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AN ASPECT OF THE INVARIANT OF DEGREE 4 OF THE
BINARY QUINTIC

by W. L. EDGE
(Received 31st May 1985)

Introduction

1. A binary form of odd degree,

f(xy = g (2m+1> ,x2'"+1"y'Ea,2,'"“Eb§"'“,

has a quadratic covariant T, (ab)>™a,b, in Aronhold’s notation, and the discriminant A
of I' is an invariant of f. For m=2A was obtained by Cayley in 1856 [3, p. 274]; it was
curiosity as to how A could be interpreted geometrically that triggered the writing of
this note. An interpretation, in projective space [2m+ 1], that does not seem to be on
record, of I' and A is found below. If m=1 one has merely the Hessian and discriminant
of a binary cubic whose interpretations in the geometry of the twisted cubic are widely
known [5, pp. 241-2].
There is a standard mapping

f(x y)— Z ( )a x"" 'yr_'(ao’als ’an)

r=0

of a binary n—ic onto a point P in a projective space [n] wherein (x,,X,,...,X,) are
homogeneous coordinates. The focus, so to call it, of this map is the rational normal
curve C in Clifford’s canonical form

x;=(—1)} i=0,1,...,n (1.1)

its points map those f that are perfect nth powers. For n=4 the geometry of the
rational normal quartic was used by Brusotti [2] to interpret the concomitants of a
binary quartic, but only odd integers n=2m+1 concern us here. For m=2 a note [8]
by Todd is relevant but his account does not involve, as ours will, the manifolds
generated by the spaces osculating C.

These osculating spaces dominate a paper [1] by Baker who shows that the
coefficients in the polarised form (ab)*"a}” b}~ provide all the quadrics containing all
the osculating [r—1] of C. Our concern is restricted here to n=2m+1, r=m; this
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produces a net N of quadrics. But we identify the singular quadrics of N, their envelope
being our main objective.

The rational normal quintic and the net of quadrics containing all its tangents

2. Suppose therefore, until after Section 6, that n=5 in (1.1). The chordal [4] spanned
by the five points t =0, oy, a5, 3,0, of Cis

esXg+esx, +e3x,+ex3+e;x,+x5=0

where
4
0°—e 0% +e,0° —es0%+e,0—es=[] (0—0)),
j=0

and this is so whatever confluences may occur among the a; In particular w,(«), the
osculating [4] at t=aq, is

a’xo+ Sa*x, + 1003x, + 10a2x5 + Sax, + x5 =0 .1

so that the zeros x/y of f are the parameters of the contacts of those w, that contain P.
Osculating spaces of lower dimension are identified by simultaneous linear equations;
for example, three equations identifying w,(«) are

a3xk+3a2Xk+1+3(lxk+2+xk+3=0, k=0, 1,2. (2.2)

The basic geometry of C is described in [6], its ranks being given on p. 95. The facts
are that

the tangents w, generate a scroll Qf,
the osculating planes w, generate a threefold Q3,
the osculating solids w; generate a primal QS.

It is sometimes convenient to homogenise (1.1) as x;=(—1)w'v>~% then partial

differentiations produce points spanning ,, ®,, and so on. In particular w,(f) is
spanned by

a 0, —1, 2t, —3t3 43, -—5t*
and (2.3)
b: 5, —4t, 3%, =213, t*, 0.

3. Consider now the possibility of Qf lying on a quadric Q:Xa,x,x,=0; the matrix
(a,,) is symmetric, a,,=a,, both r and s running from 0 to 5; products x,x,(r%s) each
occur twice, squares only once. If w,(f) is on Q then Q contains both a and b—
conditions I, and I, of incidence—while a,b are also conjugate—condition J. All three
conditions are linear in the a,; each demands that an octavic polynomial in ¢ is zero,
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while if all w, are on Q these polynomials are to be zero identically, whatever t. But in
any of 1,,1,,J those qg,, with the same r+s multiply the same power of t, this power
being r+s—2 in I, (wherein no ay, occurs), r+s in I, and r+s—1 in J (wherein ayq
does not occur); so parallels to the secondary diagonal of (a,) can be handled
independently. A glance at the information provided by the lower and higher values of
r+s will show that all a,, are zero for which r+s is any of 0,1,2,3;7,8,9,10 so that
the only non-zero a,, are those in the secondary diagonal (r+s=35) itself and the two
contiguous parallels (r+s=4,6).

The three conditions are
Il :0=a“ —4alzt+(4azz +6a13)t2—(8014+ 12a23)t3+ e
J:0=—5a4, +(4a,, +10ay,)t —(11a,, + 15ay3)t*> +(20ay, + 14a, 3 + 6a,,) > + -+
1,:0=25a4—40ay,t+(16a,, +30a4,)t>—(20ay; +24a,,)t> + (10ag, + 16a, 5+ 9a,,) t* + - --

giving in succession

@y =0a0) =dop=d12=doy =0a03=0

while working down from 2 as has been here worked upwards from the constant terms
one would find

Q44 =05,=0s55=043=0a53=0a5,=0.

When r+s=4 the three conditions are

6a13 +4a22 =20(104+ 14a13 +6a22 = 10a04+ 16013 +9a22 =O,

three linearly dependent constraints upon the a,, which hold when ay,: —a,3:a,, are in
the ratios 1:4:6 of the binomial coefficients and so affording a quadric xox,—4x,x3+
3x3 =0 featuring a familiar trinomial. As C is invariant under the involutory permutation
(x0X5)(x;%4)(x,x5) imposed by tet ™!, ie. by harmonic inversion in the two planes

x0=x5,x1=x4,x2=X3 and x0=—X5,x1=—x4,x2=—X3

Q8 also lies on the quadric xsx, —4x,x,+3x3=0 as could also have been found by
imposing 1,,1,,J. As for r+s=5 the conditions require

4al4+6az3 =25a05 + 17a14+ 13023 =4al4+6a23 =0

of which the first and third both give a,4:a,3=—3:2, a consistency explained by the
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invariance under (xox5)(x;x,)(x,x3). J then demands
Qos:014:G33=1:—3:2

s0 that xox5—3x;x,+2x,x;=0 also contains Q. The outcome is that (cf. [1], pp. 137
and 143)

Q8 is the base surface of a net N of quadrics Q,

say
P(xoxs—4x,%3+ 3x2) — q(xgxs— 3%, X4+ 2Xx,%3) +1{(x x5 —4x,%, + 3x3) =0. (3.1)
Readers acquainted with texts on invariants will have remarked that, on replacing x;

by a;, the three quadrics on which we have based N become the coefficients in I'([3], p.
273; [7],p. 206). But the geometry has more to say.

* The cones of the net and the interpretation of their envelope

4. The symmetric matrix of a quadric of N is

- -4

. . . . P —q

. —4p 3q r
. 6p —2q —4r
(N)=
—4p -—-2q 6r
P 3g —4r
—q r

The Laplace expansion on the top three and bottom three rows, in which only two non-
zero products occur, or a triple Laplace expansion on the two top, two middle and two
bottom rows, in which only four non-zero triple products occur, gives

|(N)|=36(rp—q°)°
so that the only cones in N have g2 =rp or, say,
p:qir=p*:—p:1.

When this substitution is made in (N) only a single linear dependence between the rows
emerges, namely

R, —pR;+p*R3—p°Ry+p*Rs—p°R=0

so that the resulting matrix has rank 5 and the cone has a single point for vertex, indeed
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the point on C with t=p. The cones of N thus compose a family of index 2 and their
envelope, the locus of points P such that the two cones of N passing through P coincide,
is the quartic primal K with equation

(xo%s5 —3x1X4 +2x,%3)2 =4(xgxs — 4%, X3 + 3x3) (x5 — dx x4 + 3x3). 4.1

Q8 is a double surface on K.
This is the sought interpretation. The situation may be described as follows.

There is a net N of quadrics containing all the tangents of a rational normal quintic C;
the singular members of N are all point-cones with vertices on C. Through any point P
pass two of these cones, their vertices having for parameters on C the two zeros of a
quadratic covariant of the binary quintic f mapped by P. If P is such that these two cones
are coincident it lies on the quartic primal K and maps an f for which the invariant of
degree 4 is zero.

Each cone of N touches K along a quartic threefold containing Q3. In the geometry of
the non-singular plane quartic the contacts of any two contact conics of the same
system are eight points on a conic, and the analogous circumstance holds for K; any
non-singular quadric of N meets K in a pair of the quartic threefolds. These are the
contacts of those cones for which p satisfies p—2gp +rp2=0.

Now that the equation of K has been found it is apparent that K contains Q3, i..
every osculating plane w,. For it manifestly contains w,(0), whose equations (cf. 2.2) are
x3=x,=x5=0, while it has been Jefined geometrically in reference to the whole of C
with no restriction to any coordinate system.

5. Since a rational plane quintic has six nodes or their equivalent a plane of general
position in [5] meets six chords of C: the chords of C generate a sextic threefold MS$.
The surface common to M$ and a quadric of N includes Q; the residue is a quartic
scroll. For any chord of C is, as A, u vary, traced by the point x;=(—1)'(A¢’+ uy?); the
result of substituting these x; in (3.1) is

Au{p+a(d+¥)+roy}(o—¥)*=0

so that those chords which, in addition to all tangents, lie on (3.1) are joins of the pairs
of the involution

p+a(d+y)+réy =0.

Such joins are known ([6], p. 97) to generate a rational normal quartic scroll. But the
involution can degenerate, the scroll becoming the quartic cone of chords through a
point of C; this occurs whenever g>=rp,p:q:r=p?: —p:1, the “involution” consisting of
all chords through t=p.

As C, on the double surface of K, is at least a double curve any chord of C that meets
K at a point not on C lies wholly on K; the surface, of order 24, common to K and M$
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is a scroll. As Q8 is on M$ and is double on K it it counts twice in the intersection,
leaving an octavic residue; this turns out to be QS again. For when x; is replaced by

(= 1)(A¢'+ up) in(4.1) the outcome is {Au(d + ¥)(¢ —¥)*}* = 4{Au(d — Y)* HAudy(d — ¥)*}
Autp—y)'°=0

so that no chord of C lies entirely on K unless it is a tangent: K meets M$ in QS
reckoned thrice.

The net of quadrics and the osculating planes

6. The developable surface Qf has the same tangent plane w,(f) at every point of
w,(t). Since the tangent prime at any point of w,(t) to any quadric Q of N contains the
tangent plane of QS there w,(t) is in the polar solid of w,(t) with respect to Q. But this
solid meets @ in a pair of planes through w,(¢) so that w,(t), unless it lies on @, meets Q
only in w,(t) counted twice. It can be proved by correspondence theory that two
osculating planes of C lie wholly on Q and these, in the present context, can be
identified by elementary algebra. For the three equations (2.2) are equivalent to asserting
that, for s=0,1,2,3 the four fractions (a®x,+20x,,, +x,4,)/(—a)° are equal and so,
again by (2.2), the points of w,() satisfy the three quadratic conditions

3 3
Z(—1)'<r>(°‘2xs_,+2ax4_,+x5_,)xk+,=0, k=0,1,2.
r=0

If k=0 the terms in «? cancel one another, as do those in @ when k=1 and those
without & when k=2. The full equation when k=2 is

a?(x3x3 —3%,X3+ 3%, X4 — XoXs) + 20(x 4%, — 3x3 4+ 3x,%, — X, x5) =0
ie.
o2(xpXs— 3%, %4+ 2%,%3) + 20(x, x5 — 4%, %, +3x3) =0

with the quadrics of N clearly “declaring their interest”. When the other two equations
with k=0, 1 are handled similarly it appears that the points of w,(a) satisfy

XoXa— 4% X3 +3X5  XoX5—3x, x4 +2X,%;3 X X5—4X;X4+3x3

1 — 20 o?

so that, by (3.1), w,(a) lies wholly on Q when p+2ga+ra®>=0. The two osculating
planes concide when Q is a cone.

An alternative identification of these two w, uses the fact that w,(t) is spanned by
(Section 2) a,b on w,(t) and any third point ¢ of w,(t) not collinear with them; w,(t) is
traced by da+ub+vc as A, pu,v vary. Since w,(t) meets each quadric @ of N in w,(t)
repeated the substitution of the six members of the coordinate vector Aa+ ub+ ve for the
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x; in (3.1) must either produce zero, when w,(t) would lie on Q, or give v*=0. Now
w,(a) meets x, =x5 =0, which is skew to w,(«) save when a is 0 or oo, at (3, — a,0,0, a*,
—30%) and the multiplier of v? after the substitution from this vector is

p(3a®) — g(—9a> + 3a%) + r(3a)
or
3a*(p+2qa+ra?).

Thus w,() lies on that pencil of Q for which p+2qa +ra*=0 while each @ contains two
w,(a) which, as above, coincide when Q is a cone.

The generalisation

7. There is a strictly analogous interpretation of the quadratic covariant (ab)?™a,b, of
a binary form of order 2m+ 1, as well as of the discriminant A of this quadratic. As the
geometry for m=2 has been described at length it will suffice to state the facts for
higher values of m without elaboration.

All the @, _, of a rational normal curve C in [2m+ 1] lie on the quadrics Q of a net
N [1, p. 142]. These w,_, generate [9, p. 201] an Q™™*2? lying on the QU+V’
generated by the w,,, and w,(t) is the tangent [m] of Qn™*2) at every point of w,,_ (¢).
Each o, is on a pencil of Q and meets those Q on which it does not lie in w,,_;
repeated; each Q contains two w,, which coincide when Q is a cone. The cones of N are
point-cones with vertices on C, and their envelope is a quartic primal K. If P lies on K
it maps a binary (2m+ 1)-ic for which the invariant A is zero. K contains Q" D,

All elements of the symmetric matrix for Q are zero save those in the secondary
diagonal and its two contiguous parallels. In these parallels the binomial coefficients (3™)
appear with alternating signs; the coefficients in the secondary diagonal itself give zero
when added to the two contiguous ones in the same row or column. For m=3 the
matrix is

~ -
. . r —q
. —6p 5¢q r
. 15p —9¢ —é6r
. —20p 5¢q 15r
. 15p S5¢ —20r .
—6p —9g 15r
P Sq —6r
—-q r

with determinant a multiple of (g>—rp)* and, should g*>=rp, rank 7. So the quartic
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invariant of a] appears on replacing x; by a; in
(x0X7—5x1xg+9%x3x5 — 5x3%x,)2
=4(xgxg—6x,X5+ 15x,x, —10x3) (x;x7 — 6X,x6 + 15%3x5 — 10x3)

and so reproducing the expression given by Cayley [4, p. 316]. Of course all the
coefficients occurring here are patent in

(ab)®a.b,=(a;b,—a,b,)%(asx+a,y)(byx+b,y)

but the geometry surely merits being recognised.
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