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1. THE group F, as it will be denoted here, 'of the bitangents' has order
1451520. It was decomposed into its 30 conjugate sets by Dickson ((5) 318)
who used its representation as the symplectic group on 6 variables over F—
the Galois field of 2 marks 0, 1 with 1 + 1 = 0. Since F admits this repre-
sentation it is isomorphic ((9) 17) to an orthogonal group, also over F, in
7 variables and it is this latter representation, as the group of projectivities
in a finite space [6] that leave a non-singular quadric Q therein invariant,
that will be described here. The work is analogous to that on the cubic
surface group 0 in (7); just as G has a representation as the group of auto-
morphisms of the symmetric quadratic form ]T xt x^ in 6 variables, so F

has a representation as the group of automorphisms of the symmetric
quadratic form ]F xixi in 7 variables—the base field being always F. The

7-rowed matrices in the representation of F have attributes analogous to
those of the 6-rowed matrices in the representation of G; each column is
the coordinate vector of a point on Q and the points of Q that correspond so
to the columns of a matrix are such that no pair of them is conjugate with
respect to Q. In other words, the columns of the matrix answer to the
vertices of a simplex 2 whose 7 vertices all lie on Q and whose 21 edges are
all chords (not generators) of Q. One consequence is that the number of
units occurring in any column has to be one of 1, 4, 5. Moreover, Q has
((7), § 9) a kernel k; when referred to £ k is the unit point. Since k cannot
change under any operation that leaves Q invariant the 7 marks in any row
of any matrix in F will sum to 1; the number of units in any row is odd, the
number of zeros even.

It may well be easier, in deciding whether or not a given matrix belongs
to F, to use the above restrictions on a 7-rowed matrix rather than Dickson's
'Abelian conditions' ((4) 89-90; (5) 247-9) on a 6-rowed matrix. Dickson,
it need hardly be said, surveys far wider horizons than any limited by F;
his subject is the partitioning into conjugate classes of the symplectic group
over any field and in any (even) number of variables, so that little surprise
is caused either by the prolixity of his calculations or by his protestations
that they have been convincingly checked. Yet this breadth of view is
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584 W. L. EDGE

perhaps too sweeping for a proper study of F some, at least, of whose proper-
ties are seen to advantage in this orthogonal representation.

Another representation of F, as a subgroup (of index 2) of the group of
symmetries of a. regular polytope in euclidean space of 7 dimensions, has
been used by Frame in (8) not only to rediscover, independently and pre-
sumably without knowledge of (5), the partitioning of F into conjugate sets
but also, with the aid of powerful theorems of Schur and Brauer, to compile
the whole table of group characters. Frame deduces therefrom certain
permutation characters: their degrees must be interpretable, in any repre-
sentation of F, as numbers of objects undergoing permutation. The
representation to be used here discloses instantly (§ 3) sets of 28, 36, 63
primes (i.e. hyperplanes, spaces of dimension 5); one notes, too, that there
are, answering to the last permutation character in (8), 135 planes on Q.

2. A summary of matters treated here now follows.
§§ 3-8 are concerned to describe the whole figure; to enumerate and

catalogue the spaces in it, and their various relations with Q. All this
information is displayed in Table 1, wherein every entry has some relevance
to the study of F. The coordinate system is well adapted to discriminate
between the 3 kinds of prime, and the polarity set up by Q helps greatly in
the calculation of the numbers of different spaces.

The Klein quadric in [5], whose points map the 35 lines of a [3] over F as
base field, has a set of 8 heptagons associated with it; these have scarcely
been noticed since their discovery (in 3) 50 years ago. Each of the 36 Klein
sections of Q affords such a set of heptagons, so that the figure includes 288;
these are intimately linked with those 288 simplexes in regard to which Q
has the equation ]£ xtx^ = 0. This is explained in §§ 9—11, and there is a

passing allusion to symmetric subgroups of degree 8. There follows, in § 12,
a description of the 3 types of involution in F, and § 13 notes the various
types of operation in a symmetric subgroup of degree 7. Section 14 gives the
3 types of operations of period 3 which, like the involutions, are all products
of 1, 2, or 3 commutative operations, the factors having a very simple geo-
metrical definition.

Among information that this orthogonal representation of F affords
readily are explicit forms for the normalizers of some operations; instances
are operations of periods 5,7,10,12 whose normalizers are found in §§ 15-17.
The number in the conjugate class to which any such operation belongs
follows instantly. An incidental disclosure is the matrix form of certain
operations of period 15; this is obtained again, in § 18, by permuting 8
heptagons.

The concluding §§ 19-20 describe the basic features of the mapping, in this
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A SETTING FOR THE GROUP OF THE BITANGENTS 685

figure, of half-integer period and theta characteristics. There is no danger
here of the confusion, so justly deprecated in (2), between the two kinds of
characteristic, and although one does not lengthen the paper by giving
details of how to pass from one fundamental system to another these matters
offer no difficulty.

The description of the figure
3. The 27—1 = 127 primes in [6] are, relative to Q, of three kinds: they

may

(a) pass through the kernel k,
(6) meet Q in ruled quadrics ^T,
(c) meet Q in non-ruled quadrics JSP.

A non-singular quadric in [5] is said to be ruled when it contains planes; it is a
Klein quadric, its points mapping the 35 lines of a [3], and it contains two
systems each of 15 planes. A non-ruled quadric jSf in [5] does not contain
any planes; it is described in § 16 and § 17 of (7).

The number of primes through k is the number of [4]'s in a [5], which is 63.
This is seen, too, on remarking that a prime passes, or does not pass, through
k according as an even or an odd number of the coordinates xi appears in

/7\ /7\ /7\its equation, so that there are L) + (,) + [_) = 21+35+7 primes T
VI W \6/

through k. There remain 64 primes not through k and having an odd num-
ber of the xi in their equations; if this odd number is 3 or 7 the section is
ruled, if it is 1 or 5 the section is not ruled. For example

is a plane on Q; it lies in the unit prime as well as in primes whose equations
include only 3 coordinates. Thus 1+35 = 36 prime sections of Q are ruled.
That the 7 sections by bounding primes of the simplex of reference are not
ruled is known from (7); that the 21 sections by primes into whose equations
5 of the coordinates enter are not ruled follows because, for instance, the
quadratic form is invariant over F when x0, xlt x2, xz are left unchanged
while each of the other xi is replaced (cf. 16.2 below) by XQ+X-^X^X^X^

Thus 7+21 = 28 sections of Q are not ruled.
A prime will be labelled T, C, S according as it is in category (a), (6), (c).

This nomenclature is not capricious:.it is used with an eye on a figure in
[7] of which the figure here is a section. In [7] the polar of a [5] is a line,
and as lines are denoted by t, c, s according as they are tangents of, chords
of, or skew to a quadric it will, in this larger figure, be convenient if one is
able to use the same letter, small and capital, to label polar spaces.
Ui
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686 W. L. EDGE

4. Q consists of 63 points m, namely, those with 1, 4, 5 of the xi non-zero.
Their joins t0 to k, whose coordinates are all non-zero, each contain one
further point p with 6, 3, 2 of the xi non-zero; these 63^ are not on Q. The
63 T are the tangent primes of Q.

There are [4]'s J, not containing k, meeting Q in non-singular quadrics;
each C contains 28, and each S 36, polars therein, with respect to the sections
of Q, of the points that do not he on these sections. When J is given the
3 primes through it are a C, an S, and a T, the latter joining J to k; the
number of J is 36 X 28 = 1008. Other [4]'s F, H meet Q in cones, with
point vertices, whose sections by solids not containing the vertex are ruled
and non-ruled respectively. The tangent [4] to the Klein section of Q by C
at any of its 35 m is an F, and all [4]'s in C are accounted for by these 35 F
and the 28 J . The tangent [4] to the section of Q by S at any of its 27 m
is an H, and all [4]'s in 8 are accounted for by these 27 H and the 36 J.
Of the 3 primes through F one, T, joins it to k while the others are both C;
of the 3 primes through H one, T, joins it to k while the others are both S.
There are 36 X 35/2 = 630 F and 28 x 27/2 = 378 H. Each T includes
10 F, 6 H, 16 J, and these account for the 32 [4]'s in T that do not contain k.

The figure also includes another type E of [4] that will be seen always to
contain k and to meet Q in 3 planes.

5. The notation used in (7) will be incorporated here. A line is labelled
g, c, t, s according as 3, 2, 1,0 of its points are m. One appends a suffix, as
in t0, if a space contains k (unless every space in the category contains k).
The symbols for planes, and their relations to Q, are

d: lying wholly on Q,
e: meeting Q in a single line,
/ : meeting Q in two lines,
h: meeting Q in a single point,
j : meeting Q in 3 non-collinear points,

and there occur planes e0, j 0 . The symbols for solids, and their relations
to Q, are

y: meeting Q in a single plane,
<f>: meeting Q in two planes,
X'. meeting Q in a single line,
tp: meeting Q in 3 concurrent non-planar lines,
K: meeting Q in a non-singular ruled quadric
A: meeting Q in a non-singular non-ruled quadric,

Every y contains k, as do some solids ifi0.
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A SETTING FOR THE GROUP OF THE BITANGENTS 587

The bounding primes, [4]'s, solids, planes, lines, vertices of the simplex of
reference So are, respectively,

8, H, A, j , c, m,

the equation of the section of Q being S xt Xj = 0 in the appropriate set of
variables.

6. The prerequisite to a full description of the figure is a knowledge of
how many spaces of different categories occur in it; the numbers of T, G, S,
J, F, H, p, m have been found. The specifications and numbers of other
spaces are readily obtained once one knows in detail how spaces are paired
in the polarity (degenerate because k is conjugate to every point of [6])
set up by Q.

Let SP be an [n] that does not contain k; its polar 9" is a [5—w] that does.
Every point of SP is conjugate to every point of SP', as indeed, since points
collinear with k have the same polar, is every point of the [n-\-1] that joins
SP to k. Thus SP' is the polar not only of SP but of all those [n], 2n+1 of them,
that lie in the join of SP to k but do not contain k. And this join is the polar
of all those [4—n], 25~n of them, that lie in SP' but do not contain k. If, for
instance, SP is m, SP' is the tangent prime T of Q at m and is also the polar
of p on km: this line tQ is the polar of every [4] in T that does not contain k.
These 32 [4]'s consist, as has been said already, of 16 J, 10 F, 6 H; as there
are 63 lines tQ it is seen again that the figure includes 1008 J, 630 F, 378 H.

Now take SP to be g: an instance is the line

^0+^1 = x2+x3 = Xt+x5 = a;0+a;2+a;4 = xG = 0, (6.1)

whose polar [4], common to the tangent primes at

(1, 1, 1, 1, 0, 0, 0), (1, 1, 0, 0, 1, 1, 0), (0, 0, 1, 1, 1, 1, 0),

is xo+x1 = x2+x3 = z4+a;5. " (6.2)

This is an E, passing through k and meeting Q in 3 planes through g, namely

= 0 (6.3)

The join of (6.1) to fc is a plane e0 wherein are 3 lines t not containing k; these
also have (6.2) for their polar, and so there are thrice as many t in the figure
as there are g. On the other hand, e0 is the polar of each of those 16 solids
in (6.2) that do not contain k; of these 3, spanned by pairs of the planes
(6.3) are <f> and one, namely,

XQ~\~%\ = #2 1 %3 = = •*'4~r2'5> ^e = "

is a x, meeting Q only in g. The other 12 are all «/r, meeting Q in 3 lines, one
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588 W. L. EDGE

in each plane (6.3), concurring on g. There are thrice as many <f> and 12 times
as many tft as there are x0T 9-

Now take y to be c, say the edge XOXX of £0. Its polar is

a [4] Jo, containing A; and meeting Q in a non-singular quadric. The lines in
the plane j0 = kX0 Xt that do not contain k consist ((7), § 10) of an s and 3 c;
they all have Jo for their polar, as does j 0 . Thus there are as many s, and
thrice as many c, as there are jQ. The 16 solids in Jo that do not contain k
consist ((7), § 13) of 10 K and 6 A, all having j 0 for their polar. Thus there are
10 times as many K and 6 times as many A as there are j 0 .

Every point in a plane d on Q is conjugate to every other, as well as to k;
hence the polar solid of d is its join y to k. Since the join t0 of k to any m
does not meet Q save at m, y does not meet Q save on d. The 8 planes of y
that do not contain k all have y for their polar; they consist of d and 7 e,
so that there are 7 times as many e as there are d.

7. The polar of XOX1XZ is

= 0.

All m save one, namely ra*(0, 0, 0, 1, 1, 1, 1), in this solid «/r0 have 5 non-zero
coordinates; they lie in pairs on 3 g concurrent at m*. Moreover the join,
xz = x4 = x5 = x6, of Xo Xx X2 to k is a solid ip'o wherein too the 3 g concur
at m*; ip0 and ip'o meet in the line £0 = km* and span T, the tangent prime
at m*; they are polars of one another, and each is also the pole of every plane
in the other that does not contain k. The g in «/>0, as in (/f0, form a trihedron,
and t0 is the only line through its vertex m* that does not lie in any of its
faces. Thus the 8 planes in ip0, as in ip'Q, that do not contain k consist of 3 /
(the faces of the trihedron), an h through m*, and 4 j . Once the number of
ip0 is known so are the numbers of/, h, j . This information is found on taking
the section, by a [4] J not containing m*, of the figure in T.

J meets Q in q, the quadric described in §§ 13-15 of (7); its kernel is either
k (if J = Jo contains k) or the projection of k from m* on J—for every point
of J, as lying in T, is conjugate to m* as well as to k, and so to the intersection
of m*k with J whether this be k itself or not. As q consists of 15 m and 15 g
there are 15 g and 15 d on Q which contain m*; hence there are on Q
63 X 15/3 = 315 g and 63 X 15/7 = 135 d. Moreover there are 10 pairs of
polar planes jo,j'Q through the kernel of q, so that there are 10 pairs of polar
solids 0O, 0O through m*. The number of such pairs in the whole figure is
thus 630, and of solids ip0 1260.

The information now gathered suffices to begin the construction of
Table 1, once it is supplemented by the number of chords c of Q. Since the
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A SETTING FOR THE GROUP OF THE BITANGENTS 589

TABLE 1

lit;
6 3 p
63 m

316 a
63 to
945 t
1008 c
836 8

135 d
945 «
315«o

3780/
1260 h
336 j.

6040 j

135 y
045 *
315 x
8780 0
1260 0.
3360 K
2016 A

1008 J
378 H
630 f
315 £
336 Jo

63 T
28 S
86 C

k

63

815

336

135

1260

315
336

63

P

1
30
16
16

60
15
120
120
16
320

15
60
60
480
140
320
320

256
120
120
75
80

31
16
16

m

15
1
15
32

15
45
15

60+240
20
16
240

15
45 + 120

15
60+360
20+120
480
160

240
6 + 60
10 + 180
15 + 60
80

1 + 30
12
20

0

3

3
3
1
24

3
3 + 36

1
36
12
64

48
6

18 + 48
1 + 18
16

3 + 12
4
12

to

1
1
1

15

16

15

20 + 120

15+60
80

1+30

t

2
1

O
ft

1
4
4

16

3
6
6

16 + 48
4+8
32
32

64
4 + 24
4+24
7 + 12
16

1 + 14
8
8

c

1
2

15

1
15

15

45
15
60
20

60
15
45
16
20

15
6
10

8

3

15
1
15

15
45
15
20
60

60
45
15
15
20

15
10
6

d

7

7

1
14

28
7

7

8

e

4
3

1

6

1
1 .
1
12

16
6
6

1+6

7
4
4

*

1
3
3

1
3
3
.

3

12

.

1+18
16

15

/

2
1 + 4

2

1
4

3

3
1
8

12
1

3 + 12
3
4

1+6
2
6

h

6
1

3

4

3
3
1

*8

12
3+12

1
3
4

4 + 3
6
2

n
1
3
3

3

3
1

15

15
20

16

i

4
3

's8
1

#

6
1
4

4

16
6
6
3
4

7
4
4

lib
63 p
63 m

315 a
63 U
945 t
1008 c
336 8

136 d
946«
315 e.

3780/
1260 h
336 j.
6040 j

135 y
945 dS

315 x
3780 0
1260 0,
3360 K
2016 A

1008 J
378 H
630 F
315 £
336 Jo

63 T
28 5
36 C

Y

1
7
7

7
7
21

1
7
7

7

7

*4
3+8

1 + 12

6
16

2
1

12

6
1

3

4

X

12
3

1

18

16

3

12

6

1

3
4

0

8
1 + 6

3

4 + 12
12
4

*3

3
1

8

4
1
1
1

1 + 2
2
2

0.
1
7

1 + 6

3
1 + 6
3+6
12
4

3
3
1
4
4

3
4

1 + 6

K

6
9

6

9
18
2

9

6

3

3

i
3
1
3

A

10
6

15
10
10

5

10

3
3

1

3
3
1

J

•16
15

15

60
60
20

15

45
15

80

15

10
6

1
1
1

H

20
1 + 10

5

10+60
40
40

16
,
10

10+40

80

6
10

16

1
2

F

12
1 + 18

9+24

6+36
72
8

6
9

18 + 72
2

48

9

6

16

1

2

E

1
15

3+12

1 + 18
3 + 12
21 + 36
48
16

3
3 + 18
1 + 18
36
12
16
48

3
3
1
12
12

3

•

J,

1
15
15

15
15
45
60
20

15
45
15
20
60

15
10
6

3

T

1
31

1 + 30

15 + 60
1 + 30
15+210
240
80

15
105
75

60 + 360
80+60

80
660

15
45
15

60+120
20+120
160
96

16
6
10
16
16

S

36
27

45

270
216
120

135

270
270

720

45
270

120
216

36
27

C

28
35

105

210
280
56

30
105

630
70

560

105

210

280
66

28

35
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590 W. L. EDGE

c through a given m are those 32 lines through m that lie outside the tangent
prime this number is £(63 x 32) = 1008.

8. The entries above the main diagonal in Table 1 record the number of
subspaces (symbol at left of row) in any given space (symbol at head of
column); those below record the number of spaces containing a given sub-
space; thus any entry determines its opposite, or mirror image in the
diagonal. For instance: if it is known that 45 of the 3780/lie in any one of the
336 JQ it follows that 336x45/3780 = 4 Jo contain any one/. An entry
above the diagonal shown as the sum of two numbers implies that the
section of Q is singular and that the subspaces in question can be dis-
tinguished by their different relations to the vertex of the section. For
instance: <f> meets Q in 2 planes; of the m in <f> 3 belong to the line-vertex
of the section whereas 8 (4 in each plane) do not; of the g in <j> one is the vertex
of the section whereas 12 (6 in each plane) are not. The entry 45+120
opposite to, and deducible from, 3+8 tells that there are 165 <f> containing
a given m and that in 45 of these m is on the line-vertex of the section; the
entry 3+36 opposite to, and deducible from, 1 + 12 tells that there are
39 <j> containing a given g and that in 3 of these g is the vertex of the
section.

The entries above the main diagonal as far as column H are known from
(7); columns H, J correspond to those headed respectively by M, P in
Table 2 of (7). Those in column F are readily found from the fact that the
section of Q is a cone, vertex m* say (this asterisk will be used also to indicate
vertices of other singular sections of Q), whose section is a hyperboloid.
Thus there are 9+24 g in F; 9 of these concur at m* while 24 lie 4 in each of
6 planes d through m*. The 16 solids in F that do not contain m* are all /c,
and each contains 6 j and 9/ . Since there are 2 K in F through any j o r /
(namely, the solids that do not join the plane to m*, it being presumed that,
when the plane is / , it does not itself contain m*) there are, in JP,
16x6/2 = 48 j and 16x9/2 = 72/. In addition there are, in correspon-
dence with the 18 c in K, 18/through m*. There are 2 h through m* in F, in
correspondence with the Dandelin lines in K. Moreover F includes 72 c
(4 in each/that contains m*) and 8 s (4 in each h that contains m*); and so
on. And each entry in this column headed by F determines its opposite
in the row led by F, or vice versa.

The entries under S appear along the top of Table 2 of (7); those under C
are deducible from the line geometry in [3] over this field (see (3) and (6)).
Column Jo is a manifest modification of column J, and it only remains to
say a word or two about columns E and T. A useful check on the calcula-
tions is provided by the known total number of spaces of any dimension
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A SETTING FOR THE GROUP OF THE BITANGENTS 591

in a space of larger dimension, for this total is the sum of the entries in some
stratum of a column.

The number of E through any of <f>, x, ^ is, by reciprocation, the number
of g in e0, and so 1. There are, likewise, 3 E through any of/, h,j;7 through
d, e, y; 15 through c, a, j 0 . As for subspaces of T the number of E, as of g
through ra*, is 15; other [4]'s in T were encountered in § 4, and each of the
10 F includes 16 K, each of the 6 H includes 16 A. Since the cone in which T
meets Q projects, from its vertex ra*, a non-singular quadric q in [4] it
follows, since q is accompanied by 45/, 60 j , 20 j 0 , 60 c, 20 s and consists of
15 ra and 15 g, that through ra* there pass 45 <f>, 601//, 20 «/r0, 60/, 20 h, 15 g,
and 15 d; furthermore there are 240 c and 80 5 in T lying in fours in planes
through ra*, in those planes namely that project the 60 c and 20 s that
accompany q. Lastly, to pass further details over, the 7 primes through y
and the 15 through either e0 or j0 have all to be T; these three facts provide
the opposite entries 15, 75, 80 of numbers of y, eo,jQ in T. And so forth.

288 heptagons and the simplexes linked with them
9. Each C includes 28 p lying 3 on each of 56 s, so that, in C, 6 s pass

through any p. These points and lines can ((3) 68) be distributed as vertices
and joins of 8 heptagons §; all 7 vertices of an § are p, all 21 joins of an §
are s. Any pair of p whose join is an s are vertices of a single § in any C
through s and eachp can, once the 8 § are given, be identified as the unique
vertex common to some pair, and to no other pair ((3) 68).

When C is the unit prime the system of supernumerary coordinates
induced therein by the homogeneous coordinates in the ambient [6] serves
to identify the 8 § readily. One notes, in passing, that the condition for
the join of 2 p to be an 5 is that the third point on this join should be &p too,
and that the coordinate vector of this last point is the sum of those of the
other two. The points in the unit prime are those, and only those, of whose 7
coordinates an even number are 1; in particular, the only points of Q in
this prime are the 35 with 4 non-zero coordinates. The 7 columns in any of

1
1

1
1
1

1
1

1

1

1 1

• .

. 1

1

•

1

1

c,

1

1
1

>2-

1

1

1
1
1

.
1 1
1 .

1

1

1 1

1 .
. 1

(9.1)

are coordinate vectors of vertices of an §, and (9.1) indicates clearly 7 of
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592 W. L. EDGE

the 8 §, every pair sharing a single vertex; the vertices of £0 are the first
vertex of §>v the second of £j2, and so on. The common vertex of ^ and §y
has, if neither i norj is 0, xt_x = x^x = 1 and every other coordinate zero;
the common vertex of ^ and .£)„ has xi_x = 0 and every other coordinate 1.

10. Take, now, any § and join its vertices to k; the other point on each
join is on Q, and the join of any 2 of these 7 m is c, not 0, since its remaining
pioint, being on a join of £j, is a p. These m are vertices of a simplex 2;
when C is the unit prime and § is $ 0 2 is 20, the simplex of reference; but
whichever of the 36 C is used and whichever of the 8 § therein is chosen,
2 has all its vertices m and all its joins c, while k is the sole point of [6] not
in any bounding prime of 2. The equation of Q referred to 2 is, again,
2 xixi = 0, and the change from 20 to 2 as a new simplex of reference

leaves the quadratic form invariant.
As there are 288 2, with 288 £j, F has a permutation representation of

degree 288. The stabilizer of 20 in F consists of the permutation matrices
and so has order 7 !; hence the order of F, if transitive on 2, is 288 X 7 !.
This transitivity is a consequence of that on C combined with that on the
8 2 associated with the § in the unit prime; and clearly 20 can be trans-
formed into any of those 2 associated with $v <rj2, §3, <?>4, <rj5, §6, <F)7, by
using matrices

. 1 1 1 1 1

. (10.1)
1
1

1—
1

1

1
.

1
1
1

1
1
.
1
1

1
1
1
.
1

1
1
1
1

1
1
1
1
1

1 1 1 1 1

1 .
1 .
1 .
1 .
1 .

1
1

1—
1

1

1
,
1
1
1

1
1
.
1
1

1
1
1
,
1

1
1
1
1

11. The stabilizer of a C has order 8 ! and acts as the symmetric group
on the 8 § in C. Thus is disclosed a representation of £?s by 7-rowed matrices
over F: namely, by all matrices that arise on permuting the columns of
the unit matrix and of the 7 matrices (10.1). The marks of each column
of a matrix that leaves the unit prime invariant have to sum to 1 so that, if
the matrix is in F, each column includes either 1 or 5 units. The prohibition
of conjugacy, with respect to Q, of any pair of columns insists that the row
containing any unit that is isolated in a column must contain a zero in
every column wherein 5 units appear, and this restriction on the matrix of
F selects, when combined with the requirement of non-singularity, precisely
the 8 ! matrices described above.
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A SETTING FOR THE GROUP OF THE BITANGENTS 593

Operations of periods 2 and 3
12. The transposition x0 <—> xx belongs to F; it is an involution J for

which every point in the T x0 = xx is invariant. The points outside T are
transposed in pairs, the join of each such pair containing (1, 1, 0, 0, 0, 0, 0)
which one may call the centre of,/. There are 63 such involutions in F, one
centred at each p, and it is seen, as in § 25 of (7), that Jfx, Jf2 commute or do
not commute according as the join of their centres is a t or an s. ^ can be
identified not only by its centre p but by its pole m on kp, and its united
points constitute the tangent prime of Q at the pole; Jx, J% commute or do
not commute according as the join of their poles is a g or a c. When a set of
y is such that every two of its members commute their poles span a linear
space on Q, so that the maximum number in such a set is 7, with poles in a
plane d; thus the 135 d correspond to the 135 sets of 7 mutually orthogonal
hyperplanes of symmetry of the regular polytope in euclidean space of
7 dimensions ((8) 105) and just as each such hyperplane belongs to 15 sets
of 7 so each m lies in 15 d.

Since 2 m whose join is a g are accompanied thereon by a third, each pair
of commutative J determines a third; these 315 triples are Frame's 'cubic
sets' ((8) 105). The entry 3+12 below E in Table 1 is relevant to Frame's
statements at this juncture. The circumstances in the present setting are
as follows. There are 945 products of pairs of commuting«/ and 315 triples.
There are 135 X 28 = 3780 other sets of 3 mutually commuting J whose
poles are not, as with a triple, collinear but span a plane d. As the product
of 7«/ with poles in d is identity (see below for an example) there are no other
products of mutually commuting «/ that provide involutions in F.

From 7 mutually commuting«/ one derives an elementary abelian group
consisting of (i) identity, (ii) 7 J', (iii) 21 products of pairs of./, (iv) 7 pro-
ducts of a triple of J, (v) 28 products of 3 J not belonging to a triple. As
an instance take d to be the plane

x0 = xx, x2 = x3, z4 = x6, xo+x2+Xi = 0. (12.1)

Then the coordinate vector of every one of its points is a latent column
vector for each of the 26 = 64 matrices

\oc p y)

a

P P V+1

P P 7)
y y y
y y y

P+y P+y y+«
oc+P 1.

5388.8.10
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594 W. L. EDGE

Clearlv I* * ¥ * H - l*+? ^ M \7 \« P y)\oc' jB' y 7 " " l « + « ' j8+j8' y+y')
so that every matrix save / has period 2 and every pair of matrices com-
mutes. Whatever any of £, rj, £, a, /?, y, whether 0 or 1, each column has
1, 4, or 5 of its members non-zero, and the other conditions on a matrix of F
are readily verified; this elementary abelian group of order 26 is a normal
subgroup of the stabilizer of (12.1) of order 288x7 !/135 = 29.3.7, the
quotient group being Klein's group of order 168.

The points of (12.1) are the vertex X6 of So together with

(0, 0, 1, 1, 1, 1, 1); (1, 1, 0, 0, 1, 1, 1); (1, 1, 1, 1, 0, 0, 1);

(6, 0, 1, 1, 1, 1, 0); (1, 1, 0, 0, 1, 1, 0); (1, 1, 1, 1, 0, 0, 0).

The involutions whose poles are the first three are the transpositions

their matrices are
/I, 0, 0\ /0, 1, 0\ /0, 0, 1\
\0, 0, o) \0, 0, 0} \0, 0, 0/'

The involutions whose poles are the second three have matrices

10, 0, 0\ 10, 0, 0\ (0, 0, 0\
\ l , 0, 0/ \0, 1, 0/ \0, 0, l)'

The product of the 6 (commutative) matrices is

1. h 1)
and this is the matrix of that«/ having X6 for pole.

13. The 7-rowed permutation matrices II constitute the stabilizer of
So in F, and this is one of 288 conjugate subgroups S^. The space filled by
those points that are invariant under a projectivity imposed by a per-
mutation matrix has to include k; the dimension of the space, and its
relation to Q, depend on the cycle type of the permutation and so on a
partition of 7. Take, for example, the partition 223; the space of invariant
points has equations like

# g = X-±, # 2 = = ^3> ^4 = = "̂ 5 = = ^ 6 '

these represent a plane, in fact an e0, the m therein being

(1, 1, 1, 1, 0, 0, 0), (0, 0, 1, 1, 1, 1, 1), (1, 1, 0, 0, 1, 1, 1),

and so collinear. That P4 leads to a solid </>0 has been noted in § 7; so in
fact does 1223, which implies equations like x2 = xz, a>4 = x5 = x6. And
so on. If the partition is Ax A2... the space of invariant points has dimension
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A SETTING FOR THE GROUP OF THE BITANGENTS 595

6— ^ (Af—1), one less than the number of parts in the partition. The

complete list of partitions, with the dimension and category of each space of
invariant points, is given in Table 2.

TABLE 2

Partition

r
1*2
1*3
1H
1*2*
P23
1*5

16
124
12*
13a

2»3
25
34
7

Number of
parts

7
6
5
4
5
4
3
2
3
4
3
3
2
2
1

Dimension of
invariant space

6
5
4
3
4
3
2
1
2
3
2
2
1
1
0

Category of
invariant space

[6]
T
Jo
>l>o
E
<Po
3t>
h

y
Jo
« 0

«0

<0
k

Of the 3 types of involutions in this table those labelled P2 are J, those
labelled P22 products of pairs of commuting Jf, those labelled 123 products
of 3 commuting J that are not a triple. The 315 products of triples of Jf,
each having an E of invariant points, do not have representatives in any
of the 288 subgroups ^ of Y.

14. The cyclic permutation (xox1x2) belongs to S^j and so to F; it has
period 3, with every point in the Jo, x0 = xx = x2 invariant. If P is outside
Jo, and not on the s of which Jo is the polar, the plane of the cycle generated
by P contains this s, whose equations are

^0+^1+^2 = xs = Xi = x5 = x(i = 0; (14.1)

hence, in order to identify this cycle, one takes the plane Ps and omits its
intersection with Jo. One may thus speak of an axial operation, s being the
axis. Any operation in F that has period 3 leaves at least one of the 28 8
invariant and so belongs to the 'cubic surface' group that is the stabilizer
of this S in F.

The permutations {x^xxx^ and (x^x5x6) commute; the axis of the first is
given by (14.1), that of the second by

= 0.

They span the solid
== "
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696 W. L. EDGE

and are the Dandelin lines therein. Table 1 tells that there are 20 K through
a\ each of these provides a companion s' such that operations with s, s' for
axes commute. Thus there are, in Y,

|(336 X 20) X 4 = 13440

operations of period 3 that are products of two commutative axial opera-
tions.

In each S there are ((7), § 17) 40 trios, each consisting of 3 skew lines
s, s', s" such that the K spanned by any two is the polar (with respect to the
section of Q by S) of the third. The corresponding axial operations are
commutative, and the trio thus affords 8 operations of period 3, each the
product of 3 mutually commutative axial operations. But although there
are 28 X 40 trios there are not 28 X 40 X 8 operations of this last kind, but
only one-quarter of this number, namely 2240, since each such operation
arises from 4 different trios. This was not mentioned, let alone proved,
in (7), so that one may give the explanation now. The trios in S fall into
40 quadruplets, each trio belonging to 4 quadruplets; each trio accounts,
by 3 points on each of 3 5, for 9 p, and the trios in a quadruplet together
account for all 36 p in S. The 8 operations afforded, as just described,
by a trio T consist of 4 pairs of inverse operations; each pair is associated with
one of the quadruplets of which T is a member in the sense that the pair is
afforded by each trio of this quadruplet.

The lines s, s', s" are all of them invariant under the operations of an
elementary abelian group $ of order 27. If one permits them to undergo
cyclic permutation one obtains a Sylow subgroup of Y (and of one of its
'cubic surface' subgroups) of order 81 with <f as a normal subgroup. The
Sylow 2-subgroups of Y are of order 29; their index is 945, and they are the
stabilizers of e and/or <f>.

The normalizers of certain operations

15. The number of matrices in Y conjugate to a given one M is the index
in F of the normalizer of M. This normalizer consists of those matrices in Y
that commute with M; when their number is small, and an explicit form
for them is available, the (large) number in the conjugate set that M belongs
to is found at once.

Take, as a first instance, M to be a permutation matrix II of period 7; it
commutes only with matrices

a01+ax II+a2 n
2 + a 3 II3+a4 II4+a5 II5+a6 II

6. (15.1)

This is seen either, as in the examples that follow this, by writing out the
general form of the commuting matrix or else by observing that II has, in the
extension GF(2e) of F, all its latent roots distinct. Each matrix (15.1) is a
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A SETTING FOR THE GROUP OF THE BITANGENTS 697

circulant, and, since every row is composed of all the at

when (15.1) belongs to F. Thus an odd number, 1 or 5, of the a{ are units.
The latter alternative violates the condition that no two columns of the
circulant are coordinate vectors of conjugate points on Q\ only the former
alternative is therefore allowable and so II commutes, in F, only with its own
powers. Thus, its normalizer having order 7, II is one of a conjugate set of
207360.

16. The matrix

. 1 .

. . 1
1 . .

e =n x en 2

is of period 12 and commutes only with matrices of the form

. 1 . .

Li . . ._

a b c ot a a ac

c a b a a a a
b C a a a a a
jB p P d e f g
P P P 9 d e f
P )8 jS / g d e

IP P P e f g d]

Such a matrix does not belong to F unless

a + 6 + c = 1, d+e+f+g = l+j8,

nor, since no two columns (say the third and fourth) can represent conjugate
points on Q, unless

( a + 6 + c + i 8 ) (< | + e + / + f l f ) = i.

Consistency prohibits j8 = 1; hence j8 = 0 and only one of a, b, c is 1 because
of the restrictions on the number of units in a column. Then, by these same
restrictions,

either a = 0 and only one of d, e, f, g is 1,

or ex = 1 and only one of d, e,f,gis 1.

Thus some power of IIj occupies the top left-hand, some power of n 2 the
bottom right-hand block and, there being two choices for a, the normalizer
has order 3 X 4 x 2 = 24.
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The cyclic group #12 of powers of (16.1) is a subgroup of this normalizer,
which indeed is a direct product #12X#2> the generator of #2 being

1 . . 1
1 . 1
. 1 1
. . 1

. . .

. • •

1
1
1
.

1

1
1
1
.

1

#

1
1
1

.

1

(16.2)

This generator is the involution J whose pole (0, 0, 0, 1, 1, 1, 1) is on that
line t0 whose points are invariant under (16.1). The conjugate set that
includes (16.1) has 60480 members.

17. The normalizer of

0

consists of matrices having the form

(17.1)

a b a a <x a. ot

b a a a a a a

P P c d e f g
P P g c d e f
P p f g c d e
P f g d

J p d e f g

wherein, to obviate singularity, 6 = a-\-1. Hence, since the marks in a row
sum to 1, a = 0; also, to obviate a superfluity of units in either of the first
two columns, j3 = 0, this implying further that c-\-d-\-e-\-f-\-g = 1. Since
c, d, e, / , g cannot (again to obviate singularity) all be equal these marks
fill one of 5 permutation matrices and the normalizer has order 10 since a
can be 0 or 1. Thus (17.1) is one of a conjugate set in Y of 145152 matrices,
of period 10.

If the first component of the direct sum (17.1) is replaced by " the
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A SETTING FOR THE GROUP OF THE BITANGENTS 599

matrices of the normalizer take the form

a a a

a'

y
y
y
y

_y

6'
8
8
8
8
8

jS
c

g

f
e
d

P
d
c

g

f
e

P
e
d
c

g

f

P
f
e
d
c

g

P
g
f
e
d
c

(17.2)

If y = 1 then, by the restriction on units, a = a' = 0. Then, to obviate
singularity, 8 = 0; this allows only a single unit in the second column, so
that 6' = 6+1 = a = j8+l. Since c+d+e+f+g = 1+y+S = 0 an even
number of c, d, e,f, g are units; this even number is, to give the proper quota
of units to a column, 4. Hence, with 2 choices for b and 5 for the zero among
c, d, e, f, g there are 10 such matrices in the normalizer. Another 10 have
8 = 1, y = 0. There remains only the possibility that y = 8 = 0, implying

a' = a + l = 6 = 6' + l, a = 0 = 0,

c+d+e+f+g = 1,
and so there occur the 10 matrices of the normalizer ^10 of (17.1). This
occurrence is inevitable, since if a matrix commutes with (17.1) it commutes
too with its powers (the relevant power here is 6). The whole normalizer
N has order 30, so that there is in F a conjugate set of 48384 operations of
period 5.

N includes, outside #10, a pair of inverse operations of period 3, namely

and

1 1 1 1 1
1

(17.3)

The involution x0 <—> xx in ^10 generates, with either of these, a dihedral
group i^6 which is a direct factor, not merely a subgroup, of N: N = ^ 6 X %.
For it is at once seen that the square of (17.1) commutes with (17.3). Thus
N includes operations of period 15, and as each of these has the same cube
as its eleventh power there are (at least) 96768 operations of period 15 in
F—twice as many as there are of period 5.

18. Operations of period 15 occur in an S?Q in association with the par-
tition 35; thus those in F can be found directly by subjecting the heptagons
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600 W. L. EDGE

of one of the 36 sets of 8 to appropriate permutations. Since each column
of each matrix of N sums to 1, N belongs to that ,£g which permutes the
jr̂  (9.1). Let these suffixes i undergo the permutation (34567)(210). The
common vertex of £ 3 and £4 is moved to that of § 4 and Jr>5, and so on; that
of Jrjj and J50 to that of £0 and <r>2. Hence one requires to solve

1 . . .
1 1 1 . .

1 1 .
. 1 1
. . 1

for M. The solution is

1

#

1

1

1
1
1
1
1

1
1 1

1
1
1
1
1_

1 . . .
1 1 . .
. 1 1 .
. . 1 1

. . 1 . 1
1 . 1 1 .
. 1 . 1 1
. 1 . 1 1
. . . 1 1
. . . 1 1

. 1 1

'A + l A + l A A
B
C

A A
B+l B B B B
C+l C C C C
D+l D D+l D D D
E+l E E E+l E E

F F F+l FF+l F
Q+l G

A
B
C+l
D
E
F

G G G Q+l G
wherein, in order that each row sum to 1, all of A, B, C, D, E, F, G are
1 save B, and B = 0. These conditions cause M to belong to N (put g = 0,
8 = 1 , etc., in (17.2)).

The half-integer characteristics for genus 3
19. The figure in [6] that is the basis of the geometry, as of the algebra,

in the preceding pages is a setting for F, 'the group of the bitangents'. These
bitangents are the 28 contact ^-curves of a canonical curve of genus 3, and
one therefore expects the geometry to map, in some way, the period
characteristics and theta characteristics for this genus. These concluding
paragraphs outline one or two features of this mapping.

There are 63 half-integer period characteristics £ in addition to the zero;
these are mapped by the 63 m or, as there is a (1,1) correspondence between
the m and p set up by collinearity with k, by the 63 p, and so also by the 63
involutions J. Period characteristics gv £2

 c a n be either syzygetic or
azygetic; if they are syzygetic w1m2 is g, PiP2 is t, Jx and J% commute; if
they are azygetic mxmz is c, pxp2 is s, Jx and J% do not commute. If fx = £2

there is always syzygy.
£x and £2 have a 'sum'; this is syzygetic or azygetic to both of them
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A SETTING FOR THE GROUP OF THE BITANGENTS 601

according as they are syzygetic or azygetic to each other. Suppose that
there is syzygy. Then the sum £3 is mapped by the other point ra3 on
g = mxm2, or by p3 in e0 = kptp2, or by that involution J^ that completes
a triple with J^ and J|. If, on the other hand, there is no syzygy £3 is mapped
by ra3 in j0 = kmxm2, or by the other point p3 on s = PiP2, or by J^ whose
pole is m3 and centre p3. There are 315 syzygetic triples, one for each g
and its accompanying e0, and 336 azygetic triples, one for each jQ. Each
period characteristic of a triple is the sum of the other two; the sum of the
coordinate vectors of the three mapping points has all its 7 components
equal: to 0 if the map is by m and there is syzygy or if the map is by p and
there is no syzygy, to 1 in opposite circumstances.

This distinction, between syzygy and its absence, indicates the assem-
bling of sets of period characteristics every two of which bear the same
relation to each other. If every two are in syzygy the set can be mapped
by a set of m every two of which are joined by a g, so that every point of the
space spanned by them is on Q. Thus, as there are planes, but no solids, on
Q it is possible for every pair among 7 period characteristics to be in syzygy
and, as there are 135 planes d, there are 135 such sets of 7. When one
supplements such a set by the zero characteristic, which is in syzygy with
every other, one obtains a Gopel group ((1) 490) of 23 mutually syzygetic
characteristics. Should, on the other hand, every two of a set be azygetic
the join of any two among the m which map the characteristics is a c. One
has encountered above (§ 10) sets of 7 m with this property, namely, the
vertices of any of the 288 S; these correspond, iorp = 3, to the fundamental
systems of 2p-\-1 period characteristics.

20. The 64 theta characteristics fall into two batches, 28 being odd and
36 even; they are mapped by 28 S and 36 C. Here, in contrast to the situa-
tion with period characteristics, there is no distinction to be made in the
relations between pairs of characteristics; nor, save that it is even, has the
zero characteristic any special attribute. It is only between sets of 3 theta
characteristics that there is, or is not, syzygy. This is mirrored with crystal
clarity in the geometry. The intersection of two S is always H, the
28C2 = 378 H being the intersections of pairs of 28 S; the intersection of two
C is always F, the 36C2 = 630 F being the intersections of pairs of 36 C; the
intersection of S and C is always J, the 28 X 36 = 1008 J being the inter-
sections of 28 S with 36 C. But, as is seen from the last two rows of Table 1,

Sv $2> $3 m a y meet in A or in x>
Cv C2, C3 may meet in K or in <f>,
81} S2, C3 may meet in A or in I/J,
Sv C2, C3 may meet in K or in ip.
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In the latter contingencies there is syzygy, in the former not. Syzygy
occurs when the solid common to the 3 spaces meets Q in a singular quadric;
if this section is not singular there is no syzygy.

There pass through any solid 4 [5]'s that do not contain k\ thus associated
with any 3 theta characteristics there is a fourth, and every 3 of these 4
characteristics are in the same relation. This fourth characteristic is, of
course, the 'sum' of the other 3. Each theta characteristic can be repre-
sented by the row vector of coordinates of the S or C which maps it; of the
7 components of this vector an odd number are 1. The even characteristics
occur when this odd number is 3 or 7, the odd ones when it is 1 or 5 (see § 3).
The zero characteristic, being even, can correspond to any of 35 vectors; it is
natural, though in no way necessary, to map it, once the coordinate system
has been set up, by the unit prime so that its representative vector has every
component 1. The sum of the theta characteristics in a set is then repre-
sented by the sum of their representative vectors provided that the number
in the set is odd. One can always take this number to be odd: were it even
one would merely have to add the zero characteristic. But, if this artifice
be not resorted to, one obtains the representative vector of the sum of an
even number of theta characteristics by adding their representative
vectors and then, in the outcome of this addition, replacing each 1 by 0 and
each 0 by 1.

The vector sum of the representatives of two theta characteristics has an
even number of its components 1 and so is the coordinate vector of a
prime T\ thus it maps, via the contact moiT with Q, a period character-
istic. Details given in (v) on p. 188 of (2) are, for genus 3, in accord with the
geometry here. Take, say, a prime Co; the remaining 35 C and the 28 S
meet Co in 35 F and 28 J ; these 63 spaces are joined to k by the 63 T so
that each of the 63 (non-zero) period characteristics is obtainable as a 'sum'
of the theta characteristic mapped by Co with some other. And a like result
follows if one takes a prime SQ. On the other hand, to proceed oppositely,
choose any point m0, on Q, and so the tangent prime To. The 32 [4]'s in To

that do not contain k consist, as explained in § 4, of
6 H, each common to two S,

10 F, each common to two C,
16 J, each common to an S and C.

Thus a given period characteristic can be obtained as a 'sum' of two theta
characteristics in 32 ways. In precisely half of these the theta character-
istics have opposite parity; of those wherein they have like parity 10 make
it even, 6 odd. And these two numbers are the values, for p = 3, of
2 P - 2 ( 2 P - I + 1 ) and 2P-2(2*>-1— 1).
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