The Common Curve of Quadrics Sharing a Self-Polar Simplex (%)

W. L. Epge (Edinburgh, Gran Bretagna)

Summary. — When n— 1 quadrics in projective space [n] of n dimensions have a common self-
polar simplex their common curve I admits a group of 2 self-projectivities. The consequent
properties of I’ are imvestigated, and further specialisations are imposed which amplify the
the group and endow I' with further properties. There ts some reference to the osculating spaces
and principal chords of I', and some properties of particular curves in four and five dimensions
are described.

I. — Principal properties of the curve.

1. — A simplex § in a projective space {n] of n dimensions provides » 4+ 1 invo-
Iutory projectivities that are mutually commutative and have for product the iden-
tity projectivity: namely the harmonic inversions in the vertices and opposite bound-
ing primes of S. When § is taken as simplex of reference for a system of homogeneous
coordinates ®; then h;, associated with the vertex X; and the opposite bounding
prime x;= 0, multiplies the single coordinate »; by — 1 and leaves the other » co-
ordinates unchanged. That h; is an involution, that the different %, commute, and
that

hohy oo hy=1,

are clear from the representation of the f,; as diagonal matrices. These h; generate
an elementary abelian group E of 27 projectivities. The [s — 1] spanned by any s
vertices of § and the [#—s] spanned by the other n - 1—s vertices are a pair
of fundamental spaces, or axes, of one of the 2» —1 involutions in Z.

Any quadric 2 for which § is self-polar is invariant under E; each point of 0
that is not in any face of 8, i.e. for which no «, is zero, is one of a bateh B of 27
points of £ that is invariant under E. The same is true of the manifold common
to any set of such quadrics. If there are n — 1 quadrics in the set this manifold is,
in general, an irreducible curve I, of order 2#-1. Since it is the complete intersection
of » —1 primals its genus =, is deducible from the known fact that the eanonieal
series is cut on I, by primals of order 2(n — 1)~ (n + 1)=n—3, so that

27, — 2 = 2%Yn — 3)
7= 2" *n—3) +1.
as stated on p. 185 of [1].

(*) Entrata in Redazione il 23 giugno 1976.

16 — dnnali di Matemalica



242  W. L. EpgE: The common curve of quadrics sharing a self-polar simplex

2, ~ I, is determined by » — 1 simultaneous equations

(2.1) Q,=3aPgi=0 k=0,1,..,8—2

where summation is over j and runs, unless otherwise stated, from 0 to »n. It is pre-
sumed that (2.1), regarded as linear equations in sc,.z, are linearly independent; the
maitrix [of”] has full rank » — 1. This implies, since all (n — 1) rowed determinants
are non-zero, that I', is skew to every bounding [# — 2] of 8: no two of the # + 1
coordinates ean be zero simultaneously on I',. A peint of I, in ;= 0 is invariant
under h; and the batch determined by it consists not of 27 but of only 271 points;
they compose the whole intersection of I', and z,= 0 and may be called a critical
batch Bj.

There is a linear combination of the n ~— 1 equations (2.1) from which any n — 2
of the squares ] are absent, but it is not possible so to eliminate n —1 of the
n -+ 1 squares. Among the quadrics through I, are cones whose vertices are the
bounding [# — 37’s opposite to the plane faces of S, but I, does not lie on any cone
with an [n—2] for vertex.

The invariance of I', under the &, discloses the special character of the points in
the n -+ 1 critical batches.

The tangents of I', at all the points in B;k concur at X,;. If PP, is a chord
of I, through X, and P tends along I, to a point in B then P,, on the line X,P,
tends simultaneously to this same point; the osculating plane there has 4-point inter-
section with I',. Repetition of the argument proves that the osculating [s] has
2s-point intersection for =1, 2, ...,n —1. These points, 271 in each of the n + 1
bounding primes of 8, may be appropriately called stalls of I',. The branch centred
at a stall is characterized by the integers

ty==y=1, Oh=ag=..=o0,_=2.

For a definition of sueh integers see [13], p. 28 where they are designated as », v/,
¥y .5 or [8], p. 246 where Segre’s 4, is o+ oy + ...+ o,

The 2» points of a batch are in perspective from each of the n-+ 1 vertices of 8.
The chords of I, through X, generate a two-dimensional cone of order 27-2; all
points on these chords satisfy » — 3 linearly independent equations obtained by eli-
minating #7 from (2.1). But these, #? being absent, are equations, one less in number,
of the same form and involving one coordinate less: the chords of I', through X,
meet x;= 0 in a curve [,_,. There is a (2, 1) correspondence between I, and this
projection, branching at the 271 points of Bf. An application of Zeuthen’s formula
([12], p. 152, [13], p. 223, [8] p. 83, [10] p. 211) allows 7, to be calculated by recur-
rence, the initial condition being my= 1 for the elliptic quartic, or even m,= 0 for
a conic. The caleulation yields the same value for m, as in §1, and has already been
used on p. 338 of [6].
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3. — There is a representation of I', that proves to be convenient when investigat-
ing the geometry of the curve.

Regard the coefficients o® as the homogeneous coordinates y™® of » -1 points
A, in a projective space [n — 2]. Through these points there passes a unique rational
normal curve (. Chooese a coordinate system in {# — 2] so that € has the standard
parametric form y®=¢* (k= 0,1, ..., n—2); the points 4, will have for their para-
meters » -+ 1 unequal numbers a;. In order to avoeid an infinite value, and so ensure
that every A, has its first coordinate ¥ non-zero, one has only to arrange that the
contact of ¢ with its osculating [#—3] y®= 0 is not at any of the A,. Then,
A; being (1, a;, a7, ..., a7 ?), I, is given by

(3.1) Q=Ydal=0 (k=0,1,..,n—2)

where & is now an actual power and not a mere superseript. There is a practical
illustration of this circumstance when » =4 in [3].

The equations (3.1) show that I', depends only on the » — 2 projeetive invariants
of the » + 1 numbers a;; I, has only # — 2 moduli whereas a general non-hyperel-
liptic eurve of genus s, has 3w, — 3= 27"%3n-—9). The specialisation is due to
the invariance under . Since [, is projected from a bounding [s] of S onto the op-
posite [# —s — 1] into a I',_,_, covered 2°*! times it is in multiple correspondence
with curves of lower genera. If n = 4, say, I', is a special canonical curve of genus 5
with only 2 moduli whereas the general curve of genus b has 12 moduli. [, is projected
from each of the b vertices of 8 into an elliptic quartic, covered twice, with eight
branch points; it is projected from each of the ten edges of 8 into a plane conic covered
four times.

4. — Write, now
% #-+1
f0) =TT (8—ay)) =2 (—1)e,6m
j=0 P=0
and

n
sp= 2 a;/f'(a;) -
=0
Then, as is seen from the decomposition into partial fractions of 6*/f(6), or otherwise,
(4¢.1) So= 815 v =81 =0, §=1.

So two solutions, and therefore the only two so far as linear dependence is concerned,
of (3.1) are

(4.2) B=1/fa), 2F=a/f'a)
and the general solution is

(4.3) =0+ a)/f'(a) j=0,1,..,0
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This is a parametric form not, of course, for I', but for a bateh B(f) on I',; the 2=
different points of B(f) answer to the different signing of the » + 1 square roots of
the #2. The critieal batch B] of stalls is B(— a)).

The value of s, for ¥ > » can be found by using initial conditions (4.1) and the
recurrence relation

A+l —
Sy— 8y 1t e+ (1) T8y =0

so that, to give the simplest example, s,.,= ¢,5,= ¢;. The 27, as parametrised in
{4.3), thus satisfy

Qn_]_:l) Q”=6+61,

and B(#) is the intersection of I, with the quadric Q,= (0 -+ ¢,)2,_;. It will be
found convenient to refer occasiopally to the quadries £2,=0 and 2, ;=0 which
with the n —1 quadries (3.1), compose a linearly independent set of n 4+ 1 linear
combinations of the n + 1 squares 7.

This parametrisation of batches on I, really goes as far back, for n =3, as
SALMoN ([7], p. 195). The explicit form (4.3) in [#] is given by BaxEr ([1], p. 185)
who exploits it to advantage for n =4 in his account of Segre’s cyclide, and for
n=>5 in his geometrical treatment of the line geometry of Kummer’s surface ([1],
Pp- 218 ¢t seq.).

5. — If an algebraic curve " in {#] has genus p, order m——the number of its inter-
sections with a prime—and class m'—the number of its osculating primes through
a point—then it is known ([9], p. 86) to have

tim—n)m—n—1)+ 3w —n)m —n—1)—n(n+1)p

principal chords, a chord being principal when it lies in the osculating primes at
both its intersections with I

Ags with so much successful enumerative work the proeedure by which the number
is derived gives no information about how these chords may be grouped, or about
the geometry within such a group or the relations of such groups to one another.
These matters are likely to be relevant when I has special properties: for example,
any projectivity under which I” is invariant must permute the principal chords among
themselves.

The order 27* and genus %, of I, have been given already; its clags 2% 1(2n — 3)
was found by elementary methods in [5] and can also be found in other ways. It
follows that the number of principal chords of I', is

(5.1) 22%-2(2p2 — B -+ 5) — 202(n2 + 2n? — Bn— 2) .
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This accords with the normal elliptic quartic having 24 principal chords; this fact
is well known as a special case of the number for the normal elliptic curve of any
order, and has also been established independently in [4] by reasoning allied to that
to be used now.

There will be two kinds of principal ehords of I',: such a chord may join points
in the same batch, or it may not. If it does it is invariant under that involution in ¥
which transposes these two points in the batch, and so meets a pair of opposite bound-
ing spaces of §. For example: if w =5 guch a chord may

(i) pass through a vertex X, and meet x,= 0, or
(ii) meet an edge and opposite solid of S, or

(iii) meet an opposite pair of plane faces of S.

In (i) the «chord » is the tangent at a stall. This, in view of the high multipli-
city 2n — 2 of the intersection of I', with its osculating prime at the stall, raises the
question: what is the number u, of times that the tangent at a stall is to be reckoned
among the principal chords?

There will also be principal ehords joining points in different batches. Should
the points be in batches B, and B, the osculating prime at any point of B, contains
a point of B, at which the oseulating prime, in turn, contains the point of B,. Such
« trangversal » principal chords oceur in sets of 27

6. — The osculating prime of I', at = ¢ is, by equation (3.1) on p. 40 of {5],
2Af (@)} 2" =0
or, alternatively, if & belongs to B(0),
(0 - ;)2 =0 .
If, then, £ belongs to B(#) and 5 to B(yp) the chord & is principal if, and only if,

S0+ a)" g + a)tf (a) = 0= 3 (0 + a)H(e + a,)" ¥f (a) .

Both these equations are unchanged if the signs of v (6 -+ a;) and \/{qo + a;) are
both changed; hence a chord &y that is principal is accompanied by other principal
chords, one through each point of the batch to which £ belongs.

If the intersections of I, with a prinecipal chord both belong to B(§) then, for
some selection of signs,

(6.1) 3 (04 @) Yf (a) = 0.

Now this sum would be zero identically in 6 by (4.1) were all signs the same; hence
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both sums of terms that are signed positively and of terms that are signed negatively,
are zero: say, for convenience,

n

(0 4 a)*Y/f (@) = 0= 2> (0 + a;))"V/f'(a,) .

p+1

(6.2)

cMe

These two sums are negatives of each other, and the two equations have the same
roots 0,,0,,..,0,_5: Now

p D

%_:(0 +a)" " f (a;) = g{f’(%)}”“%?"”z-
When 6 is assigned each &; has either of two values, so that the sum on the right is,
for each root 0;, zero for 22 points & in #, = a,,,=...=@x,= 0. Likewise there
are 27 in the opposite [n — p — 1] spanned by the vertices X, ., Xy 4y .oy Xs
of §. Thus each of the » — 1 roots 6; provides 2*—! principal chords joining pairs of
points in B(#;). Take p over the range 1 <p <n — 2 80 that each such chord is included
twice. The number of principal chords so accounted for is

1 1 n+1 n-+1 n-+1  oneif o
(6.3) 5(%——1)-2 {( 9 )+( 3 )—}—...—i—(n_l)}—2 (n—1)(2 n—2).

If, in particular, » = 3 one obtains 24 principal chords; each of the three pairs
of opposite edges of the tetrahedron S is associated with two batches on Iy, and each
of these batches has its eight points joined in pairs by four principal chords all trans-
versal to the pair of opposite edges. These facts agree with the findings in [4].

Incidentally, as these are all the principal chords of I, u,=0.

The preceding discussion provides 240 principal chords of I',, 24 transversal to any
edge and opposite plane face of the simplex S. This edge and face are thus associated
with three batches B(6,), B(8,), B(0,). Each 6, yields a pair of points on the edge
that are harmonic to the vertices of § as well as four points in the face forming a
quadrangle with the vertices of § for its triangle of diagonal points; the eight joins
of the two points on the edge to the four points in the face are all principal chords
of I',, and join points of B(#,) in pairs.

I, has, by (5.1), 536 principal chords in all so that 296 remain to be accounted
for. But 296 is not divisible by 2 so that the tangents at the 40 stalls of I, must
be included, and that an odd number of times; u, is not zero, and is odd.

The number in (5.1) exceeds that in (6.3) by

202 (202 —8n 4 T)— 2"} (3 —Tn + 2) .

If one subtracts from this the number of stalls counted u, times the residue is the
number of principal chords joining points of different batches; this has to be a multiple
of 2». But the residue is

221-2(2m2 — 8m -+ T) — 2v-2{(n —1)%(n + 2) — 4n} — (n + 1) 2714, .
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This, whatever the integer p,, is divisible by 2* whenever » is odd. If, however,
n is even then
Hn is even if n =2 (mod 4),

fin is 0dd if m =0 (mod 4).

Questions of multiplicity can present awkward problems, and the value of u,
is not the only one. Suppose, as does happen upon occasion (see §§ 18, 21 below),
that a prineipal chord &y of I, lies not only in the osculating primes at both £ and
but also in the osculating spaces of dimensions » — 2, n — 3, ..., n — s at both points.
How often must such a chord be reckoned? For how many prineipal chords does
it account?

7. — There is a special situation, ingtances of which are to be encountered later,
in which principal chords can be detected joining points in B(co) and joining points
in B(0). It occurs when # -1 is composite and [, invariant under a regular per-
mutation of the coordinates; say n + 1= gk with the coordinates permuted in g
cyeles of A:

{(Bg By cre Byaty) ooe ( Bz Bag_t +on Trg_1) -

The reason why B{oco) and B{(0) obtrude is that they are both invariant under the
imposed projectivity g whereas all other batches are permuted in cycles of k.
This situation oceurs if

Qk:?i:af{w? + &0 g+ ] gy TR )
i=
with ¢ a primitive h-th root of unity. The effect of @ is to multiply 2, by ¢* and
so leave each quadric 2,= 0 invariant. Then
10) = (0" — (0" —a) ... (8" —al_,) = p(6),
say so that f'(0) = k8" y'(0") whence it follows that
(7.1) la) f (ea;) o f (€ ay) = 1ie7 e 28! "

This shows that the terms of either sum obtained by taking = co or 0 in
(6.1) fall into g sets of &, the sum of any set being zero. For, 1 being some constant,

A1 h—-}
D1y =22 =0,
r=0 0
and
h—1 (8"(1,«)”“2

SEAE S L jumsS o0,
=0 f(e"ay) o &7 f(e"ay) %
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II. — Curves invariant under additional self-projectivities of period 2 or 3.

8. — I', can be specialised to admit ampler groups of self-projectivities than H
and so have still fewer moduli.

If n=2p 41 is odd a specialisation suggests itself at once; choose the 2p + 2
numbers a; to be p + 1 pairs of an involution I (this is, of course, no specialisation
if p=1). There is no loss of generality in assigning parameters 0 and oo to the
foci of I; then the parameters of any pair of I sum to zero: say a;+ a;,,,,= 0, and
I'' is the common curve of the 2p quadrics

»
(8.1) Q,=Salal + (=1t . }=0 k=0,1,..,2p—1.
i=0
It is invariant not only under E but also under the (p - 1)-fold transposition.

(wowp+1) (@185 42) - (@p%ap.1)

of the 2p + 2 coordinates in pairs; for this leaves £; unchanged when k is even,
changes 2, into — Q, if k is odd. The corresponding projectivity is harmonic inver-
sion J in the skew pair of [p]'s.

8.2) Lo — Bpi1 = By — Tp 3= veo = Tp— Fpp 1= 0,
Lo+ Bpy1= D1+ Bpya= oo = Ty + Lap1=10 .

Both these [p]’s lie on the p quadries

(8.3) Q=0, Q,=0,.., 82, 1=0;

indeed (8.3) all hold whenever

(8.4) B = W — 0 = = B — Ty =0,

a set of p - 1 equations representing 27+ [p]’s composed of 2? skew pairs of op-
posites of which (8.2) is but one. Each pair affords a harmonic inversion leaving I’,:
invariant. These skew pairs are of course obtainable from (8.2) by using the h; of § 1.
Since the 227** operations of E permute the 2? pairs among themselves one expects
each pair to be invariant under a group of 27+! operations of . For example: each
member of (8.2) is unchanged by any of

(8.5) Foliypny Biby gy ooy Bpliag gy
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which, commuting and having product identfity, generate an elementary abelian
group of order 27; this is amplified to one of order 27+ by adjoining

hﬂ h’l "ee hﬂ:::. hﬂ+l hp+2 “es h2p+1

transposing the two [p]’s of (8.2).
It will not have escaped nofice that just as (8.3) hold in consequence of (8.4), so

Dy=0, ,=0,..,8,, ,=0
hold in consequence of
2 2 2 2 . o2 2 .
(8.6) Tyt Ty 7= ] + By g™ o™= Ty + Doy == 0.

This is a second set of 2» gkew pairs of opposite [p]'s, and each pair is invariant under
the same group of order 2711,

Each of the 27 pairs in (8.4) is associated with a pair in (8.6). To explain this
geometrically take (8.2). The equations (1 a parameter)

$0/37p+1: wl[wp+2 T e = m:»/372:z>-§—1(: 7‘)

represent a singly-infinite set of [p]’s, all skew to one another, generating a locus V
of dimension p + 1, indeed the « Segre product » [p]x[1] mentioned on p. 174 of [8].
For A= <41 one has the pair (8.2); for A= -+ ¢ one has the pair

By~ Wy 1= By~ W2 == oo ™= Lp— Wy 1 =0,
(8.7)
By i1 == Ty iy == rr = Ty F Wp 1= 0,

of (8.6). The harmonic invergions in (8.2) and (8.7) commute, their product being
the inversion in those [p] on V having A= 0, oo, ie. in

To=T1= . =%, =0 N0 Dy 1= Bpyg= .= Py 1= 0,

so that this product is just he by by ... hy.

9. — After observing that any of the 2 skew pairs of [p]'s can be transformed
into any other by a projectivity leaving F?: invariant it is sufficient fo consider any
one pair.

Since both [p] lie on p of the 2p quadries defining I', the 27 common points of the
quadrie (p — 1)-folds in which the remaining p quadrics meet either [p] are on I.
Now every point of F; is paired with another in J, and the chords joining such pairs,
all being transversal to both [p]’s, generate a scroll R, of order y say, meeting the



250 W. L. Epcr: The common curve of quadrics sharing a self-polar simplex

two [p]’s in directrix curves, of order m say (the curves have the same order since
the [p]'s, say the pair (8.2), in which they lie are transformed into each other by har-
monie inversion in the pair (8.7)). Among the generators of R those through the inter-
sections of I’ with the two [p]’s are tangents of I".

The genus  of R can be found at onee by applying Zeuthen’s formula. For every
directrix (say @ prime section) of R is in (1, 2) correspondence with I’;, the coincidences
on I', being its 27+ contacts with generators of B; hence the formula gives

Az —1) + 2071 = 2w, — 1) = 297(2p — 2)
=14 (p—1)2%-2 201,

A prime meets I", in 2% points; if the prime contains either [p] these consist of
the 27 points of I, in [p]and two on each of those m generators of R that pass through
the m intersections of the prime with the directrix in the opposite [p]; so

2% =274 2m,

m = 21291
And since the prime meets B in the directrix of order m and m generators
W= 2m = 2" — 27,

There are 227! such scrolls containing I .

10. — The discussion in § 7 shows, with k== 2 and ¢ = p -+ 1, that principal chords
of I join points in B(co) as well as in B(0). Since f{6) is here an even, and so f'(9)
an odd, function, f'(a;) = —f'(—a;); thus both sums

Vf'(a) + 1f'(~—a)) and  a/f(a) + (—a)™/f (—a))

are zero and the 2p -2 terms in (6.1) fall now, should 6 be either 0 or oo, into
P + 1 pairs with each pair summing to zero. So one obtains, in either batch, 22
principal chords transversal to an edge X, X, , ., and opposite [2p —1] of §, 2*7
transversal to a solid X, X, ., X, X, , ,and opposite [2p — 3] of §, and so on. Thus,
among the joins of either B{co) or B(0) there are

L Lp+1y  [(p+1 f 2o A Y DR
() ) e () =

principal chords. Since there are 2271 points in a batch one expects there to be

2(2312 . 22p)/22p+1: fcp—
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prineipal chords through each; indeed both B(0) and B(oo) are partitioned into 2#+?
subsets of 2? points, the join of any two points in the same subset being a prineipal
chord. Each subset is an orbit under the group, of order 27, generated by the opera-
tions (8.5).

One now proceeds to illustrate these properties of I, .., by describing the figure
in [5].

11. — Iy, with p = 2, has order 16 and genus 17; it lies on eight scrolls of order 12
each having two plane sexties of genus 7 for directrices.
I'; is the common curve of the four quadries

wghay - of el + aftel =0,
a(zg — 23) + b(a? — 22) + c(@i—2H) =0,
a*(wh + #3) + 0¥ (@ + #2) + a2t =0,

o}y — }) + B2} — a?) + Plaf —ad) = 0.

(11.1)

Any of the eight planes

(11.2) vt vy=at ot = +at=0

meets I'; in the four points for which

(11.3) awh -+ bl + owl = a*wt + bPat 4+ Pak =0 ;
these 32 points will be shown to be B(oo). Any of the eight planes
(11.4) =t —al =2k —ai=10

meets I’y in the four points for which

(11.5) zh + o + w5 = a’wf + Pt + Pal =0

these 32 points compose B(0).
Since, here,

H(8) = (02— a?)(0* ~ b2){6* —¢*) ,
it follows that

(b2 — )" (@)/a = (¢*—a®)f'(b)b = (a*— b¥)]'(c)/e

and these relations, coupled with the fact of f'(6) being an odd function, give the
parametric form for B(f), namely, by (4.3),

="~ +aja, H=—E—AB—a)a
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with the equations obfained from these by imposing simultaneously the cyclic per-
mutations (abe), (012), (345). So B(0) and B(co) are as stated.

The osculating [4] of I'; at a point & of B(co) is, by (3.1) of [5], > &= 05 it
clearly contains & itself by (11.2). But so do, for the same reason, the three [4}’s

Somo + Es3 =0, &+ Ew=0, &upt+E&w=0.
Hence the osculating [4] at any of the points

& £ & & £, &
—& & & —& &, &
& —& & & —& &
& & =& & £ —&

of B{occ) eontains all three others. The 32 points of B(co) fall into 8 tetrahedra, the
edges of the tetrahedra being prineipal chords. The vertices of a tetrahedron are
obtained from any one of them by harmonie inversions in

the edge X,X, and opposite bounding solid of 8§,

The analogous situation holds with B(0); at a point & of this bateh the osculat-
ing [4], is, again by (3.1) of [5],

a®(Eoig — E3ivg) + B3(E1my — Eatpy) + MEamy — &5} = 0
and one now has the three [47s
Soy=§s5, Emi=1E&0,, &Eby=§50;

all containing & by (11.4).

12. — The chords of I'; which join pairs of points harmonic inverses of each other
in the planes
(121) B— @y — @=L —Be=10 and @@=+ 0, =3+ 3,=0
generate a seroll B with a directrix in each plane. The pairs on Fé are

(12.2) (@, @1y Loy B3y Bay Bs) (B By Fsy Tgy 1y Ta)
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with the six coordinates subjeet to (11.1). The directrix in (12.1) is the locus of
(@ -+ @y, By Doy By + By By By By + T2, By @)
when the points (12.2) trace I';. But then, by (11.1),

2 2. 0,2 2.,..2 2 __ p2 2.2 2. 2 2
xp gy @y F 2y = bt — " —a"la" — b7,

xE — a5 0t — 2 wf — ol = be(b® — ) ca(c® — a®) 1ab(a® —D?)
so that there are constants y, » for which
= (B — ) (u Fvbe),  ah= (B*— ) (pu—rbc) .

Thus the point (£,#, ¢, &7, () on R in (12.1) is such that

£ =@—e) {(u + vbe)t -+ (,u—?ibc)%} ,
'%52 = (bz__aﬁ) {‘w + (,&2’—-?)2?}209)1}}
150 — (b — ¢)? {2p® —v?D26® + 2,&(}&2—?’25203)%}

Il

(bz____ 02) {Mé:z_,’,zbzez(b2_ca)} .

Two similar relations, derived from this by simultaneous cyelic permutations (£7()
and (abc), also hold; elimination of ux and » from the three relations gives

& (bzm 02)52 b2 e2(h — ¢2)2
774 (02--0&2)1’]2 c2a(c?—a?)?| =0
£a (alz_mbz)zz a?b2(a2— b2)?

’

a plane sextic with nodes, indeed biflecnodes, at the vertices of the triangle &yl = 0.
Since the genus is known to be 7 three nodes on the plane curve are to be expected.

13. — The preceding paragraphs have been concerned with 1’,: invariant, when
n=2p -+ 1, under & (p -+ 1)-fold transposition of the 2p + 2 homogeneous coordi-
nates. If one seeks by analogy a curve I', invariant under a permutation, of the homo-
geneous coordinates, consisting wholly of 3-cycles then n=3s—1; if w iz either
complex cube root of 1 take I', to be defined by

§—1
Q, =3 aka? + o}, + o} ) =0 £k=0,1,2,..,35—3.
j=0

It is invariant under the projectivity @ induced by the permutation
(13'1) (mowsmzs')(mxmqsxuzs) (ws_lmzs—lmss—-l)

since this merely multiplies 2, by .
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The points invariant under @ are those, and only those, of the three [s —1}’s

(13.2) o=, =1®;0,; PrIOi= 0 = 0, 5,; P8= 0 = O, 4 ;
where § runs over 0,1, 2, ..., s — 1 and each written pair of equations is but one of s
pairs of linear equations holding simultaneously. These three spaces are mutunally

skew and together span the whole [3s — 1]; the pairs span the [2s — 17,

BB @+ Tjyst Bjpas= 03 0‘/31 i+ & s+ 0 9,=0;

of: @+ 0@y, 0%y ,= 0.

Any point not in any of «, 4, # is one of a trio eyclically permuted by (13.1); should
the point be in any of the three [2s — 1]'s the members of the trio are collinear;
otherwise they span a plane meeting all of «, 8, f. One may note the s trios X, X, s X jzs
spanned by vertices of 8. Their s intersections with o, 8 or 8 form a simplex in this
[s —1]; the harmonic inversions in its vertices and opposite bounding [s — 27’s being
induced in «, 8 or § by

hohshzsy seey hihi+shj-1-2sy very hs_lhzs_lhss—l -

These, commuting and having identity for their product, generate an elementary
abelian group ¢ of order 2°7'; it is clear from (13.2) that all of them leave «, §, 5 in-
variant. The three [¢s —1]’s are thus only one of 2*71/2°71=2% guch sets of spaces
associated with I"), those of a set being transformed into those of any other by the
281 operations of a coset of ¢ in E.

o les on 2s—2 of the 3s—2 quadrics £,=0, namely those for which k=0
(mod 3). But each of § and f lies on 25 —1 of the 35 —2 quadrics: f on those having
k2, B on those having k1. It follows that 8 and f§ both meet I, in 2°~* points,
namely those, in the case of 8, common to the sections by § of the s —1 quadries
2,= 0 having k=2 and those, in the case of §, common to the sections by f§ of
the s —1 quadrics £,= 0 having k=1. The planes spanned by trios include the
osculating planes of I") at these 2° points in § and f.

n

The 2°! points in, for example, B satisfy
Salv;=Yajwi=..=YaF *a?=0;
the obvious determinantal solution of these s —1 linear equations for the s « un-
knowns » 7 shows that none of the w; is zero.

14. — If & is a point on I, the tangent there is the line

8—1
2 af(Em; -+ 0y gy 0™ @) =0 B=10,1,..,35—3
i=0
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Should & happen to be one of the points of ]’,/[ in § these equations would be
E“?(% + wk+2$a‘+s + wgkﬂmﬂzs) &=0.
Now a point 2 in « would satisfy all these equations if only, for each %,
Saf(l 4 " P4 0P g =0 ;

but all these 3s— 2 equations other than those s — 1 for which k=1 are nuga-
tory so that there are only these s — 1 linear equations to be satisfied by the s co-
ordinates x,, namely

SafwE=0 k=1,4,..,38—2.

Since no two a, are equal nor, as just remarked, is any &, zero, the matrix [af&,] has
rank s — 1 and the ratios of the #; are uniquely determined. So the tangents to F,'L'
at its 2°~' intersections with 8 all meet « as, by similar reasoning, do the tangents
at its 2°7* intersections with .

When I, is specialised to I') the parametric form (4.3) implies, as is seen on using
(7.1) with k= 3, the relations

w0 =0+ 0 .00 + wa) 00 + w’e)  j=0,1,..,5—1.

But, on §, ;.2 ::0;.,—=1 0% 0 8o that all 251 intersections of ]’,’: with § belong
to B(oco). This batch of 2%~ points is completed on appropriating the points of I',
in those 2% — 1 other spaces derived by applying E to f. Similar remarks apply
to B and B(0).

The osculating prime of I’,’; at a point of B(0) is, by (3.1) of [5] with n =3s—1,

8§—1
D0 T &y &y By T ey 0) = 0

J=0

When & is in § this equation is, by (13.2).
205w+ 0wy 08, §=0

and is satisfied by every point of «f; the osculating primes of I, at its 2°* points
in f§ all contain the [2s —1]af. All 2°%(2°~'— 1) joins of the 2°* points are there-
fore principal chords, and the operations of E applied to them produce 2% 22! —1)
of the principal chords joining pairs of points in B(0). Analogous statements hold
for B(co).
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15. — The planes of the trios generate a threefold W whose genuns appears on using
Zeuthen’s formula. For there is a (1,3) correspondence between the planes of W
and the points of I', in which the only coincidences occur at the 2° intersections of I,
with § and 5. But each of these is a coincidence of all three members of a trio and
so ([8], p. 238) is to be counted twice; whence the formula gives

6(r—1) +2.2°=2(my,_, —1)
= 2.2%73(35—4),

7 being the unknown genus of W. Thus

w=1- s 2%73 _252%~1 L 1)/3
(15.1)
=1 -+ 8.233—3__23(1_2 + 22__ o 223_2) )

a, B, B contain directrices of W; B, «f, »8 meet W in scrolls. Among the 2% 2
intersections of I', with a prime through ff are 2°~! points on f and 2°~* on f; the
2%~2__ 9% others consist of trios whose M = } (2% 2—1)2° planes meet .« on the
directrix there, whose order is therefore M. The other two directrices have the same
order because a prime through «f or «f contains the tangents at 2°~* points of I"/
which account for 2° intersections. The generators of each scroll put a pair of direc-
trices in (1,1) correspondence; the serolls have order 2M, W has order 3.

16. — The simple instance when s= 2 furnishes a threefold of order 12 with
three quadruple lines and merits some description. Fs”, of order 16 and genus 17,
i defined by four simultaneous equations (& = b)

v+ o+ @+ 2R+ w2 =0
a(wh + wwy -+ o'x3) + b@d + wrd+ o’al)=0

(16.1)
a*(@d + s+ wal) + bX(a? + P2l + wal) =0

a@f -+ oi4+ @)+l 2l 2 =0

Hence, on I,

2 2 2 2 2 2
Xo+ 25 -2y =] + a3 +-05=10,

2 2 22 2 2 2 a2

25+ o+ owy=90b , o+ ozt 0'T,=—0a ,

22+ 02k - wad=ob®, o+ 0’k + wsk=—oa®;
302 = gb + ob®, 323 = w®pb + wab?®, 322 = wpb + w?ob®,

(16.2)
—32%=pa -+ 0a*, —3x5=0w0a+ woa®, —32:=wpa -+ w’ca®.
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Those points that are invariant when the z; undergo the permutation (,2,%,)(2,2.w;)
gre on the lines

Ll y==  Bg= Wy, = Ly= X
fiwo= wity= 0T, X= 0= 0%;
[ dy= w@y= wi,, B = T;= 0OT5.

Should a point of I’;’ be on S then, from (16.2), ¢==0; there are two mnter-
gections

220020020252 32 2. 212, 2. 2. 2,2
XXy e Xy Wy s == D lwd  l0"h i —a” —wa” —w e .

Likewise there are two intersections with f#; but none with a.
The solids containing collinear trios are

BBimg+ -t m=mat+ @+ w,=0,

af: o+ 0z, + 0@y= &+ 0B+ 0n=0,

af: Xy + Oy + k= 2+ 0+ 0= 0.
Take, now, three points (i, s, @4, ¥1, T3, £5) ONE ON each of o, f, ﬁ: say

(1, 1, 1, &k, k k) on e,

1, w?, »,m, w*m, om) onf,

1, o, w?, n, on,on) on f.
The object is to select k, m, n so that the plane spanned by these points contains
a trio on I'y; in order that it should do so it is sufficient for it to meet I'; once. But
every point of the plane iy obtained by varying 4, u, v in
(16.3) (A-+u+v, 2+ pw4 v, 14 po + vl

Ak + pm + vn, Ak + po*m 4 von, Ak + pom 4 vo*n)
and on substituting these coordinates for the z, in (16.1) one has the conditions

24+2uy 4+ AR 2uvmm =0,
a(y? + 24u) + b(vin? + 24ukm) =0,
a(p? + 2vA) + b*(um? + 2v2kn ) =0,
a*(A2 + 2uv) + (AR -+ 2uvmm) =0 .

17 ~ dnnali di Malemalica
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The first and fourth conditions require
224 2uy = AR+ 2uvmn = 0
so that either 22+ 2uy=Fk>—2mn=0 or 1*= 2ur = 0. And, in either alternative,
one has fo satisfy the second and third of the four conditions.
If, in the second salternative, 4=y ==0, the third condition is identically satis-
fied, the second if a + bn?= 0; one obtains the two points of F;,’ on f and their

osculating planes. Similarly, A==v==0 yields the two points on . So one con-
siders the first alternative. The two conditions are

v¥{a -+ bn?) = —2u{a + bkm),  p*a®+ B2*m?) = —2vi{a® + b*Ekn) ,
which give, on multiplication and cancelling uw,
wv{a -+ bn2)(a® 4 b*m?) = 4% a + bkm){a® - b2 kn)
or, since A*= —2uy,
(16.4) (a + bn?)(a® -+ b>m?) + 8(a + bkm)(a®+ b2kn) =0 .
This is the relation sought; when it is satsfied, in addition to k2= 2mn, the plane
belongs to W. If any one of %, m, » is now eliminated the outcome is a (4, 4) corre-
spondence between the other two; this yields an octavic seroll with two of «, §, §
for quadruple lines. For example: the elimination of % leads to
(16.5) (903 + a?bn® -+ ab*m® 4+ 1Th*m*n®)? = 128a2b*(am + bn)*mn .
The plane (16.3) meets pB in the line
(# 4, pw® 4 vy, pw + vew?, g + v, poO2M + von, pom + von)
so that one has only to take
m= (s — 0®s)[(° B — 0@;) , 1= (0% — 0°T5)[ (T — 0 x,)
and substitute in (16.5) to obtain an equation for the octavie scroll R in which B8
meets W.
The generators of K, are paired in the harmonic inversion hih,h,= h,hhy; this
accords with (16.5) being unchanged when m, n are replaced by — m, — #. A plane

section of R, has quadruple points, one on B and one on B, so that, being of genus 5
by (15.1), it is required to have 4 nodes; R has 4 double generators.
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ITI. — Curves invariant when the coordinates are permuted in a single cycle.

17. — There is a specialisation of I', having no surviving moduli; the properties of
such a curve A, include those of the less specialised curves already considered.

Take a,= ¢’ where &= exp[2xi/(n + 1)], a primitive (n + 1)-th root of unity.
Then 4, admits, in addition to E, the cyclic self-projectivity @, of period = + 1,
that permutes the coordinates in a single cyele (x,%;...2,). For this permuta-
tion merely divides £, by ¢* because, now,

Q=3 a2 .

Every quadric through A, is invariant under a group of 2%(n + 1) projectivities;
though 4, itself will be invariant for a larger group should there be projectivities
permuting the quadries through A, among themselves.

Since, now,

fO)=0"—1, f{)=m+10", fl)=(m+1e’
the parametrigsation (4.3) is
(17.1) wi=(0+¢)e.
When g is imposed B(0) becomes B(p) where the ratio
(0 + &) &7 (p + e79) 942

is independent of §, hence ¢ = £0. The batches are permuted in cyecles of » 41
save that B(0) and B(co) are unmoved. The # - 1 eritical batches are B(—e&).

18. - » has the n + 1 distinet fixed points

vertices of a simplex &. Tach A4, lies on all » +1 quadries 2, except 2.1 s
(the suffix modulo n + 1) so that A, is on A, when ,,, ,; is either 2, ; or £,.
Thus 4,, not being on £,_,, is on 4,, indeed in B(0).

If n=2p -+1 is odd, so that e**'= —1, the inversion (18.1) in a pair of oppo-
site bounding [p]’s of S transposes 4, and A4,,, so that this last point is also on 4,
and in B(0).

If n=2q is even, A, is not on £2, and so is on 4,; indeed it belongs to B(co).
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Consider now the osculating spaces of 4, at 4,. Since, at 4,, =0 and &,= ¢/
the osculating [s] is, as explained in [B], determined by the » — s linear equations

S 2 =0 or V=0 r=n,n—1,..,8+1.

But this is the equation of that bounding prime of & that is opposite to 4,_, , and
80 one can say, in sueceession, that

the osculating [n—1] at 4, iz 4;4,4, ... 4,4,4,,
the osculating [»— 2] at 4, is 4,4, .. 4,4,4,,

..........

the osculating plane at 4, is A, A A,
the tangent at 4, is Ag4, .

Or, building the figure from the spaces of lower dimension, the tangent of A, at 4,

is A, 4,, the osculating plane 4,4,4,, the osculating solid A4,4,4,4,_,, and so on.
Suppose now that n=2p -+ 1; the alternative n = 2¢ will be discussed below.
The inversion

(18.1) hohy v gy = hyhy .. By s

replaces the coordinate &% of 4, by (—1)&® or &% and so transposes A, and
Ay oy (suffixes modulo 2p + 2); the vertices of @ undergo the (p41)-fold trans-
position

(AGAp+1)(~A1Ap+2) sre (A@Azav-H) .

Hence the tangent of 4,,,, at 4,., is 4, ,4,,,, the osculating plane 4, ,4,.,4,,
and so on, the osculating [2p] being the bounding prime

Apyodyir o Agpdy o 4,

of & opposite 4,.,.
Clearly 4,4,,, is a principal chord; but there is more to say. For 4,4, is

common to

Ay Aoy hoy o Ay, and Ay Ay .. Ay,

which are the osculating [p 4 1}s at 4, and 4,,, respectively. Take, for example,
P =2, Then the chord 4,4, of A, lies not only in the osculating [4]’s at both 4,
and A, but also in the osculating solids

A, A A A, and A A A,A, .
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A, A, is one of 16 such chords joining pairs in the bateh B(0); the members of a pair
are images of one another in the inversion hyh.h,.

It was seen, in the account of F;, that any point P in B{0) is joined to three other
points Pyy, P14, Pys of the batch by principal chords, and that every edge of the tetra-
hedron PPy, P, P, is such a chord. The four points are transforms of any one by
holg, Bihy, hohg; e.g.

h2h’5P03: h2h5h0h3P == h1h4P == .P14 .

This is therefore true also of A, sinee invariance under the involution @* endows
A, with the properties of Fﬁ/. But invariance under g?* endows A, with the properties
of I'; also; among them is the fact that there is a fourth principal chord joining P
to another point Py, of B(0), the transform of P by hohyh,. It is this last chord which,
as has just been noted, now lies not only in the osculating [4]’s but also in the osculat-
ing solids of 4; at both P and P,. The joins of pairs of points in B(0) include

48 -+ 16 = 64 principal chords of 4;.

19. — Suppose now, still considering 4,, that » is even, say n = 2¢. The pro-
jectivity
Jowy= Py, 0 §=1,2,..,2

with the first coordinate &, unchanged, is seen to transpose £, and £, when

E+4+%k=2¢—2. In detail

&%p2  becomes &

5(’6+2Q+4)w2
i 2¢+1-~3

$0 that the typical term of the sum into which £, is transformed is, changing j to
2q+1—j,

8(2q+1—3)(1c+2q+4)w? — 8—3(7;+3)x;_z — Sj(zqwzc—z)x?

sinee g2+i=1., Thus J transposes the n —1 quadrics through /,, in pairs, save that
Q. . is invariant. J also, as can be similarly verified, transposes £2, , and Q..
A matrix form for J is

+1

€2q(z1 +2)

(the sign of the leading element being chosen so that |J|= -4 1) having the unit
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matrix for its square; J is an involution. If P is the (2¢ + 1)-rowed permutation
matrix

imposing (o it appears, since JP J= g2 P! that J and g generate a dihedral
group of 4¢ + 2 projectivities. The 4¢ + 2 matrix forms for these can, on multi-
plication by the diagonal matrices imposing projectivities of F, have the signs of
any of their entries changed and yet still impose projectivities thatleave 4,, invariant;
the group of self-projectivities has order (4¢g -+ 2)2% and can be imposed by as
many matrices of determinant +1 (should ¢ be odd write the leading entry of J
as — 1).

This order is 160 when ¢= 2. So far as is known 4, has never been encountered
save in this simplest instance, but 4, was discovered by Wiman in his quest [11]
for curves of low genus admitting self-projectivities. He did not, however, exploit
his disecovery other than by giving this order 160. Some further contributions to
the study of A, have since appeared in [3]; a little more appears below.

The characteristic polynomial of J ig, if the leading element is 1,

(1—2)(A2—1)

and there is no obstacle to perceiving that, corresponding to the latent root 1,
q -+ 1 linearly independent latent vectors span the [q¢]

Q: @, =TT g,
while, corresponding to the latent root — 1, ¢ linearly independent latent vectors
span the [¢ —1]

QI: L= @,y + 8((1+2)(7'+1)m2a =0.

Here v ranges over 0,1,..,¢—1. Both ¢ and @' meet all of
X1qu; X2X2a—17 ) Xqu+1 3

@ also contains X,, while @' lies in x,= 0.

J i3 the harmonic inversion in @ and ' which, £, , being invariant, are polar
spaces for 2, ;= 0. Furthermore: since £, and £, are transposed when k 4 k'=
= 2¢ — 2 any point in which either quadric meets either @ or @’ is on the other quadric.
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Hence 4,, meets @ in the 2¢ points
Qy=801= .= 0,,=0;

these quadriecs have no other commeon point in . Moreover the 2¢ tangents of A4,,
at these points, being invariant under J/, all meet @'; the points themselves are paired,
the 2¢-1 joins of the pairs all passing through X,.

@ and @’ are but one of (4¢q + 2)2¢* pairs of polar spaces for £2, ;=0 that are
axes of involutions leaving A,, invariant. For @, Q' are themselves invariant under

hfo, hlhmn h’2h2q—l’ tery h’qhq+17 J .

The first ¢ + 1 of these ¢ + 2 involutions generate an elementary abelian group
of order 2¢ which is amplified by J to a non-abelian group of order 2+ whose projec-
tivities are imposed by unimodular matrices either diagonal or having the shape
of J. So there are as many polar pairs @, ¢ as there are cosets of a group of order 2¢+?
in one of order (4q -+ 2)2%e. Hach vertex X, of 8 is in 2¢ of the spaces @; the polars
@' of these lie in x,= 0.

20. —~ The points of 4,, are paired by J; the chords, all transversal to @ and @',
joining these pairs generate a seroll R, which meets @ in a directrix curve 4,, of order
m say, with a point of multiplicity 2¢* at X,. R, has a double curve g,, of order u
say, in @' since each generator of R, meets '-—which lies in #,= 0—in the same
point as does its transform by %, (under which R, is invariant).

A prime through @' contains those m generators of R, that pass through its inter-
sections with d,, so that it meets 4,, in 2m points; whence m = 2%—*, But the 27
intersections of 4,, with a prime through @ consist of the 2¢ points in @ itself and two
points on each of the 2u generators of R, that pass through the y intersections of
the prime with g,; whence

QU= Ra 4y, =278 202,

Since the section of R, by this prime consists of 6, and the 2y generators the order
of R, is

m 4 2p = 20-1(20—1) .

A [g—1] through X, and lying in @, unless its position is specialised, meets d,
in 222 — 2¢1 fyrther points collinear with X, in pairs. Any contacts of the [¢—1]
with branches of 6, at X, must involve further intersections to an even number;
one expects therefore all the branches to be inflectional.

The genus n; of B, is found immediately from Zeuthen’s formula. For 4, is in
(1, 2) correspondence with A,,, the branch points being the 2¢ points where gene-
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rators of R, arve tangents of A,,. Hence, using the known value of m,, on the right,

4(m,—1) + 27= 2227429 —3) ,
@, = 2%7%(2¢ —8) — (2072 —1) .

One can also find the genus 7z, of g,. Any chord PP, of A,, through X, is paired
by J with a second such chord P'Pg; PP’ and P,P; concur on g, and meet z,=0
on the doubly covered A,,; that is the projection of A,, from X,. Hence there is
a (1, 2) correspondence between g, and A4,, , and so, the genus of 4,, , being known,
it only remains to find where the correspondence branches. There are two types
of point on g, where it does so.

(@) If P is one of the 2¢ intersections of A,, with @ it coincides with P'; only
one point of A,, , arises, namely that on XOPPOEXOP'P(). The tangents of A4,,
at P and P, meet at a branch point on p,; there are 2¢-1 of these.

(b) The 2¢* generators PP’ of R, through X, each give rise to coincidences
P'=P,, P=P, such a generator meets g, in a branch point, the only point of
Aye_1 corresponding to it being on X PP'= X P P,. There are 2¢-! branch points
of this type also.

The Zeuthen formula therefore gives

4(752_1) -+ 9¢—1 + ou—1__ 2,22q—3(2q_4) ,
7= 2% g —2) — (2772 —1).

21. - A,, is invariant under J which transforms A,, having its (j + 1)-th coordi-
nate &% into the point for which

;= a+2i+@at1-Dk . Jla-+2—k)

since g**1=1; so J transposes 4, and A, where k + k'=q + 2 (mod 2¢ 4 1). Since
4, is on 4,, so, as already seen otherwige in §18, is A4,,,; J transposes not only 4,
and 4,.; themselves but also

the tangents 4,4, and 4,.,4,.,

the osculating planes A, 4,4,, and 4,,4,,,4,..,,

and finally the osculating primes, these being the bounding primes of & opposite A,
and A4,.
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It now appears that
A Ay Ay oo Agia Aoy
is the osculating [¢ 4- 1] of 4,, at both 4, and A4,,,. This [¢ + 1] is fixed under
both @ and J, but it is one of 2% such biosculating spaces obtainable from any one

of them by using F; the two contacts are one in each of B(0) and B(co), and the wholes
of those two batches are thereby accounted for.

22. - For Wiman’s curve 4, ¢=2 and &=1, 4, being defined ([11], p. 39 as
modified in [3], p. 1265) by

(22.1) Sai=3cul=Y =0

with summations running over j=0, 1, 2, 3, 4. This curve lies on 20 sextic scrolls
of genus 2, each of them having a directrix plane quartic and a nodal line which is
the polar line of the plane of the quartic in Y ¢z} = 0. Each solid #,= 0 conta-
ins four of these lines; they form a skew quadrilateral each pair of whose opposite

sides is a pair of polar lines for > ¢'zf = 0; for example, the lines in x,= 0 are

Tyt etey=xy+ 2ry=0, oz —é&r,=0,—¢1w,=0,

o —ry=, T 8%;=0, oF+er,=x,—r,=0.
Consider now the scroll R, with nodal line
Q' wy= 0y + 'y = 2, + By, = 0.
The polar plane of ' in £2,= 0 is
Q: v —etxy— 2y —32,== 0

and meets £2,= 0 and £2,= 0 in the same conie; indeed the plane meets A, in those
four points for which

wy 4 (L + &%l + (1 4 &) oh = af -+ 262’ + 26°22 =0 .
The tangents to A, at these points all meet ¢'. R, has a node at X, and meets § in

a quartic curve §, with a biflecnode at X, each branch having an infleetion there.
Since the difference of the two vectors

(@oy @1, @y, @3, )

(o, 'y, 34, 2Ty, &xy)
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registers a point on @' their sum registers a point in ¢; J, is the locus of the point
(22.2) (X,Y,Z,82Z,eY) with X.Y:.Z= 202+ *x,.2,+ 5,

as (g, %y, %5, %5, ¥,) varies on A,. An equation for §, is obtained by eliminating
the five , from (22.1) and (22.2). As expeditious a way as any is probably to note that

(e + 1+ e)afag + (e + 1+ &*)afa] = a;

everywhere on A,, for this is seen to hold identically in 6 on using (with n = 4) the
parametrization (17.1). The outcome is

e+ 1+e) Yot +1F e Zt= 1 X% e(e?—1 -+ Y2+ eMe—1+ e 2%,

a plane quartic with a biflecnode at Y = Z = 0.

23. — The fact of the 16 principal chords joining points in B{0) to points in B(co)
lying in biosculating solids is an as yet unremarked property of A,; although the
fact that a special form of Humbert’s plane sextic was a projection of 4, from a
chord was noted and exploited in [3] the chord was not, apart from the possibility
of its being a tangent, specially selected. Were it, however, to be one of these 16
prineipal chords the projection H would have two inflections I and I’ with the same
tangent, this tangent being the intersection of the plane @ of H with the biosculat-
ing solid.

Project A, from its chord A, A, onto the opposite plane = A,4,4, of &;
the biosculating solid, opposite 4,, is o3==0 where

4
Op = zsjkmj k=0,1,2,3,4
i=0

80 that
4
b, = > e7%0;, j=0,1,2,3,4
k=0
and
502, = 0} + 20,0, + 20,0, ,
(23.1) 502, = 0% + 20,0, + 2040, ,

52, = 0% + 20,0, + 2050, .

In order to obfain the equation of H, the projection of 4, from ¢,=0;=0,=0,
one has only to eliminate ¢, and ¢, from the equations got by equating the three
quadratic forms simultaneously to zero. The first and third equations can be solved
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for g, and o, and the solution substituted in the second. The outeome is, writing X,
Y, Z for g4, 0y, 03,

(23.2) 275 — B5X Y2 — (X5 4 Y5)Z + 5X3¥3=0,

showing clearly that Z = 0 is a bitangent with both contacts inflections.

The action of @ multiplies o, by &%, inducing the replacement of X, Y, Z by X,
e 1Y, £2Z; this accords with H being unehanged under the projectivity of period
5 which replace X, ¥, Z by X, ¢*Y, Z. Moreover, since J permutes the g, as
{0,01)(0304)}{0,), it induces in #® the harmonic inversion which transposes X and Y
while leaving Z unchanged. Thuas H is invariant under a dihedral group O of 10 seH-
projectivities.

24. — The general properties of Humbert’s sextic are of course possessed by this
specialised form H, indeed are enhanced by the presence of ©. This is not the place
to elaborate them, but one may remark in passing that 4,4, is a line on ¥, the cyclide
£2y=£2,= 0, and that, the tangent plane of ¥ at x;== A¢’+ ye% on 4,4, being

Aoy 4 pog= Aog -+ po,=0,

the tangent planes to ¥ at the points of 4,4, generate the line-cone ¢,0,= oj.
Hence (see §9 of [2]) the conic through the five nodes of H is XY = Z2, and the
two tangents at any node of H pass one through I and one through I'.

The operations of F all leave F, as well as its intersection A, with £;,= 0, inva-
riant, and ¥ is projected onto @ from 4,4, by a transformation {(1,1) save for
five «exceptional » lines on F that meet 4;4,. So the operations of ¥ induce
Cremons transformations in @ that leave H invariant: H admits a group of 160
Cremeons self-transformations.

The sections of F by solids are projected from 4,4, into the adjoint cubics of H.
Now while a general canonical eurve of genus 5 has 496 quadritangent solids
~—this being the number 2#-%(2# 1) when p = b—it was remarked in [2], §17,
that 4,, indeed that I',, has ten singly-infinite families: if ¢ is a tangent the solid
joining ¢ to the edge X, X, of S also contains the tangents #,, f, ¢, obtained by
applying h, and %, to 4. 4,, however, is now seen to have 16 biosculating solids quite
separate from these ten families of quadritangent solids; oy,=0 does not contain
any edge, nor indeed any vertex, of §. Those 15 of the 16 that do not contain 4,4,
meet F in elliptic quarties whose projeetions onto @ are adjoint cubies of H each
having two 4-point intersections with it (and containing its five nodes).

25. — The involutions in D form the coset of its cyelic subgroup and all transpose I
and I'; the projectivities of the cyclic subgroup leave both I and I' unmoved so
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that if I and I’ are designated as Poncelet’s « cireular » points in an extended Euclidean
plane this eyclic subgroup will consist of rotations.
If, then, one puts

Z=1, X=X+19, Y=%¥—1i9
in (23.2) one obtains
B(X2+ D)X+ 9 —1) + 2= 2X(X* —10X*Y* + 59
and the right-hand side here is

4 2j 2
32]‘[(% eosﬂ—g) sinﬂ).
i=o 5 5

Now put X= R cos @, Y= R gin® to obtain

2j7

4
BRYR:—1) - 2=32R]] cos(@ + —5—) = 28R5 cos 5O .
i=0

The invariance under rotation is obvious, as it is under reflection in = 0. One
is, however, denied the pleasure of a visunal representation: the odd function
5(R— R-Y) + 2R has a single minimum value 2 (when R = 1) and otherwise, for
R > 0, exceeds 2, so that H has no real points save its five nodes—acnodes according
to Cayley’s nomenclature.

Each involution of D is a central harmonie inversion with centre on II'; its axis
joins the harmonic conjugate, with respect to I and I’, of this centre to one of the
five nodes of H, the other four nodes being transposed in pairs.

Although H has no real points other than its nodes this need not inhibit one
from saying that every circle XY — kZ* cuts H in a decad of points invariant
under D. This decad may, for certain values of k, be a repeated pentad at each point
of which the circle touches H; it is just that the points willhave complex coordinates.
Each such pentad, invariant with H and the circle, must have one vertex on an axis
of each of the five involutions. Hence there will be four such « contact circles » because
an axis meets H in four points apart from the node through which it passes.

This accords with the Jacobian set of the g}o cut, apart from I and I', on H
by the circles having ([8],§33) 20 4- 10 —2 = 28 points. Of these, 20 are on the
four contact circles, and the defect is made up if each of I and I’ accounts for
four members of the Jacobian set. And this they do because the line II' repeated
is a member of the pencil of circles, so that one of the decads consists of I and I'
both taken five times. Although the assessment of multiplicity can be a subtle pro-
blem this present instance is of the « elementary » type whose solution is given in
§ 36 of [8], and other places.
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26. — It is also worth recording that the osculating planes of A at 4, and 4,, lying
as they do in a biosculating solid, have a line in common: indeed 4,4,. The projec-
tion of A, from A, A4, onto the opposite plane 4,4;4, of @ is a plane octavic C
with triple points at 4, and 4,. But there is only a single tangent at each triple
point, and this is the same—4.4; itself—at both. The equation of C is the result
of eliminating, now, o, and o, from (23.1). The elimination of o, from the second
and third equations gives

0% 4 20,040, — 0,(0% + 20,0,) =0,
while its elimination from the first and third gives
(6% + 20,0,)% + 80%(0,0, + 0,0,) = 0 .
Combinations of these two results furnish the two quadratic equations for o;:

03(62 + 100,0,) + 86,020, -+ 20,0,(0% + 20,0,) =0,

202040, -+ 0,05(05 + 100,0,) + 404(0,0% + 205) =0 .

Elimination of ¢, between them yields the sought equation for C namely, replacing o,
05,0, 0y X, Y, Z,

Z8 - 36024 X2 Y24 B12Z3( X5+ Y?) + 2240Z2 X3 Y5+ 2000X¢¥Y¢=0.

The triple points 4,, A,, with their gingle tangent along Z =0, are manifest, as
is invariance nnder D.

The pencil of conics XY = kZ? cut, apart from A, and 4,, decads of points
on C; the Jacobian set of this gi, consists, as did a Jacobian set on I, of 28 points.
The singular conie Z?= 0,a member of the penecil, meets C at eight points both at 4,
and A,; removing each of 4, and A4; three times leaves a decad consisting of two
quintuple points each, as with H, contributing four to the Jacobian get. So 20 points
remain, and these will be contaet pentads for four of the conies.

Such a pentad invariant, with the eonic and €, under D, must have one member
on the axis of each of the five involutions in 9. Each axis, however, meets C in eight
points; the four not belonging to contact pentads are found to coincide in pairs at
nodes of C. For example: one axis i X = ¥ whose eight intersections with C
are pin-pointed by the identity.

20002 - 224045 -+ 102425 -- 3602t + 1= (1022 + 4o + 1)2(200* — 1622 4 28x* — 8w +4-1) .

The zeros of the biguadratic factor on the right account for one member of each
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contact pentad; those of the repeated quadratie factor account for the two nodes
on X = Y, whose (complex) coordinates can thus be given explicitly. A plane octavic
of genus 5 with two triple points has to have 21 —5—2.3=10 further double
points or their equivalent.

REFERENCES

{11 H. F. BakKERr, Principles of geometry, Cambridge, vol. IV, 1925.

[2] W. L. Epce, Humbert’s plane sextics of genus 5, Proceedings of the Cambridge Philos-
phical Society, 47 (1951), pp. 483-495.

(31 W. L. Epce, Three plane sextics and their automorphisms, Canadian Journal of Mathe-
maties, 21 (1969), pp. 1263-1278.

[4] W. L. EpGE, The principal chords of an elliptic quartic, Proceedings of the Royal Society
of Edinburgh (A) 71 (1972), pp. 43-50.

[3] W. L. Epcr, The osculating spaces of a certain curve in [n], Proceedings of the Edinburgh
Mathematical Society (2) 19 (1974), pp. 39-44.

[61 W. L. Epace, The chord locus of a certain curve in [n], Proceedings of the Royal Society
of Edinburgh (A) 71 (1973), pp. 337-343.

[7] G. SarmoN, 4 ireatise on the analylic geometry of three dimensions, 4th ed., Dublin, 1882.

[8] C. SEGRE, Introduzione alla geomelria sopra un ente algebrico semplicemente infinito, Annali
di matematica (2) 22 (1894), pp. 41-142; Opere, vol. I, Rome, 1957, pp. 198-304.

[9] F. SEVERI, Sopra alcune singolarita delle curve di un iperspazio, Memorie Accad. Scienze
di Torino, 2 (1902), pp. 81-114.

[10] F. Severi, Lezioni di geometria algebrica, Padua, 1908.

[11] A. Wiman, Uber die algebraischen Curven von den Geschlectern p = 4,5 und 6, welche
eindeutige Transformationen in sich besiteen, Svenska Vet-Akad. Handlingar, Bihang till
Handlingar 21 (1895), afd. 1, no. 3, 41 pp.

[12] H. G. ZEUTHEN, Nowvelle démonstration de théorémes sur des séries de poinls correspon-
danis sur deux courbes, Mathematische Annalen, 3 (1871), pp. 150-156.

[13] H. G. ZEUuTHEN, Lehrbuch der absihlenden Methoden der Geometrie, Teubner, Leipzig and
Berlin, 1914.



