
A NEW LOOK AT THE KUMMER SURFACE 

W. L. EDGE 

Dedicated to H. S. M. Coxeter on his sixtieth birthday 

Rummer's surface has the base surface F of a certain net 31 of quadrics in 
[5] for a non-singular model. All the quadrics of 31 have a common self-polar 
simplex 2, and 31 can, in a double-infinity of ways, be based on a quadric 12i 
and two quadrics that 12i reciprocates into each other. F is invariant under 
harmonic inversions in the vertices and opposite bounding primes of 2 and 
(§2) contains 32 lines. In §3 it is shown, conversely, that those quadrics for 
which a given simplex is self-polar and which contain a line of general position 
constitute a net of this kind. 

Each quadric of 31 is shown, in §5, to contain 32 tangent planes of F. This is 
confirmed by another argument in §6, where it is explained how this fact estab­
lishes an involution of pairs of conjugate directions at any point of F; this 
involves a system of asymptotic curves. That these are intersections of F with 
quadrics for which, too, 2 is self-polar is seen in §7; that they correspond to the 
traditional asymptotic curves on K will be proved in §12. 

After describing a less-specialized surface <£ in §8, the rudiments of the 
geometry on F are alluded to in §9; §10 introduces the Weddle surface W 
as a projection of F and avails itself of the classical birational correspondence 
between W and K. The association between the 15 quadric line cones through 
F and the 15 separations of the nodes of K into complementary octads is ex­
plained in §11. The details of the mapping of curves, of lower orders, on F and K 
into each other are discussed in §§12-15. §§16-17 end the paper with a brief 
note on tetrahedroids. 

1. The following pages concern matters related to the geometry of the surface 
F, in projective space [5], common to the three quadrics 

(1.1) Go = X>*2 = 0, Qi = "£at xt
2 = 0, Q2 = X>*2 x,2 = 0, 

where the summations over i run from 0 to 5 and no two of the six coefficients 
at are equal. It is sometimes convenient to speak of the quadric 0K = 0 merely 
as "the quadric 12K." 

The first appearance of these three equations is in Klein's early paper (11) 
on linear and quadratic complexes. He uses his mapping of the lines of [3] 
by the points of 120, so that the lines of a general quadratic complex are mapped 
on the threefold Q0 = Gi = 0. The equations (1.1) are all on p. 223 of (11), 
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where Klein derives 122 = 0, to determine the singular lines of the complex, 
by an appeal to Plucker 's formula (12, p. 296) determining the singular lines 
of any complex, the term singular line being introduced and defined by 
Plucker in this place. This happened all b u t a century ago; b u t geometers have 
now, for little short of half the century, deemed the locus classicus for this 
figure in [5], and for the insight it affords into the theory of the K u m m e r 
surface, to be the exposition, as authori tat ively magisterial as it is undeniably 
idiosyncratic, in Baker 's book (3). He natural ly takes the mapping of the quad­
ratic complex on 120 = 12i = 0 from Klein, bu t he derives the relation 122 = 0 
which the singular lines mus t satisfy by a geometrical argument . 

Although it is common knowledge, a t least with readers of Klein or Baker, 
t ha t F is in birational correspondence with a Kummer surface K—note, in 
particular, lines 10-12 on p. 219 of (3) and their substant iat ion on p. 2 2 1 — 
there seems to have been scarcely any exploration of the details of this corre­
spondence. Bu t it has now been known (8) for a decade t ha t the projection of F 
from any one of its 32 lines onto a solid is a Weddle surface W\ this knowledge 
opens another way to scrutinize the correspondence between K and the non-
singular model F of both K and W, since the birational correspondence between 
Wand K is notorious (2, p . 65; 5, p . 237; 10, p . 166; 14, pp . 158 et seq.). 

2. Suppose now tha t 12, 12' are two non-singular quadrics in general position 
in [5]; they have a unique common self-polar simplex 2 , and 2 is self-polar 
also for the polar reciprocal 12" of 12 with respect to 12'. T h e octavic surface F 
common to 12,12', 12" shares with them the property of being invar iant under the 
six harmonic inversions ht in the vertices and opposite bounding primes of 2 . 
T h e hi are commutat ive , and generate an elementary abelian group G of order 
32; of its 31 subgroups of order 16 one, call it G+, is singled out by this repre­
sentat ion; G+ consists of the identi ty and the 15 harmonic inversions ht hj in 
the edges X{ Xj and opposite bounding solids of 2 . T h e coset G~ of G+ consists 
of the six hi themselves and of the 10 harmonic inversions, like 

ho hi h2 = hz hi hb, 

in opposite planes of 2 . If 2 is the simplex of reference, ht replaces %i by — xt 

while leaving the other five coordinates unaltered. 
T h e polarizations now to occur in the next paragraph are all with respect to 

12'. 
T h e polar plane a" of a plane a on 12 is on 12"; in general, a and a" are skew 

and meet 12' in non-singular conies. Bu t if a meets 12' in lines /, m which intersect 
a t P, then a", common to the polar solids L, M of /, m, passes, with both L and 
M, through P and so, as it is in the polar prime of P , meets 12' in lines /", m" 
through P. This shows, incidentally, t ha t P is on F (3, p. 219). Lastly, should a 
meet 12' in a repeated line A, it mus t lie in the polar solid A and so a", lying in 
A and containing X, also meets 12r in A repeated. And À is on F. So, therefore, 
is any line obtainable from A by applying the projectivities of G. 
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Take, now, the quadrics 

% = I>* 2 = o, 1̂1 = Y<aixi2 = o, 

and the polar reciprocal of £20 with respect to S2i, namely 

02 = E^ .^z 2 = 0. 

Write /(») s (6 - a0)(d - ai)(6 - a2)(6 - az)(6 - a4) (0 - a6) 

= 06 - ex 0
5 + e2 0

4 - ez 0
3 + e, d2 - e, 6 + eQ, 

and sK = T,aiK/f(ai)' 

Then s0 = Si = s2 = s% = s± = 0 and s-ô — 1. These facts are for immediate 
use, but two others are added, for later use, giving s$ and s7. Since 

(96 _ f(d) EE ex 0
5 - e2 0

4 + . . . , 

af = ei at
5 — e2at

A + . . . , 

so that SQ = e\\ and since 

617 _ /(0) = ^ 06 _ e2 65 + # _ f 

so that 57 = ei2 — e2. 
Whatever signs may be prefixed to the six square roots, the line X whose 

parametric form is 

(2.1) Xi\Zf'(at) = t + at 

lies on all three quadrics, and so on F. Moreover, as Baker points out in a 
note appended at the end (pp. 266-267) of the 1940 reprint of (3), the plane 
given in terms of homogeneous parameters u: v: why 

while lying wholly on %, meets 121 in the line w = 0, i.e. X, repeated. One may 

add that its polar plane 

Xi\/f(ai) = ua~l + v + wat 

with respect to 12i lies wholly on £22 and meets £2i in the line w = 0, i.e. X again, 
repeated. When different signs are prefixed to the six square roots in (2.1), there 
arise 32 lines on F, transforms of each other under the operations of G. 

3. It is now apparent that the base surface F of the net of quadrics 

#2„ + i?0i + J122 = 0 

contains 32 lines. But the converse is also true; if the surface of intersection of 
three linearly independent quadrics having a common self-polar simplex 2 
in [5] contains a line of general position (i.e. not meeting any plane face of 2) , 
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(3.1) 5> i y 2 •-= H^iyiZt 

Since 
yt2 y2 y2 

yi*i yi*j y*Zk 

*i2 Zj2 Zk
2 

then the net of quadrics can, in reference to S, be based on 120, fii, 122. For 
suppose t ha t ^at xt

2 = 0 contains the join X of y and z: 

ZoiiZi2 = 0. 

PijPikPjk 

where ptj = yiZj — y^zu it follows on eliminating, say, a4 and a5 from (3.1) 
t h a t 

«0 ^04 p05 + Oil Pli Pu + «2 p2A plh + «3 ^34 Pi» = 0, 

^45 not vanishing because X does not meet x4 = x5 = 0. If, then, three linearly 
independent quadrics 

(3.2) J > , xt
2 = 0, ZPt xt2 = 0, LYz xt

2 = 0 

all contain X, 

(3.3) poipo*: Pu Pu: P^P^ pup** = (123): - ( 0 2 3 ) : (013): - ( 0 1 2 ) 

where (ijk) is the de terminant \at fit yk\. And there are 15 such sets of relations, 
any pair of suffixes being eligible to play the pa r t of 4 and 5 here. 

Now there is a s tandard condition (13, p . 401) for six points (au fiu yt) in a 
plane to be on a conic; one of several al ternat ive forms for it is 

(012) (035) (134) (245) + (345) (301) (412) (520) = 0. 

But , in the present context, by analogues of (3.3), the condition holds because 

(012)/(412) = pnpu/pnpoi, (413)/(013) = -po2poi/pnpAi, 

(035)/(435) = -pap*2/poipo2, (452)/(052) = -poipoz/PapM. 

Hence, by choosing three linearly independent quadrics (3.2) suitably, one 
may take 

oit', fix'. 7 * = 1 : CLi- a>i2-

4. T h e net 9Î of quadrics £Œ0 + rjtti + fQ2 = 0 through F includes a system 
T, of index 2, of quadrics 

62Q0 - 2(912! + 122 = £ ( 0 - a.Yxi2 = 0 

which are reciprocals of each other in pairs with respect to the quadrics of yt 
outside r ; indeed 

u2n0 - 2utii + Û2 = 0 and v2tt0 - 2v^x + S22 = 0 

are polar reciprocals with respect to 

uviïo — (u + v)&i + ^2 = 0. 
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One ignores the six critical values at of u or v so that the quadrics remain 
non-singular. 

When the quadrics of 5JÎ are mapped by the points (£, 77, f ) of a plane w the 
map 7 of T is the conic rj2 = 4f£. Six points (at

2, — 2au 1) on 7 map cones; 
the 15 vertices of the hexagram H of tangents to 7 at these points map line-
cones whose vertices are the 15 edges of 2 and compose the Jacobian curve of 
5ft. Points on a side of H distinct from the five vertices map cones sharing a 
common vertex at a vertex of 2 ; one of them belongs to T. Two points A, B on 
7, neither being a point (a*2, — 2au 1), map quadrics of Y that are polar recip­
rocals with respect to that quadric mapped by the pole of AB. 

The envelope of the quadrics of V is 120122 = Œ12, a quartic primal Q with F 
for a double surface. Since its equation is 

/ . j , j \d i (" j ) 3C i % j M » 

it also has nodes at the vertices of 2, the nodal cone at Xt being 

at
2Q0 — 2at Œi + 02 = Y*j (ai — aj)2xj2 = 0» 

one of the six cones of T. The quartic threefold along which this cone touches Q 
is the cone of chords of F through Xt; every other generator of this nodal cone 
has four-point intersection with Q at Xt. The threefolds along which the quad­
rics mapped by A and B touch Q form its complete intersection with that 
quadric of Sft which reciprocates these two quadrics into each other: 

02Ûo - 2^S2i + Q2)(v
2tt0 - 2vÛ! + Q2) - {uvti0 - (u + z/)S2i + 122)

2 

s (u— *02(O0O2 - ûi2)-

These remarks on the net of quadrics in [5] manifestly apply to analogous 
nets in spaces of any dimension; there, too, one will encounter the system T 
of quadrics that are polar reciprocals with respect to members of the net outside 
T with its envelope Q having nodes at the vertices of S and 120 = Oi = 122 = 0 
as a double locus. Baker, when obtaining the normals to a cyclide by projection, 
encountered the net in [4]. His curious oversight has puzzled several readers 
when, momentarily oblivious of the fact that 120 and 02 are polar reciprocals with 
respect to Oi, he remarks (3, p. 185) that their common curve "lies also on the 
polar reciprocal" of 120 in regard to Ox Î 

5. The equations £20 = 12x = Œ2 = 0, since the rank of the matrix of their 
coefficients is 3, have 6 — 3 linearly independent solutions as linear homo­
geneous equations for the six xt

2. Thus every point y of F has its coordinates 
satisfying equations 

(5.1) yff'iat) = £ + Vat + Cat
2 (i = 0, 1, 2, 3, 4, 5). 

The tangent plane T of F at the point y is 
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so that the whole of T is obtained by varying p: q: r in 

(5.2) xiyi = (p + qat + ra?)lf{ax) 

or, by (5.1), in 

(5.3) xt = (£ + ga* + raftyi/iÇ + -nat + fa,-2). 

At all such points x, 

= E ( £ + <Z<*< + raftiyt/d + r?a, + fa,2) 
= L(£ + ^ + m,2)2/f(a,) =0, 

so that T is on the quadric £O0 + 17Œ1 + f!22 = 0. Each quadric containing T7 

therefore also contains, in general, 32 tangent planes of F. 

6. That the tangent plane T, at a point 3> on F, lies on one of the quadrics 
through ^ m a y also be seen as follows. 

The linear system 5, based on six linearly independent members, of quadrics 
for which 2 is self-polar cuts T in a linear system of conies that includes 
the six repeated lines of intersection of T with the bounding primes of 2 . The 
equations of these lines are, by (5.3), p + qat + rat

2 = 0, so that they are all 
tangents of the conic T(y) whose equation is q2 = Arp\ the conic in which T 
meets any quadric of 5 is therefore outpolar to T(y). If this quadric is one of 
those containing F, it meets T, if it does not contain it wholly, in a pair of lines 
through y which, by virtue of the outpolarity, are conjugate for T(y). Thus the 
quadrics of 31 cut T in a pencil of line-pairs in involution, and one of them 
contains T. 

The tangents from y, where p: q: r = £: rj: f, to T(y) are 

(SP-&Y = fe-^)(^-fg); 
they are the focal rays of the involution, and each of them lies with F on a 
pencil of quadrics that meet T in the line repeated. Thus two among the single-
infinity of pairs of conjugate tangential directions at a point of F are peculiar 
in being self-conjugate and may be designated asymptotic; their existence 
implies that of a system of asymptotic curves, two of these passing through a 
point of general position on F. 

When y is on a line X of F, the involution in T is parabolic, its focal rays 
coinciding with X, which is the only asymptotic direction at y\ the 32 lines 
are the envelope of the asymptotic curves. The quadric that contains the 
tangent planes at the 32 points (2.1) is, by (5.1). 

t2tt0 + 2tf2i + 02 = 0. 

This provides another identification of those quadrics of Sft that are mapped in 
7T by T: not only are they the quadrics reciprocal to each other with respect 
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to quadrics of 5ft ; they are those quadrics through F such t h a t the tangent planes 
of F ly ing on them have their contacts with F on its lines. 

Any quadric of S t h a t contains a t angent line to F a t a point y on the section 
Bi by %i = 0 also contains its harmonic inverse in ht] the two tangent lines are 
harmonic to the tangent of Bt and the join of the contact to Xu so t h a t these 
last two lines are the focal rays of the relevant involution. Since Bt has, a t every 
point, an asymptot ic direction for tangent , it is itself an asympto t ic curve; the 
six B i are principal asymptot ic curves on F. 

7. T h e six quadrics Œr = J^a/Xi2 = 0 are linearly independent because the 
Vandermonde de te rminan t of their coefficients is not zero; they therefore span 
the system 5. Since 123 and Œ5 are polar reciprocals with respect to Œ4, the net of 
quadrics pŒ3 + 0-Œ4 + TŒÔ = 0 has the same properties as 5ft; its base surface 
F' contains 32 lines. 

T h e tangent to the curve of intersection of F and p!23 + o-124 + r!25 = 0 
is the line common to the tangent plane of F and the prime 

E ( P ^ i 3 + VUi4 + Tdi^XiJi = 0. 

This line is, by (5.2), 

X>*3(p + <rat + Tdi2)(p + qat + rai2)/f(ai) = 0, 

pr + q(a + rei) + r(p + ue\ + rei2 — re2) = 0. 

I t is a tangent of q2 = Arp when 

(a + rei)2 = T(P + aei + rei2 — Te2), 

a2 + arei + T2e2 = rp, 

and this independently of which point of the curve is in question. So the 
asymptot ic curves on F a r e its intersections with quadrics 

(a2 + ara + T2e2)ïlz + r(att4 + Q6) = 0, 

C72Q3 + o-rOi S23 + Q4) + r2(e2 0 3 + Û5) = 0. 

I t is found, on subst i tu t ing for xt from (2.1), t h a t this quadric touches the 
line where t + £i + o^ - 1 = 0. Since the envelope of these quadrics is 

(ei Û3 + Œ4)2 = 4123fe 0 8 + Q6), 

this quar t ic primal meets F in the 32 lines. There is a corresponding result 
concerning the 2n lines on the surface common to certain n — 2 quadrics in 
[n] ; for w = 4 it is s ta ted on p . 189 of (3) . 

When x is a t any of the points y on F given by (5.1), 

Os = f, Û4 = 17 + ei f, 0 6 = ? + 61 ry + (ex2 - e2)f ; 

hence the quadric p£23 + 0-Œ4 + r!25 = 0 contains those points of F a t which the 
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tangent planes are on £12o + y^i + fŒ2 = 0 provided that the symmetric 
bilinear form 

pf + (TV + ?£ + eiOf + rrj) + Oi2 — e^)rl 

is zero, and conversely. 

8. The surface of intersection of three linearly independent quadrics in [5], 
having for its prime sections canonical curves of genus 5, was alluded to by 
Enriques. In the special circumstance of the three quadrics having a common 
self-polar simplex 2 the surface $ has Humbert canonical curves (7) for its 
sections by the six bounding primes of 2 and contains an involution / of sets of 
32 points. The points of a set are paired in perspective from each vertex of 2 ; 
the join of the vertex Xt (i = 0, 1, 2, 3, 4, 5) to any point P of <£> meets $ again 
at Pu the image of P in the harmonic inversion ht. If P is in xt = 0, the bound­
ing prime of 2 opposite to its vertex Xt, it coincides with Pu and XtP is a 
tangent to <ï> at P ; the branch curve fit of ht on $ is the section by xt = 0. /32-
and j3j have eight intersections—those points on $ satisfying x* = Xj = 0. 
There are no points common to three branch curves: the equations 

x0 = xi = xz = Yl^iXi2 = YlPiXi2 = HyiX? = 0 

have no common non-zero solution unless |«3 04 Ts| = 0; and it is precisely 
such relations, all 20 of them, that are disallowed. There is not to be any 
quadric cone with a plane vertex containing <ï>. 

Although <î> does not lie on any quadric cone with a plane vertex, it lies on 15 
cones Aij with line vertices Xt Xj. A solid of either of the two generating systems 
on Aij meets the other quadrics through $ in a pencil of quadric surfaces and 
so cuts $ in an elliptic quartic curve. Either system of generating solids affords 
a pencil of such curves on <ï>, which thus contains 30 pencils of elliptic quartics 
falling into 15 opposite pairs. Two quartics belonging one to each of two opposite 
pencils compose a prime section of $ and have four common points in the plane 
common to their two solids; this quadrangle of intersections has, if A^ is the 
cone to which the solids belong, two diagonal points at Xt and Xj and the 
third at the intersection of its plane with that bounding solid of S opposite the 
edgeXiXj. 

Not only is the whole of $ compounded of / ; so is its intersection with any 
quadric for which S is self-polar and which does not contain the whole of <ï>. 
Since S is self-polar for six linearly independent quadrics of which three contain 
<ï>, the whole system is spanned by the net with $ for its base surface and by a 
complementary net with base surface, say, $ ; ; the two nets have no common 
quadric, $ and & no common point. Thus there is on $ a net of curves, of order 
16, of which each member is compounded of / ; it includes the repeated sections 
of $ by the faces of 2, these six sections together forming the Jacobian of the 
net of curves. Since, in [5], the canonical series on the complete curve of inter­
section of four surfaces, of respective orders Wi, n2l ns, w4, is cut (4, p. 239) 
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by surfaces of order n\ + n2 + n% + n± — 6, the canonical series on the curve 
of order 16 common to <ï> and a quadric is cu t by quadrics ; the canonical sets 
consist of 32 points and the curve has genus \ (32 + 2) = 17. On each curve 
of the net there is a pencil of canonical sets which belong to J. Since the curve is 
projected, from any edge of 2 onto the opposite bounding solid, into an elliptic 
quar t ic covered four times, 15 of its 17 linearly independent abelian integrals 
of the first kind can be taken as elliptic integrals. 

9. T h e properties of <£ are shared by F; b u t F has addit ional propert ies 
consequent upon its containing lines. These, transforms of one another under 
the projectivities of G, consist of a line X, 6 lines X*, 15 lines Xijy and, since, for 
example, X012 = X345, 10 lines Xijk. A suffix confers no privilege: each line is 
equivalent to any other, G being transi t ive on the 32 lines. T h e intersection of X 
with Xi = 0, being invar iant under hi} is on A*; the plane XXt contains Xt. 
Each line meets six others, its transforms by the hù for instance, X012 meets 
X12, X02, X01, X45, X35, X34. As X does not meet any bounding solid of 2 , it does not 
meet Xtj\ still less does it meet Xijk. 

T h e plane joining Xi Xj to a point P on F meets F further in P u Pjy Pfj; 
Xi and Xj are two of the diagonal points of the quadrangle PPt Pj Ptj. As P 
varies on F the plane describes a line-cone LtJ with vertex X t X ^ the two 
systems of generating solids on Ltj cut F in pencils of elliptic quart ics , b u t now, 
in contras t to the uniformity on <£, four quart ics of each pencil are quadr i ­
laterals: for example, the solid joining X0 X\ to X also contains X0, Xi, X0i. 
Two quart ics compose a prime section of F when they belong one to each of a 
pair of opposite pencils, and this is so whether or not either, or both, curves are 
composite; when both are composite, the pr ime section consists of the eight 
lines of a double-four. For example: X, X0, Xi, X0i and X2, X02, Xi2, X012 are com­
posite members of opposite pencils on L01; they compose the double-four 

X X12 X02 X01 

X012 Xo Xi X2 

T o build a double-four one can use any of the 32 lines and any three of its six 
transversals, so t h a t there are 32 X 20 /8 = 80 double-fours on F. 

10. T h e Weddle surface W t h a t is (8) the projection of F from X onto a 
solid II has its six nodes Nt a t the intersections of II with the planes XX t; Nu 

the projection of Xi from X, is also the projection of every point on A*. J u s t as 
the points of .Fare collinear in pairs with Xu so the points of Ware collinear in 
pairs with N^ jus t as joining a point of F to the vertices of 2 generates a closed 
set of 32 points on F, so, in accordance with Baker ' s discovery (1) , joining a 
point of W to its nodes generates a closed set of 32 points on W. This indeed is 
the t rue explanation and raison d'etre of Baker ' s proper ty . 

T h e line Nt Nj on W is the projection of A^ on F; the lines Xijk on F are 
projected into lines common to planes spanned by complementary t r iads of 
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nodes of W: for example, X012 = X345 becomes the line common to N0 Ni N2 and 
iV3 iV4 iVg. The twisted cubic through the nodes of Wis the locus of intersections 
of II with tangent planes to Fat points of X. 

This projection of F into W gives, when compounded with a (1, 1) corre­
spondence between W and K, a (1, 1) mapping of the surfaces F and K onto 
each other. The passage between W and K has been charted frequently: as 
convenient and succinct a record as any is the table on p. 167 of Hudson's book 
(10). So it appears that the 16 nodes of K are mapped on F by the 16 lines \t 

and }iijk, while the conies of contact of K with its 16 tropes are mapped on F 
by the 16 lines X^ and X. This accords precisely with Hudson's nomenclature for 
the nodes and tropes (10, p. 16); indeed, any account of K must inevitably 
evolve a notation of this kind (14, p. 161). The penultimate entry in Hudson's 
table implies that the section of F by a prime through X (which is of order 7 and, 
since the tangent planes to F at the points of X generate a cubic cone, trisecant 
to X) maps a sextic curve on K through those 10 nodes not on the conic mapped 
by X. There is a web of these sextics onX; they are the curves discussed on p. 157 
of (10), and since X belongs to 80 X 8/32 = 20 double-fours on F, the web of 
sextics on K includes 20 members composed of three conies. 

This bisection of the lines on F, lines of one half mapping nodes and those of 
the other half conies on K, is the same as that associated with the separation of 
G into its normal subgroup G+ with its coset G~; G~~ transposes the two halves, 
so that its operations correspond to the 16 polarities—six null polarities and 
10 reciprocations in quadrics—that transform the points of K into its tangent 
planes, whereas the operations of G+, conserving each half, correspond to the 
16 collineations—identity and 15 biaxial harmonic inversions—for which K 
is invariant. Familiar properties of K, to say nothing of unfamiliar ones, are 
mirrored faithfully on F. Just as each node of K lies in six tropes and each trope 
contains six nodes, so each line on F meets six of the opposite half. Two lines on 
F that have, on F, a common transversal map two nodes on the same conic or 
two conies through the same node ; if two lines on F do have a common trans­
versal, they have two: if two nodes of K lie on one of its conies, they lie together 
on two. A double-four on F maps four nodes and four conies, the conies lying 
in the faces of the tetrahedron whose vertices are the nodes: this is a Rosenhain 
tetrad, and it is known (10, p. 78) that there are 80 of them. But how many 
tetrahedra of tropes are there none of whose vertices is a node? The map of one 
such is X, X01, X23, X45 with the pairs of suffixes composing one of the 15 syn-
themes; hence, as is also known (10, p. 79) in the geometry of K, there are 
16 X 15/4 = 60 of these Gôpel tetrahedra. 

11. The cones Ltj and their vertices Xt Xj are associated with subgroups gtj 

of index 2 in G+. The two reguli on, say, the section of L45 by x4 = x5 = 0 are 
transposed by each of h0, hi, h2, hz\ each system of solids on L45 is invariant 
under the operations 

/ , h0 hi, ho h2, ho hz, hi h2, hi hz, h2 h%, ft4 h5, 
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and these const i tute g45. T h e products of hi and of A5 with any one of h0, hh h2, 
hz make up the coset of g45 in G+ and transpose the two systems of solids. 

T h e projectivities of g45 transform any line on F into one of a set, closed under 
g45, of eight; there are answering divisions of the nodes of K into complementary 
octads, of the tropes of K into complementary octahedra. T h e vertices of each 
octad are coupled, as are the faces of each octahedron: the solid spanned by the 
lines on F t h a t m a p a couple, whether of nodes or of conies, contains X± Xb. 

T h e conies in the tropes of either octahedron are mapped by lines whose 
joins to X 4 X 5 are solids of the same system; there are four of these solids, one 
for each couple of tropes, and each of them contains also two lines t h a t m a p a 
couple of nodes; each trope of an octahedron contains two nodes of one octad, 
and therefore four of the complementary octad. 

Save for the 32 lines the curves of lowest order on F are the elliptic quar t ics e 
in the generating solids of the cones Ltj. Each e is skew to any of those 16 lines 
on F whose join to Xt Xj belongs to the same system as the solid containing e, 
whereas e intersects each of the other 16 lines. T h e curve rj on K mapped by e 
therefore passes through all the nodes of one octad b u t not through any of the 
complementary octad ; it meets the tropes of one octahedron only a t four nodes 
and so is also a quart ic , elliptic, of course, with e. There are 30 pencils of curves 
rj on K, each including four pairs of conies, and the pencils consist of 15 associ­
ated pairs, "associat ion" implying t h a t the octads on the two curves are 
complementary (10, p . 149). I t is these curves rj t h a t are the contacts with the 
30 systems of quadrics of which Zeuthen (15, p . 157) shows K to be the envelope. 

12. If p is a point of general position on K, the elliptic quar t ics through it 
afford 15 pairs of t angent lines to K a t p; each of these pairs is, in the tradit ional 
sense, a pair of conjugate directions (6, p . 688). Now p is mapped on F by P, 
the pairs of directions on K a t p by pairs of directions on F a t P. B u t each of 
these la t ter pairs is a pair of lines of intersection of the t angen t plane to F a t P 
with a quadric £O0 + rjiïi + f0 2 = 0, indeed with L^: 

di dj O0 — (di + aj)&i + S22 = 0. 

I t follows from §6 t h a t these are 15 of those pairs, of directions on F, t h a t were 

called conjugate; hence the asymptot ic curves on K are mapped by the curves 

t ha t have been called asymptot ic on F. 

13. T h e prime sec t ions / of F are canonical curves of genus 5 ; a s / meets every 
line on F once, it maps a curve </> through every node of K and meeting each 
trope once apa r t from the six nodes in it. As a t rope touches K a t every point 
on its conic t ha t is not a node, <f> is also octavic, and of genus 5. These curves <j> 
are those octavics on K—that pass through all the nodes and of which six are 
linearly independent—tha t conclude Hudson ' s short catalogue of curves on 
K (10, p . 159). I f / is composite, so is </>; one instance, w i t h / i n c l u d i n g X, has 
already been mentioned, <f> then being a conic and a sextic (of genus 3) through 
the 10 nodes not on the conic. A more thorough-going decomposition occurs 
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w h e n / is a double-four; <t> then consists of the conies in the four faces of a 
Rosenhain tetrahedron. 

Since the prime sections / map octavic curves on K, the plane sections k 
of K are mapped by octavics (of genus 3) on F. Thus there is on F a web U 
of curves C, skew to the lines \ u \iJk because k need not contain a node, but 
having X, X^ all for chords because k meets each conic twice. Of course, certain 
plane sections of K do contain nodes, and the curves C which map them include 
the corresponding lines; for example, the section of K by a trope is a repeated 
conic and is mapped by a repeated line, say X, with its six transversals mapping 
the nodes on the conic. Another instance worth noting is the trinodal quartic 
section of K by the plane of three nodes not in the same trope; there are 
16.15.6/3.2.1 = 240 such planes—the faces of the 60 Gôpel tetrahedra—and 
the map C consists of three skew lines, which have no common transversal, and 
a rational normal quintic of which they are chords. 

Now apply an operation of G~, so transforming U into a web V on F of 
curves Df also octavics of genus 3 which, in contrast to the curves C, are skew 
to the lines X, Xî;- but have X*, Xijk for chords; they map a web of curves of genus 
3 on K with nodes at every node of K and, not meeting any conic save at nodes, 
of order 12. If it is ht that one applies to the map C of the section of K by a 
plane a, the outcome is the map D of contacts of K with those of its tangent 
planes that pass through the pole a t of a in that null polarity which reciprocates 
K into itself and corresponds to ht. The locus of these contacts is the inter­
section of K with the first polar of au a cubic surface through all the nodes of K. 
Hence, as no two planes a have the same pole, V maps the curves in which K 
is cut by the whole web of its first polars. 

14. Each of U and V includes 16 curves composed of six lines and a repeated 
transversal; call these the special members of the two webs. Since any ir­
reducible curve of either web has six lines of each special curve of the other as 
chords, and is skew to their transversal, two curves C, D have 12 intersections. 
In the particular instance of their being harmonic inverses in hu eight of these 
are in xt = 0; the remaining four are collinear in pairs with X u C and D being 
projected from the plane of these two chords into the same plane quartic. 

It will be seen below that any two curves C, D make up the intersection of F 
with a quadric; as they are both of genus 3 and have 12 intersections, the com­
posite curve C + D has (9, p. 402; 4, p. 215) the genus 3 + 3 + 12 - 1 = 17 
that the intersection of F with a quadric is known to have. 

One quadric cutting F in any pair C, D that are both special is salient: it is 
a cone whose vertex is the space spanned by the repeated components. If 
these are skew, they span a solid; the cone is a pair of primes both of which 
meet Fin double-fours. An example is 

C: 2X + Xo + Xi + X2 + X3 + X4 + X5, 

D: 2Xoi2 + X12 + X02 + Xoi + X45 + X35 + X34, 
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which together make up the double-fours 

X X12 A02 Xoi i X X45 X35 X34 

X012 Ao Xi X2 X012 X3 X4 X5 

in primes which both contain the solid XX012. If, on the other hand, the repeated 
components are incident, let C b e as above, with 

D: 2Xo + X + X01 + X02 + X03 + X04 + X05. 

Then C, D compose the intersection of F with t h a t quadric cone whose vertex 
is the plane XXo and which contains the five vertices of 2 other t han XQ (which 
it contains already in its own ver tex) . There is one such cone, jus t as there is 
one conic through five coplanar points ; its generating solid XX0XZ- contains 
both X^and X0î-. 

Ei ther Uor F can be spanned by four of its special curves; for example 

2Xo + X + X01 + X02 + X03 + X04 + Xo5> 
2Xi + X01 + X + X12 + X13 + X14 + X15, 

2X2 + X02 + X12 + X + X23 + X24 + X25, 
2Xoi2 + X12 + X02 + X01 + X45 + X35 + X34 

are linearly independent , so spanning V. For, the third curve, since it does not 
include X01, is not in the pencil spanned by the first two while the fourth, 
lacking X common to the other three, is not in the net spanned by them. I t 
now follows t h a t any curve of either U or F makes up the complete intersection, 
of F and a quadric, with any special member of the other web ; and then t h a t 
any C and any D are on a quadric not containing the whole surface. Among the 
quadrics through C and D is always one t h a t circumscribes 2 , and each web is 
cu t on F by quadrics through any member of the other. 

15. T h e prime s e c t i o n s / of F, as observed in §13, m a p octavic curves </> of 
genus 5 through all the nodes of K\ two of these, </> and $'', meet in those eight 
points mapped on F by its intersections with the solid common to the primes 
con ta in ing / and / 7 . 

T h e postulat ion (9, p . 537) of <j> for quar t ic surfaces <£ is 28, so t h a t it lies on 7 
linearly independent ones. These cut, apa r t from the 24 common points of cj> 
and <£', the canonical series (9, p . 534) of freedom 4 on <£', so t h a t only 5 more 
linear conditions are necessary, once <ï> already contains </>, for it to contain <f>' 
also. Hence there are two linearly independent <£>, and so a pencil, through both 
</> and </>'; K is itself one of these. Any two octavics <£, <// form the complete 
intersection of K with a quar t ic surface through all its nodes; and, more 
part icularly, there is a quar t ic surface touching K all along <j>. This is no novelty, 
b u t such results are generally obtained by using B-functions. 

Any quadric is, in many ways, a linear combinat ion of prime pairs ; hence the 
intersection of F and any quadric not containing the whole surface maps the 
intersection of K with a quar t ic ^ through all 16 nodes. I t is when the quadr ic 
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is itself a prime pair that the curve common to K and ^ consists of octavics 
0, #'; when the quadric is a repeated prime, ^ touches K all along a curve #. 

Conversely, the intersection of K with any quartic ^ through all 16 nodes is 
mapped by the intersection of F with a quadric, for the linear systems of 
curves, on K and on F, have the same freedom or dimension. There are 
35 — 16 = 19 linearly independent ty and, K being among them, they cut a 
system of freedom 17 on K. And there are 21 linearly independent quadrics 
in [5] ; as F is on three of these, they cut a system also of freedom 17. This system 
includes the net, cut on F by the quadrics p!23 + o-Œ4 + r£25 = 0, every one of 
whose individual curves is invariant under G and which includes all the asymp­
totic curves; the six principal asymptotic curves are repeated members of this 
net. 

16. When a Kummer surface is specialized so as to be a tetrahedroid Ki, 
four of the Gôpel tetrads collapse to lie in faces/i,/2,/3»/4 of a tetrahedron T; 
each fj meets Ki in a pair of conies yjy y' j whose intersections are the nodes of 
Ki in fj} and each vertex Vj of T is a concurrence of four tropes of a collapsed 
Gôpel tetrahedron. The tropes through v5 meet the opposite face/ ; in the com­
mon tangents of y j and y' j \ the six nodes in any one of these tropes, lying in 
pairs on its intersections with the three faces of T through vjy are in involution 
on the conic of contact with Ki. 

These particularities are mapped on the corresponding surface Fi in [5]; 
one expects a curve D to consist of, say, X, X0i, X23, X45 and of two conies each 
meeting all four lines. There will be four such curves D, accounting for X and 
every Xî;, as well as four C accounting for all Xz-, \{jk. The presence of conies on 
F1 is effected by the splitting of certain rational normal quintics (see §13) 
into two conies and a line intersecting both of them. 

The projective feature of F± consequent on the specialization is, simply, 
that the intersections of any of its 32 lines with its six transversals are paired 
in an involution. As the line (2.1) meets its transversals where t = ~ait one 
can now take 

a0 + a-i = a2 + az = a4 + a5 = 0 

and assert that F\ is defined by 

ft0 = Xo2 + X12 + x2
2 + xs

2 + X42 + x5
2, 

Qx = a(x0
2 — X12) + b(x2

2 — Xz2) + c(x4
2 — x5

2), 
Q2 s= a2(x0

2 + xi2) + b2(x2
2 + xz

2) + c2(x,2 + x5
2). 

The existence of eight conies on F is patent, since the plane 

x0 + ix\ = x2 + ix% = x4 + ix5 = 0 

with i, not now in demand as an index of summation, denoting the complex 
square root of — 1, lies on both Q0 and fi2 and so meets Fi in the conic in which 
it meets Oi. The same holds for the other seven planes that occur on sign 
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changes of i. Baker (3, p. 218) remarks that a quadratic complex whose 
singular surface is a tetrahedroid is given by such an equation £2i = 0, but he 
does not draw any deduction from this, nor so much as mention the conse­
quent form of fi2. Fi is invariant not only under G but also under the trans­
positions of x0 with xi, X2 with x3, x± with x5, and any projectivities that result 
from combining these (cf. 10, p. 217). 

17. The surface F± that is the non-singular model of a quadruple tetrahedroid 
K± may also be given by convenient equations. The nodes in a trope of KA are 
paired in four different involutions on their conic, as are the vertices of a regular 
hexagon on its circumcircle; the coefficients at can then be the sixth roots of 
unity. If co = exp (2x^/3), F4 is the intersection of the quadrics 

120 = x0
2 + Xi2 + x2

2 + Xz2 + X42 + x5
2 = 0, 

Ox = xo2 — coXi2 + w2x2
2 — Xz2 + WX42 — co2X52 = 0, 

Œ2 = Xo2 + œ2Xi2 + œx2
2 + Xz2 + co2Xi2 + C0X52 = 0, 

and is invariant not only under G but also under the projectivity c of period 6 
that imposes the cyclic permutation (012345) on the xt. Thus F4 is invariant 
under a group G* of 192 projectivities having G for a normal subgroup: for 
hfc = chi+i, suffixes being reduced, where necessary, modulo 6. The involution 
cz commutes, since ht cz = c3hi+z, with h0 hz, hi A4, h2 h5\ these four mutually 
commutative involutions generate an elementary abelian group, normal in G*, 
of order 8. 

As with Fly so analogously with FA\ the 8 planes 

XQ2 + Xz2 = Xi2 + X42 = x2
2 + x5

2 = 0 

are on both O0 and Q2, so that the conies in which they meet Oi are on F4. 
The other 24 conies on F4 are in the following planes: 

(i) Xo2 — Xz2 = Xi2 — cox2
2 = x4

2 — C0X52 = 0, common to fii = 0 and 

(ii) Xi2 — x4
2 = x2

2 — C0X32 = xb
2 — coxo2 = 0, common to Oi = 0 and 

S2() = OÂî2\ 

(iii) x2
2 — x5

2 = Xz2 — WX42 = x0
2 — o)X±2 = 0, common to 12x = 0 and 

&0 = 0)2£l2. 
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