mr.ng) be the symbols of two nodes, differing only by the

transposition of the numbers ¢, », then these two nodes lie on a
line which contains the node (g7).

(b) The prime [14] = 0, polar of the node (14), contains the
other angular points of the pentahedra {4 B}, {CD}, {EF}; these
form the three tetrahedra whose angular points are

(AB,), (4,B), (36), (25); (CDy), (CuD), (23), (56);

(14.23.56), (14.56.23), (S

(

namely (14.36.25), (14.25.36), (36), (25);
(

(14.26.35), (14.35.26), (

or say

Ly M; X, ¥ B M X5 Xy B MY X X
it is then clear that L'L"X, L'M"Y, M'L"Y, M'M"X, are lines,
and two other sets of four lines are similarly found by combining
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the third and first tetrahedra and the first and second tetrahedra;
while evidently XX'X", XY'Y", YX'Y", YY'X" are also lines.

Three tetrahedra related as here are said to be a desmic
system. They are particular cases of quartic surfaces whose
equation, in space of three dimensions, with coordinates z, ¥, z, ¢,
can be taken in the form

a(y?2® + 2%%) + b(2222 + y2) + c(x?y® + 2%%) = 0,

with @ + b +¢ = 0(cf. Note 1 at the end of this volume). The section
of the Burkhardt primal by one of the Jordan primes is a parti-

cular quartic surface of this form. An account of desmic surfaces .

is given in Jessop, Quartic Surfaces, Cambridge (1916), Chap. 1.

It follows from what we have proved, if we consider a particular
Jordan pentahedron, say {4}, that, in each of the four primes of
the pentahedron which meet in a particular angular point, say
(A By), there are four k-lines passing through that angular point.
This gives the sixteen x-lines which we have already shewn to
pass through the node (4 B,). But there are two other pentahedra
with the same angular point, namely {B,} and {4 B}, and each of
these equally gives rise to sixteen «-lines through (4 B,). These
then coincide with the former set. In fact, through each of the
sixteen k-lines from (A4 B,), there passes a prime face of each of the
pentahedra {4}, {B,}, {4B}. These three prime faces do not
determine the line; they are, as we shall see immediately, the
polar primes of three nodes lying on a line, and meet in a plane.
We can verify the identity

[4,C1 (44D (4o B[4, F1— [ BC] [BD,] [BE,] [BF,]
= 3(c2—¢)[14][25] [36] [4B,),

connecting the twelve primes through (4 B) which are the faces
respectively of the pentahedra {4}, {B,}, {AB} (the algebra is
straightforward if we express the left side in terms of the six
quantities @ = 2, +€xy, @y = T; + €%y, b = X3+ €5, by = 2, + €25,
¢ = T3+ €xg, Co = T3+ €2xg). This shews that the plane of inter-
section of any one of the first four primes with any one of the
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second four primes lies on one of the four primes occurring on the
right side. Thus there are sixteen planes through the node
(4 By), each lying in three primes, taken respectively from one of
the three products'of four. Also, for instance, the four -lines
through (4 B,), in the face [4,C] = 0 of the pentahedron {4},
containing respectively, besides (4 B,), the pairs of nodes

(BGy)s (CAy);  (GyD), (35); (GoE), (16); (G F), (24),
lie, respectively, in planes given by the pairs of primes
[BC) =0, [AB,] = 0; [BD,] = 0, [14] = 0;
[BE,] =0,[25]=0;  [BF] =0, [36] =0,

as well as in the prime [4,C] = 0; and further these four lines lie,
respectively, in the pairs of Jacobian planes

@[l = x,/e? = xa/e}. /1 = 2,/e* = xge)

Byl = @5l = wgle) o1 = wyfe = wgle?)’

To[l = 2f€® = ayle) @[l = zyle = z;5/e
/1l = x,)e* = xz,/e} }

?

%, [1 = z5/6* = zgfe
These statements appear at once by reference to the fundamental
scheme given in the frontispiece.

The «-lines thus arise as twelve in every Jacobian piane, six-
teen in every Jordan prime, and sixteen through every node. As
the lines are of importance for the theory of the transformations
of the Burkhardt primal into itself by projections, which arises
below, we enumerate the totality of the x-lines also as follows.
They may be regarded as of three sorts:

(@) Those containing three of the fifteen nodes (ij), arising
from identities such as (i) + (jk) + (ki) = 0. These are twenty in
number, and form a configuration, with these fifteen nodes,
familiar in the discussion of Desargues’ theorem for triangles in
perspective in space of three dimensions, but existing in general
form in fourfold space. This configuration is described by the
scheme

15(.4,6,4)20(3.3, 3)15(6, 4.2)6(10, 10, 5.),

A

§5. THE K-LINES OF THE PRIMAL 15

which means that each of the fifteen points (2j) lies on four of the -
k-lines considered, and also in six planes, and in four solids; also
that each of the twenty x-lines contains three of the fifteen points,
and lies in three planes, and in three solids; that there are fifteen

_planes each containing six of the nodes, four of the «-lines, and

lying in two solids; while there are six solids in the figure, each
containing ten of the twenty nodes, ten of the «-lines, and five of
the planes.

(b) Through each of the fifteen nodes (ij), besides the four
k-lines enumerated under (@), there pass twelve other x-lines,
each containing two of the thirty nodes (P@,). In fact, among
these thirty nodes, omitting six whose symbol contains the duad
(ij), the other twenty-four lie in pairs on x-lines through ().
Conversely, the lines joining any one of the thirty nodes (PQ,),
say (14.25.36), to the twelve nodes (ij) other than (14), (25), (36),
each contain another node of the thirty. Thus there are 15.12
k-lines each containing two of the thirty nodes (P@),) and one of
the fifteen nodes (¢j). The rule, as we have already remarked, is
that, if the syntheme symbols of two of the thirty nodes are
interchanged by transposition of the numbers ¢, §, then their join
contains the node ().

(¢) But, besides the twelve x-lines through one of the thirty
nodes (P@,) which are enumerated under (b), there are four
k-lines through each of these thirty nodes which each contain
two other of these thirty nodes. For instance, through (4B,)
there pass the four x-lines containing (BF,), (PA4,), where P is
any one of C, D, E, IV; for we have (e.g.) the identity

(ABy) +€(BCy) +€(CA,) = 0,

We thus obtain 30.4 or forty k-lines, each containing three
nodes, such as (P@Q,). (@R,). (RE,).

In all, the number of x-lines thus enumerated under (a), (b), (¢),
is 20+ 15.12 + 40, or 240, which is the complete number.

The forty-five nodes can be joined in pairs in 1 45. 44 ways, and
there are 10.27 joining lines each of a pair of angular points of
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the same pentahedron (if we assume that no two pentahedra have
two nodes in common). There remain then 990—270, or 720,
joining lines of a pair of nodes which do not belong to the same
pentahedron; we infer then that each of these latter joins contains

a third node, so giving rise to one of the 4 720, or 240, existing _

k-lines. In other words, the join of any two of the forty-five nodes is
either an edge-line of one of the twenty-seven pentahedra, or is a
k-line, containing another node.

Now let M, N be two nodes of a «-line, being therefore angular
points of different pentahedra. There are three pentahedra of
which M is an angular point, and three pentahedra of which NV is
an angular point. On examination it is found that every one of
the three pentahedra having M as common angular point has a
single angular point common with a particular one of the three
pentahedra having N as common angular point, and the three
new angular points thus arising lie in a line. Each of these three
angular points belongs thus to two pentahedra (one from M and
one from N), and each of these points is an angular point of a
third pentahedron, so that there arise three more pentahedra;
these three additional pentahedra have in fact a common angular
point, the third node lying on the «x-line M N. Whence, any «-line
LMN givesrise to another «-line, say L' M’N’; and, from this, the
original k-line can be conversely derived by the same construc-
tion. From this it follows that, if 4, » be the polar primes re-
spectively of M and N, then, of the twelve nodes lying in g, there
are three, say L', M', N', which coincide with three of the twelve
nodes lying in the prime v, these being in line; and an enumeration
of the two sets of twelve nodes, in # and v, immediately shews
what L', M', N’ are. The polar primes of L, M, N meet in a plane,
in which the line L' M'N’ lies; likewise L, M, N lie in the plane
common to the polar primes of L', M’, N'.

' We shall speak of two «-lines which are associated in this way
as polar k-lines.

Now consider a Jordan pentahedron 2, of which L is an
angular point, the x-line LM N lying in a face A’, of 2, which is

r—

§5. THE K-LINES OF THE PRIMAL 17

opposite to another angular point, L/, of 2. Then the polar primes -
of the two nodes M, N, in A’, necessarily pass through the pole L’
of A’, so that L’ is one of the nodes of the «x-line polar to LMN.
Next, let £, 2" be the other two pentahedra having L as angular
point; both 2’ and 2" have prime faces, through L, which contain
LMN, as we have seen, and the poles of these faces lie in the
prime A. The polar primes of L, M, N thus pass through these two
poles, say M', N’, as well as through the node L’. The polar line
L'M’N’, of the line LM N, is thus one of the lines, in the prime A,
which contains an angular point of each of the three tetrahedra
formed by the nodes in A, these being angular points of 2, 2/, Q".
The other three lines of this character, through L/, in the prime A,
arise similarly from the other three «-lines, in the prime A,
through L. By considering the other three prime faces of 2
through L we similarly obtain twelve other x-lines of the prime A.
And we may in the same way consider every node of 2, and
obtain, corresponding to-every k-line through this, a polar k-line
in the polar prime of this node.

The complete process uses, besides 2, two pentahedra for each
node of 2; in all eleven pentahedra. There remain, then, from the
complete tale of twenty-seven pentahedra, sixteen others. Now,
each face of 2 contains eight nodes, other than angular points of
2, and each such node, defined as an angular point of a penta-
hedron having one angular point common with £, is an angular
point of two other pentahedra, neither of which has an angular
point common with 2. We infer, therefore, that there are sixteen
pentahedra, of which no one has an angular point common with
a specified pentahedron 2, and that these sixteen pentahedra
have their angular points on the faces of 2, namely at the angular
points, eight for each face, of pentahedra having a node common

-with 2, and that each of these sixteen pentahedra has its angular

points in the five faces of 2, one in each, but not at an angular
point of 2. The prime faces of any one of these sixteen pentahedra,
therefore, each contain one of the five angular points of 2. If
two pentahedra which have no common angular point be spoken

BL &
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of as skew to one another, we may thus say that there are sixzteen
pentahedra which are skew to any given one, and that any two skew
pentahedra are both inscribed and circumscribed to one another, the
angular points of either lying severally on the prime faces of the
other.

Two anticipatory remarks may be made in regard to the
preceding argument: (@) If L, M, N be a «-line in the face A’ of a
pentahedron 2, through the angular point L, the harmonic
conjugate of L in regard to M and N lies on the face A polar to L;
(b) Considering the asymptotic cones of the Burkhardt primal at
Land L', four primes can be drawn through the line LL/, each to
touch both these cones along lines, one pair of such lines of contact
being the polar «-lines LM N, L' M'N’ in the faces A’ and A, the
other pairs being the other corresponding «-lines through L and
L' in these faces. Both these remarks are established below.

As illustration of the derivation of the polar «-line of a given
k-line, we may consider the k-line, in the face [4,C] of the
pentahedron {4}, which contains the angular point (4B,) and
also contains the nodes (BC,), (C4,). The polar primes of these
three nodes each contain twelve nodes, which are, respectively,
for the three nodes in turn,

(4Gy), (ADy), (AEy), (AF,), in {4};
(BoC), (ByD), (ByE), (ByF), in {B,};
(4, B), (14), (36), (25), in {AB};
(BAU): (B-DO): (BEO)’ (B‘Fo)s in {B}>
(CoA), (CoD), (G E), (CyF), in {Cy};
(B, ), (15), (34), (26), in {BC};
(CB,), (CDy), (CE,), (CE), in {C};
(Ao B), (4oD), (4o E), (4, F), in {4y};
(Cod), (16), (35), (24), in {CA4},"

the nodes in {A B}, {BC}, {C A} being read off from the funda-
mental scheme of § (1). The first two sets here put down have in
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common just the three nodes (4C,), (CB,), (B4,), and these
belong to those in the third prime, which contains the plane
common to the first two primes. More generally, the polar «-line
of that containing the nodes (PQ,), (QR,), (RE,)is that containing
the nodes (Po Q)a (QU‘R): (RO P)

Or again, consider the k-line which is the polar of the «-line
containing the nodes (23), (31), (12). As we see from the funda-
mental scheme given in §(1), the node (23) is the common
angular point of the three pentahedra {4 F}, {BE}, {CD}; the
node (31) is the common angular point of the three pentahedra
{AD}, {BF}, {CE}; and the node (12) is the common angular
point of the three pentahedra {4 E}, {BD}, {CF}. Also the node
(56) is common to {CD}, { BF}, {A E}; the node (64) is common to
{AF}, {CE}, {BD}; and the node (45) is common to {BE}, {4D},
{CF}. Thus the polar line in question is that containing (56), (64),
(45). Ingeneral, ifl, m, n, p, ¢, r be the numbers 1,2, ..., 6, in any
order, the two «-lines (mn), (nl), (Im)and (gr), (rp), (pq) are polars.

Finally, consider such a -line as that containing (AB,), (CDy),
(26), of which the two former have the symbols (14.36.25),
(14.23.56), which are interchanged by the transposition of the
numbers 2 and 6, there existing the identity

(4.By) —(CDy) = (¢*—¢) (26).

To obtain the polar «-line, we consider the nodes (4D,), (CB,),
obtained by transposition of B, and D, in the first x-line, which
have the symbols (13.45.26), (15.26.34); these symbols are
interchanged by transposition of the numbers 1 and 4, and there
exists the identity (4D,)—e(CBy) = (1—¢)(14). Thus (4D,),
(CB,). (14) belong to a x-line, and it is easy to see that this is
the polar x-line in question. Here, the duad 26 occurs in the
symbols of both (4 D) and (CB,), and the duad 14 occurs in the
symbols of both (4B,) and (CD,). In general, if the symbols
of (PQ,), (RS,) be interchanged by the transposition of two of the
numbers 1, 2, ..., 6, then these two nodes belong to a «-line, whose
polar k-line joins the nodes (PS,), (RQ,).

—— — - s
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(6) The Burkhardt primal is rational. In a Jacobian
plane w, take three nodes P, @, R, which are not in line. Through
each of the «-lines forming the sides of the triangle PQR, there
passes then another Jacobian plane, as we have said. We easily
shew that these planes a, £, v, respectively through QR, RP, PQ,
have no intersections besides the points P, ), R. For, the planes
B, v lie on the asymptotic cone of the primal at P, and both meet
the plane @, which also lies on this cone, in a line; they are then
of opposite systems to @ in the planes of this cone, and therefore
of the same system to one another, and so only meet in P. Like-
wise for y, o and for «, . We may say then that every two of
these planes are skew to one another.

But, in space of four dimensions, a single line can be drawn
through an arbitrary point H, to meet each of three skew planes
e, £, 7, in a point, this being the line common to the three primes
(H,et), (H,B), (H,y). Taking H on the Burkhardt primal, this
line will meet an arbitrary threefold space /7 in a point K, which
then, the planes a, f, ¥ being given, is determined by H, while,
conversely, there is a definite line through an arbitrary point X of
the space /7, meeting the planes «, £, v each in a point, and, as
a, f3, v lie on the primal, which is of order 4, this line through K
will meet the primal in a further point H, equally determined by
K. There is thus a definite point to point correspondence between
the primal and the space I7, evidently expressible by rational
equations in both senses. We shall obtain these equations
explicitly for one choice of the planes «, f, v, in a later section
(§(14))-

There are three lines in which the solid 77 is met by the planes
a, 3, y, which as «, f, y lie on the primal, are also on the primal.
Evidently these lines are exceptional in the transformation.

We can shew that there are 72.40 sets of three planes, such as
a, B, v, lying on the primal, which are mutually skew in pairs.
For first, in any given Jacobian plane, there are }9.8.7—12, or
seventy-two triangles whose angular points are nodes. Taking all
Jacobian planes we can thus obtain 72.40 such sets of three
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planes, no two of which coincide, since the plane containing the
three nodes where the planes meet in pairs, coincides in each
generation with the Jacobian plane from which the set is gener-
ated. Conversely, if «, f#, ¥ be any three mutually skew Jacobian
planes lying on the primal, the points P = (f,7), @ = (v,2),
R = («, ), must be nodes of the primal, since there are lines
through each point, lying on the primal, which generate two
planes. And each line such as Q R, joining two nodes of a Jacobian
plane, must be a x-line. The second Jacobian plane «’, through
@ R must then meet £ and v in lines, as we see by considering the
asymptotic cones at @ and R. These two lines, in the plane o/,
must then meet, and can only meet in the single common point of
£ and y, which is P. Thus o’ is the plane PQ R, which, coinciding
with &', is a Jacobian plane. There is then no other way of
obtaining three such skew planes as a, f, v than that followed
above. The total number 72.40 of such sets of three planes, is
obtainable also in the form % 45.8.24, by considering the eight
Jacobian planes through every node such as P, and, therein, the
triangles such as PQE.

(7) The particular character of the forty-five nodes,
and the linear transformation of the primal into itself by
projection from the nodes. It can be shewn that, if the equa-
tion of the Burkhardt primal be expressed in terms of four
non-homogeneous coordinates X, ¥, Z, T, vanishing at a node,
so that its equation takes the form U,+ U,+ U, = 0, in which
[7; is homogeneous of order ¢ in X, ¥, Z, T, then the quadric
cone U, =0 forms part of the cubic cone U; = 0; so that the
equation is really of the form Uy(1+U,)+U; = 0, where U] is
linear in X, ¥, Z, 7. Thus a line through the node which lies
on the asymptotic cone U, = 0, and does not lie entirely on
the primal meets the primal only at the node. But a more
interesting consequence is that, if a line through the node O meets
the primal again in P and P’, and H be the harmonic conjugate
(P, P)[0, of O in regard to P and P’; then the locus of H, for all
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lines through O, is a prime. The equation of this prime is, in fact,
24 U, = 0. In terms of five homogeneous variables ,y, z, t, u, if
the equation of the primal be denoted by F = 0,and (§, 9, ¢, 7, w)
be the coordinates of a node, the statement is that the cubic
polar F2 F, contains the quadratic polar F7 F; as a factor. To
express formally the results of this, let the line joining the node
(£, 3, & 7, w) to another point (z, ¥, 2, t, u), lying on the primal,
meet the primal again in the point (2',y',2',#’,u'); then, sub-
stituting for 2, ¥, 7', t', %', in the equation of the primal,
& =x+AE, =y+An, Z=z2+AL, t' =t+Ar, ' =u+Ao,
we have

F4 + 4AF3 F, + 6A°F% 3+ 4X°F, F3 + X4F} = 0,
wherein F4 =0, F¢ =0, and F,F} =0 because (,...,0) is a
node. Thus we obtain

2F5 Fe+ 3AF,F; = 0.

Now assume the property stated above, that F3F/F3F% is
(identically in regard to ., ...,u) equal to a linear function of
.1, ..., %, because of the character of the node, and so put

2FEF|F2FE = 0,2+ 03y + ... + 05U, = ¥, SAY;
then we have
¥ =x2—31v, ¥=y—-I.v, .. wW=u-iov.y,

whereby 2,7/, ..., u’ are expressed as linear functions of z, 7, ..., u.
In terms of the node O, and the points

B =l )y PS4 e );
this result is expressible in the form
(P)=(P) = —4v,(0),

and for the harmonic point H, of O, in regard to P and P’, we
may thus take (H) = 3[(P')+(P)], or (H) = (P)—{v,(0). If
then (hy, o, ..., h;) be the coordinates of H, we have

Uy = Vp— §0, 0 = V(1 —Fvy).
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Now, in the identity by which v;,...,v; were defined, put
x=E+0y,y=1n+0,, ..., u = 0+0;; thence,

s 2AF+ By E 6F:F;+2FF, +2F§FE
=T (B+ B2 F = F3F¢ - F3F%
= 6+ 0,0, + 0,05+ ... + 9505
so that, if we take #, =0, = ... = 0; =0, we infer that v; = 6.

Hence we have v, = 0. In other words, as P varies, the harmonic
point H describes the prime v, = 0.

The most direct way to prove the property of the nodes of the
primal which we have enunciated is to express the equation of the
primal in terms of the primes which are the faces of a Jordan
pentahedron, as will be done below (§(15)). But we can avoid
this, and dispense with the general formulation just given, by
examining the cases of two representative nodes, with the equa-
tion Za,x;x;,%,; = 0 used above.

One such node is (14), or (1,0,0, —1,0,0). We substitute then

2 =2y +A, =Ty, Ty=y Ty=T—A, =2y AR
in the equation
() + o + X3) Ty X5 X+ (T4 + T3+ Tg) Ty Xay

+ (a5 + T3y + 21 X5) (%50 + X%y + 24 %5) = 0,
and so obtain, as (2, ..., %) and (1, ..., %) lie on the primal, the
result

(xg—2,—A) U = 0, with U = @306+ 2525+ (@y + @5) (5 + 2)-
Thus, assuming U not to vanish, in which case the line joining
(%3, ---» %), (@1, ..., 2g) would lie entirely on the primal, we have
A = 2,—,. Inother words, (], ..., %) is obtained from (zy;, ..., %)
by interchange of #; and z,. And the harmonic point of the
node, in regard to P = (2y, ..., %) and P’ = (x3, ..., 25), which is
H(P)+(P')] or
(P) a3 éﬁ(l, 0, 0= = 1: O: 0): or [é(ﬂh"l‘ xl): Ly, Ty, %(xtl o+ xl): T5» xs],

describes the prime [14] = 0, namely the polar prime of the node
(14).
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Another representative node is (4,B), or (14.25.36), with
coordinates (1, ¢, €2 1,¢,€%). If then we substitute in the equation
of the primal the values

Ty = +A, Xy =+6A, Tg=x3+€A,
Tg=1,+A, X =225+€A, 5=+,
using the facts that (zy, ..., %) lies on the primal, and -
Tyt+...+2=0,
we find, with U = 2,2, + €%, %5 + 2,2, that
(@ + 24 + €%(2y + 25) + e(x3 +26) +3A] U = 0,

so that, unless U = 0, in which case the joining line of (zy, ..., %)
and (a1, ..., 25) would lie entirely on the primal, we have

A= —:Ii[ABOL

and the equations of transformation are

’ , € r €?
2y =&, —§[A4B,], ;= xz_g[ABo]: &3 = xs—'g[ABo];

: y € . 2
xy = 2, —§[AB,], a5= xs'g[ABo]: Zg = xs_% [4B,].

The harmonic point of the node in regard to (y,...,2;) and
(1, ..., T5), say (X, ..., X¢), being

2
Xy=2,~}{AB], X;=2;—G[AB], X;=2,—%[AB],

(t=1,4;5=2,5; k=3, 6), is such that
X+ Xy +6(X3+ Xo) + €3 X, + X)
= 2y + &4 + (T3 + Xg) + XXy +25) — §(2+ 2+ 2) [AB,] = 0,
so that this harmonic point describes the prime [14.36.25] = 0,
or [AB,] = 0; this again is the polar prime of the node (4,B)
from which the projection is made.

We thus obtain, corresponding to any node (£, ..., &) of the
primal, the general linear transformation

7
z; = z;— 3§, @,
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which, when (2, ..., %) is a point of the primal, leads to another
point of the primal. This we shall speak of as a projection from the
node (&, ..., &), and often denote by p(§). Herein, w is a linear
function of y,...,2, which, in case (&;,...,&;) is one of the
fifteen nodes (Im), is equal to 3(x;—=,,), or 3[lm], and, in case
(&5, .-, &) is one of the thirty nodes (PQ,), is equal to [F,@].
Thus w = 0 is the equation of the polar prime of the node
(&4 .-, &), and, when (a5, ..., %), (23, ..., ;) are on the primal, is
the locus of the harmonic point of the node in regard to these.
When (2, ..., %) is a point of a prime passing through the node
(&1, -..,&¢), the transformed point evidently lies in this prime.
When (x,, ..., %) is a node, other than (&, ..., &), such that the
joining line of these does not lie on the primal, the geometrical
interpretation shews that (g, ...,2;) coincides with (2, ..., %),
and it is in accordance with this that the polar prime of (&, ..., &)
is transformed into itself. When (z,, ..., ;) is a node such that its
join to (£, ..., &) lies on the primal, this joining line being then a
k-line, the algebra does not directly apply. But in fact it may be
proved in this case that the point (21, ..., %) is the third node of
the «-line, so that the polar prime of one node of a k-line contains
the harmonic point of this node in regard to the other two nodes of
this x-line. The forty-five nodes of the primal, other than a chosen
node (&, ..., &), consist of the twelve nodes lying in the polar
prime of (£, ..., &), which are all unaltered by the projection, and
of the sixteen pairs of nodes lying on the sixteen x-lines through
(&1, .-, &), of which those of any pair are interchanged; thus a
projection gives rise to an even substitution among the nodes of
the primal. We add the simple remark that, for all the forty-five
nodes, with @ either 3(z;—2,,), or [F, @], in the notation above,
the substitution of £, ...,&; respectively for z;, ...,z leads to
@; = 6. Thus w,, is w,—2w,, or w, = —w,, namely, the linear
form whose vanishing gives the polar prime of a node is changed
in gign by the projection from that node, but the linear form
whose vanishing gives any prime through the node is unaltered
by the transformation, because the node lies on this prime.
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Evidently, too, in a succession of two transformations which are
projections from two angular points of a Jordan pentahedron,
the order in which these transformations are carried out is in-
different; and the succession of the five projections from the
angular points of the pentahedron leads only to a change of sign
of all the coordinates of the projected point, which is thus
unaltered.

The projections give forty-five linear transformations of the
primal into itself; these are connected by many relations. Butit
will appear that all linear transformations of the primal into
itself are obtainable by combination of such projections.

We have just remarked that the transformations of the primal
by projections from two nodes whose join is not a «-line, are
commutable with one another, so that the square of their product
is equivalent to identity, and that the composite transformation
obtained by projections from all the angular points of a Jordan
pentahedron is equivalent to identity. For the relations con-
necting the forty-five projections, the relations connecting the
projections from three nodes which lie on a x-line are important.
If such three nodes be denoted by «, £, ¥, and the projections
from these be denoted by p(a), p(f), p(v), it is found that

p(B)p p(y) ple) = p() p(p)s
[p(8) p( 7) 1= p(w)p(ﬁ) = p(a) p(y) = p(B) pla),
[p(B)p(¥)P =1,

so that, for instance, p(a) = p(f)p ( ) p(p) = p(#) ply). With
the three projections p(e), p(f), p(y), we thus obta.m a group of
six transformations, 1samorph10 w1th the substitutions of three
letters. These statements are immediately obvious for three
nodes (jk), (ki), (ij), but can be verified by the general formula for
both the other types of k-line enumerated under (b), (c) in §(5).

(8) The forty Steiner threefold spaces, or primes, be-
longing to the primal. There are forty solids, or primes, whose
intersections with the Burkhardt primal consist each of a quartic
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surface which breaks up into four planes. These planes are then
Jacobian planes. The equations of these primes are of one of the
two forms z;+ 2, +x, = 0, x,—ex,, = 0. The former equation, if
l,m,n,p,q,rbethenumbers 1,2, ..., 6insome order, is equivalent
with z, + z,+x, = 0,and thereare ten primes withsuch equations;
of primes with equations of the form z;,— ex,, = 0 there are 2.15,
or 30, the two numbers [, m giving rise to two z;—ex,, = 0 and
z,,—ex; = 0, of which the latter is ;— €%z, = 0. Notwithstanding
the difference in the forms of the equations, these forty primes are
of equal standing; to see this we may employ the self-transforma-
tion of the primal (2') = y(z) already used in § (3); this leads to

&) — € = Xy + €Wy + X3+ €X,y + B5+ g = (€— 1) (X + Xy + 5),
and
7’
Xy + 2y + 25 = 26y — 6%y — €25 — 2y — €25 — 25 = (e — 1) (x; — €%x,),

which are sufficient to shew that there is no difference in character

between primes of the form z;+z,,+2, = 0, and primes of the

form 2, —ex,,= 0. This transformation also gives, for instance,
i+ s+ ay = (€2—1) (2 — €xy).

The four planes in which any one of the forty solids meets the
primal form a tetrahedron in this solid. For reasons referred to
below, we call any of these solids a Steiner solid, and the tetra-
hedron therein a Steiner tetrahedron.

As an example of the statement made, which is also effectively
a proof of it, consider the solid x,+,+a, = 0. This prime
evidently contains the four points F, R, L, T of respective

coordinates
F(0,0,0,1,¢,¢%); R(l,e6%0,0,0);

L(1,€%€,0,0,0);: 17(0,0,0,1,€%¢),

which form a tetrahedron, the faces RTL, TLF, TFR, FRL
being the respective planes

/1 = ax5fe® =xife;. 21 = x,/e® = xy/e;

231 = Zyle = 3/€?; /1 = z5e = 24/€,
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which are Jacobian planes, lying on the primal; these meet in
edges, TL, FR; TR, LF; LR, TF containing, respectively, the
nodes -

(BCO)’ (CAO): (A Bo)§ (Bo 0): (OOA)r (AOB); (EF:)): (F-Do)s (DE{]):
(Bo F), (Fy D), (Dy E); (23),(31),(12); (56), (64), (45),

as we immediately find from the fundamental scheme of nota-
tions in §(1). The opposite edges of the tetrahedron are thus
polar x-lines, by what we have seen, and any pair of opposite
edges determine the solid. Indeed, any one of the edges, being a
k-line, determines the opposite polar x-line, and then the pairs of
Jacobian planes passing through these two edges determine the
tetrahedron, and the other two pairs of opposite edges.

As another example, consider the solid whose equation is
%5 — €%y = 0. Itis clear that this contains the four points 7, R, L,
T, of respective coordinates

F(l;1,e, -2,e21); R(—2,1,¢1,¢%1);

L(1,1,¢,1,6% —2); T(1,-2,¢1,e2 1),
forming a tetrahedron with the respectively opposite plane faces
RLT, LTF, FRT, FRL given by

23/l = y[e* = xsfe;  2,/1 = z4fe = 5/e?;

Byl = wsle = @gle?;  zy(1 = wole = w,fet,
which are Jacobian planes, lying on the primal. The three pairs of
opposite edges T'L, FR; TR, LF; LR, TF are then pairs of
polar -lines containing respectively the nodes
(ABy), (CDy), (26); (ADy), (CBy), (14); (EGy), (F4,), (12);
(EAy), (FCy), (46);  (BE,), (DE,), (16);  (BE,), (DF,), (24),
as we easily verify by the scheme given in §(1).

The 240 existing «-lines thus appear as distributed in sets of

six in the forty Steiner tetrahedra, no two of which, as we have

seen, have a common edge. Alsoitiseasy tosee, in each case, that
the pair of Hessian points of the three nodes lying on an edge of a
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Steiner tetrahedron are the two angular points of the tetra-
hedron lying on that edge; in any Steiner space, if X = 0, ¥ = 0,
Z = 0, T = 0 be the equations of the faces of the tetrahedron, the
eighteen nodes lying on the edges of the tetrahedron lie in fact
upon a cubic surface whose equation may be taken to be
X+ PP+ 22+ T3 = 0.

The twenty-seven lines of this surface are the lines joining the
three nodes in any edge each to all the nodes of the opposite edge.
Thus the eighteen nodes lie in sixes upon twenty-seven planes;
these planes do not lie on the Burkhardt primal; each meets the
primal in a quartic curve which breaks up into four «-lines (see
§ (9) following).

The Steiner solids arise differently below (§(13)), where we
express the equation of the Burkhardt primal in terms of five
primes, of which one is a Steiner solid, taken with four associated *
solids, in forty different ways. From the new equation it is
instantaneously obvious that every Steiner solid is a tangent
prime of the primal, and of a singular character, in that the solid is
the tangent prime at every ordinary point of every one of the siz edges
of the Steiner tetrahedron contained therein. This may also be
verified with the equation used here.

(9) The plane common to two Steiner solids. Inevery
one of the four faces of a Steiner tetrahedron, in addition to the
triangle formed by the edges in that plane, there are (§(4)), three
other triangles, of which the sides are «-lines, so that all the nine
nodes of the plane lie on the sides of any one of the four triangles.
Through each side of such a triangle, besides the plane of the face
considered, there passes another Jacobian plane. It can be
proved that the three new planes so arising from any one of the
three additional triangles in this plane face, form with this plane,
the faces of another Steiner tetrahedron. Thus there are twelve
Steiner solids each having a plane, lying on the primal, in
common with a given Steiner solid, three of these for each of the
planes of the given Steiner tetrahedron. For instance, the
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Steiner solid z,— ez, = 0, evidently has, common with the solid
&, + %, + x5 = 0, the plane x;/1 = w,/e* = x,/e. And it can be
shewn that the transformation, which we denote by (z") = B(x),

given by
Xy = B+ €T3+ €T,  —Xy = Ta+ X+ 6%,
’ ’ 2 2
Xg = €X; + Tz + €T,  —Ty = €2y + T4+ €705,
Ty = €%, +EX3+ T,  —Xg = XXy + 62X, + X5

(which evidently leaves the primal unaltered, because it is
obtainable from the transformation (2') = y(z), of §(3), by
suitable substitutions among z,, ..., @, and suitable substitutions
among (x, ..., %)) leads to

vt tay = (€ —1) (v, —ex3), @y—ewy = (6—1) (@ + 2y +25).

Similarly, the Steiner solid z; +2,+ 2, = 0, which is entirely
general, has a Jacobian plane in common with each of the twelve
solids ay—ex,, =0, a,—e%x, =0 (I, m being any two of the
numbers 1, 2, 3, or any two of the numbers 4, 5, 6).

There remain then 40 — 12 — 1, or 27, Steiner solids which have
not a Jacobian plane in common with a given Steiner solid, say
2, + 2, + a5 = 0. These consist in fact of the nine solids

xp+$;+$m = 0,

where [, m are two of the numbers 1, 2, 3 and p is one of the
numbers 4, 5, 6, together with the eighteen solids, 2,—ex, = 0,
2, —e%,, = 0, where [ is one of 1, 2, 3 and p is one of 4, 5, 6. Any
two such Steiner solids, infersecting in a plane which is not a
Jacobian plane, with their associated Steiner tetrahedra, are in fact
in perspective with one another from one of the forty-five nodes, and
their common plane lies on the Jordan prime which is the polar of
this node. For example, we may consider first the case of the two
Steiner solids &, + @, + 23 = 0, 23+, + 23 = 0, and then the case
of the two solids #;+,+2; =0, 2, —ex, = 0. Evidently, the
two first solids meet on the Jordan prime [14] = 0, and are
projections of one another from the node (14). The prime [14] = 0
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contains the twelve angular points of the pentahedra {4 B}, {CD},
{EF}, which have (14) for common angular point, namely,

(EE), (E,F), (26), (35).

(4oB)

Of these twelve nodes there are six lying in both 2, +2,+ 23 = 0
and ,+ %, + 5 = 0, these being the intersections of four k-lines
lying in the common plane of the two solids, namely,
(4o B), (B F), (23); (4o B), (EF), (56);

and this common plane does not lie on the primal.

Considering next 2, +,+2; = 0 and x; —ex, = 0, we verify
that

(e2—¢) [y + 5+ 25+ €(2; — €%4)]

= &)+, + (25 + %) + €X(@2 + 2p), = [G D)

hence these two Steiner solids meet in a plane lying on the Jordan
prime [Cy,D] = 0; also @+, +x;—€(x; —€x,) vanishes at the
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pole (CD,), or (14.23.56). Thus [C, D] = 0is the harmonic prime

of (CD,) in regard to the two Steiner solids. Further, the six nodes
(OAo)s (OB(])’ (DOE)s (-D() F)) (23): (56),

which lie in [Cy D] = 0, are easily seen to lie bothin z; + 2, + 24 = 0

and in @, — ez, = 0, and to be the intersections of the four -lines
(CBy), (Do E), (23); (CBy), (Dy F), (56);

(CAy), (DoE), (56); (CA,), (D F), (23),
whose plane, common to the two solids, does not lie on the
primal.

T

Conversely, take the Steiner tetrahedron in the solid
2+ 2 +23 =0,
and one of the nodes, say (4, B), in the edge containing (4, B),
(B,C), (C,A). Through this node can be drawn a «-line, besides
this edge, in each of the two faces of the tetrahedron which meet
in this edge; say these are (4,B), (23), (E,F) and (4, B), (EL),
(56). In the plane of these two lines the «-lines joining (EF,), (23)
and (56), (E,F) must meet; and they meet in the node (4 B,)
lying on the edge of the tetrahedron opposite to that on which
(4, B) is taken. The diagonals of the quadrilateral so formed by

§9. PLANES COMMON TO TWO STEINER SOLIDS 33

the four «-lines, namely the lines (23), (56); (4B,), (4,B);
(EE,), (E,F), do not lie on the primal, but each is an edge of a
Jordan pentahedron, respectively {CD}, {AB}, {EF}; and these
pentahedra have a common angular point, namely (14), whose
polar prime contains the four x-lines; the solid ; + 2, +; = 0 is
projected from (14) into x, + 2, + 2, = 0, which equally contains
these four x-lines. As the three nodes (4,B), (23), (EF,), which
determine the construction are, each, one of three in the edge in
which it lies, the construction can be made in twenty-seven ways,
and leads to the twenty-seven Steiner solids which meet

X1+ 2+ =0

in a plane not lying on the primal; these twenty-seven solids are
the projections of z; +a,+ 2, = 0 from the twenty-seven nodes
other than the eighteen nodes which lie on the edges of the
tetrahedron belonging to ; +z,+ 2, = 0.

Such a plane of intersection of two Steiner solids which have no
Jacobian plane in common, may, for distinctness, be called a
cross-plane. By what we have seen, the number of such planes is
140.27, or 540. Each lies in a particular Jordan prime, so that
the number in a particular Jordan prime is 540 + 45, or 12. The
three diagonals of the quadrilateral of x-lines in such a plane are
respective edges of the three tetrahedra formed by the nodes in
the Jordan prime, and, as each tetrahedron has six edges, there
are two of the cross-planes through every one of the eighteen
edges of the three tetrahedra; in fact, for three tetrahedra in
desmic relation, in a threefold space, there are twelve planes each
containing an edge of all three tetrahedra, two of these planes
through every edge.

We refrain from further elaboration of the theory of the cross-
planes, making only the following remarks: (1) a Steiner solid
contains forty-two «-lines, of which seven pass through each of
the eighteen nodes; (2) through every x-line there pass seven
Steiner solids, of which only one has this x-line as an edge of the
associated Steiner tetrahedron; this is in agreement with

BL 2
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7.240 = 40.42; (3) there are sixteen Steiner solids containing
any node, the remaining twenty-four Steiner solids being in
perspective in pairs from that node, but through two nodes
whose join is not a x-line there pass four Steiner solids; (4) the
four k-lines of a cross-plane have for polars four x-lines which all
contain the node which is the pole of the Jordan prime containing
the cross-plane.

(10) The enumeration of the twenty-seven Jordan pen-
tahedra, and of the forty-five nodes, from the nodes in
pairs of polar x-lines. The nodes in one edge of a Steiner
tetrahedron can be joined to the nodes in the opposite edge by
nine lines. These are not x-lines, but each is an edge-line of a
definite Jordan pentahedron. We illustrate this by considering
the three pairs of opposite edges of the Steiner tetrahedron
considered in the first example of §(8). Each of these pairs of
edges gives rise to edge-lines of nine pentahedra

| (BCo) (C4o) (4B,)

(B,C) | {BC} {C} {By} (EF)
(Cod) | {C} (€4} {4} (FoD)
(4,B) | {B} {4} {4B} (DoE)

|(BF,) (FDy) (DE;) | (36) (64) (45)
(BF} (F) (B} (23) (CD} (AF)(BE}
{Fo (FD} (D} (31)|{BF}{CE} {4D}
(B} (D} (DE} (12)|{AE}{BD}{CF}

and the schemes put down shew what these pentahedra are. For
instance, in the first scheme (BC,), (B,C) are angular points of
the pentahedron {BC}, while (C4,), (B, C) are angular points of
the pentahedron {C}.

We see that all the twenty-seven pentahedra arise from the
aggregate of the three schemes. Moreover, each of these penta-
hedra has three nodes besides the two by which it is enumerated;
thus, if we take one pair of opposite edges, say those in the first
scheme, we obtain 9.3 or twenty-seven nodes besides those in the
two edges. If we consider the second pair of opposite edges, and
the second scheme, we likewise obtain twenty-seven new nodes,
but these are the same as those arising from the first pair of
opposite edges. The third pair of opposite edges likewise

; .
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give the same twenty-seven nodes. And these twenty-seven, in_
fact, are those of the forty-five nodes other than those on the six
edges of the tetrahedron. Thus all the forty-five nodes arise from
the chosen Steiner tetrahedron. A similar remark, and schemes,
arise for the other Steiner tetrahedron considered in § (8):

| (4B,y) (CDy) (26) | (BE,) (DFy) (24)

(B} {Fu {BF} (EC,)

(B} (D} {DE} (FA,)
{BE} {DF} {4C} (12

| (B40) (FO) (46)

B (0} (CB}
(4} {F) (4F}
(B} (CF} {BD}

(ADy) | {4} {Dy} {4D} (BF,)
(CBy) | (B} {C} {(BC} (DB,
(14) | (4B} (€D} (BF} (16)

(11) The reason for calling the Steiner tetrahedra by
this name. This seems the appropriate place to explain why we
have spoken of k-lines, and of Steiner tetrahedra.

First, remark a theorem of elementary geometry in ordinary
threefold space. Suppose we have three triangles, of angular
points 4, B, C, A, B,C,, A, B;C;, and respectively opposite sides
@y b, ¢y, @ybycy, aghycs, which are such that the points 4,4, 4, are
in line, as also the points B; B, B; and the points C, (,C;, these
three lines meeting in a point O, so that the three triangles are in
perspective from O. Then, the three sides @, a,a,, all lying in the
plane OB, C, B,C, B;C, form a triangle, as do the sides b,b,b, in
the plane 0C; 4,0, 4,C;4;, and the sides ¢ c,¢; in the plane
04, B, A, By A4 By, and the planes of these triangles meet in O.
The planes of the triangles 4, B, C,,-4, B, C,, A, B,C, also meet in
a point, say . The theorem referred to is that, the triangles

@y Gy ttg, bybybgy, ¢icyc5 are in perspective, from the point Q. To see,
for example, that the two triangles b, b,b;, ¢, c,c5 are in perspec-
tive, it is sufficient to see that the pairs of sides, from these
triangles, b, and ¢,, b, and c,, b; and c;, meet, and thus meet in

three points lying on the line of intersection of the planes of these

two triangles; in fact, these points of meeting are respectively

4,, 4,5, A;. 1t follows that the three lines joining corresponding

angular points of these two triangles meet in a point; these lines

join respectively the points (byby), (c.¢3); the points (byb,), (c5¢,);

and the points (b, b,), (¢;¢;). But the plane containing the latter
32
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two of these intersecting lines contains the lines b, and ¢;, and is
the plane of the triangle 4, B; C;. The centre of perspective (?f the
triangles b, by by, ¢, ¢5 ¢, thus lies in the plane 4, B, €. By parity of
reasoning it is thus common to the three planes {11 B,C,, 4, B;C;,
A4 B,C;, and is the point Q. This point is similarly a centre of
perspective for each pair of the three triangles a,a,as, bybsbg,
¢, Cq¢q. This is what we desired to prove. _

Now consider a general cubic surface in ordinary threefold
space. Suppose that, on this surface, there are th sets of 'thr{.ae
lines, a,b,¢, and ayb,c,, forming two triangles with no s%de in
common. The sides of these two triangles all meet the line of
intersection of the planes of the triangles, and all points of every
one of these sides are on the cubic surface. Thus, either the line ?f
intersection of the planes of the two triangles lies on the c:ubm
surface, which is impossible, since then the plane of either
triangle would meet the cubic surface in a (composite).curve of
the fourth order, or else the six points in which this line is met by
the sides of the two triangles are coincident, in sets, in the three
points in which this line meets the cubic surface. We su}?pose-the
symmetrical general case to arise, namely that these six points
coincide in pairs in these three points. The two tria,ngles a, by ¢
a,byc, are thus in perspective, with the line of interse.ctlon of their
planes as axis of perspective; we suppose the notation chosen so
that a, @, meet on this line, as also b, b, and ¢, ¢,. It follovs.!s then,
if A, B,C,, A, B,C, be the angular points of these two triangles,
that the lines 4, 4,, B, B,, C,C, meet in a point, say 0. Now
each of these lines meets the cubic surface in a further point, say,
respectively, 4,, By, C5. And the plane OB, B, C,, meeting_the
cubic surface in the two lines a,, a,, will meet the surface in a
third line, namely the line, say @,, which joins B; and C;. T}%e
triangle 4, B,C, has thus, for sides, three other lines of t,ht_e cubic
surface, say ag, by, ¢;. We thus arrive at the figure just conmderv_ed,
of three triangles A,B;C;, 4,B,C,, A;B,C;, in perspective

from 0. And the nine lines @, @, @s, b, by bs, ¢, ¢,¢4 form three other
triangles, in perspective from a point ¢. These nine lines on the

——,
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cubic surface are then the intersections of three planes meeting
in O with three planes meeting in Q.

These results are in Steiner’s paper on Cubic Surfaces (Gles.
Werke, 11 (1856), p. 655). He names a line which contains three
intersections, each of two lines of the surface, a k-line, and
obtains the result that, through any intersection of two lines of
the surface, there pass sixteen £-lines.

The Burkhardt primal is in fact in correspondence with a cubic
surface, in the sense that the plane of any three coplanar lines of
the cubic surface corresponds to a node of the primal. And two
sets of three planes meeting in nine lines of the surface, such as
those considered above, correspond to the two sets of three nodes
of the primal lying on two opposite edges of a Steiner tetrahedron,
the nine lines corresponding to the pentahedra of which the joins
of the two sets of three nodes are edge-lines, as in § (10). These two
opposite edges, which we have called polar x-lines, determine the
tetrahedron, and so determine the other two pairs of opposite

edges of the tetrahedron. Likewise, for the cubic surface, given
nine lines forming two sets of three triangles, each in perspective,
as above, it is possible to determine the remaining eighteen lines
of the surface, and to see that these consist of two other such sets
of nine lines. Also, for the cubic surface, there are forty ways of
arranging the twenty-seven lines in three sets of nine, each set
forming two batches of three triangles in perspective, as above.

This corresponds to the existence of forty Steiner tetrahedra on
the primal.

(12) The enumeration of the twenty-seven pentahedra
from nine nodes of the Burkhardt primal. Resuming the
matter discussed in §(10), it appears that, if we take a Steiner
tetrahedron, and from each of the three pairs of opposite edges
we choose one edge, thus selecting nine nodes of the primal, and
then consider the three Jordan pentahedra of which each of these

nine nodes is an angular point, then we shall obtain all the
twenty-seven pentahedra.




38 §12. TWENTY-SEVEN PENTAHEDRA FROM NINE NODES

In particular, taking three edges of the Steiner tetrahedron
which lie in a plane, it appears that all the twenty-seven penta-
hedra may be enumerated as those which have angular points, in
threes, at the nine nodes of any Jacobian plane. For instance,
taking the former Steiner tetrahedron considered in §(10), we
can arrange the twenty-seven pentahedra in nine columns:

(BC,) (CA,) (AB,)  (EF,) (FDy) (DE,) (23) (1) (12
{BCy  {G} By} {EF}y (I} {Ey) {CDy {BF} {4E}
G} {04} {4} {Foy  {FDy {D} {dFy {CE} {BD;
By {4 {48} {E}  {Dg} {DE} {BE} {4D} {(CF}

of which those in a column have the common angular point
written above, and these angular points are the nodes of a
Jacobian plane (x,/1 = 2;/e* = xgz/e). There are forty such
possibilities. On the cubic surface, as in §(11), any line is met by
five pairs of intersecting lines, and so belongs to five sets of three
coplanar lines; the lines of the cubic surface correspond in this
sense to the twenty-seven Jordan pentahedra of the Burkhardt
primal. The scheme thus determines one of forty ways in which
the twenty-seven lines of the cubic surface can be obtained by
intersection of the surface with nine planes.

Or, we may take a scheme in which the nine nodes employed
are those in three concurrent edges of a Steiner tetrahedron, of
which there are then 160 cases. For example, we may take the
nine nodes to be

(BOB)J (OAO): (ABU): (E'F:J)r (FD()): (DE()): (56)> (64): (45)5

we thus obtain the same scheme as that written above except
that the three last columns of pentahedra then arising are those
written in the rows under (23), (31), (12) in the above scheme.

(13) The equation of the Burkhardt primal in terms of
a Steiner solid and four associated primes. We have stated
(§(8)) that there are forty primes, the Steiner solids, which
meet the primal each in four planes. We shew now how to
associate with every Steiner solid, four other primes, not them-

N
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selves Steiner solids, forming with this Steiner solid a, simplex,

and obtain the equation of the primal referred to such a simplex.

The equation obtained shews at once that the Steiner solid meets

the four associated primes in planes which lie on the primal.
For this purpose we introduce five primes,

Yo = Otyl =0, sy = 0,
which are given, in terms of z,, 2, ..., 2, by the equations

3Yo = 2y + a5+ 2, —3Yo = Ty + x5+,
3y =, = €%y +ex;, —3y, = Xy + 625+ €xg,
3Yy = ¥ +exy+ €%, —3y, = x,+ €5+ €%,

of which the reverse equations are
Ty =Yot¥1+Ys % = Yot Y2+ Yz
Ty = Yo+ €Y1 +€%Y, —T5=yy+eys+eys,
X3 = Yo+ €Y1 +€Yy, —Tg = Yo+ Yy +ey,
These equations, which are constantly employed, shew that
Yo = 0, =0,...,y, = 0 form a simplex, of which Yo=101s a
Steiner solid. In terms of these the equation of the Burkhardt
primal, as shewn below, takes the form
?Ig_yo(yg’*‘yg'*'yg'*'yi)'l'3?/1192313% = 0; @;
this shews that y, = 0 meets the primal in the four planes
Yo=U=0Yo=9ys=0; yo=y; = 0; o=y, = 0. It is easy to
see that these four planes are, respectively,
/1 = z,e® = x3/e;  x,/1 = x5/ = yfe;
Zy[l = x5e = x4/ 1,/1 = zyfe = @yfed.
To verify the new form of the equation of the primal, we
remark that

T Xy Ty = Yo+ R+ Y3 — o1 Yas

— %y 5% = Yo+ Y3+ Y3 — 3o Yo ¥s,
Lp%y+ Xy + 21Ty = (Y5 — Y1 Ys),
X5 %6+ Xg 2y + X4 T = (Y3 — Yo ¥s);
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the equation of the primal, in 2, ..., x, is )
Xy Ty (g + T3+ L) + Xy L5 (2 + Lo+ T3)
+ (Zo 2y + Ty Xy + X4 ) (X506 + XXy + 24 %5) = 0,
and substitution leads, save for the factor 3, t-q
—YolY3 + 93 +Yi— 3YoY1¥a) — YoW3 + Y3 + U3 — 3YY2¥s)
+ 35— 11Ya) Wo—Y2¥s) = 0,
which is evidently equivalent to the equation (I) given above:
Further, as this equation holds solely in virtue of the equation
connecting 2, ..., &g, between
X+ Xy + Ty, X+, +E€X;, — (Xy+ €705+ €x),
— (wy+ x5+ €%0g), 2+ 6xy+ €%y,

it follows, by the symmetry of the original equation, that_a
precisely identical equation holds for the five linear forms in
Zy, ..., Tg, obtained from the previous five forms by interchange of

2, and 2,, namely between 9, 7;, ..., %y, given by
o = Tg+ Ta+ 2y, N = — (2 + €5+ €x5),
Ny = Ty + €y + 625, Yy = — (T +6%5+€%),
Ny = T4+ €Ty + %05,

By means of the equations connecting @, ..., 2 and ¥y, ¥y, ..., ¥y,
these five new forms are found to be

No="Yo—%1—Y2—Ys— Yo = —Wot2h—Ya—Ys—Ya etc.,
or, in general form,
7= 3y —juw), 1=0,1,2,3,4,
where w = 2y,+ ¥, +¥s+ Y3+, These are, in fact, as we may

verify directly from equation (I), the equations for the projection
of the primal from the node (14), forwhich 5, =y, = ¥ = ys = ¥

(cf. §(7)).

Further still, the equation (I) shews, on trial, that an equation,
of precisely the same form,

Yot — Yoy +ys® +ys* + ys®) + By1yayaya = O

IS
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holds for

yn;=%_yv Y= —2Ys— Yy,
Yo= Yot Us+Ys Y=Yt eUs+eWy s = Ys+ e+ ey,

This fact is clear also, if we recall (§(3)) that the original
equation of the primal, in z,, ..., is unaltered by the linear
transformation there denoted by (2") = x(x); for, this being so, it
follows from the symmetry of the original equation, that this
equation is also unaltered by the linear transformation (already
used in § (9))

Xy = @yt exy+exrs,  —ay = 2+ e, + 6%,
T5= X+ tevg, —ag = €%y + 2, + €2;,
Ty = €y + Xy + X, —f= €2ty + €22, + @,

and, replacing 2y,...,2; by Yo, Y15 ---»Yg» by the fundamental
formulae here introduced, and replacing 2, ..., Zg BY Yo, Y3s +-+» Yas
by the same formulae, this transformation is that put down,
connecting o, ¥y, ..., %4 and ¥, ¥, ..., ¥s.

The three results thus obtained shew, however, that there are
forty sets of values for y,,,, ...,,, all linear functions of the
original ¥y, ¥, ..., %4, which are connected by precisely the same
equation (I). The forms y,=z,+a,+a,, N = Ty+ Ty + X3,
¥, = Yo—, (which, save for a constant factor, is a,—ex,), are
such thaty, = 0,7, = 0,y = 0are all Steiner solids, and we have
shewn that there are forty such, all similar. The corresponding
results for y,,y,,...,7, are derivable by the remark that the
equation (I) is unaltered by interchange of Y1> Yo» Y3, Y4 among
themselves, y, remaining unchanged, and is also unaltered by
replacing y,, s, ¥3, ¥, respectively by €Y1, €8y, €7ys, €%y,, where
eachofa, #,v,8is0,0r1, or 2, subject toa+ £+ 7y +8=0 (mod. 3).
Thus; recalling the form of 7,, in terms of Yos Y15 --+» Yy, there is an
equation of the form (I) in which y, is replaced by

Yo— €Yy — ey, — ety — ey,
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with appropriate corresponding replacements for yy, Yo Y Yas
and this gives twenty-seven forms for 7,. And, recalling the form
of }, in terms of ¥y, ¥y, ---, Y, there is an equation of the form (I)
in which y, is replaced by y, —€'y;, forA = 0, 1,2 andi = 1,2,3,4,
with appropriate corresponding replacements for ¥y, ..., ¥y, and
this gives twelve forms for yi. The total number of equations (I)
thus obtainable is 1 + 27 + 12 or forty, in each of which the form of
Y, gives a Steiner solid.

The left side of equation (I) is the simplest of the invariants
which Burkhardt obtains for the transformation of the theta
functions he considers, arising by transformation of the periods
of the functions.

Some illustrative remarks may be added in regard to the
transformations here considered:

(@) The inverse of the transformation by which we pass from
Yor Yas ++> Ya £O Yo Y1s ---» Ya, MY easily be computed. Save for a
common factor 3, of all the coordinates, which we neglect, this
inverse transformation has the same form as the direct trans-
formation, save that, in the transformed values of ¥, and y,, in
place of €, €%, there occur €2, ¢. If then the transformation be
denoted (as in §(9)) by (%6, .-, ¥2) = B> --+»¥a), the equations
¥y - 94) = B, ---» Ya) are

Yo = Yo— Y1 Y1 = —2Yo— ¥

L= Yot Ystyh Ve =Yiteyi eyl Ui = Yateys ey

(b) By the general formula for projection from a node (§(7)),
we can put down the form for projection from the node (4,B),
from variables #,...,%; to variables ay,...,%. If we replace
(@55 -+ Z) BY (0> Y1» -~-> Ya)> bY the definitions above (§(13)), and,
by the same equations, replace (a3, ..., @}) by (Yo, Y1 ---» ¥a), we find
that %}, ...,y are respectively the same as yq, ..., Yy Save that
Y1 = Ya» Y5 = Y. This transformation we denote by D, so that
Wos ---»¥4) = Do, - Ya) Is given by

!

vo=vo Yi=Yb Y=Y Yo=Y Y=Y
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(¢) Ifwenow expressyy,...,¥y; interms of y,, ..., 7, by means
of the equations

(4 "

(yoa "'!y4) = B_l(yi’l’s '-':y;)’ (?JG: =y2) = D(ytl]! '--sy;)!
(yl’b 1@/;) = B(ycl’ -"3.7/4)’
it will be found at once that we obtain

/8 nr
Yo =Yo~Y1—Yo—Ys— Yo -0 Y1 = —2Wo—Y1—Y2—Ys T W
or, t.ha,t Yo,---» Yy are respectively identical with the #,,...,7,
?bta.med above by interchange of z; and ;. And this interchange
is obtained (§ (7)) by projection from the node (14). Denoting it

therefore by p(14), we have
p(14) = B-1DB,
where D, equivalent to projection from (4,B), may be denoted
by p(4, B). :
(d) Tt may also be remarked here that the transformation

several times used, which we have denoted (§(3)) by () = x(z),
when expressed by the variables y,, ..., 7,, is.equivalent to

Yo=Yo N1=€Y Yo=Y Y2=6Ys Ysa= €Yy
Thus x* = 1. It may be verified also that B2 = p(4 B,), so that

B4 =.I, or B-1= B3 every projection being of period 2. Ex-
pressions for B in terms of projections are given below (§(19)).

(14) Explicit formulae for the rationalization of the
Burkhardt primal. We have seen (§(6)) that there are 72.40
or 2880 ways in which the primal may be rationalized; we
proceed to obtain the equations in one of these, shewing that the
prime sections of the primal correspond, in this way, to the quartic
surfaces of a linear system in space of three dimensions.

In the equation (I). ¥4 —y,(43 + ... +92) + 3y, 443y, = 0, denote
Y1/ ¥os ---- Y3/, momentarily by a, b, ¢, d. Then we have

0=1—a®—b%—c®—d3+ 3abed
= d*a® —d® —a®+ 1 — (a®d®+ b3 + ¢ — 3adbc)
= (@®+a+1)[(a—1)(d*—1)—(ad +b+c) BC],
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where

B = (ad+eb+¢%)/(a—e), C = (ad+e*h+ec)/(a—e);
from these equations for B, C, we obtain

eo;B) eB—C ( eB—O) 2B —e2C
, c=a|ld+ -
1—e 1—¢ “l1—€ 1—e¢

3

b= a(d+

whereby a birational transformation is defined, from a, b, ¢, d to
a, B, C, d. Hence, as the equations for b, ¢ lead to
b+c=a(l2d— B—C)+eB+eC,
the vanishing of 1 —a®—b%— ¢ —d?+ 3abed, if a®*+a+ 1 does not
vanish, leads to
a = [d3—1+ BO(eB+¢2C)]/[d*— 1+ BCO(B+ C—3d)],

whereby the variable ¢ is expressed rationally in terms of the
three variables B, C, d, which, reversely, are rational functions of
the four original variables a, b, ¢, d. This solves the problem.
We proceed to elaborate this result: First, instead of B, € use
A, pi, defined by A = B—d, p = C'—d; these are
A=eXc+etb+ed)/(a—e), p=elc+eb+ed)/(a—e),
namely
A = Xys+€y+€,)[(y1— o), 1 = elys+eys+eya)/(y1—€%y),
and put p for d, so that p = ,/y,. Then, by means of the value
found for a, the equation of the primal is solved rationally in

terms of A, u, p, which are linear (fractional) functions of the
original variables ¥y, ¥y, ..., ¥

Thus we are led (cf. the formulation of § (6)) to consider the
three planes
Ys+ €Yo+ €y = 0 =y, —€Yo; Yg+eyatey, = 0=y, —€%;
Yo=0=1;
By the general formulae of § (13), the equations of these planes in
terms of the coordinates x,, ..., x4, are found to be, respectively,

2,1 = xo[e? = x5le;  ay[1 = wyle = w4fe?; [l = wyle = xg/e?,
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which are Jacobian planes, of which the second and third meet
only in the point (0,0,0,1, — 1,0), or (45), while the third and
first meet only in the point (0, 0,0, 1,0, —1), or (46), and the first
and second meet only in the point (1,¢2 ¢, 1, €,€%), or (E, F); these
three nodes lie in the Jacobian plane z,/1 = Zy/€? = x4/e, which
contains also the six nodes (BG,), (04,), (4 B,), (F,D), (D, E),
(56). The rationalization is to be effected by means of the line,
from the general point (y,, 7, ...,%,) of the primal, which meets
these three skew planes; this line is given by the intersection
of the three primes

A= @Yt Wty p= 2t Wz t) p=Ye

Y1— €Yo Y1—€%Y, Yo
Regarding A, u, p as the coordinates of the point in which this line
meets an arbitrary solid, and denoting homogeneous variables in
this solid by , y, z, ¢, defined by p = a/t, A = y/t, /e = z[t, we may
thus take, for the coordinates of the point of this solid which
corresponds to (Yo, ¥y, .-+, ¥4), Tespectively,

T = Ya(Yi+ Y190+ ),

b= Yol¥2+Y1¥0+5),

Y = €%Yo(y1— €%Yo) (Y3 + €%+ €%,),

z = €Yo(Y1—€Yo) (Y5 + €Yz +eyy);

and. using the value of a, or y,/y,, found above in terms of
B, C.d.or B, C, p, and thence in terms of A, s p, We compute the
reverse expressions of ¥, ¥y, ...,%, in terms of z, y, z, ¢, in the
forms

Yo = U (y*+y2+2°) +y2(y +2) %),

¥ = —U(1—e)2*(y — %) — ex(y — €%2)* —eyz(y + e2) + 2],

Y= — Y2 —ayy+2)+ (@ +y+2)8,

Ys = —er’(y—e2)+ (1 —e) wyz(y — %) + y%2° — ey +€2) 83,

Yo = 2[2(y* + y2 +2%) + yaly +2) - ).
The prime sections of the primal, which are given by an equation
ToYo+ ¥+ ... + 793y, = 0, wherein 74,7, ...,%, are parametric
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constants, thus arise from a linear system of quartjc surfaces in
the threefold space in which z, y, 2, ¢ are coordinates. . G

These quartic surfaces, as we see from the manner in Wl?mh
Ya» Ys3» Y3 have been formed, all pass through the common points

"of the two cubic surfaces arising in ¥, and ¥,, namely

Ca(y+yz+) Yy +2) -8 =0,
(1 —e) by —et2) —ealy — %) —eyaly +e2) +£* = O,
but the addition of these two equations leads to
(1—€)(y—e%) (@+y) (x+2) =0,
and this suggests, what we easily verify, that these tw.o cubic
surfaces have in common the nine lines, lying in threes in three
planes, which are given by "
Q) y—ez=0, 2+#=0;0ry= €% = —€kt,
(I) =z+y=0, Y412 = 0; or x=—y=¢% (k=0,1,2)
(III) x+z=0, B+3=0; or .= —z = €.

If we put, for a moment,
X=—(-1a Y= (e2=1)z—(y—€%),
Z=y—z, T = (e2—1)¢,
the equations of the two cubic surfaces are found to be
X34+ Y34+ Z3+T3—-3(X + Y) (Y +e2Z) (Y +Z) =0,
X34+ Y34+ Z23+T2=0.
The latter surface has, for its twenty-seven lines, the joins of the
points of the surface which lie on any edge of the t.et‘ra.hed.ron
X YZT to the points lying in the opposite edge; and it is easy .to
verify that the nine lines common to the two surfaces consist
of the six joining the two points (X,Y,2,T)=(0,1, -1, F)),
(0,1, —¢,0) in the edge Y Z, to the three points of th? opposite
edge, together with the three which join (1, —1, Ct, 0),in XY, to
the points in the opposite edge. Also, if the three hm.as named (I),
for k= 0,1,2, be called ay, by, ¢;, and the three lines (II), for
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k=0,1,2, be called a,, b,, ¢,, and the three lines (III), for
k=0,1,2, be called ag, by, c;, it is found that the lines a,, a,, a,,
€y, €y, Cg, by, by, b, in this order, form a closed polygon of nine sides.
Further, the former cubic surface has a double point at the point
(X,Y,Z,T)= (1, —1,0,0), whereat the asymptotic cone con-
sists of the two planes X+ Y =0, X+ ¥ —eZ = 0. Anditiseasy
to see that the five quartic surfaces, in the space (z,y,z,1),
arising by putting 7, =0, y; =0,...,7, = 0 in the equations
above, all have nodes at the three points

(X, Y,2,T)= (0,1, =1,0); 40,1, —¢,0), (1,-1,0,0),

the asymptotic cone in each case breaking up into two planes, of
which one plane contains the three lines meeting at this node.
For a quartic surface to contain a line, five conditions must be
satisfied. For a quartic surface to contain the nine lines arising
here, it must contain the three points on the line of intersection of
any two of the three planes (I), (IT), (III) in each of which three of
the lines lie, these being points of the cubic surfaces above; this
requires nine conditions. If the three lines in any one of these
planes had three different intersections, six further conditions
would be required for the surface to contain these three lines.
Then the 9+3.6, or 27, conditions would leave eight linearly
independent quartic surfaces containing the nine given lines. On
examination we find that this remains true with the actual lines,
notwithstanding their intersections in threes, and that the
general quartic surface containing the nine lines has an equation

P —13) (y—€%) + (2 + ) (e + y) +r(* + £) (x +2)
T NoYo+ MY+ -+ Yy = 0,

where p, .7, g, 1. ---, 9, are arbitrary, and y,. ¥, ..., ¥y, are the
quartic polynomials in @, , 2, ¢ put down above. If now we add
the conditions that the quartic surfaces shall have double points
at each of the points of concurrence of threes of the lines, for
which (z,7,2) = (1,0,0,0), (0,0,1,0), (0,1,0,0), we find that
P, ¢, r must all vanish. .
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Thus the quartic surface found above is the most general
surface containing the nine common lines of the two cubic
surfaces which has a double point at each of the three points of
concurrence of threes of the lines, and the Burkhardt primal can
be defined by the fact that its prime sections correspond to the
system of such quartic surfaces.

In connexion with this result it may be remarked that the
equation (I), or yo—yo(¥2+ ... +¥3) + 3y, Yo ¥y, = 0, is satisfied
identically by putting

Yo A7 Sayzt, Yy = 2P —2B—13), Yy =Yl —23—1),
Yg = 2B -y =), Y, = U +y*+2%);

but, reversely, these equations give six points (x,y,2,¢) corre-
sponding to the point (y,, ¥y, ..., ¥,). While, if we take all the points
of the primal which lie on the tangent prime at a particular
point, P, the sets of six points of the space (z,y,2,¢) which
correspond to the points of this prime section, describe the
Weddle quartic surface whose nodes are the six points corre-
sponding to the point P. This remark is due to Coble (loc. cit.); it
furnishes an example of an involution, in space of three dimen-
sions, which is rational (the reader may compare the author’s
Principles of Geometry, Vol. vi, p. 137).

As has been stated, the fact that the Burkhardt primal is
rational was recognized by Dr J. A. Todd (loc. cit.), with a
masterly argument differing from that here employed, which,
however, does not readily lead to the reverse equations.

(15) The equation of the Burkhardt primal referred to
the prime faces of a Jordan pentahedron. From the equa-
tions of the faces of a Jordan pentahedron, which are linear
functions of zy, ..., x5, we may express these latter in terms of the
former. We take the pentahedron {4}, whose faces are given by
the vanishing of the forms

£, =[14.25.36], £, =[16.35.24], £, = [13.26.45],
£, = [12.34.56], £ = [15.46.23],

R —
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the equations of transformation, and their reverses, being
0.6,6, &Y= A T i gy (2, 2, ... Tg),
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by means c_)f these, the primes of any one of the pentahedra can be
expressed in terms of £, ..., &5- Intermsofg,, ..., &5, the equation
of the Burkhardt primal is found to be
SE+8a+an+an+ae
_ _ +He(EREI+ B+ 1L+ 283+ 8380 = o
:I'hls faqua.tmn contains only squares of the coordinates, and puts
in evidence the fact (§(7)) that any one of the angular points of
the penta,hedro.n {4} is a node, say 0, and a node of such a
ehfa.x'acter t.hajt., if P be any point of the primal, and 0P meet the
anal again in P’, then the locus of the harmonic point (P, P")/O
is the prime face of the pentahedron opposite to 0. By §(7) we
presume, without making the computation, that the equation of
tl:te pnmal., when referred to any other of the pentahedra, like-
wise contains only squares of the coordinates.
If in the equation we have found we put
T=¢€%, y= 92§2= z=£;, =L, u= &5
the equation becomes
yzzz_i_xste + 62(22.t2 +y211) 3 E(J_.:yz =5 3212)
. FuA@ 4P+ 24 82) = 0, (IT)
4

BL
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this shews that the twelve nodes in the face u = 0 form three
tetrahedra with angular points given by the rows of the matrices

1,0,0,0\, ¢/ L=1,=1, s, f=1 L -1, N,
0,1,0,0 S A T I 1, -1 1, 1
0,0,1,0 B S T A | 1, LT ")
0,0,0,1 = By — I 1 1, 1, 1,-1

for, as is easy to see, these are the nodes of any quartic surface, in
the space (x,¥,2,1), with equation

a(y?2? + 222) + b(22® + y*1?) + (@Y + 2%%) = 0,
provided a+b+c = 0; by a similar argument the same is true
for the nodes in any face of the pentahedron. Thus there are

sixteen k-lines containing the nodes of any face (§(5))-
We have presumed that a similar form of equation holds for

any pentahedron. This is actually so; see §(22) below. In
particular, taking the pentahedron {A B}, and putting
X = (e2—¢)[25), Y =[4,B], Z = [AB,),
T = (2—¢€)[36], U = (e2—e¢)[14],
it may be verified that the relation connecting X, ¥, Z, T, U is
precisely the same as that above connecting z, ¥, z, t, u. The
linear expressions for X, Y,Z,T,Uintermsofx,y,2, ¢, u thus
give a transformation of the equation into itself. With
P=ey+z Q=ey—2 A= eX(t+u), B=¢eX(t—wu),
these equations, save for a common factor, are
X=eQ+B), T=Q-B, Z= —e(P+A4),
U=¢P-4), Y=2.
The equation of the primal in terms of z, ¥, 2, t, w may con-
veniently be used to give more precision to the remarks above
(§(9)) on the relations between a Steiner tetrahedron and a

Jordan prime. Let the angular points of the polyhedron con-
sidered which are opposite to the faces u = 0andt = 0 be denoted
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respectively by U and 7'. The asymptotic cones of the primal at
these angular points are given by the respective equations

B4y 422 +2=0, 22+eyi+el+ut=0.

Four primes can be drawn through the line UT to touch both
these cones, namely the four primes given by x + €% + ez = 0.
Consider one of these, say x+ €% +ez = 0; let its line of contact
with the cone (U) be called [/, and its line of contact with the cone
(7) be called m; these lines do not meet. Through the line / there
pass two Jacobian planes, lying both on the cone (U), and on the
primal, as we easily verify, namely

rx+ey+ez=0 =:t+ey—eiz; rt+ey+ez=0= —t+ey—e;
liquewise, through the line m there pass two Jacobian planes
lying both on the cone (7'), and on the primal, namely
r+eyt+ez=0=u+y—z; z+ey+e2=0=—ut+y—z.

These four planes are the faces of a Steiner tetrahedron. In fact,
the line ! has for equations z/1 = y/e* = z/e = {/0, and the two
Jacobian planes passing through this line, when expressed in
terms of the coordinates x,, ..., z,, are found to be

%,f1 = 24fe = ;)6
and z,/1 = x,/e = x5/e%, the prime x+ e*y+ €z = 0 being
T+ a3+ = 0.
These fequations identify the line / as a «-line, containing, besides
the point U, which is (4 F,), the two other nodes
=yl =zle=t0=ult];

in regard to these two nodes, the point in which the line meets the
prime w = 0 is the harmonic of U. Likewise, the two planes
through the line m, whose equations are 2 = y = z; u = 0, are
Jacobian planes, forming the other two faces of the Steiner
tetrahedron in the solid z, + 2, +2; = 0. The Steiner tetrahedron
has four edges besides [ and m. on each of which are three other
nodes; these nodes can be shewn to be the intersections of the

4-2
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edge considered with the three prime faces of the Jordan penta-
hedron which contain the edge-line (these, with w =0, { =0,
making the five faces of the pentahedron). Each of these prime
faces, by its intersection with the Steiner solid, thus gives a plane
containing six nodes, one on each edge of the Steiner tetrahedron.
This plane is therefore one of the 540 cross-planes considered in
§(9).

Further, it can be verified that the tangent prime of the
Burkhardt primal at any point of the line /, or at any point of the
line m, is the Steiner solid x+¢€% +ez = 0. Thus this prime
touches the primal at every ordinary point of every edge of the
Steiner tetrahedron. This we may also verify simply from the
equation of the primal in the coordinates yq,y,...,¥, More
generally, the tangent prime of the primal, at any ordinary point
of one of the cubic curves which pass through the nine nodes of a
Jacobian plane, touches the primal at every point of the curve.
The prime 2+ €%y + ez = 0 also touches the cones (U), (7') along
the lines [, m, as we have said.

We have considered only one«of the common tangent primes of
the cones (U), (T') which can be drawn through the line UT'; and
there are four such primes. Moreover, the pentahedron has ten
edges such as T'U. Thus, from the single pentahedron we may

construct forty Steiner spaces.

The equation of the Burkhardt primal in terms of squares of .

&1y -..s 5, considered here, shews that the primal contains an in-
volution of sets of sixteen points, represented by a quadric. We
return to this later (§(22)).

(16) The thirty-six double sixes of Jordan pentahedra,
and the associated quadrics. We have seen (§ (5)) that, taking
any particular pentahedron, there are sixteen others of which no
one has an angular point common with the pentahedron taken;
we may speak of two pentahedra which have no common angular
point as being skew with one another. Besides the nodes of the
pentahedron taken, there are, in each face @, of this pentahedron,
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eight nodes, each arising as an angular point of a pentahedron

having the node P, opposite to @ in the pentahedron taken, as aJ;
angular point. With each of these eight points as angular points

there are two other pentahedra, leading to sixteen pentahedra fo;'
t.he face w. The sixteen pentahedra similarly obtainable by con-
sidering any other face of the pentahedron taken, coincide, in
aggregate, with those arising for the face w; these are the sixteen
which are skew with the pentahedron taken.

In this way, or by direct specification of the angular points of
each pentahedron, we see that the sixteen pentahedra, which are
skew with the pentahedron {4}, consist of the six {4y}, {B}, {C}
{D}, {E}, {F} and the ten {PQ}, where P, Q are two of B, ', D El
F'; with a similar statement for the pentahedra skew Wit-},l {;iolj
Also we see that the sixteen pentahedra. which are skew witjh
{A B} consist of the eight {A P}, {BP}, where P is one of a, D
E, F, together with the eight given by {P}, {B,)}. Thus also {4} has’
an angular point common with the five { B}, {Co}s {Do}, (B}, {Fy)
and with any one of the five {4 P}, where P is one of B, 0. D..B JBF’
with a similar statement for {4,}; and {4 B} has an angulax; pt;infj
common with {4}, {4}, { B}, {B,}. or with any one of {PQ}, where
P,Qaretwoof C, D, E, F.

Bearing these results in mind, consider now the three sets
each of twelve pentahedra, which we arrange in two rows of six’

pentahedra:
“y (B, {6, (D), (B, (B
B G Dy @ m )
W}, {4}, {BC}, {BD}, (BE), {BF)
(B, (8, (40, D) (m, (am;] T
s (B, {0, {(EF}, (FD}, {DE)
(BC. (), 4B, Dy (5, (my )| O
From the examination just made, it appears that in any one of

these double sizes, any pentahedron is skew with the others in the
same row, and with that in the other row which is in the same
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column, but has an angular point in common with the five
pentahedra in the other row which are not in the same column.
There are fifteen double sixes of the type (LI), obtained by
replacing A4, B by another pair, and there are twenty double sixes
of the type (I1I), obtained by replacing 4, B, C by another triad.
Thus in all there are thirty-six double sixes.* Itis easy to see that
the thirty angular points of the pentahedra which occur in one
row of a double six are the same, in different order, as those
arising in the other row. The thirty-six double sixes contain in all
seventy-two sets of six pentahedra, of which every two of a set
are skew to one another. It can be seen that no two of these
seventy-two sets have the same set of four pentahedra common to
both; thus the thirty nodes arising in a double six are all de-
termined when a proper set of twenty nodes is given.

To each double six of pentahedra there corresponds a quadric,
which contains the thirty nodes arising in the double six, and
touches the thirty polar primes which are the faces of the penta-
hedra; the quadric is both inscribed and circumseribed to every
one of the twelve pentahedra of the double six. For the three
representative double sixes (I), (II), (III) put down above, the
proper quadrics are respectively

x;+a3+...+x5 =0,
ByZy+ X5+ 232 =0, (;+2,+...+25=0)
Ty g+ Ly By + By Ty + E(T5 T+ T Ty + X4 75) = 0.

That the first quadric contains all the thirty nodes of the
double six (I) is easy to verify; and taking, for example, the node
(A, B), in the polar prime [4,B] = 0 of the pentahedron {4}, the
quadric touches this prime at this point (which is an angular
point of {4,}). Similarly for each of the six columns of the double

* The existence of such double sixes, for the lines of a cubic surface,
was remarked by Schlifli, Quart. J. Math. 11 (1858). The double sixes of
Jordan pentahedra are noticed by Burkhardt, Math. Ann. xxxvir (1890),
p- 197, who gives the pentahedra of one of these, expressed in terms of

Yor Y15 -++2 Ya-

—*
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six. We may form generally the condition that a prime
Uy &y + ... +Uugx = 0
shf)uld tm‘wh the quadric. As the same prime is represented by
this equatlo? ifall of u,, ..., u, are increased by the same arbitrary
quantity, this condition of tangency is a function of the differences
of Uy - U but we may follow the plan tacitly adopted in the
notation for the Jordan primes, of introducing the condition
U+ ... +ug = 0. The tangential equation so obtained, which, in
general form, is :
U U+ .+ U — Rty + ... +ug)2 = 0,
thus reduces to
WU+ +uf =0, (ug+uy+... +ug = 0).

Fr.om thzls it-is at once recognized that the quadric touches the
thirty prime faces of the pentahedra belonging to the double six.
A_lso, for each of these twelve pentahedra, the point of contact
with any prime face, is the angular point, lying on this face, of ’bhf;
other pentahedron in the same column of the double six.

Later, we shall find it interesting (§ (22)) to form the equation of
the quadric in terms of the prime faces of one of its component
pentahedra.

, We can similarly verify directly that the thirty nodes oceurring
in the double six (IT) lie, as stated, on the quadric
Xy Xy + X254+ 2324 = 0,
and that this touches the thirty prime faces of the pentahedra,
the rule for the point of contact being precisely as in the former
case. Also, though we omit the algebra, which is given below for
the less easy case (ITT), we can verify that the tangential equation
of this quadric is
Uy Ug + UpUs + Ug Ug— T3 (U + ... +ug)2 = 0,
or Uy Uy + Uy U+ Ug U = 0, (U +uy+ ... + 25 = 0).
We can obtain the equation 1%y + Xy Ts+ X325 = 0 by trial.
But we can also obtain the equation from the former,
i+ ... +al=0,
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by remarking that the thirty nodes occurring in the double six
(IT) consist of the eighteen nodes arising from {4}, {4}, {B}, {Bo}
(wherein each of (4B,), (4,B) arises twice), together with the

fifteen nodes (pg) other than (14), (25), (36), which are the other .

twelve. That these twelve lie on the quadric z, x, + z 25 + .xad;e =10
is clear. The other eighteen consist of two sets of nine given by

(AOB)Z (Aco)> (ADO): (AEo): (AE))Q

(ByC), (ByD), (ByE), (B,F);
(4By); (4,C), (4,D), (AzE), (4,F);

(BGy), (BDy), (BE,), (BE,),

all of which lie on 2%+ ...+23 = 0; but the first set lie upon
[4,B] = 0, whose equation, put into the form

(@ +24)[1 = (B +25)[e = (23 +%)/€?,
shews that these lie on the degenerate cone
(@1 + @) + (% + %5)2 + (23 + ) = 0;
while the second set, lying on [4 B,] = 0, similarly also lie on this

cone. The equation of the quadric belonging to the double six (IT)
is thus clear from the identity

2(y 2y + 2y 25 + T3 %)
= () + %)% + @y + 75)2 + (g + )2 — (A3 + 25+ ... + 23).

To illustrate the general rule given above, for the qllladric
Xy Xy + X5+ Xy = 0, it is easy to see that the tangent. prime of
this quadric at the point (4, B), which is an angular point of {B}
lying in the polar prime [4,B] = 0, opposite to the angular point
(AB,) of {4}, is [A4,B] = 0. Or, considering ‘the pentahedron
{ BC}, the prime face opposite to the angular point (B.C'o), namely
[B,C]1=0, or [15.26.34] =0, is the tangent prime o‘f the
quadric at (16.24.35), or (4C,), which is an a,ngulaa:‘ point of
{AC}. Or, still again, the prime face of {BC} oppogte to the
angular point (15), namely [15] = 0, is the tangent I?nme of the
quadric at the node (24), which is also an angular point of {4C}.
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Similarly, for the double six of type (III), for examplé, the
angular points of the pentahedron {EF} are

(Lee%1,e%e), (1,6%¢1,6,6e2), (14), (26), (35),

which are easily seen to lie on the quadric whose equation has
been given; also the prime face of {EF} opposite to (EF,), namely
[EyF]=0, is Ty + €%y + Xy + 3, + €25+ €% = 0; and this is the
tangent prime of the quadric at the point (1,e2¢,€2,1,€), or
(15.36.24), or (D, E), which is an angular point of the penta-
hedron {D,}, occurring in the double six in the same column as
{EF}. Or again, the prime face of {EF} opposite to (14), is
@ —%; = 0, which is the tangent prime of the quadric at (C'D,)
also an angular point of {D,}.

That the quadric touches the primes of the pentahedra of the
double six (III), is similarly verifiable from the tangential
equation of the quadric. In complete form this equation is

]

12[ugug + w0y +uy uy + €2(ugug +uguy + Uy us)]
+[(€=3)o+(1-3e2)1][c+7] = 0,

where o denotes u, +u, + 1, and 7 denotes Uy +us+ug. If we use
Uyt ... +Ug = 0, or o+ 7 = 0, this reduces to

Uplg+ Uslhy + Uy Up + €Uz Ug +Uguy + Ugu;) = 0.

We may give indications of the algebra by which this tangential

equation is found: The tangent prime of a quadric
F(@y, %y, ..., ) = 0, or f(x,, s &gy =y —Xp— ... —T5) = 0

)

at the point (£,,...,%;), where §i+...+& =0, if F denote
& ..., &), is given by

xl(a—lf—@)—&-...+:c (y-—-?ﬁ) =0,
08, 0% i 085 08,
and this is
2, 0F [0, + ... + 2,0 F 0L = 0, or, say, B+ ragFy = 0.
To identify this with u,a, + ... + %% = 0, we require

B[y +6) = Byf(uy+6) = ... = Fyf(ug+6), = /8, say,
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where @ is arbitrary; and we are to eliminate &, ..., £; by means of
F = 0. For the case where

F= gzga‘i‘gsgl+glg2+5(gsgc+gs§4+§4gs)

the equations give

A
gz"'gs:g(%‘*'e)’ §3+gx=%(uz+6)a g;""gz:a(’“’s"‘ﬁ):

A A A
Es+& = 62'9‘(“4‘1'0): Eg+&y = eza(us-{-ﬁ), £t &5 = 52‘6(“6'*'0):

5o that, with o = %, + Uy +Ug, T = Uy + U5+ Us; because
E4E+...+E=0,
we have o+ €2r = 3¢0; hence, putting M for o +¢*r, we have such
equations as
5 A < 2 < A 5 2 .
2, = @(G— 2u, +3e2M), 28 = 523 (1—2uy+ €2 M);
if these values of £, ..., & be substituted in F = 0, theresult is the
equation we have stated.
It follows from the geometrical interpretation that any linear

transformation of the coordinates which leaves the Burkhardt
primal unchanged must change the set of six skew pentahedra
which form one of the seventy-two rows of the double sixes, into
another such set (or into itself). Such transformation must
therefore change the thirty nodes arising for this set into another
such system, and change the quadric containing these into
another such quadric. In particular the projections of the primal
into itself explained in § (7) have this property; and a projection
from one of the thirty nodes of a system changes this system into
another such system, and the quadric containing the first system
into the proper quadric of the second. We can exemplify this
with precise formulae which will be found to be of interest below
(Appendix, Note 2). Let the rows of six pentahedra occurring in
the double sixes above called (I), (IT), (I1I) be denoted respectively

by ‘ (ac) (VAB) (AABC)
o)’ \VBa * \papel’

§16. DOUBLE SIXES OF JORDAN PENTAHEDRA 59

the.order of the pentahedra in a row not being regarded. Let
_prf)Jection from a node, say (4 B,), be denoted by p(A4B,). Then
it is found, by the rules given in § (7) (see below), that

P(4oB).vpy = p(ABy).vyp = a; p(ABg).v4e = Aypes
p(4oB).vyp = p(ABy).vg, = ag; P(ABg).vey = Pupo-

These relations shew how to obtain, from the single set «, by use of
the projections, all the remaining seventy-one sets of six skew
pentahedra, every one of these sets being of one of the types o, o,
Vs Veas Aupos fape- We shall shew below (§(20)) how to permute
the six pentahedra {A},{B}, ...,{F} of the set o among themselves by a
group of 360 projections. We can thus generate a group of 72.360, or
23.3%.40, or 25920 projections.

If the quadrics associated with the three typical double sixes

(I), (IT), (III) be denoted respectively by @, @ g, @.i5c, the
relations put down shew that

P(ABy).Qp =@, pP(AB)).Q40c= Qapc-
Particular consequences are that the quadric @,z is unaltered by
the transformation (z’) = y(x), employed in § (3), as may easily be
verified directly; and that the quadric @ 4 is unaltered by the
transfo;mati_on (') = Y(x) given by p(4B,) p(B,C), whose
expression in &, ..., Zg 1s

!

Ty = EXy+ X5+ T, — Xy = €2, + Ty + €204,
r

Xy = Ty+€T5+ETg, —Xs = €%, + €%y + X5,
’

Ty = €T, + X5+ €T, —Tg = X+ €2, + €%,

It may be desirable to illustrate the process by which the
equations above are obtained by taking some cases. It is to be
borne in mind, see §(7), that nodes (PQ,), (@R,), (RE,) lie on a
x-line, and that nodes (PQ,), (ES,), (#j) lie on a k-line if the
syntheme symbols of (PQ,), (RS,) are interchanged by the
transposition of the numbers ¢ and j; and then that, if (L), (M) be
two angular points of the same pentahedron p(L).(M) = (M);
while, if L, M, N be three nodes of a k-line, p(L).(M) = (N).
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Also that p(L).(L) = (L). Asthe projection p(A4 B,) is of period 2,
one of the equations put down is

A Vet y

PABy).a = v p.
Now the left side consists of the elements
P(AB,).{4}, p(AB).{B}, p(4B).{C}, ... p(AB,).{F}.
The geometrical interpretation shews that P(ABy).{4} = {4}.
The element p(A4 B,).{B} consists of five terms such as

P(AB,).(BR),

Wh_ere Pisoneof 4,0, ..., F, and this term is (PA4,) except when
P is A, when it is (BA4,); thus P(AB,).{B} = {4,}. The element

P(AB,).{C} consists of five terms p(AB,).(CPF,), where P is one of
A, B, D, E, F: of these

P(4B,).(C4,) = (BCy),
P(ABy).(CDy) = (26),
P(4B,).(CF) = (15),
as we see at once by consulting the scheme of synthemes in §(1)
thus p(4 B,).{C} = {BC}. In the same way we find
p(4B,).{P} = (BP)
for P = D, E, F. On the whole then P(ABy).a=v,p.
Consider next the equation
P(ABy).v 40 = Aype-
The left side of this consists of the elements
P(4B,).{4]}, P(AB).{4,}, p(4B,) {CB},
P(4B,).{0D}, P(4B,).{CE}, P(4By).{CF}.
Of these, p(4B,).{4} = {4}; p(4B,){4,} consists of terms
P(ABy).(4,P), equal to (BER), so that p(4 B,){A4,} = {B}, as we
have already seen; p(4 B,).{CB} is already found above to be
{C}; (4 B,).{CD} consists of terms p(A4 B,). (CD,), p(4 B,). (CyD),
P(AB,).(14), p(4B,).(23), p(4B,).(56), which are respectively
(26), (35), (14), (EF,), (E, F). Thus we have p(4 B,).{CD} = {EF}.
So we find p(4 B,).{CE} = {FD}, and P(4B,).{CF} = {DE}. On

p(ABo) . (OBO) = (OBo),
P(AB,).(CE,) = (34),

3
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the whole then
P(ABqg).vag = {4} { B}, {C}, {EF}, {F D}, {DE},
as stated. The remaining equations can be similarly verified.

(17) The linear transformations of the Burkhardt
primal into itself. We have shewn that the equation of the
primal is reducible to the form

Yo— Yo+ Y3+ Y3+ i)+ 3Y1Yaysys = O,
by taking 3, = 0 to be a Steiner solid meeting the primal in the
four planes y, = %, = 0, ..., 9, = ¥, = 0. With the values taken in
§ (13) these planes are respectively
%[l = w5/e* = zgle;
z,/1 = ayfe = x,/e.

@[l = @y[€? = wse;

2,/1 = gfe’="xfe%;
We are concerned with the linear transformations into itself of
which the primal is capable; and these may be expressed by any
set of coordinates. Such a set as ¥y, ...,%; wWas used by
Burkhardt, arising in his theory as theta functions of two
variables, linearly transformed among themselves when the
thirds of the periods of the theta functions undergo a linear
transformation. From this point of view it appears that the
linear transformations of y,, ¥y, ..., ¥, with which we are concerned
can be built up by the combinations of four such transformations.*
It is proper to cite these transformations with the names given to
them by Burkhardt omitting, however, constant factors common
to all of 4, %y, ..., ¥4, and replacing his S, by S. They are

2 | e | » | s |
y.; Yo~ Yo l Yo Yo

% =2y -t 2 Y2 €%

Y Yo+ s +Ya Ya n Y2

Ys Yo ey +€%Y, Y Ys €Y

y; Yo+ E%Ys +EYy Ys Ya €

* The reader interested in the linear transformation of the periods of
theta functions may consult, for instance, the writer’s Abel’s Theorem
and the Theory of the Theta Functions (Cambridge, 1897), Chap. xvir, and
pp- 549, 669 ff., where references to the literature are given.
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These transformations are subject to various relations among
themselves (see below, § (19)); in particular we mention at once

Bt=(C*=D*=8*=1, B*=C®DCDC?D,

(CS)3 = (SC)* = DS*D.
The transformations €, D, S are transformations of the faces of
the Steiner tetrahedron lying in , = 0, or 2, + ¥, +2; = 0, among
themselves. But B transforms this Steiner solid into the Steiner
solid y,—, = 0, or #,—€x3 = 0, which as already remarked, § (9),
meets the original Steiner solid in the Jacobian plane
2y /1 = Zyfe = x5/e?.

It is at once evident that C, D, S leave the primal unaltered.
That the same is true of B follows because

Yo=Yo— Y1 V1= —2Yo— %
lead to
Yo—vi = o YoR+Yoyi+ Y = 35+ Yot + 90
Yot — Yoy = Y —Yoyi):

’ ’ r

while — Yo(ys® + 5>+ ¥®) + 31 Y2 Y3 Y
whichis —yg(ys® +ys® + ¥4 — 3ybysva) — 3o — Y1) ¥2Ys¥is
is equal to ‘

—27(yYo— Y1) YaYsYa— WolU3 + Y3+ ¥i— 3Y2Ya¥a),
or — o3+ Y3 +YR) + 2T Yo YsYa

The transformed polynomial whose vanishing gives the equation
of the primal is thus nine times the original polynomial.

The transformation ¢ is an even permutation (243), of
Y1s Yo» Y3» Yo the transformation D is the odd permutation (12), of
these. It may be shewn (see §(20) below) that all the possible
twenty-four substitutions of ¥, ¥,, ¥s, ¥; among themselves are
obtainable by combinations of the two substitutions (243), (12).
But the combinations of €, D, S (for the notation cf. pp. 75, 76),

L=DS8D, M =82 N =CB*S*CB?
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we at once see change (yy, ¥s, ¥, ¥4) into

(Y1: €Y2s €Y5, €Ya), (€Y1, Yo, €Y3, €Ya), (€Y1, €Y, Y3, €Y4)
respectively; thus, if «, £, y, é be each 0, 1, or 2, subject to
o+f+y+8=0 (mod. 3), the transformation L?-*M*-FN°—
changes (y,,...,%,) into (e*y,, €fy,, €'y, €’y,). Combining such
transformations with those of the symmetric group of twenty-
four substitutions obtainable from ' and D, as we have seen, we
see that, by combination of C, D, S, (,, 9, ..., %,) can be changed
into any one of the 24.27 sets given by

(y(): E“yl, eﬂym’ e?yﬂ : Ga?lp),
where [, m, n, pis any permutation of 1, 2, 3, 4. In passing we may
remark that D = p(4,B), and CB? = p(56). (Cf. p. 79.)

We have shewn, however (§(13)), that by combination of the
transformation B with the transformations which we now see to
arise from C, D and S, we can obtain forty equations of the
primal, all of the same form, that is, forty sets of values of
Yo Y1» - --» Y4 Satisfying the equation, in each of which 3, = 0is one
of the Steiner solids, and y; = 0, ..., y, = 0 are associated primes,
defining a Steiner tetrahedron. There is thus a group of 24.27 .40,
or 23_3% 40 linear transformations of the primal into itself,
obtainable by combination of B, C, D, S. Any such transforma-
tion must clearly interchange the forty-five nodes among them-
selves; and it may be shewn by individual examination that the
permutation of the nodes due to any one of B, €', D, Sisequivalent
to an even number of transpositions of the nodes. The 23.3%.40
transformations thus form a group of even substitutions of the
nodes among themselves. Conversely it appears-clear, without
appeal to the theory of linear transformations of the periods of the
theory functions on which Burkhardt relies, that the 23.3% 40
transformations exhaust the possible linear self-transformations
of the equation

Yo— Yoy + ... +Y3) + 3192435 = 0.
For the transformations of this which leave y, unaltered must
leave both #}+...+93 and 7,%,y,¥, unaltered, and so be co-
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extensive with the 24.27 transformations of ¥, ¥,, ¥,, ¥, into
forms e*y,, €fy,,, €7y,,. €*y, which we have found by combination of
(', D, S alone. Also, this equation shews that any possible form of
o must be such that y, = 0 is a Steiner solid, meeting the primal
in four planes. We have shewn (§(13)) that it is possible, by
combination of B, U, D, S, to obtain forty such Steiner solids
i = 0. It is only necessary then to assume that there are no
other Steiner solids than those we have specified. To prove this is
an algebraic problem of which we give no formal solution.

We have also found (§ (7)) particular linear transformations of
the primal into itself of which each is a projection from a node.
Each of these leaves this node, and twelve other nodes unaltered,
but interchanges the pairs of nodes lying on the sixteen x-lines
that pass through the centre of projection. Such projection thus
gives an even substitution of the nodes and leaves the equation
of the primal unaltered. It is to be expected then that every one
of the forty-five projections is expressible as a combination of
B, C, D, 8. We give no formal proof that this is so, though we
obtain several examples of this; such proof is probably to be
constructed by means of the relations, given in §(7), among
projections from nodes lying on a x-line. But we give below
(§ (19)) expressions of all of B, C, D, § in terms of projections, in
forms necessarily not unique. Presumably then, all the forty-five
projections are obtainable by combinations of the four expressions
so found. We give some details below (§(19)) in regard to the
particular case arising when we consider only the eighteen pro-
jections from the nodes lying in a Steiner solid.

(18) Five subgroups of the group of 2°.32.40 trans-
formations. It appears from what we have said that for each of
the forty perfectly similar Steiner solids there is a subgroup of the
complete group, of order 23. 3%, leaving this solid unaltered; for
the solid y, = 0, this is obtainable by combination of the trans-
formations C, D, S. The transformations of this subgroup will
correspond to permutations of the eighteen nodes in this solid.
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But the transformations of the subgroup (C, D, §), though
effecting even interchanges of the forty-five nodes, do not give
solely even interchanges of the eighteen nodes of the solid
among themselves. We find on examination that the trans-
formations € and S do so, but the transformation D causes
seven transpositions of nodes of the solid, and nine trans-
positions of nodes not belonging to this solid. For D is p(4,B),
and there are seven «-lines from the node (4,B) containing
nodes of the solid, and nine x-lines containing nodes not
belonging thereto.

The 23.3%.40 transformations of the complete group can be
supposed, in the familiar way, to consist of the transformations of
this subgroup (C, D, S), taken respectively with thirty-nine other
transformations, each such transformation corresponding to one
of the thirty-nine other Steiner solids. The existence of this sub-
group (C, D, 8), of index forty, arises from the fact that the
Burkhardt configuration contains forty subsidiary configurations,
all exactly similar, namely the Steiner tetrahedra. The complete
group arises by the combination of the transformations of one
such configuration into itself, with the transformations which
interchange the subsidiary configurations among themselves.
Every such set of mutnally similar subsidiary configurations
likewise gives rise to a subgroup, consisting of the transforma-
tions which leave one of these subsidiary configurations un-
altered, with index equal to the number of such configurations.

The subsidiary configurations which naturally arise for con-
sideration after the Steiner solids are the Jacobian planes, also
forty in number. We expect then to find a subgroup of the com-
plete. group leaving any Jacobian plane unaltered and trans-
forming the nine nodes of this plane among themselves, the
number of transformations of all the nodes so arising being
2%.3%.40/40 or 24.27. We approach this result in two ways; first
by considering briefly how the general formulae we have given
affect a particular Jacobian plane, which we take to be g7y = 0 = 7, ;
and then, geometrically, by considering the permutations of the

BL 5
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nodes of this plane among themselves. From the general formulae
of § (17), we see that the plane y, = 0 = #, is changed into itself
by the transformations B, €' and S; and that these transform
Yas Y3, Y, respectively by the scheme

B I C L S
s Yo+ Yy +Ya } Ys ¥e
?/:’; Yoty +€%yy Ya €Yy
Y4 Yo +E%Yy +EYy . Y €y;

The nodes in this plane are easily seen to be given by the values
of vy, s, y, which satisfy the two equations #3+23+43 = 0,
YsYsYy, = 0. It is to be shewn that the combination of the
transformations B, C, S leads to a group of 24. 27 transformations
of ¥,, ys, ¥4, each leading to a substitution of the nine nodes
among themselves, or leaving these nodes unchanged. Consider,
also, the possible interchanges of the nodes; these are the
inflexions of a pencil of cubic curves in the plane (y,, ¥3,,). It is
easy to see that if three of these inflexions, not lying in a line, say
P, @, R, be given, as well as one of the cubic curves of the pencil,
then the other six inflexions can be constructed; for the line Q R,
by its further intersection with the curve, determines another
inflexion, say P’; likewise the lines RP and P each determine
two other inflexions, say @" and R’; and then the line PP’
determines a further inflexion, say P”, and likewise the lines
Q@ and RR' each determine another inflexion. Thus all the nine
inflexions are determined. There are 9!/3!6!, or 84 sets of three
inflexions possible from the nine, and we know that there are
twelve sets of three collinear inflexions. Thus such a triangle as
PQR can be chosen in seventy-two ways. We can therefore
suppose the set P, ¢, R to be made to coincide in turn with
seventy-two sets of three inflexions which form a triangle,
including itself. And the inflexions forming the angular points of
such a triangle can be interchanged among themselvesin 3! ways.
Wherefore, the permutations of the nine inflexions among them-
selves are 72. 6, or 432, in number; of these, one half, or 216, will
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each be equivalent to an even number of transpositions of two
inflexions.
But the equation of the primal is

Yo— Yo — o3+ Y3 +Y2) — 3%1Y2Y5Ya] = 0,
wherein y§— .3 is unaltered by the transformations C, S, and
only multiplied by nine under the transformation B. The trans-
formations B, C, S then, by their operation on y,, ¥, ¥,, change
the pencil of cubic curves given by A(y2+ 33+ i) + s sy, = 0
among themselves; the changes in the two polynomials

PHB+YE YeYsYa
involve certain changes in A and u (or y, and — 3y,), which are
those associated, in B, €, §, with the changes in ,, 3, ¥,- We can
compute, however, that the combination (SC)?, while leaving
Yo, ¥, unaltered, replaces y,, s, ¥y by ey,, €ys, €y, so that
the repetition of this leads to €%,, €*y;, €%,; these changes,
though arising in the set of transformations of ¥, 9, ..., %,, are
" ineffective as displacements of the nine inflexions. It may be
shewn that the transformations B, C, S each lead to an even
permutation of the nine nodes. We infer, therefore, as the even
displacements of the inflexions are 216 in number, that the trans-
formations B, C, S generate a group of 3.216 transformations.
And this is the number, 24.27, which we had reason to expect.
We have seen that the complete group of 24. 27. 40 transforma.-
tions is obtainable by combinations of B, C, S and D. It can thus
be built up from the subgroup (B, ', S) which we have con-
sidered, associated with proper combinations of B, €, § and D.
The transformation D, equivalent to the projection p(4,B).
will leave unaltered the eight Jacobian planes which pass through
(4, B), while interchanging the remaining thirty-two such planes.
A third subsidiary configuration occurring in the figure is that
of one of the forty-five entirely similar Jordan primes. It is to be
expected then that the transformations of y,,%;,...,%, have a
subgroup of order 23.3%.40/45, or 576, interchanging the twelve
nodes of a Jordan prime. We examine the case of the prime
5-2



68 §18. FIVE SUBGROUPS OF TRANSFORMATIONS

[4oB] = 0. This prime, we easily see, is given by y,—y, = 0,
and is unaltered by the transformations B, D, S of § (17). The
nodes in this prime are the angular points, other than (4 B,), of
the pentahedra {4}, {B,}, {4B}. If the faces of the three tetra-
hedra respectively formed by these nodes have equations o; = 0,
Bi=0,7;,=0,fori=1,2,3,4, there exists, (§(5)), an identity of
the form

Aayogayoty+ By B fsfa+ Cyr¥avaYs = 0,

where 4, B, C are constants, and in general only one such identity.
There is therefore no derangement of the twelve nodes possible
among themselves in which this separation into three sets of four
nodes is disturbed; there cannot by such derangement be any
interchange of the angular points of one tetrahedron with the
angular points of another, other than such as arise from inter-
change of the two tetrahedra. The only possible derangements
arise therefore by the interchange of the angular points of each
tetrahedron among themselves, coupled with the interchanges of
the three tetrahedra among themselves. Now the even inter-
changes of the angular points of a single tetrahedron among

themselves are twelve in number; and there are six possible -

orders in which the three tetrahedra may be arranged. Any
transformation of one tetrahedron involves, under B, D, S,
definite derangements of the other two. Thus we can account
for possible even substitutions of the nodes, forming the angular
points of the three tetrahedra, which are seventy-two in number.

Inspection of the scheme of four transformations of yy, 4, ..., ,
givenin § (17) shews that the prime y; —y, = 0is unaltered by the
three transformations B, D, §. But, in fact, these transforma-
tions, which are transformations of primes, include transforma-
tions which change the sign of the left side of the equation of any
plane face of a tetrahedron lying in ; — %, = 0. Thus the combina-
tion of B, D, S leads to 72. 8 transformations of y,, %y, ..., %, in all,
that is 576, as forecasted, a transformation which changes the
sign of every face being counted as identical.
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We examine this result now in further detail. The equation of
the primal y5—yo(y3 +...) + 3¥1¥2¥59, = 0 is the same as

A4 3
y%—m[y%y%?(%) ]

+¥.)° 3

+3y1y2(¥) — 3 W =Y oy +¥s) + 192] = 0;
we are concerned with the tetrahedra in the prime [4,B] = 0,
which is y;—y, = 0; we put then y, = y, and obtain, in the co-
ordinates ¥, ¥y, ¥s, 5, the equation

Yo~ Yolva + ¥+ 23] + By, 203 = 0,
representing the quartic surface which is the section of the
primal by this prime. The coordinates ¥,, ¥y, ¥s, ¥; of the twelve
nodes of this surface, which are the angular points of the three
tetrahedra arising from the pentahedra {4}, { B}, {4 B}, are found
to be those given by the rows of the scheme

{4} {Bq} {4B}
0,:1; e, 0 0, .1, - 0 0, 1, -1, 0
Latinl-o® 1, s Lise ! EO (RS (R |
L &. &1 L 1, €, & 1, 6% 6 g
Y. S s e L (2 | | L

Further, the transformations B, D, S, and the transformation
(D8?)?, which we denote by E, as they affect v, ¥y, ¥s, s, are
given by

B D S B
v | w-m % Yo %o
r a
y} =2y, - Y2 €Y €Yy
Ya Yo+ 2y, | % | Yo ‘ €Ys
Yy | Ya—Us | Ys | €%Yy €Yy

We see at once that, applied to the coordinates, the transforma-
tion S leaves unaltered the angular point (4 B,), the pole of the
prime under consideration, and, for the tetrahedra {4}, { B,}, {A B},
gives

S{d} = {Bo}, S{Boj={4B}, S{4B}={4},
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the rows of coordinates of the angular points of these tetrahedra,
put down in the scheme above, being preserved. Thus S effects an
even substitution of the twelve nodes (just as thé substitution
(abe), for three letters, is equivalent to two transpositions).
Further, we find, if (X,Y,Z,7), (X,,Y,, Z,, 1)), (X5, Ya, Z,, T})
denote the angular points of the three tetrahedra, that the
transformation D, while leaving unaltered the angular points of
{4 B}, changes (X, Y, Z, T) respectively into (X,, Z,,T,,¥;), and
so changes the tetrahedron {4} into the tetrahedron {B,}, and
conversely, since D* = 1. Thus S, D together effect the six possible
permutations of the three tetrahedra among themselves.

We can then limit our consideration to the effect of B, D, §
upon one of these, say {4B}. We find that, acting upon the
angular points of this, B(X,, Y, Z,, T}) = (¥, X,, Ty, Z,), so that
B is equivalent to the even substitution (X,¥,) (Z,T}) for these
angular points;alsowe find that &, or (DS?)2, changes X,,Y;, Z,, 7,
respectively into X, 75, ¥, Z,, namely, is equivalent to the even
substitution (Y,7, Z,). Thus B and E, together, effect the twelve
even interchanges of X,, ¥,, Z,, T} (see below §(20)). But the
planes of the tetrahedron {4 B} opposite to X,, ¥,, Z,, T} are found
to be given respectively by uy = 0, g, = 0, o = 0, p; = 0, where

Ho = Y1 =Y Py = 25+ Yy + s+ 2y,

Ho = 2Yo+e(Yy+Ya) + 2675, fy = 2u5+€Xy; +Y) + 26y
by applying the substitution .D the values of y,, sy, g are left
unaltered, but the sign of s, is changed. Choose then, from the
twelve even substitutions of s, 21, ts, 5, that one, say D, which
interchanges u, and p; and at the same time interchanges the
other two; then the substitution D, DD, changes the sign of p,,
“ leaving all others unaltered. Hence, by combining B, D, S, we
can change (u, /i1, ts, Jt3) into any one of the sixteen

(& ftos £ ptys + pro, + pig),

equivalent, for our purpose, to eight cases, the s, ..., /5 being
taken in any one of the twelve orders obtainable by even sub-
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stitutions. In this way, it appears that the subgroup (B, D, S),
acting on the coordinates y,, ¥y, ...,¥,, contains 6.12.8, or 576
transformations, as was stated. We may add a table of the precise
effects of B, E, D, acting on the faces of the tetrahedron {4 B}:

B E D
#; —H I €ltg —th
12 =34, Ha . M
’
Mo (1-e)pq g He
’
Hy (1 —e*)uy i Hg

We have examined the effect of the subgroup (B, D, S) upon the
nodes in the prime [4,B] = 0, opposite to (4 B,). The fourth of
the original transformations €' can be shewn to be equivalent
to p(56)p(4B,), that is, to projection from the node (4B,),
followed by projection from the node (56). The projection
p(A B,)leaves all the nodesin [4, B] = 0 unaltered. By combina-
tion of €' with transformations from the subgroup (B, D, S), all
the 45.576 transformations of the complete group are to be
obtained.

For a fourth subgroup, we next examine the entirely similar
configurations which we have called Jordan pentahedra. As
these are twenty-seven in number, we expect that the equations
for the transformation of the primes y,=0,...,4, = 0, in the
general group, will lead to a subgroup of index 27, that is, of
order 23.3%.40 = 33, or 24.40, effecting this number of substitu-
tions among such of the forty-five nodes as may vary when we
postulate that a particular pentahedron shall remain unaltered.

Consider in particular the pentahedron {4 B}, of which we
denote the prime faces by o,=0, 0y, =0, ..., o, = 0, taking
oo = [AB,]. There are sixty substitutions of these faces. The
transformation D, which is equivalent to projection from the
node (4, B), opposite to [AB,] = 0, changes the sign of [AB,],
leaving o, ..., 0, unaltered; and if D; be a substitution, from
among the sixty, of the form (o,0;)(0;0;), which effects a
transposition of o, and o, the substitution D; DD, changes the
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sign of p;, but leaves the other four primes unaltered. Thus, by
combination of D with the sixty even substitutions of the prime
faces, we obtain from 00 Oy, --.s 0y all the values o, + 0, ..., + oy
By such combination we thus obtain 60.16 even transformations,
namely the 24.40 which we expected.

We consider this now in more detail: For the faces of {4 B} put

0y = [-ABOL Ot = ['AOB]z
03 = (2—€)[25], o, = (e2—€)[36],

oy = (€2 —e) [14],

which, by the formulae connecting z,, ..., % and y,, ..., Yy (§(13)),
are oy = Yy —Ys, 0y = —¥Y3+7,, together with

1

Oy = ;‘/(_3‘) 29+ y: + Yo+ Y3+ 4,
1

O3 = W (290 + €Yy + ¥2) + €(ys +14)),
1 2

Oy = N_(_:”[zyu+€ (Y1 +Ys) +€(ys+y,)];

use also B = (DS?)?, F = (DC?)?2. Then, under B, D, E, F, we
find the transformations:

B D E F
r
Ty -0, -0, eo, (-
’
c:r3 oy oy &*oy T,
a‘? o, oy oy oy
::rE &0y oy oy oy
oy — €0y L2} | Ty Ty |

Apart then from roots of unity, the transformations B, E, F are
equivalent respectively to substitutions for 0y, Oy, ..., 0, Which
we may denote by (0 0,) (030,), (0505 0,), (707) (05 0,); and it
can be shewn (§(20)) that these together generate the sixty even
substitutions of oy, o, ..., o,. Thus, as shewn above, by combina-
tion of B, E, F, D, we obtain a subgroup of 60.16 even sub-
stitutions leaving the pentahedron {4 B} unaltered. From the
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geometrical considerations, this constitutes the aggregate from
the 60.16.27 transformations of the complete group, which has
this property. Itisthus possible to find, from the complete group,
twenty-seven transformations, including identity, each leading
to a change of pentahedron, and the combination of these with
the transformations of the subgroup, leads to all the transforma-
tions of the complete group. One such of these twenty-seven
transformations is that denoted in §(16) by (2') = {(z), given
by the combination of two projections p(4B,)p(B,C), which
transforms the pentahedron {4B} into {4} (and conversely,
sinee ¥* = 1). We shall, with reference to this, remark below
(§(21)), on the self transformations of the pentahedron {4}
corresponding to those here considered for {4 B}.

A fifth subgroup of our general group is that which leaves un-
altered one of the thirty-six double sixes of Jordan pentahedra
considered above. Such a subgroup will be of order 23. 3%.40 + 36,
or 720; that is 6 ! In particular, the double six whose two rows
consist of the pentahedra {4},...,{F}; {4},...,{F}, is sym-
metrical in 2, ..., ¥;, and is unchanged by any of the 720 per-
mutations of these. And clearly this symmetric group leaves
unaltered theequationof the primal expressedin x;,2,, ...,%;. But
it is to be remarked, and will be made clear in § (20) below, that a
single transposition of two of x,, ..., z;, besides possibly altering
the order of the columns in the double six, necessarily effects a
transposition of the two rows. Such a transposition, though of
odd character regarded as a substitution of ;; ...,z is an even
substitution of the nodes of the primal, being (§ (7)) equivalent to
a projection from a node. If we assume that any even substitu-
tion of the nodes is obtainable by a combination of the funda-
mental transformations B, €, D, § (and, for this, we have given a
geometrical justification in§(17)),it follows that the symmetrical
group of 720 substitutions of #,, ...,z is so obtainable; thus, as
we have seen, it forms a subgroup of the complete group of
23_3%.40 transformations. Individual examples of the expression
of transpositions of #,, ..., %s in terms of B, C, D, S are given by
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p(14) = B-'DB, p(56) = CB?*; the former we have proved
(§(13)); the latter arises by combining the two results

U = p(56)p(4B,), B*=p(4B,),
which can be verified.

However, another group of 720 operations which leaves a
double six unaltered is that of the substitutions of the six
columns among themselves (accompanied possibly by trans-
positions of the pentahedra in one or more columns). The con-
sideration of the relation of this group with that of the sym-
metrical group of substitutions of @y, ..., z; arises below (§(20)).

The other thirty-five double sixes are obtainable from the one
considered here by the formulae given in § (16):

(19) The expression of the fundamental transforma-
tions B, C, D, § as transformations of «;,...,%5. The
expression of B, C,D, S in terms of nodal projections. By
the formulae of §(13), the transformations B, C, D, 8, so far
expressed as transformations for y,, y,, ..., %,, can be expressed
as transformations for %, ..., #,. Neglecting a common constant
factor affecting the transformed values j, ..., 25, we thus find:

Ty = By + €Ty +EXg,  — Xy = By+ 620, + €2,

For B, 1 Ty = Xy + g+ €Xg,  — Xy = €2+ Xy + 205,
Ty = EFy +EXy+Tg, — — Ty = €%y + €20, + X,

which, save for preceding interchanges among z,,...,2; and
subsequent interchanges among 7, ..., %, is the transformation
(") = y(x) used in § (3).

®; =2, —3[4,B], =« =u=z,—}[4,B],

2
For C, xh = xz—-%[AoB], x5 = xs‘%[AoB]’

’

€ p €2
Ty = xa—g[AoB]s Tg = xs"—g (4, B],

— -
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and, since (4 B,) is (1,€%¢6, 1,€%¢€), by §(1), this re;:resents’ pro-
jection from (4 B,), followed by transposition of z; and g (see
§(7)); so that we may write €' = p(56)p(430).

For D, r
€ il e

vy =2, —3[4Bg], %= xz"g[ABo]: Ty == [A B
€ . €

zy = x&"%[ABo]: & = xs—g[ABo]s Xg = 955_5 [4 B,],

which shews that D = p(4, B).

— i o2 2
T} = Ty + Ty + 63,  — U5 = By T ET;TETg,
— r — g2 2
For 8, Xy = €Ty + X+ €Ty, xg = €24+ T3+ €T,
= $ = p% 2.
Xy = €Xy + €Ty + T, 2y = €204+ €25+ T,

which is clearly (z') = x(x), followed by change of aj, @5, %
respectively into a5, @, 3. Thus we may write
S =7p(45)p(46)x.

In replacing a transformation by a product of .two (or more)
others. some care is necessary in regard to notation. Let U,V
denoté two transformations, say of variables 2y, %, ...} le_t V be
such as to change z;,2,, ... respectively to certain functions of
these, which we may denote by 23,23, ..., & fact we denrote’ by
V(2 2a5 -+-) = (21,28, ---); leb U be such as t:o change 23,25, ...
respectively to certain functions of these, which we ina.y denote
by 2,2, ..., a fact we denote by Uz}, 25, ---) = (F:% ---)- Then
we denote by UV (2,2, ...) the value of U{V (2,, 23, ---)} Tegarded
as U(z},2, ...), which is (2, se)s AN effect, the product UV,
acting on z;, is defined as U(2). =

But, if f(zy, 2y, -..) denote a function of 2y, z,, s it is a us.ual
convention to denote (2}, 25, ...) by Vf(z1, 23 ---)- This convention,
because UV (2y,2p, ---) = (1,285 +--)s then leads to

UVf(2y, %0 ---) =f (#5285 -+-)-
Now, if &, &, - be values of 25,2, .., let the function
f[U(gl)s U(Cz)’ "-]:
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regarded as a function of {;,{,, ..., be momentarily denoted by
?(&15 &sy -..). Then, by the same convention,
V{Uf(2y, 23, ...)}
= V{flU (=), Uzy), ... ]} = V(21,25 -..) = B[V (21), V(2), -]
=JIUV (), UV (z)), --.1 = fIU (=), Uz3), -] = [ (#, 2, )
=flUV(z), UV(2,), ...]1 = (UV) f(21, 2, --.)-
Hence, the result of the product transformation UV, acting on
f(#1, 2y, ...), is obtained by operating on f(z,, 2, ...) first by U, and
then, regarding what is obtained as a function of z,,z,, ..., acting on
this by V. The applications arising here are generally when
f(21, 25, ...) is & linear function of its variables. In particular this
rule, applied for example to z;, requires us to operate with ¥ upon
Ul(z;), regarded as a function of z;, and thus gives U(z;); which is the
result here taken as fundamental.
This being understood, we remark in regard to the transforma-
tions B, C, D, S,
(1) B; that
B? = p(4B,), B*=1, sothat B = p(4B,).B.p(4B,).
It is also convenient to use a transformation we denote by B,
which may be defined as p(B,C). B.p(B,C); for this then also
B3 = p(4B,), since (§(7)), the projections p(4 B,), p(B,C) are
commutable. Various possible expressions for B; in terms of
projections are then

B, = p(4D,) p(AF,) p(25) p(36)
= p(AFy) p(F By) p(EB,) p(4D,)
= p(ADg) p(DBy) p(C By) p(AF,)
= p(4E,) p(B, D) p(4,B) p(B,C)
= p(4Cy) p(4, B) p(AF,) p(B, E)

. = p(4Dy) p(DB,) p(AFy) p(36),
while

B = p(B, C) p(AE,) p(B,D) p(4, B)
= p(By D) p(dy B) p(B,y F) p(ACy) = ete.
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For the proof of these we may, by § (13), express the projections
by the variables ¥, %1, ---> a3 but the equivalence of any two of

the forms follows by the rules given in § (7).
(2) C'; we have
03 =1, C=p(56)p(AB,) = p(BF)p(56) = p(ABo) p(Eo ),
so that p(56) = CB%, (CB??=1.
(3) D; we have already remarked that
D =p(4,B), D*=1.
(4) S; we have 8% = 1; and various forms are given by
8= P(BCO)P(-DEG)P(EFO) p(CAy)
= P(DEO)P(EFO)P(ABO)P(CAG)
= p(BGy) p(C4,) p(13) p(12) = p(13) p(12) p(A By) p(BCo)-

We can prove that S is commutable with B;, or SB; = B, S, and
defining a transformation, say /2, by

o = p(12) p(13) p(BCo) = p(CA,) p(12) p(13)
= p(EFy) p(DEg) p(CAy),
we have S=p2 pBy=DBy, p= B2 = p(AB,),
the expression of z in the variables g, ¥y, ---» ¥4 being
(Yos Y3 -+ ¥a) = (Yo €Y1 Y2: Y1 €Y3)-

(5); the transformations E, F are given by
E = (DS)? = p(12) p(13) p(45) p(46), F = (DC?)* = p(23) p(56).

(6); we have given in § (16) the expression in terms of . 5,10
of a transformation ¢, which may be defined by

¥ = P(ABg) p(B, C).
Tn terms of Yo, Y1, ---» Ya its expression is
(Yo +--»Y2) = (Yor Y2 €Y1, Y Ya)-

This transforms the pentahedra {4}, {4B} into one another,
being such that 3* = 1.
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(7); the transformation y several times used, (§(3)), expressed
in terms of (y,, ...,7,) is given by

(?/(’)’ veny y;) = (y07 62?/1: €Y2; €Y 3, €2y4)=
which shews that ¥ = 1. Also we can prove that
¥ = xp(16) p(24) p(35) = xp(ACy) p(4,C),
X = p(4B,)p(B, C’)p(AC'u)p(A,,O)
= p(BCy) p(4, B) p(AB,) p(B, C).

Further relations may also be given here. We have already
referred to

p(14) = BDB-1= B-1DB, (CS)® = (SC)® = DS2D

and we find that p(B,C) = 8-1D8.

We also introduce a transformation 4, which can be defined by
4 = p(14) p(56) p(EE,), = p(14) p(EF,) p(4, B),

= p(56) p(EF,) p(14),
whose expression, therefore, in terms of &y, ..., ¥, is given by

£ 2
=BT o =2-3[EF], z=2-BF)

=z =B L, o =2-SBF], o=r—FEF);

in terms of (y,, 4, ...,,) this is given by
Yi=1m—%u, for i =0,1,... 4

’

where

U= 20+ Y1+ Yo+ Ys+Yar  Dos s V2 W3 M) = Wor s Y1 Yo Ya),

so that 4 is p(14) preceded by the change of y,, %5, y; respectively
into ¥,,¥;,%, (see §(13)); and it can be shewn that p(56) p(EF, )
leads to (%: yl’ s :Jnl) = (yo: Ys» Y1 Yas yd) We ﬁnd th&t

AC = (BD)®, A%=CBD = CDB = p(56) p(4, B),
43 = BDB-' = p(14), A5=1, A= DCBDB,
leading to C = A°BA®B, D = B-14%B,

§19. TRANSFORMATIONS EXPRESSED BY PROJECTIONS 79

so that B, €, D are expressible by the two transformations
A, B. By virtue of (CB?)?2 =1, 4 and B are connected by an
identity, as also follows from 4 = DCBDB. Another form for 42
is [p(56) p(EF)]:. See Postscript on p. 98.

It is convenient for purposes of verification to have the formulae
in terms of (y,, %y, ...,%,) for the projections from the eighteen
nodes which exist in the Steiner solid y, = 0, or &y + 2, + 2, = 0.
If we denote the projections

p(23), p(31), p(12); p(BG), p(CA,), p(4B,);

P(EE), p(FDy), p(DE,),
respectively, by

X, Y, Z;, P,QR; UV, W,
and the projections, from the nodes in the opposite edges of the
tetrahedron,

P(56). p(64), p(43); p(B,C), p(Co4), p(d, B);

P(EyF), p(F, D), p(Dy E),
respectively, by

X’? r” Z'; P" Q’? R'; L"’} I"! Iiv’?

we find
X ¢ Z P Q R U ¥V W
3"& Yo Yo Yo l Yo Yo Yo - | %o Yo Yo
¥ Ya €Ya €*Ys Yi of % 51 Ys | €Y | Yy |
Yo Ya Ya Y2 Y2 Yo Y2 Yo i Yo b ooiee |
¥s Ya s Y s | €Y ‘ Ya w6 i &y |
Y ¥ €y €Y1 | €4y : s | ¥ Ya i Yo | Y
XJ > Yr z’ 1 P’ : Ql 1 Rr , Ul : Vl 1 Wr
?Jé %o Yo Yo Yo . Yo Y ! Yo | o | %
¥ i U % €Ys i €Yy Y2 Y. | Y i %
’ s 2 | 1
yg Ys €Ys €Y; L2z O L o S e Lo €%y,
Ys Y €%y €Y2 Ys | Y U3 ol Yx | Y3 ‘ Ys 4
Ys Ya Ya ¥s Ys Y B % | en e

The table shews that the six products YZ, QR, VW, Y'Z', Q'R’,
V'W’ are all ‘diagonal’ transformations, that is, the transformed
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¥; is a multiple of y,, so that any two of these six products are
commutable; and in particular that

Y'Z'YZ=YZ.Y'Z =VW.V'W'; YZY'Z)'=QR.QR;
W = RZR.
Other results arising are YZ = QRVW, and
8=YZQR, DS*=YZ.Y'Z'.PP=P .YZ.Y'Z,
(D822 =(YZ.Y'Z"),

D, S being the Burkhardt transformations. Also, a consideration
of the «-lines in the figure shews that all the eighteen projections
are expressible in terms of four of them.

We have expressed all of B, ', D, § in terms of nodal pro-
jections; and anticipated that any of these forty-five projections,
being even linear transformations of the nodes, must be con-
versely expressible in terms of B, €, D, S. For the formal proof of
this we expect that the rules given in §(7), depending on the
k-lines, may be sufficient. As results of these rules, every one of
X, Y, Z,in the table above, is commutable with any one of X*, ¥,
Z'; every one of P, Q, R with any one of P’, @', R’; and every one
of U, V, W with any one of U’, V', W'; for example, that P, or
p(BGy), is commutable with @', or p(C,4), follows because the
nodes (B(j), (C,4) are angular points of the same pentahedron.
A consequence of this is the existence of equations such as
(XY')? = 1;for thisis X ¥V'. XY’ or XX Y'Y’, or X}(¥’)2, which
is 1. From these the equations such as YZ.Y'Z2 = Y'Z'.VZ
follow at once. Other results are not so obvious; as for example
that p(4C,) p(4D,) is commutable with p(B, E) p(B, F); or that

p(B,C)p(4B).p(AE,) p(B, D) -p(A4yB) p(B, C)
= P(AK,) p(B, E).

But, as an example of the application of the rules, we may give a
proof that B* = p(4 B,), a fact which is immediately proved by
using the expressions for B and p(4 B,) in terms of %, y,, ..., Yy
Define the transformation B, by the first form given above, as
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B, = p(AD,) p(AF,) p(25)p(36). Notice that four x-lines are
given by the sets of three nodes

(ADy), (FBy), (25); (AR), (DB,), (25);

(ADy), (£B,), (36); (AF,), (CBy), (36).

Hence Pp(AD,) p(25) = p(FB,) p(AD,);

(
P(AD,) p(36) = p(EB,) p(AD,).
Therefore

= p(AEy) p(ADy) p(25) p(36) = p(AE,) p(F B,) p(AD,) p(36)

= p(AFy) p(F By) p(EB,) p(AD,).

Also P(AF) p(25) = p(DBo) p(ALF);
P(AE) p(36) = p(CB,) p(ALp).

Wherefore B, = p(AD,) p(DB,) p(4F,) p(36)

= p(4ADy) p(DB,) p(CB,) p(AE).
Multiplying the former value of B, into the latter, we obtain
B} = p(AF,) p(F B,) p(EB,) p(4D,)

-p(ADg) p(DBy) p(CBy) p(AFy).
But we have

[p(ADy)12 =1, p(FB,)p(EB,)p(DBy)p(CB,) = p(AB,);

thus
B} = p(AF,) p(AB,) p(AF,) = p(AF) p(AF) p(AB,) = p(4B,).
If we now define B by B = p(B,C).B;.p (B, (), we obtain
B? = p(B,y0). B}.p(B, ()
= (B, O) p(ABy) p(B, C) = p(B, C) p(B, C) p(4 B,),
so that B2 = p(AB,).

That the form here used as definition of B;, and the definition
given above for B, agree with the original definition of B given
above, in terms of y,, ..., ¥,;, may be verified by expressing the
component projections in terms of these variables; or, by the
longer but interesting process of combining the forms for the
projections given in § (7) in terms of 2y, ..., %;.

BL 6
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(20) The application of the substitutions of #;, .. . ¥g to
the twelve pentahedra {A}, {B},...{F;}. We first state two
elementary lemmas.

Lemma I. If u, w be operations respectively of period 3 and 2,
sothatu® = 1,w? = 1, and if also (uw)® = 1, (wu)® = w(uw)w-1 = I
then a group of twelve operations is given by

1, w, whwu,  wwul,
u, uw, Wi, wWuw,
w7l (ww),  (wu)l,  (wuw)

where, in a product of two operations 9, it is meant that ¢ is
carried out before #. In this group, the operations in the first row
are mutually commutable, all of period 2, forming themselves a
group, which is self-conjugate in the group of twelve operations.
Those in the second and third rows are all of period 3.

We may call this group the tetrahedral group. In particular,
considering four numbers 1, 2, 3, 4, if u, w be respectively the
substitutions u = (234), w = (12) (34), the group consists of

X, (12)(34), (14)(23), (13)(24),
(234), (132),  (124),  (143),
(243), (123), (142),  (134).

As (234) (13) (234) (13) = (12)(34), we see that the symmetrical
group of twenty-four substitutions of four numbers can be
generated by combining the two substitutions (13), (234).

Lemma II. The sixty even substitutions of five numbers,
1,2, 3, 4, 5, consist of identity, with twenty substitutions which
leave two of the numbers unchanged, and fifteen substitutions
which leave one number unchanged, together with twenty-four
substitutions consisting of the powers of six cyclical substitutions
each involving all the five numbers. The powers of any one of these
cyclical substitutions, taken with identity, form, of course, a
group of five operations. The six groups thus arising from the six
cyclical substitutions are mutually conjugate in pairs.
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The first set of twenty substitutions, spoken of, each leaving
two numbers unchanged, clearly consist of the ten substitutions

(123), (124), (125), (134), (135), (145), (234), (235), (245), (345),

and the ten squares of these, (132), (142), etc.
The second set, of fifteen substitutions, each leaving one
number unaltered, are, also obviously,
(12) (34), (12)(35), (12) (45); (13)(24), (13)(25) (13) (45);
(14) (23), (14)(25), (14)(35); (15)(23), (15)(24), (15) (34);
(23) (45), (24) (35), (25) (34).
Put now ¥ = (12345), ¢ = (12354),
which give
H1g2 = (124), Sgd1 = ¢292—2 = (15234).
Then the remaining twenty-four even substitutions of five
numbers, in addition to the 1+ 20+ 15 already enumerated, are
given by
g, On GO, GG GInGT, gAng,
o(n = 1,2,38,4).
If we put
= (345), v=(12)(45), w = (23)(45),
gsothat: w¥=1;, ¥=1, w*=1, (W)= @u)t=1,
(uw)® = (wu)® = (vw)® = (wo)® =1,
then we have o= vwu, ¢ =vwud

and it can be verified that every one of the sixty substitutions
under consideration can be expressed as a product of powers of
the three substitutions %, » and w.

Now, considering the synthemes arising in the twelve systems
or families {A}, {B}, ..., {Fy}, put downin§ (1), we regard-any such
syntheme, say (14.36.25), as being unaltered by a cyclical
change of the three duads which ocour therein, so that it is the
same as (36.25.14), or (25.14. 36). We may make any one of the

720 substitutions of the numbers 1,2, 3, ..., 6 in the synthemes of
6-2
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any of the twelve families. Such a substitution will either inter-
change the five synthemes which make up the family among them-
selves, or it will change these five synthemes into the synthemes of
another family, taken in some order. In particular, therefore, a
substitution which leaves a particular syntheme unaltered will
either leave unaltered both the families to which this syntheme
belongs, save for possible changes in the order of the synthemes, or
will interchange these two families. :

This is a property of the scheme given in §(1). But we may
prove it by recurring to the geometrical results we have de-
veloped. For any substitution among 1,2, ..., 6 may be regarded
as the product of transpositions 6f twos of the numbers. Consider,
for example, the transposition (14). The duad 14 occurs in
one of the five synthemes of every one of the twelve families
{4}, {B}, ..., {F}; for instance, in the family {4} we have

(AB,) = (14.36.25),

and this syntheme occurs also in {B}. In our geometrical point of
view, the common angular point (4 B,), of the two pentahedra
{4}, {By}, is equally an angular point of the pentahedron {4 B};
and the twelve remaining angular points of these three penta-
hedra, which lie in the prime [4,B] = 0, form three tetrahedra
of which any two are in perspective with one another from any
angular point of the third. In particular, the angular points of the
pentahedra {4}, {B,} are projections of one another from the
node (14), which is an angular point of {4 B}. But, we have seen,
§(7), that projection from this node interchanges the two points
of the primal which are given by
(x!.’ Ty, Xy, Ly, Ts, xﬁ) and (2:4, Ty -’”3: ¥y, &5, xs)-

The transposition (14) thus interchanges the synthemes of the
families {4}, {B,}; as is-obvious also at once by inspection of
the scheme in §(1). Equally this transposition interchanges the
families {4,} and {B}. Now, {L}, {M} denoting any two of the

twelve families {4}, ..., {F,}, use the symbol (Jf) to denote a

substitution among 1,2, ..., 6 which changes the synthemes of
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{L} into the synthemes of {M}, taken in some order. Then, by
what we have said, we may put

(14) = (i") , or (;0) , or (%’), or (AB)
Since the node (14) belongs also to the pentahedra {C'D}and {EF},
the transposition (14) can similarly be expressed in terms of
C and D,, or C and D; or in terms of E and £, or Eyand F. A
similar discussion may be made for every transposition (i}).

It follows from this that every one of the 360 odd substitutions
of 1,2, ..., 6, that is any substitution which is the product of an
odd number of transpositions of two of the numbers, changes any
one of the six families {4},...,{F} into one of the families
{45}, ....{F}, and conversely. Also, that any even substitu-
tion interchanges the six families {4}, ..., {F} among themselves,
and interchanges also the families {4}, ..., {F,} among themselves.

Consider now, first, even substitutions of 1, 2, ..., 6 which leave
a particular family, say {4}, unaltered, save for possible changes
in the order of its five synthemes. It is easily seen that there are
sixty such substitutions, forming a group isomorphic with the
even substitutions of five objects. For, consider the particular
syntheme (14.36.25), belonging to {4}; this syntheme is
evidently changed into itself by the substitution w = (25)(36),
and is changed into (25.14.36), which we consider equivalent to
the original, by the substitution u = (123) (456). These definitions
lead to ww = (126)(345), and wu = (153)(426), which are of
period 3. Thus, by Lemma I above, the syntheme (14.36.25) is
changed into itself by the twelve substitutions of a tetrahedral
group; as is obvious also by inspection. Whence, as these twelve
are even substitutions, the family {4} is changed into itself by
these substitutions, by what we have proved; for instance,
considering w = (25) (36), the transposition (36) changes {4} into
{B,}, and (25) changes {B,} into {4}. Similarly, the family {4} is
changed into itself by the tetrahedral groups arising in the same
way from all the five synthemes of {4}. On examination, we find
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that the five tetrahedral groups have substitutions in common,
and that, including identity, only thirty-six substitutions leaving
{4} unaltered are obtainable in this way. There are, however,
besides these, six cyclical substitutions, of period 5, leaving {4}
unaltered, each obtained by keeping one of the numbers 1, 2, ..., 6
unaltered, and changing the others cyclically. These give, besides
identity, 6.4 or 24 new substitutions leaving {4} unaltered. For
instance (26435) is such a substitution, as we easily verify. And
this fact can also be seen by expressing (26435) as (26) (64) (43)
(35), which, by what we have seen, is equivalent to

(5) (3)(c) (2)

and so changes {4} into {4}. The form of the cycle can in fact be
read off by considering the duads which occupy the third place in
the synthemes of {4}. The powers of this substitution

(26435)2 = (24563), (26435)3 = (23654)

are similarly obtainable, in fact, by considering the duads which
occupy the second place in the synthemes of {4}; and (26435)*, or
(26435)~1, can be read off by inspection of the duads in the third
place. The cycle which omits the number 2 can similarly be read
off by putting the duads in the various synthemes of {4} in forms
in which 2 oceurs in all the first duads, and then considering the
second (or third) duads in eyclical order. Similarly for the
other four eyclical substitutions. The twenty-four substitutions
so obtained from the various cycles, taken with the thirty-six
previously spoken of, constitute in fact the group of sixty even
substitutions leaving {4} unaltered.

We prove this in a more systematic way by considering all the
possible 360 even substitutions of 1,2, ..., 6, shewing that the
sixty substitutions we have found are a subgroup of this alternate
group, isomorphic with the group of even substitutions of five
objects.

The even substitutions of 1,2, ...,6 consist, in fact, besides
identity, of forty-five substitutions such as (12) (34), together
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with forty substitutions such as (123) (456), and of 6.24 or 144
cyclical substitutions such as (23456), each keeping one of
1,2, ...,6 unaltered, to which must be added forty substitutions
such as (123), each keeping three of 1,2, ..., 6 unaltered, and also
ninety substitutions such as (12) (3456). Now put, as particular
even substitutions of 1,2, ..., 6,

w = (123) (456), v = (13) (45), w = (25)(36),
with & = vwu = (14265), ¢ = vwu? = (16234),
and consider the substitutions of the families {4}, ..., {F'} which
arise by applying these particular substitutions. We have

u = (12)(23) (45) (56),

and the nodes represented by (12), (23), (45), (56) are respec.tively
angular points of the pentahedra {4 E}, { BE]}, {BE},{AE}; in fact
12 is a duad in the synthemes (4 E,), and 23 is a duad in (B, B),

and 45 is a duad in (BE,), and 56 is a duad in (E, 4), in the scheme
of § (1). Thus, by what we have said, the substitution u may be

R

and leaves the family {4} unaltered. We may similarly put » into
other forms proper to shew the effect of  upon {B},....{F}. In
particular, (56) is a node of {BF} and {CD}, as inspection of the
table in § (1) verifies, and so for the other transpositions. Thus we
find the five alternative forms for u,

E)EEE GEEIE): GENE)
@G E (2)E)E)F)

From these six forms of u we see that u leaves each of {4}, { B}, {C}

unaltered, but changes {D} into {E}, and {E} into {F}, and {F}
into {D}. This result may be expressed by

u = (123) (456) = (DEF).
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Similarly the substitution » = (13)(45), put into forms re-

spectively applicable to the families {4}, ... 5
one of the six { : Joeees {F}’ is equal to every

L)) (=) (B
p)\4) \g)\B) F)(O)
)(Z) (5)(2) @)
4 B) (5)(E) (@)E)
and we may express the result of its operation on {4},....{F} by
-t- o Ao
WRALg v = (13) (45) = (BC) (EF).
Likewise, w = (25) (36) can be expressed in the six forms

(B)(5) ()(3) ()E)
w)(0) (&

0
) (0)(%): (6)(F
Dy/\E)’ \CJ\F)’
so that we can write

w = (25) (36) = (CD) (EF).

But, in terms of the symbols B, C, D, E, F, these forms for
u, v, w are precisely those which we have seen (Lemma II) to
generate the alternate group of five letters. These substitutions
1:,0?;, w,fna,‘mgly (123) (456), (13)(45), (25)(36) thus generate a
group of sixty even substitutions leaving {4} una
altering { B}, {C}, {D}, {E}, {F}among themseglvis,}by thizeaf;c:;n:i:
group. The particular substitutions enumerated above, leavin
{4} unaltered, are all included in this group. ; &

It is easy to verify that u, », w, and hence all the combinations
of these, equally leave the family {4} unaltered. The group of
sixty substitutions may then be appropriately denoted by
(4, 4,). :

In this group, respectively derived from & = vwu, ¢ = vwu?
are contained the six cyclic substitutions, of order 5, given by ’

¢ = (16234), 9= (14265), g9t = (13256),
G2 = (26435), P04 = (14532), PG~ = (15436),

]
2
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which, excluding identity, together with their powers, provide
twenty-four of the sixty substitutions which leave {4}, or {4}
unaltered; respectively, these leave unaltered the numbers
5,3, 4, 1, 6, 2. With twenty substitutions of the form (123) (456),
and fifteen of the form (25) (36), they make up, with identity, the
sixty substitutions of the group (4, 4,).

We can pass from the family {4} to the families

{Bo}: {Co} -+ {Fo}

by making the respective transpositions (14), (16), (13), (12), (15).
Each of these is a choice from three possibilities; for instance, as
the symbol of the node (4 B,) is (14.36.25), we can pass from {4}
to {B,} by using either of the transpositions (36), (25) in place of
(14). Tt follows that each of {B}, ..., {F,}, and, therefore, each of
{B}, ..., {F}, is unaltered by a group of sixty even substitutions;
these groups, (B, By), ..., (¥, F,) are made up of substitutions
obtainable from those of (4, 4,) by the respective five trans-
positions (14), (16), ..., (15).

But the six even groups (4,A4,),...,(F,F), thus arising,
contain common substitutions; and the aggregate of their sub-
stitutions does not make up the 360 even substitutions of
1,2,...,6. For instance, consider the effect of the substitution
(123), or (12)(23), upon {4},...,{F}; to obtain these, put the
substitution in the forms

omem= (3523~ ()
- G-

. (123) = (ACB) (DFE).

Thus this substitution (123), for the numbers 1, 2, ..., 6, does not
leave any one of the families {4}, ..., {F'} unaltered; and the same
is therefore true for the forty even substitutions of this form. Or
again, consider the substitution (12) (3456), or (12) (34) (45) (56);
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expressed to give the effect of this on {4},{B}, ..., {F}, it has the
forms

() (#) () (&) (2) () ) (2)- () () () ()
(b (#)(c)(2): REE)E) CEIEE)

so that we may write

(12) (3456) = (BD) (AFEC);

this again leaves none of {4}, ..., {F} unaltered; and the same is
therefore also true of the ninety even substitutionsof 1, 2, ..., 6, of
this form.

There remain then, altogether, 360 — 40— 90 or 230 even sub-
stitutions arising in the six groups (4, 4,) ..., (¥, F,) which leave
respectively {4}, ..., {F} unaltered. This is verified by examina-
tion of these groups in detail: taking these groups in order, and
omitting at any stage the substitutions which have already
appeared, it is found that these groups use respectively

60, 48, 39, 32, 27, 24
substitutions, whose total tale is 230.

In particular, it may be interesting to enumerate the cyclical
substitutions, arising respectively in (4, 4,), ..., (¥, F); which
are all different. In this enumeration, the six substitutions put
down in the first row, and their first four powers, give twenty-four
substitutions belonging to (4, 4,), and so on. The substitutions

in any row are arranged so that they leave unaltered respectively
the numbers 1,2, ..., 6.

(4,4,).(26435), (15436), (14265),
B, B,). (23465

16234), (14532),

)s (
) 16253), (13264), (14235)
(

(
, (15463), (14562),
(

(
( (
(C, Cy).(23546), (13456), (12465), (15236), (16432), (12534),
(D, D,).(26534), (14536), (15264), (16235), (13246), (15432),
(B, B,).(25436), (16435), (14256), (13265), (14632), (15234),
(F, F).(25364), (14365), (15426), (12356), (16324), (14523).
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With & = vwu, ¢ = vwu?, as before, those in the first row, here,
are respectively
grop2, G194, 9, ¢997, ¢ P96
and, in terms of {4}, ..., {F}, we find
$ = (BCDEF), ¢ = (BODFE).
Those in the succeeding rows are obtainable from those in the
first row by the respective transpositions
(36), (24), (45), (56), (23),
with a proper reordering of those in the derived TOW.

We may study the group of substitutions which leave {4}
unaltered, in a different way; namely, by considering the effect of
any substitution of z;, s, ..., ¥ UPON

£, =[4,B), &=[4,Cl &=[4.D)

54 = [AOE] ‘-E:E e [AOF]a
which, equated to zero, are the primes of the pentahedron {4}.
In particular, the substitutions

u = (123) (456), v = (13)(45), w = (25)(36)
Jead to the replacement of £, &,, ... & respectively by
€2g1: ng, 54: egsv ezgs; 62g27 €§1: ga: 655, 5254;
£15 £as &5, Ess Ea5

if we neglect the powers of € entering here as factors (which, e
notice, in passing, are such that the product £, &,8,8,&; remains
unaltered), these replacements are substitutions for £;, &, ---» &5
which we may denote respectively by (345), (12) (45), (23) (45);
these, which are precisely of the same forms as those we have
found, expressed as substitutions for B, C, D, E, F, arising as
consequences of u, v, w, generate the alternate group of sixty

substitutions of &, &, ..., &5; as we have seen.

We have obtained six groups of even substitutions of 1, 2_, S
of order 60, namely (4, 4,), ..., (F, F). These imply th'e ex1stencef
of six subgroups of order 120, of the general symmetric group, 0
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order 720, of 1,2,...,6. It is obvious that, of the group of !
substitutions of » numbers, there are n subgroups, of order
(n—1)!, each keeping one of the » numbers unaltered. The
remark that, of the symmetric group of siz numbers, besides six
such subgroups, there are six subgroups of this order which are
(doubly) transitive, seems to be due to Cauchy. The composition
of such a subgroup is considered by J. A. Serret, Cours d’algébre
supérieure (4th ed., 1879) t. ii, pp. 33540, in close connexion
with his exposition of a paper by Cauchy, Journ. de UEcole
Polytechnique (x. Cahier). The possibility of such a subgroup is
referred to by Burkhardt, Math. Ann. xxxVvII, 1890, p. 204.
Cauchy’s result is proved by Burnside, Theory of Groups, 2nd
ed., 1911, p. 208, with reference to the properties of substitutions
of five numbers. It is proved by Bianchi, Lezioni sulla teoria dei
gruppi di sostituzioni, 1899, p. 68, that any simple group of order
60 is isomorphic with the alternate group of five numbers.

Serret generates the subgroup of order 120, which he considers,
as the aggregate

A+T+...+TH(A+U+...+ U3 (1+8+... + 8%,
wherein 7T = (15342), U = (1234), S = (152346). It follows,
interchanging the numbers 4 and 6 in his component substitu-
tions, that the group of sixty even substitutions which we have
denoted by (4, 4,), consists of the aggregate

P oie" (10=0,...,4; g=0,...,3; r=0,...,5)’
q-+7reven

in which 7= (15362), = (1236), o = (152364).

The other five subgroups, (B, B,), ..., (¥, F,), are obtainable
from this as we have explained. In regard to these subgroups
reference should also be made to Todd, Proc. Camb. Phil. Soc.
XL1, 1945, pp. 66-8 (dated 7 July 1944).

(21) The transformation of the family {4} by means of
Burkhardt’s transformations. It is interesting to compare
the results we have obtained for the change of the pentahedron
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{4} into itself by means of substitutions of , ...,z only, with
the results previously (§(18)) obtained for the change of {4B}
into itself by means of Burkhardt’s transformations B, D, E, F,
where E = (DS%)?, and F = (DC?).

We have p(4 B,) {4 B} = {4 B}, and (B, C ){AB} = {4}, as the
ometrical interpretation of the projections shews. We put

gz[re = p(4 By) p(B, (), which proves to be given by
X = Ty + 65+ €T — = Tyt €%, + €%y,
Xy = €Xy+ T+ 6T — ) = €22, + Xy + €775,
¥, = €%, + X5+ Tgy  — Xy = €22, + €%y + X,
or by Yos Yio -+ Ya) = o> Y2 €Y1 Y Ya)»

and is such that ¥% = 1, so that r is equally p(B, C) p(4 By). We
have used, §(3), the transformation y, given by

¥}, = Ty + Xy €T3, — @ = x4+ €35 + €2,

Ty = €y + Xy + €T, — xh = €22, + 5 + €%,

T = €%y +EXy+ T3, — xh = €%y + €25+ %,
or by W Yir - Ya) = (Wo» €15 Ys Y3 EYa)s
and we find that

¥ = x-p(16) p(24) p(35) = x-p(AC,) p(4,C).

The transformation ¢ is such that YU{AB} = {4}. Hence, the
transformations leaving {4} unaltered which correspond to

Burkhardt’s transformations B, D, E, F for {AB}, are
B,=yBy, D,=yDy, Ex=yEy, F= yEY.
It can be found by computation that
B, = p(AD,) p(4F,) p(25) p(36),

and is given by

’

%), = X3+ €My + €T,  — g = 1T X + €5,
4 -

T, = €35+ Ty + 6, — %3 = N T + €,
’

7, = 2+ €y + X,  — T3 = €L TN T T
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which lead to
Ty — €% = (2 —1) (¥ + 22+ 2,), 21+25+25 = (6— 1) (z,—€%).
Further it can be shewn that
Dy = p(AGy), By = (2,2,%5) (€405%), Fy = (@5) (2425),
so that B, and F] are precisely those denoted by » and » in the
preceding section, §(20), p. 87.
Putting then
£, =114.25.86], £,=[16.35.24], " £, =[13.26.45],
£, =[12.34.56], £; =[15.46.23],

the transformed values of these, under the transformations, are
found to be given by

By ; E, f Hyo D,
& & | e e, ’ £
5,’, & i € e, -&
gg' —6 & £ &
g}‘ & | €&s eks &
& —£ | €5y €, £

The projections p(A4D,), p(AF,), which are commutable, have
the respective effects upon &, ..., &; of merely changing the signs
of & and & (§(7)); the transformation p(AF,)p(4D,) B,, or
2(25)p(36), or (25)(36), is that denoted by w in the preceding
article, § (20), and has the effect there noted. We may notice also
that the product wwu, or p(4D,) p(AF,) B, F, E;, produces in
&15 ..., &5 the cyclical change (£,£,£,£,£,), which clearly leaves
unaltered the equation of the Burkhardt primal in £,&,, ..., &
found in§ (15). We note, too, besides {4 B} = {4}, {4} = {4 B},
that Y{By} = {B,}; and that every one of the families {4}, {4 B},
{B,} is changed into itself by both the transformations B and B,.

(22) Derivation of the Burkhardt primal from a
quadric. Consider a quadric, in space of four dimensions, passing
through the angular points of the simplex of reference, so thaz
its equation does not contain the squares of the coordinates
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X, X,, ..., X;, but contains ten terms. Suppose that the equation
of this quadric is unaltered by the transformations By, F3, Hj,

given by

B "o ferowilfy il
X X, eXs eX,
bk X, X, eX,
X, X X, X,
x, X, 62X, X,
X Xy eX, eX,

Thesearesuch that B, F} Ejleads to (X1, ..., X3) = (X, X, X, X, X,),
that s, to the cyclical transformation (X; X, X, X, X;). It is found
on trial that this condition determines the quadric, and that
its equation has the form
XX+ XX+ X, X+ X X+ X3 X
re(X, X+ 5 X+ X X+ X + X, X,) = 0.
The tangent primes of the quadric at the angular points of the
simplex of reference are X; =0, ..., X, = 0, where
3K, K oos Xy f05 €5 6% 15 1 (X Koy Xp s
=% 62, Oy el 62, 1 = Qﬂ(Xls-Xzs '--:Xs):
RN o) S gt Bogy -
L e 170, e
1 gl T e,
These tangent primes form a simplex whose angular points are
respectively given by the rows of

P70, & el d o s 0, say,
€.l 0y Tiiie; sk
g~ °1, XQ 1N =c
1, e 020Nl
Ty X i w€s 50

and the matrices are such that 9, = 1. Thus the angular points
of the simplex of reference, and of the simplex formed by the
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tangent primes, respectively lie on the prime faces each of the
other simplex; and the quadric touches any prime face of either
simplex at an angular point of the other simplex.

Save for the multiplying powers of ¢, the substitutions of
X, ..., X; effected by B;, F';and E}, arerespectively (X, X;) (X, X;),
(X, X,) (X, X;) and (X; X, X;), or say (23) (45), (12) (45) and (345),
which we have called in §(20), p. 83, respectively w, v, u. It
follows then, by what we have said, that the quadric is subject
to, and defined by, a group of sixty even linear substitutions,
isomorphic with the alternate group of five numbers.

Referring now to the equation of the Burkhardt primal given

above in §(15), we see that the primal is obtainable from the
quadric by the substitutions

Xl 3 g%’ X2 =5 557 e X5 = g-‘%:

or, in a usual phraseology, the quadric represents an involution of
sets of sixteen points lying on the primal, of which any set is given
by (+ &, +&,, ..., £&). The transformations Bj, F';, E] are those
thence arising from the B,, F}, B, employed in §(21). We know
that any general quadric in fourfold space can be referred to a
simplex to which it is both inseribed and circumscribed, as here
(see for instance, Baker, Annali di Mat., xvi (1937), and the
interesting paper by B. Segre there referred to). The Burkhardt
primal thus arises in a simple way from any general quadric,
referred to such a simplex. The forty-five nodes of the primal
arise, in an easily recognized exceptional way, from the angular
points of the two simplexes in the space (X, ..., Xj).

Remark I. The equations which connect x,,...,2; with
£, ..., & have been put down in detail in § (15). Let &, denote the
conjugate imaginary of £;; or, &, being [14.25.36], let

E, = [14.36.25];

and similarly for Z,, ..., &;. Thus &, = 0 is the prime face of the
pentahedron {4} which is opposite to the angular point (4B,),
and £, = 0 is the tangent prime of the quadric #2+... +2} = 0 at

1
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this point. We find then that
'62(21: [ -~-:£5) = (&, 895 -+ £s)-

If we define Q by @ = £ B+ +E58s
this leads to
Q= 6(9:§+...+:~s§)-—(:z:1+...+x¢,)2 = 6(22+... +27),

and to b
—eQ =&,¢& +§2€4+g4g5+g5 3T 5351
4 j + (£ Lyt Eabst £ st &bt £3€a)s

thus the quadric in ;, SRR O considered above, differs in fo:lm
from the expression of 2+ ... + a2, in terms of 51,2.52, Soss 55,2 o_ g
by the change of € into ¢2. Thus the quadric 23+... +% =5
it connexion with the double six of penta.heﬁlra,. in
§(16), when expressed by &, NN may be deﬁ]-m}? zs?ﬂaérogj‘gl
iinear substitutions in these coordm.ates, thlc

B;, F}, E}, above, only by change of ¢ into €".

i i
i JEiE respectively equal to ex, €y, 2, ¥,
penptgt = = 0, in these coordinates,

u, as in § (15), the quadric &f+ ... + 7
becomes 8
yz+mt+e(zx+yt)+62(xy+zt)+u(x+y+z+t)= 3
= 0, of §(16), the

which arose in

and, we find for the quadric @, %, + %%+ ¥3%s
equation in these coordinates,
yz—-xt+e(-—z:c+yt)+e2(—xy+zt)+u(—x+y+z+t) =0,
differing from the former only by the sign of (cf. § (16)); and, for
the quadric 0
Lo Ty + La%y + X1 T2+ (x5 %+ Tely+ z,%5) = 0,
the equation in these coordinates
— (yz+at) —-e(za:+yt)+62(asy+zt)+u(—m—y+z+t) =0,
differing from @ only by the change of sign of z and .
Remark I1.The quadric surface
alyz+at) + b(ze +yt) + clay+2zt) =0,



98 §22. THE DOUBLE SIX QUADRICS

where a+b+¢ = 0, is a cone with vertex at (1,1, 1, 1), the four
generators from this to the angular points of the ,tef:rahedron
(«,y, z,t) having a cross-ratio, on the cone, equal to the negative of
?ne ?f the six ratios of two of @, b, ¢. These generators are then
equi-anharmonic’ when @,b,¢ = 1,¢,¢% in any order. As all
the pentahedra of the Burkhardt primal are similar if: follows
th.a,t the equation of the primal, for any pentahed;on, agrees
Ezl;::lniz ?;zzlsceiéll) iir:_§ (ll 5), save for unessential multipliers of
A (})?;rlcu ar, for the pentahedron { B}, it will be

v =¢[14.25.36], y=[13.56.24], =z =[12.46.35],
t=¢[15.34.26], wu = ¢€?[16.23.45].

Fr?nz each of tl?e pentahedra, there is an involution of sixteen
points on thc? pnmail; and these are thus all representable by the
same quadx:lc; which itself allows sixty self-transformations
(and we notice that 27.16.60 = 23, 34.40).

Postseript to p. 79. In a way used by Dr Todd the whole
gr}(:iup can be formed from the A of p. 78 and the ¥ of p. 87
which is p(14) p(42) p(26) p(65). For these give 4% = p(14) and

9 p(14)9— = p(24), p(26), p(56), p(15); (r=1,2,3, 4),
while A1 p(56)A4 = p(4,B).

Whence, with 4 and ¢ we can form the projections from the
five nodes (14), (24), (26), (15), (4,.8). From the first four of
these, by k-lines, we can obtain the other six of the ten
nodes (z7), with ¢, j 3. Also the node (4, B) can be joined to
any other of the 30 nodes (P@,) by an open polygon of x-lines
ea.ch contal:ning one of the ten nodes (). Eachbof the othexi
five nodes is an angular point of a Jordan polyhedron of which
four angular points are constructed.

99

APPENDIX

Note 1. The generation of desmic systems of
tetrahedra in ordinary space

The notion of three tetrahedra, in space of three dimensions, of
which any two are in perspective with one another from every
angular point of the third, has occurred frequently in what
precedes, especially in the theory of k-lines. It is familiar that,
with any three such tetrahedra, are associated three other
tetrahedra, also forming a desmic system; the edges of the three
latter tetrahedra are the same lines as the edges of the former.
We note here a method in which the six tetrahedra arise together;
it appears that the six tetrahedra arise from a group of six linear
transformations, which is isomorphic with the symmetric group
of substitutions of three objects.

It is well known that an orthogonal matrix, of determinant
unity, can be expressed by the ratios of four independent variables

£, 7, { 7, in the form

a, by &
a,, by, ¢ |, save for the factor (12 +E2+72+ 837,

as, b3 C3

_ o=, 2AE-tn), | 2+ ,
2(nE+E7), -8, 2(nf—8r)
2(EE—17)s 2(&n +&7), i gt

the ratios of 7, £, 7, { being conversely determinable in terms of
the elements of the orthogonal matrix by the equations

=gl =rlg, T =1y =l TE= plg’ = qp’s
where p, ¢, 7, ', ¢, 7’ are given by
p=>bstc,, g=0Ctas = o+ by,

r ’ r
p' =bg—cy ¢ =C"% T = ay—b;.
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We may investigate then what are the transformations of
&, 1, &, 7 which result from the interchanges of the rows of the
orthogonal matrix. It is sufficient for this purpose to find the
changes in £, 7, {, 7 due to the three operations: (1) interchange of
the second and third rows of the orthogonal matrix, with
a subsequent change of sign of all rows; (2) interchange of
the third and first rows of this matrix; (3) interchange of the first
and second rows, with similar changes of sign throughout.

It is found that these interchanges are effected by three linear
transformations of £, 3, {, 7 respectively given by

M &8 7)= @+ Tk ~T— &G
@) (&L Ty =(-T1-2 E+& T=9:6-C)
(3) (&7, 8 7)=@-§ ~—7=L E+n,9—E)
These linear transformations we denote by
E7.8.7) = $Em. L),

('g': ?7': g': T’) i ¢2(g: 71: g: T)’ (gr, 9]’: g’: T’) i ¢3(§, ?]’ g) T):
so that

I A T I AP e s e
—3. S 0. -3 I, ‘0, .1, 0
~q, 0 b, =1 R
T P DR WO P

P PR 0L =l
I e
3 0

F, T g

These are such that the six operations 1, (¢, @), (o P3) 2, G1s Do, Bs
form a group, which is isomorphic with the group of substitutions
of three objects. For we find

2

¢2¢s=¢3¢1=¢1¢'2= Ly =1, 1, 1},
1, 1, —1, 1
—1 1 1. o4
1

o PR |
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Pspa = P1Ps = Pap1 = I S e e T
S, 1T Py
| RS N RN |
1, | B 5 £ 1
B3 Ps = HPaths) ™S (P2 Ps)? = —2(P5 Pa),
(9529’53)3 = —8, ¢1Pa¢3= —2¢,y, ¢ Py Pe = —2¢,.
" If now we take any four points 4, B, C, D, which are the
angular points of a tetrahedron, and put
(XpY_‘lesTl) = ¢1(A-sB: O:D) 4
= (B+0C,—4+D, —-A-D,-B+0);
(X2: Y21 Zz: Tz) = ¢2(A’ B, 0, D)
' =(—B-D,C+A,—B+D,-C+A4);
(X31 Y3: Za: Ts) = ¢3(A7 B, C: D)
=(—-C+D,-C—-D,A+B,—A+B),
then (X, Yy, Z1, T0), (X3, Yo, Z5, T5), (X5, Y,, Zs, Ty) are the a.ngular
points of three desmic tetrahedra, lying in threes on sixteen lines;
we have for instance :
X, +X,+X3=0, X,-Y,-T;=0,
X, +2,4+Y; =0, X;4+T,—Z;=0.

Also, if we put
(4", B',C", D) = ¢, $4(4,B,C,D) = (A— B+ C+D,
A+B-C+D,—-A+B+C+D,-A-B-C+D);
(4", B",C",D") = ¢3$,(4,B,C,D) = (A+ B— C-D,
—-A4+B+C-D,A-B+C—-D,A+B+C+D),
then (4, B,C,D), (4", B',C",D"), (4", B, C",D"), or, essentially,
(4, B, C, D), ¢, ¢5(4, B, C, D), (> $3)*(4, B, C, D) are the angular
points of three desmic tetrahedra, lying in threes on sixteen lines,
of which, for instance, four lines are

AAA",  ABC", AC'D'; AD'B"



102 NOTE 2. THE LINES OF A CUBIC SURFACE

Any one of the six tetrahedra may be regarded as funda-
mental. For instance
(A: B, O!D) r —é¢l(X1! Y;.’ Zl! -r’-'!l)’
(4°, B, O', D) = ¢o(X, 11, Zy, Th),
(A”s B”s O”, D”) = ¢2(X1: I7]_:» Zl: T;_):
while, also,
(Xz,ym Zy,T) = —é‘?!’a ¢2(X1! Y;, le Tl)’
(X3, Yy, Zy, Ty) = — 302 $3( X1, 1, Zy, Th).

Again, we have Y, +Z, = —24, Y;—Z, = 2D, so that the
points ¥}, Z, are on the edge 4D, and are harmonic conjugates in
regard to 4 and D, ete.; and the eighteen edges of the tetrahedra
(X, 4, 2, 1), (X, Y5, Z,, 1), (X;, Ya, Zy, Ty), properly taken, are
the edges of the tetrahedra

(4,B,0,D), (4',B,0,D), (4°,B",C",D").

Also we have
A'+B' = -B"+D", —A'"+ B'=2(B-0), B"+ D" = 2(B+ (),
so that the edges BC, A’B’, B"D" lie in a plane, these being the
diagonals of the quadrilateral formed by the lines

A'D'"B, A'CB", B'D’C; B'BB’ ete.

Note 2. On the group of substitutions of the lines of
a cubic surface in ordinary space

The theory given above in this volume deals essentially with
the group of the substitutions of the tritangent planes of a cubic
surface, which may be said to have been the group studied by
Jordan. But the lines are curves of the cubic surface; and may
- therefore, from the point of view of coresiduation on the surface,
be regarded as linearly expressible in terms of seven such curves.
These we may take to be six mutually skew lines a,,a,, ...,a,,
together with a cubic curve u, not meeting any of these lines

NOTE 2. THE LINES OF A CUBIC SURFACE 103

(Proc. Lond. Math. Soc. X1 (1912), p. 298). The group is then
representable by linear transformations for these seven, r{?ga.rded
as algebraic variables; the other lines, in Schlifli’s notation, are
then represented by b; = 2u—s+a;, €y =U—0;—q; where s
denotes @, +ay+ ... +ag, and i, j have the values 1,2,...,6. It

appears then that the group is generated by the symmetric group
of substitutions of @y, @y, ..., %, combined with such transforma-
tions as interchange among themselves the seventy-two sets of
six mutually skew lines, each with its associated cubic curve.
(Burnside, Proc. Lond. Math. Soc. X (1911), pp. 299-301). These
seventy-two sets are typified by

o = (g, @y, -, Ubgy ),
B=(2u—s+ay,...,2u—8+0; 5u — 28),
Vg = (@), 2u—8+ay, U—Gg— g, U— Uy — Gy, -+
U — By — g, BU— 8+ 0y —Ay),
Asag = (@y, Gy, Uy, U — G — g, U — g — Ag, U — Gy — 55
Qu — @y — G5 — Qg),
Bog = (W—0y— 03, U— Ay — 0y, U— 0y — G, 2u—8+ay,
2u—.8 +ag, 2u— 8 +ag, du — 8 —a, — Gy —ag),
where the associated cubic curve in any set may be immediately
written down by the fact that 3u—s remains unaltered by any
2
transformation of the group (as does u®—ai—a3—... & a2). The
interchanges of these seventy-two sets are all obtainable by

combining permutations of @,,a,, ..., a; among themselves with
a single transformation. This single transformation may, for

instance, be taken to be L, given by

ay = ay, a,=2u—s+a;, @;=u—0ay—0a

@y = U—Gy—Byy.csy O = U—0y3—Gg % = SU—8+0;—dy,
and this transformation, as changing the set « into the set vy,,

may be denoted by (1:;2) - it is such that L* = 1. Thatitiseffective,
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when combined with the permutations, for the interchange of
the seventy-two sets, follows from the equations

Lo=v., o
= r Ly, = = =
12 12 =0, Lvy =p Lvy=24,, Ly = ftygs,

which can be immediately verified.

' The group so obtained contains 72(6!), or 24. 3¢. 40 transforma-
tions (but it contains a subgroup of order 23. 3. 40, which effects
only even substitutions of the tritangent planes). ,

The. group is sufficiently represented by supposing u = }s
regarding then the group as a group of transformations z‘;u:no;g,r
Uy, s, ..., g only. In general the condition for three lines to lie in
a tritangent plane is that the symbols of these lines should have
3u ~8 .for sum; in the curtailed group for a,,...,a, only, the
iiﬁ;l_on will then be that the sum of these three symbols should
, It is thus suggested that we should interpret the symbols of the
lines as being the symbols of points in space of five dimensions
every such point being dependent upon six points; the points sc:
arising from the lines of a tritangent plane of the cubic surface
will then be upon a line. We are thus led to a configuration of
t‘wenty~seven points, in this space, lying in threes upon forty-five
lines, there being five of these lines passing through each of these
t.wenty-seven points. The group under consideration is that of the
hnear_ self-transformations of this configuration. There are forty
ways in which the twenty-seven points may be divided into three
batches of each nine points, those of a batch being the inter-
sec.tions of three skew lines with three other skew lines (so that the
points of a batch lie in a threefold space); there remain then
45— 3.6, or twenty-seven other lines of the configuration; each of
these contains one point of each of the three batches spok:an of, so
that three of these twenty-seven transversal lines pass thronigh
every one of the nine points of any one of the three batches
Further, among the twenty-seven points of the conﬁgura.tim;
t?xere are seventy-two sets of six points, each set forming a
simplex; none of the fifteen joining lines of two angular points of
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one of these simplexes is among the forty-five original lines (does
not contain a third point of the original twenty-seven points).
We may, for instance, borrowing Schlifli’s notation, take the
three batches to consist of the nine points, respectively,
Co3ba@ly  CsateDs  C14CaCes
@y €120, {’scm‘% Cap C15 O34
bty Cy5 G504C45 C35C21Cie
the points b, ¢;; being, in terms of a,, ..., ag, given by
b= a;—1s, c¢;=4s—a;—a;
in which § = @, + @y + ... + @4 In each batch, the three points in
every row of the scheme, and those in every column, are in a line;
and through any point of one batch pass three lines, each
containing a point from both the other batches; for instance
Ca3 Cs6r C1a3 C23s Coas C153 Ca» Cas» C16 BTE three lines through ca,.
Moreover, we easily see that the seventy-two simplexes consist
of thirty-six pairs, in which those of a pair are in perspective with
one another from a point. -
At such a configuration also Burkhardt arrives (M, ath. Ann. XL1
(1892), p. 326) starting from transformations arising by con-
sideration of double theta functions (but different functions
from those leading to the Burkhardt primal); his acknowledge-
ments are to Klein (Liouville’s J., 1v, 1888; Ges. Abh. 11, p. 47 3),
Witting (Math. Ann. xx1X (1887), and Maschke (Math. Ann.
xxxmr (1889)). But his twenty-seven points ‘have definite
numerical coordinates, those of the first batch of nine points
being (0,a,b,0,ag,b), where a3 =1, b3 =1 and a,, b, are the
conjugate imaginaries respectively of a, b; those of the second
batch being (a,0,b,a,, 0,b,); and those of the third batch being
(@, —b,0,a,, —by, 0); moreover, instead of twenty-seven points,
he has twenty-seven linear complexes of lines in space of three
dimensions, and instead of forty-five lines he has forty-five linear
congruences of lines. His result was the first exhibition of the
group of the lines of a cubic surface as a linear group in six co-
ordinates. Burnside (Proc. Lond. Math. Soc. x (1911), pp. 299
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301) gave an independent proof that Burkhardt’s equations
generate a group, and shewed that, in addition to the symmetrical
group of substitutions of a,,a,, ...,a,, only one (not two) trans-
formation is necessary to generate the group. The group has
also been considered in relation to a configuration founded on
twenty-seven points in hyperspace by Coxeter (T'rans. Royal
Soc. vol. 229 (1930), p. 418; and subsequent papers). Cf. also
Coble (loc. cit., Introduction). 7
Professor B. Segre, in his recent monograph, T'he Non-singular
Cubic Surfaces (Oxford, 1942), has generated the group from the
thirty-six transpositions of the lines in the two rows of the double
sixes of lines, without the expression of the lines in terms of seven
elements. From the point of view here taken, it is sufficient, for
the generation of the group, to combine five such transpositions,
namely (Vg1, Y16)s (Vezs Vag)s ---» (Vess V5), Which are equivalent to the
transpositions (ag, @,), (@4, a@s), ..., (@4, a;), with the single trans-
position (A6, f1456), Which is equivalent to the transformation of
the set a into the set Ay, thus using six transpositions in all.

Reference should also be made to the investigation of the
group of the lines of a cubic surface given in Dickson, Linear
Groups (1901), Chap. x1v, whose notation for the tritangent
planes enables him to put the group in relation with the algebraic
theory of the so-called Abelian group, originally derived from the
theory of the linear transformation of the periods of theta
functions. If we make a linear transformation of the four
variables z,, #,, ¥;, ¥, and the same transformation of the four
variables uy, %y, v;, ¥5, such that the function

= Uy Yy + U Yo — V1% — VT ;
is unaltered thereby (cf. the author’s Abel’s Theorem (1897),
p- 538), the sixteen coefficients in the transformation are
subject only to six conditions. But, if these coefficients be
integral numbers, and be reduced, modulus 3, each to 0, 1,

or 2, the number of such transformations is finite, being
(31—1).8%.(3%—1).3, or 2,3%.40.
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