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Introduction.

The existence of a simple group of order 168 and the representation of it
as a transitive permutation group of degree 7 were known to Galois, but since
the group was exhibited as a group of ternary linear substitutions by Klein in
his famous paper »Uber die Transformation siebenter Ordnung der elliptischen
Funktionen» published in Volume 14 of Mathemalische Annalen (and later in the
third volume of his collected mathematical papers) it has been generally known
as the Klein group. Klein's paper is indeed so masterful in its handling of
material, so penetrating in insight and so rich in its yield of new results that
it is only fitting that the group should be associated with his name. The paper
was followed, in Volume 15 of Mathematische Annalen a few months later, by a
second paper >Uber die Auflésung gewisser Gleichungen vom siebenten und
achten Grade»; this is in the second volume of the collected mathematical papers.
It is these two papers, together with the cognate material in the first volume
of the Klein-Fricke treatise on elliptic modular functions, that coustitute the
indispensable sources of the work which follows.

In the second of Klein's papers there is set out a geometrical basis for
handling the Klein group operating as a group of quaternary collineations in
three dimensions. Even a cursory glance over this paper leaves no doubt of the
value, in Klein's estimation, of this approach to the subject. Tn the introduc-
tion he tells us that he has gladly again availed himself of geometrical delibera-
tions for (he says) geometry does not merely make visual and illuminate but
serves in these researches the prime purpose of discovery. And later, when he
has disclosed the net of quadric loci and the net of quadric envelopes on which
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the geometrical structure must arise, he says explicitly that they form the proper
starting-point for the main treatment of the subject. These are surely authorita-
tive commendations, and Klein must have persisted in his opinion. When the
first volume of the Klein-Fricke treatise was published more than ten years
later the net of quadric loci, together with the cubic surfaces containing its
Jacobian curve, again appeared. And almost so long as half a century later,
when the third and last volume of his collected mathematical papers was
published in 1923, we find Klein adding a note (pp. 177—8) in which he directs
attention to the Jacobian curve and its seroll of trisecants.

While however there can be no doubt of Klein's opinions, and while we
may perhaps surmise that he supplemented them with verbal exhortations to
his numerous and expert pupils, the fact remains that, except for Baker's » Note
introductory to the study of Klein's group of order 168» the geometrical ex-
ploration of the three-dimensional figure has been entirely neglected. Baker ob-
tains twenty-one quartic scrolls of genus 1 which contain the Jacobian curve.
But Baker builds his arguments on the Klein-Fricke treatise rather than on
Klein’s two original papers, and as the treatise mentions the net of quadric
loci but never the net of quadric envelopes Baker does not mention the reci-
procations of the figure into itself. Nor, having signalised the quartic scrolls,
does he proceed to deal with any other surfaces or loci. But his results are the
only geometrical additions to Klein's own, and while I record this I must also
declare that it is to Baker's paper that I owe my introduction to the subject.
Perhaps it is of interest to remark that its publication in 1933 at once caused
me to consult the original authorities to which I might not have been led other-
wise and that, in consequence of this, the generating function @ (x) of § 38 was
obtained in August 1936.

There is certainly one conspicuous reason why Klein's commendations have
not been implemented to better purpose; the geometry of the figure is that of
a net of quadrics invariant for a group of 168 collineations whereas, up to
some few years ago, very little was known about the geometry of a net of
quadrics. When Klein discovered the plane quartic curve that admits a group
of 168 collineations he was able to appropriate at once the geometry of a general
plane quartic; to lay hands upon its inflections, its bitangents, its sextactic
points, its systems of contact cubics, and so on, and the brilliantly effective way
in which he did so has been a source of delight to countless mathematicians.
When, however, he offered a net of gquadrics there was but little geometry ready
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to hand. This defect is now, since the publication of five notes on a net of
quadric surfaces, at least partly remedied and there is a sufficient knowledge of
the geometry to enable one to undertake the exploration of Klein's three-di-
mensional figure. And here I must again acknowledge my debt to Baker’s note,
for the form of @ (x) disclosed by the work which this note instigated was the
main impetus to the examination of the geometry of a net of quadric surfaces
and the consequent writing of the five notes upon it.
The following abbreviations will be used henceforward to signify certain
references.
K.-F. F. Kvein: Vorlesungen iiber die Theorie der elliptischen Modulfunctionen
(ausgearbeitet und vervollstindigt von R. Frickz), Band 1. Leip-

zig, 1890.

K. IL F. Kumix: Gesammelte Mathematische Abhandiungen. Band II. Berlin,
1922.

K. TIL.  F. Kuein: Gesammelte Mathematische Abhandlungen. Band III. Ber-
lin, 1923.

B. H. F. Baker: Note introductory to the study of Klein's group of order
168: Proceedings of the Cambridge Philosophical Society 31 (1935),
468—481.

0.§. W. L. Epcr: Octadic surfaces and plane quartic curves: Proceedings of the
London Mathematical Society (2), 34 (1932), 492—525.

Note I. W. L. Epce: Notes on a net of quadrie surfaces. 1. The Cremona
transformation: Proceedings of the London Mathematical Society (2),
43 (1937), 302—315.

Note II. W. L. Eper: Notes on a mnet of quadric surfaces. II. Anharmonic
Covariants: Jowrnal of the London Mathematical Society 12 (1937),
276—280.

NoteIIl. W.L Epce: Notes on a net of quadric surfaces. IIL. The scroll of
trisecants of the Jacobian curve: Proceedings of the London Mathe-
matical Society (2), 44 (1938), 466—480.

Note IV. W. L. Epc¢e: Notes on a net of quadric surfaces. IV. Combinantal
covariants of low order: Proceedings of the London Mathematical
Society (2), 47 (1941}, 123 141.

The paper falls into four sections, the first of which is concerned with the
setting up and description of the figure and an account of some of its primary

properties.
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The three-dimensional figure has a net of quadric loci as a cardinal feature,
and this net may be identified immediately the left-hand side of the equation of
Klein's plane quartic % is obtained as a symmetrical four-rowed determinant 4.
For, the elements of . being linear forms in the coordinates (§ 7, {), # may
be regarded as the discriminant of a quaternary quadratic form whose coefficients
are homogeneous and linear in & 7, {; this form, when equated to zero, is a
quadric which, as & 75, { vary, varies in a net of quadrics and always passes
through eight fixed points P, the base points of the figure. The locus of ver-
tices ot those quadrics of the net which are cones is its Jacobian curve K, which
is hereby put into (1, 1} correspondence with % There is a known procedure
for obtaining o/ and, moreover, the system of contact cubics associated with
(the cubics of this system are obtained by bordering #/ with a row and column
of constants and so are associated each with a plane of the space figure) can
be chosen to be that to which the eight inflectional triangles of % belong. It
is important to make this choice, for it facilitates the transition from the group
of collineations in the plane to the gimply isomorphic group & of collineations
in space. Now an inflectional triangle of £ not only has for its vertices points
of k but also has for its sides tangents of %: it is an in-and-circumscribed tri-
angle of k. And it was shown in O.S. that when a (I, 1) correspondence is set
up between a general non-singular plane quartic and the Jacobian curve $ of a
net of quadrics those eight in-and-circumscribed triangles of the gquartic which
belong to the system of contact cubics that is, in the setting up of the corres-
pondence, associated with the planes of space are associated with the eight
tritangent planes of the scroll of trisecants of 4. By applying this result to the
(1, 1) correspondence between k and K it follows, in § 4, that each of the eight
triads of points on K that correspond to the vertices of an inflectional triangle
of k has the properties that the tangent of K at each point of the triad inter-
sects K again in a second point of the same triad and that the plane IT of the
triad is tritangent to K. It is shown too, in § 9, that the osculating plane of
K at each point of the triad has five-point contact and, in § 10, that the three
osculating planes of K at the three points of a triad have one of the eight base
points P as their intersection. The eight planes I1 are themselves the base planes
of a net of quadric envelopes. Each plane IT forms, together with the osculating
planes of K at its three contacts with it, a tetrahedron 2, and with each pair
of these eight tetrahedra 2 there is associated a quadric @ with respect to
which both tetrahedra of the pair are self-polar (§ 12). The whole figure is its
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own polar reciprocal with respect to each of these 28 quadries ¢. It is one of
the tetrahedra £ that is tetrahedron of reference for the system of homogeneous
coordinates employed to handle the algebraical work.

The second section of the paper is concerned with the deduction by geo-
metrical methods of further properties of the figure. These are obtained by using
the subgroups of low order contained in G; the structure of the Klein group
is well known, but new results appear in the light of its new representation.
The involutions, or collineations of period 2, of G furnish Baker's quartic scrolls.
The nodal lines of these scrolls are the axes of the involutions and are of some
importance in the geometry of the figure; they are distributed in 56 coplanar
and concurrent triads, each of them belonging to 4 of the triads. The point of
concurrence of any triad lies on a join p of two of the base points while the
plane of any triad contains an intersection 7 of two of the base planes (§ 18).
Consideration of pairs of permutable involutions discloses two sets each of seven
quadrics, with a (3, 3) correspondence between the quadrics of either set and
those of the other. Each of the fourteen quadrics possesses, among its self polar
tetrahedra, two whose vertices are complementary tetrads of base points and two
whose faces are complementary tetrads of base planes. These fourteen quadrics
are connected with the fourteen octahedral groups of collineations that belong
to G; each such octahedral group permutes, in all possible ways, a set of four
lines p which join the base points in pairs as well as a set of four lines = of
intersection of pairs of the base planes. The fourteen quadrics are also very
intimately related to fourteen linear complexes that were obtained by Klein,
and the geometrical aspect of this relation is considered in §§ 24—27.

The collineations of period 3 which belong to & also yield interesting in-
formation. For example: through each line 7 pass two planes each of which
contains three points P and their three joins p while, dually, on each line p lie
two points through each of which pass three planes II and their three lines of
intersection s. The osculating planes of K at its two intersections with a line
p meet in the corresponding line =, while the tritangent planes (other than the
eight planes IT) of K pass two through each line sr; this accounts for every
tritangent plane of K. Moreover each line p contains four points at each of
which concur three tangents of K.

Section III of the paper is concerned with the invariants of the group.
There can be no question of how to obtain these; one must, as Klein surmised
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(K. I1., 412), consider the combinantal covariants of the net of quadrics. It is
now, since the publication of Note IV, practicable to do this. But a few of the
invariants have been known for a long time. Invariants, one of each of the
degrees 4, 6, 8, 10, 12, occur on p. 242 of Brioschi's paper »Uber die Jacobische
Modulargleichung vom achten Grade» in Volume 15 of Mathematische Annalen;
there may not be, at this early date, a full appreciation of the real significance
of these invariants but their algebraic forms certainly appear, as indeed also do,
on p. 244, equations which are in fact those of cubic surfaces containing K.
Two invariants of respective degrees 4 and 14 occur on p. 739 of the Klein-
Fricke treatise and here, after having been obtained as linear combinations of
modular forms, they are expressly regarded as surfaces which intersect K in in-
variant sets of 24 and 84 points.

The quartic invariant is the only invariant of this lowest possible degree
and the corresponding non-singular quartic surface F* has apparently never as
yet been subjected to geometrical examination. A few of its many interesting
properties are established below, and the surface is obtained by arguments in-
depeudent of any considerations save those concerned with the geometry of a
net of quadrics. It is outpolar to the net of quadric envelopes and has every
line 7 as a bitangent. Its Hessian is a scroll whose nodal curve has its pinch-
points at the intersections of F* and K; its parabolic curve has at each of these
points a triple point with only two distinet tangents.

The group has one, and only one, sextic invariant. But there are several
invariants of degree 8 and algebraic expressions for them are given in the table
on p. 205. The generating function ®@(z) of § 38 discloses instantly how many
invariants of any given order exist which are not linearly dependent; all in-
variants of degree 8 are linear combinations of three of them and belong to a
net of surfaces of which one member is F* repeated. Of other surfaces of this
net some six are derived from geometrical definitions of combinantal covariants
of the net of quadrics.

Section IV of the paper is concerned with covariant line complexes. This
material is perhaps more relevant to a group of 168 substitutions on six vari-
ables than to (&, and a figure in five dimensions is the chief source of informa-
tion. The group on six variables has a quadratic invariant which corresponds
to the identical relation satisfied by the six Pliicker coordinates of a line and
any other invariant gives, in combination with this quadratic invariant, a complex
covariant for . Since a little is already known about cubic complexes covari-
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antly related to a mnet of quadries it is perhaps not out of place to add this
fourth section to the paper and to indicate, in the course of it, equations for
and geometrical definitions of some cubic complexes covariant for G. A few
remarks are also made about covariant quartic complexes which, so a coefficient

in a generating function tells us, are all linearly dependent on two among them.

I
Primary Properties of the Figure.

1. A plane quartic d can, as was shown by Hesse', be put into hirational
correspondence with the sextic Jacobian curve % of a net of quadric surfaces;
the correspondence is always such that any six coplanar points of & correspond
to six points of J which are the points of contact of d with a contact cubie,

8 contaet cubics

and which do not lie on a conic. There is thus a system of oo
of d associated with the planes of space. There are 36 systems of contact cubics
of 0 whose sets of six contacts do not lie on conics; in setting vp the birational
correspondence any one of these 36 systems may be chosen as the one to be
associated with the planes of space.

Bach of these 36 systems of contact cubics includes eight in and-circum-
scribed triangles of d; the vertices e, f, gy of such a triangle lie on ¢ and the
sides fg, ge, ef touch 0 at points I, m, n respectively. This was shown in 0.5,
where it was also shown that if that system =X of contact cubics is selected to
which an in-and-circumscribed triangle efyg belongs, and a birational correspond-
ence, associating X with the planes of space, is set up between d and the Ja-
cobian curve <+ of a net of quadrics the six coplanar points I, ¥, G, L, M, N of
9 wwhich correspond to the six points e, f, g, I, m, n of ¢ are such that MIN, NL, LM
pass through Il I, G respectively. The plane LM N thus contains three trisecants
of <. Each of the eight in-and-circumscribed triangles which belong to X gives
a plane of this kind and there are no planes, other than these eight, containing
three trisecants of 9.

The polar planes of a point of J with respect to the quadrics of the net
all pass through a definite trisecant of %, and each trisecant may be so obtained
from one and only one point of ¢. A point and trisecant of 9 which correspond
in this way are said to be comjugate to one another. It was shown (0.S. 513—
514) that the trisecants conjugate to L, M, N are EMN, FNL, G LM respectively.

Y Journal fir Math., 49 (1855), 279-—332; Gesammeite Werke, 345.
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Other properties of the trisecants, to which it may be convenient to allude sub-
sequently, have been known for a long time. Through any point P of & there
pass three trisecants: the plane of any two of these meets 3 in one further point
not on either of them, and this (0.S. 510) is the point which is conjugate to
the third trisecant through P. Each pencil of quadries belonging to the net in-
cludes four cones, and the vertices of these cones form a canonical set of points
on J; the planes which join those sets of three points of 3 which make up
canonical sets with P all pass through the trisecant conjugate to P and, con-
versely, any plane through the trisecant conjugate to P meets & further in three
points which make up a canonical set with P.

The mention of the canonical sets on ¢ affords an opportunity of stating
another fact which will be used later. The Cremona transformation whereby two
points correspond to one another when they are conjugate with respect to the
net of quadrics was studied in Note I; it was there (p. 310) shown that the
locus of those points which are conjugate to the points of a chord P¢Q of 9 is
a second chord RS of 4, and that PQRS is a canonical set.

2. We now consider the plane quartic # which is invariant for a group of
168 collineations. The equation of %k may (K. IIIL. 103; K.-F., 701) be written

En +nl® + [ =o.

The vertices of the triangle of reference are on the curve and, moreover, they
are points of inflection; the inflectional tangents at n={=0,{=E=0,E=9=0
are { =0, § =0, 5= o respectively. The triangle of reference is thus an in-and-
circamscribed triangle, but each of the three vertices coincides with the point of
contact of one of the sides. This happens, indeed, not only for the triangle of refer-
ence but also for each of the other seven in-and-circumscribed triangles that
belong to the same system of contact cubics (K. III, 116; X.-F., 718).

In order to establish a birational correspondence between % and the Jacobian
curve K of a net of quadrics we have to express £9° + {* + {&° as a sym-
metrical determinant o, of four rows and columns, whose elements are homo-
geneous linear forms in & 7, {; a system of contact cubies is then obtained by
bordering 4 with a row and column of constants, and o can be found so that
the bordering gives any chosen one of the 36 systems, A method of finding o
was explained by A. C. Dixon'; it requires, for the calculation of the linear

! Proc. Cambridge Phil. Soc. 11 (1902), 350.
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forms, prior knowledge of the equations of the contact cubics. Now this know-
ledge is fully furnished by Klein himself in K. IIT, 117; the notation used by
Klein is changed to the one being used now simply by writing &, 5, { instead
of A, », u respectively. Dixon’s argument enables us to assert that if, using the
notation! of Klein's equations (38) and (39), the elements of

AT A4, A4, A4,
A4, 4 A, 4, 4,4,
A4, A4, A A4,
A4, A4, A, 4, A

are replaced by their expressions in terms of £, 7, {, and the cofactor of any
element divided by the square of §5® + n® + (&, then the quotient is that
linear form which is to occupy the corresponding position in . The determinant,

on using Klein's equations, becomes

— P&y g & g
o5 ——&8 ¢ s
£ 7 =8 -t &

| & né? &n® Eng

and easy calculations then give

n : . ]
s . -
4= =—(En° + 90 + LF).
. . Iy —7
—§ =0 —
The determinantal form which will be used is, however,
Ui . . — 71
. — 71
1d= : . : ) 2.1
. . g — g1y
— g — 71—y e

' In K. III, 117 there is a misprint in the last of the equations (39); what is printed as
Az 4, ought to be A3 4;,. In the original paper in Math. Annalen 14 there is happily no misprint.
Observe the adumbration, in the footnote to these equations, of the cubic envelopes inscribed in
a developable of class 6 and genus 3 (cf. K. I, 412).

11 - 61491112 Acta mathematica. 79
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where 7®=2. The factor z! can of course be omitted from the last row and
column without altering the equation of %; but it is eminently desirable that it
should be retained because its retention enables the self-dnality of the space-
figure that will be constructed to be more immediately perceived. This square
root of 2 was indeed introduced by Klein (K. II, 408), and for the same reason;
it does not, however, reappear either in the Klein-Fricke treatise or in Baker's

paper.
The curve
7 — 77 u
13 . —a7 L v
iy —tlyg w|l=o0
—atE =g —rly
u v w P

is a contact cubic of %, and the oo® different values of the ratios w:v:w:p give
all the contact cubics of one of the 36 systems. When « = v == = 0 the con-
tact cubic is £5{ =o0; the system of contact cubics is therefore the one to which
the triangle of reference belongs. The remaining seven in-and-circumseribed tri-
angles that belong to the system are found by putting s==1,2,3,4,5,6,7 in
the identity

U —lf g
g _,L——-lg 84.5'
’; —lp g%
__,[—lg _,L.—-IC ,_,L.—-l,'? ,L_—-l
&8 848 £2s Pt

=35+ Byt + B+ yaltig + p (5 + e B8y + D), 22
where ¢ is any primitive seventh root of unity and

a=¢+ & B=12&"+ &, y =g+ &,
These three expressions, as is pointed out by Baker (B., 469), are such that

e?=F+2 =y +2 y2=a+21

2.3
By=a+8 ve=@8+y aﬁ=7+a;1
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any polynomial in «, 8, ¥ can thus be expressed as a linear combination of them;
and, furthermore, ¢ + 8+ y=—1. If we write

0, =&+ & + & 0, =%+ &* + &
where the indices appearing in 6; are the quadratic residues and those appearing
in 6, the quadratic non-residues to modulus 7, then 6, and 6, are the roots of
(20 +1)* + 7=o0.
3. The determinant which appears in 2.1 is the discriminant of the quadric
Ey’ —rtx) + pla® —vtz) + {(e*—aty) =o. 3.1
This quadric is a cone with vertex (z, y, 2, ) if
pr—1 i 5t=8y— ' t=(z—vint=Ex + nz+ Ly=o0. 3.2
These equations give (B., 473), as well as §n* + 9{® + [ =0,
izt =L EntirEgl; 3.3

these are therefore the coordinates of that point of K which, in the birational
correspondence between %k and K, corresponds to the point (£ 5, {) of %.

The quadries 3.1 for different values of £ %, { belong to a net N and the
locus of the vertices of the cones of N, obtained by eliminating &, 7, { from 3.2, is

“—1”% Y . ’l)l
‘ x — 171t zll=o0;
l| —7 ¢ z y

these are the equations of K, which is thus common to the cubic surfaces (cf.
K. III, 173; K.-F., 728; B., 473)

X=~Ffz+oty+2y=0, Y=1y+ot+228°=0,

Z=z+ate* + 22y =0, T=2txyz— =0, 3.4

and to all the cubic surfaces that belong to the linear system, of freedom 3,
determined by these. The Cremona transformation in which corresponding points
are conjugate with respect to N is (Note I, 303, footnote) given by

xyd it =X:Y:Z:T. . 3.5
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All the quadries of N have in common the eight points P,: (0, 0, 0, 1} and
P, (&%, &%, &5 171); these will be called the base points, and they are Klein's
Hauptpunkten (K. II, 410). The line P; P; will be denoted by p;;; these twenty-
eight joins of pairs of base points are, by Hesse's classical discovery, all chords
of the Jacobian curve K, and it may be verified, by means of 3.4, that the point
(8% + A &%, &% + A%, &% + AéV, Tt At~!) lies on K when A is a root of the
quadratic 7A* + 441 —7 — 7 =0, one or the other sign being taken according
as ¢—j is, or is not, a quadratic residue to modulus 7. Hesse's result is thus
verified for the twenty-one joins not passing through P,; as for the join pes, it
is at once seen that (&%, &% &% 7! + u) lies on K when 2 u* + 47p + 7=0.

4. Suppose then, % being a Klein quartic, that the vertices e. f, g of an
in-and-circumseribed triangle coincide, respectively, with the points of contact
m, n, | of the sides ge, ef, fg; the corresponding phenomenon ocecurring also for
each of the other seven in-and-circumscribed triangles which belong to the same
system of contact cubics. Suppose further that, as in the algebra above, this
system of contact cubics is associated with the planes of space when £ is put
into birational correspondence with the Jacobian curve K. Then the remaining
intersections E, F, G of any three coplanar trisecants MN, NL, LM with K
must coincide with M, N, L respectively. Thus the sides of the triangle LMN
are the tangents of K at its vertices; MN touches K at M, NL touches K at N
and LM touches K at L. Each side of the triangle is a trisecant two of whose
three intersections with K coincide, and there are eight triangles of this kind.
The equations of their planes are, as is seen on referring to the constants which
border the determinant in 2.2, f=o0and ez + %%y + ¢?¥2 + v ' {=0. We shall
call these planes II, and I1, and speak of them as the base planes; they are
Klein's Hauptebenen (K. I, 410}, and the left-hand sides of their equations
satisfy the identity

7
Z(s*x—*—a“y-*—e“z-{- i)~ =o. 4.1

§=1

It follows that the base planes are common to three linearly independent quadrie
envelopes, and it is at once verified that the quadrics

v — tpu = o, w—Tpw =0, w? — zpv=o, 4.2

where (u, v, w, p) are plane coordinates contragredient to the point coordinates
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(z, 9, 2, 1), touch all the base planes. The self-duality of our three dimensional
figure is now manifest, for these guadric envelopes arise from quadric loci be-
longing to N simply by replacing point coordinates by plane coordinates; this
simple replacement, without any further adjustment of coefficients, has been
made possible by introducing the irrational 7. It implies that the figure is its
own polar reciprocal with respect to the quadric x® + »® + 2* + t* =o0; but it
will presently appear that this is onlv one of twenty-eight gquadrics by means of
which the figure can be reciprocated into itself.

There is one further matter of nomenclature; the line common to the base
planes II; and II; will be denoted by m;;.

5. When £k is subjected to a collineation for which it is invariant contact
cubics are transformed into contact cubics. Moreover, since two contact cubies
belong to the same system when, and ouly when, their two sets of six contacts
together form the complete intersection of & with a cubic curve, contact cubics
which belong to the same system are transformed into contact cubics also be-
longing to the same system. Thus any system of contact cubics is either un-
affected as a whole or else is transformed into a second system; but it is clear
that the system to which the eight inflectional triangles belong must be invariant
for the collineation. The collineation must, in virtue of the birational corres-
pondence hetween %k and K, induce a birational transformation of K into itself;
since a set of coplanar points of K corresponds to a set of points of contact of
%k with a contact cubic belonging to the same system as do the inflectional tri-
angles it follows that any set of coplanar points of K is transformed into an-
other set of coplanar points and so that the transformation is a collineation.’
There is thus a group & of 168 collineations in space for which X is invariant;

it is the Klein group in three dimensions.

6. It is natural to presume that equations for the collineations in space
must be obtainable by combining the formulae for the birational correspondence
between % and K with equations for the collineations in the plane. The Klein
group can, as Dyck pointed out?, be generated by two operations of periods 7
and 2. These operations were given, as ternary collineations, by Klein (K. III,
107), and two corresponding quaternary collineations will generate . The one

! This is a standard proposition; see, for example, SEVERL: Tratlatlo di Geometria Alge-
brica 1 (Bologna, 1926), 68. And, for the present application, the first footnote on p. 724 of K.-F.
® Math. Annalen 20 (1882), 41.
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of period 7 is, by using the equation for the collineation in the plane together
with equations 3.3, easy to obtain; not so, however, the one of period 2. Klein
gives it (K. II, 409) in precisely the form that will be used here, but details as
to how he obtained it do not seem to be available. In the Klein-Fricke treatise
the quaternary involution is obtained from the ternary one not without trans.
cendental methods, and the result is verified, but a posteriori, by Baker. Yet
the quaternary collineations are simply those transformations to which, in Klein’s
notation, 4;, 4, A,; A, are subjected in consequence of A, u, » undergoing the
ternary collineations (K. III, 117), and it ought not to be difficult to obtain the
desired equations by purely algebraical methods.

An alternative way of attempting this, depending on the relations between
different operations of period 2 belonging to the group, might run on the fol-
lowing lines. Each operation of period 2 is permutable with four others (K.
III, 94; K.-F. 382); these fall into two pairs such that each pair, when taken
with the original operation and the identity, forms a 4-group — as we shall
call the Vierergruppe of Klein. An involution j for which % is invariant has
(K. 111, 102; K.-F., 709) as axis a line containing four sextactic points 1, #1, 75, 74
of k; the other two involutions of a 4-group containing j permute these four
points in pairs, both involutions yielding the same permutation. There thus
arise two of the three such permutations, one for each of the two 4-groups, of
the four points; there remains a third. Let this outstanding permutation be
(r;71)(ry72). Then it transpires that the quaternary involution I induced by j is
biaxial and has for its axes the two chords R, Ri and R, R; of K, where, as on
other occasions, points of # and K correspond when denoted by the same small
and capital letter. Now when j is given its axis can be found, and hence the
coordinates of the four sextactic points thereon; equations 3.3 then give the
corresponding points of K. When the permutations of the four sextactic points
have been determined from a knowledge of the two 4-groups the two chords of
K which are axes of I are known and so equations for I can be written down.

7. We now take, as the collineations of periods 7 and 2 that generate the
Klein group G in three dimensions, those whose matrices are (cf. K. IT, 409)

S 8 ¥
& o tly @

& . ola 8
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I T

w
| R ™ R
q 8§ 8§

-



The Klein Group in three Dimensions. 167

where ¢ =7 and the other symbols have the same significance as in § 2. Itis
seen immediately that, if I is the unit matrix, E'=1 and F*=—1. The point
P’ which arises from a given point P by applying a collineation is found as follows:
the four homogeneous coordinates of P are arranged as a column-vector and this is
premultiplied by the matrix of the collineation; the resulting column-vector gives
the coordinates of P’. Hvery point P is invariant for a collineation whenever
the matrix is a scalar multiple of the unit matrix. If, however, it is desired to
obtain the plane n’ which arises by applying the collineation to a plane x (n’
is of course the locus of those points which result from applying the collineation
to the points of =) then the four homogeneous coordinates of = are arranged
as a row-vector; this is postmultiplied, in accordance with the principle of contra-
gredience, by the matrix snverse to the matrix of the collineation and the re-
sulting row-vector gives the coordinates of n’. Both E and F must be non-
singular since |E["=|F|*=1. Clearly |E|= 1, while
1

.
T
0| a9
I

0.4

8
¥ =
«

| RN
| R ™ R
] QR
| RN
| R ™ R

7

as follows at once on adding the sum of the first three columns, each multiplied
by ¢, to the last column. Thus

|F|=1(3e8y —a*— 8" — 7))
He* + 8+ =By —ye—af)=+1.

8. The 168 collineations must permute the base points among themselves,
as also the base planes; and so there appears the representation of Klein's
group as a permutation group of degree 8. The effect of E and F on the base
points is to produce the respective permutations, sufficiently described by writing
down only the suffixes,

e = (1234567), f = (07)(16)(23)(45),

and the effect on the base planes is seen, by using the inverse matrices E~! = E¢
and F-'=—TF, to be precisely the same.
These permutations satisfy the relations

e'=f=(ef)}=(ef) =1, 8.1
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where, in products of operations, those on the right operate first, and the cor-
responding relations satisfied by E and F are easily obtained. We have

Be® yeb ae® Tet Be yet ad® T
. 3 3 3 3 . 4 2

tye ag P& Te , i {rve aet Be =
EF=- , (EF)'=—FES=—- .
5 5 5 5 4 2

olae’ (& ye&® e olae B& y& =

T T T 1 te vet wed 1

If the matrix on the left is squared and the elements of the product
simplified by using 2.3, it is found that

(]‘]F)2:—;§(I + 288+ 2688+ 268 (EF)14o

Now &8 + &+ ¢* is a root of the quadratic (26 + 1)° + 7 =0, and o can there-
fore' be chosen to be that square root of 7 such that 1 + 26 + 265 + 26 =—do;
it then follows that (EF)? =-— (EF)"!, or (EF))* =— 1. We next remark that

ge® ye* ae® wéd Bt y& ae 1

» iy ce® B zed . . i lyet ae® Be =
E'F = - 6 6 6 2 E (E'F)"'=—FE =—" 1 2

OJae® B& y& ve olae® Be& ye =

T T T 1 et Te® Te 1

If these two matrices are squared then it is found, on using equations 2.3,
that the sum of the two squares is, element by element, identically zero. Hence

(E*F)? + (BE*F)~* = o,
(E*F)r=—1.
The unimodular matrices E and F are therefore such that

E' =1 F'= (EF)?® = (E‘F) =— L.

9. Let us return now, for the moment, to the Jacobian curve 3 which is
in birational correspondence with a general plane quartic d. It is known? that
there are 24 trisecants of $ which are also tangents. We may therefore specify
four sets of 24 points on &, namely

! It is of course of little importance which square root of 7 is chosen for o, since F can at
any time be replaced by — F; the choice made here gives a slightly better appearance to the
sets of coordinates of the points which appear in § 28.

* ZEUTHEN: Annali di mat. (2), 3 (1869), 186; BARER: Principles of Geometry 6 (Cambridge,
1933), 32.
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(i) the points of contact of those trisecants which touch ;
(ii) the remaining intersections of these trisecants with J;
(iii) the points of ¢ to which these trisecants are conjugate;

(iv) the points of & that correspond to the 24 inflections of d.

For a general curve ¢ there thus arise four distinct sets of points on J.

Now suppose that d is a Klein quartic £; then the corresponding Jacobian
curve K is invariant for a group of 168 collineations and each of the above
four sets of points on K must also be invariant for this group. But there is
only one set of 24 points on K that is invariant for the group (K. III, 101;
K.-F., 696), namely the set of points which corresponds to the inflections of %.
Hence, for the special Jacobian curve K, the four sets of points must all be the
same sef. This statement can be verified; for it has been shown (0.S., 497 and
509) that a point I of K corresponds to an inflection of k¥ when and only when
the plane which joins I to its conjugate trisecant touches K at I. The set (iv)
of points on K consists therefore of the eight triads of points such as L, M, IN;
for we have seen that the plane which joins L to its conjugate trisecant M N
contains the tangent LM of K at L. But L belongs to the set (i} because it
is the point of contact of K with the trisecant LJf; it belongs to the set (ii)
because it is the intersection of K with the trisecant NL, and, lastly, it belongs
to the set (iii) because it is conjugate to the trisecant M N. We will call these
24 points the points ¢ on K, as does Klein (K.-F., 727).

The plane of two trisecants which pass through a point P of the general
Jacobian curve 9 meets 4 in a sixth point which is not on either of these two
trisecants, and this point, as remarked in § 1, is conjugate to the third trisecant
of & that passes through P. Suppose then that T'U is one of those trisecants
which touch &, T being its point of contact and U its remaining intersection
with 9; let P be that point of 4 to which 7TU is conjugate. Then, of the three
trisecants through P, two coincide with the trisecant PQ R conjugate to 7'; the
tangents of 4 at @ and R are coplanar, and their plane meets 4 (apart from
its contacts at ¢ and R and its intersection at P) in U.

Apply this now to the curve K, supposing 7 and U to be the points M
and N respectively; then P is the point L, and PQR is the trisecant NL which
is conjugate to M. Thus ¢ and R both coincide with N, and the plane con-
taining the tangents of % at ¢ and R becomes a plane having four-point con-
tact with K at N. But this is not all, for U also coincides with N; hence the
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osculating plane of K at N has five-point contact, and similarly for the osculating
planes of K at L and M. Thus the osculating planes of K at the 24 points ¢ all
have five-point contact.® Each of these osculating planes has one intersection with
K other than its point of contact, and this intersection also is one of the points
¢; the osculating plane at M, for example, meets K again in N. These 24
planes may be described as stationary planes, and will be called the planes I

There is a formula® for the number of stationary osculating planes (i.e. of
osculating planes which have four-point contact instead of the usual three-point
contact) of a twisted curve. It is found, by applying this formula, that K has
48 stationary osculating planes; these consist of the 24 planes I' each counted
twice. There can be no other stationary osculating planes of K.

10. Each base plane is, by § 4, tritangent to K and there is a point com-
mon to the osculating planes at its three contacts. There thus arises a set of
eight points which, like the set of base planes, must be invariant for G. But
such a set of points, to wit the base points, has already been encountered, and
if there is only one such set it follows that the three stationary planes of K at
its points of contact with a base plane have one of the base points as their inter-
section.

This is easy to verify. It is sufficient to give the verification for II, since
it will then follow for the other planes II, by applying the collineations of G.

The equation of Il, is t=0; 3.4 shows that it touches K at the points
(1,0,0,0), (0, 1,0, 0), (0,0, 1, 0) and that the respective tangents are ¢{=2z=o,
t=x=o0, t=y=o0. The line t=2z=o0, for example, is common to the sur-
faces X =0, T'=o0 and to the tangent planes =0 of ¥ =0 and ¢t=o0 of
Z=o0 at (1,0, 0,0). The three stationary osculating planes of K therefore pass
one through each of these lines; if it can be shown that they are #=o0, x=o0,
y == 0 the verification will be completed because these intersect at P,. But x = o,
for example, has, from the form of 7, all its intersections with K on the plane
t=o0 and since it contains both (o, 1, 0, 0) and (0, 0, I, 0) but not the tangent
of K at the second of these it must have five-point contact at the first of them.

The verification can also be carried out by using the equations 3.3 for the

! This is proved, by considering the zeros of modular forms, in K.-F., 727; the planes are
there spoken of as Nebenebenen.

® This formula, which goes back to Cayley and Zeuthen (see Cayley's Collecled Mathe-
matical Papers, 5, 516) is given in the standard treatises: BERTINI: Geometria proietliva degli
iperspazi (Messina 1923), 492; BAKER: Principles of Geometry 5 (Cambridge 1933), I91I.
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birational correspondence between % and K, and this method too gives a further
substantiation of the five-point contact.

The tangent and osculating plane at a point of K are determined, together
with the multiplicities of their contacts, from the expansions for the coordinates
of points of K in the neighbourhood of the given point as power series. These
expansions are at once calculated by 3.3 provided that corresponding expansions
are known for %. Consider, for example, the points of % near n = { = 0. Putting

=1 the equation of k becomes 5® + 9{® + { = 0, so that we have the expansions

E=1, n=9, (=P +9"—397 4+,

thus verifying incidentally that the tangent of % is {= o and that it has three-
point contact. The equations 3.3 now give

ziyizit=—mn + 00" — 29" g’ — 0t + gl

where only the first two terms of the power series for the coordinates have
been written down; we may therefore take

:Jc=—17+7;9, y=n5——21712, z==1, t::—n2+n9,

so proving that the corresponding point on K is (0, 0, 1, 0), that the tangent
there is y = { == o0 with ordinary contact and that the osculating plane is y=o0
with five-point contact.

It is thus clear that the three stationary planes which osculate K at its
points of contact with the base plane II; have as their intersection the base
point P;; there thus arise, for¢=o, 1, 2, 3, 4, 5, 6, 7, eight tetrahedra ;. These
may be called osculating tetrahedra; each has a base plane (tritangent to K)and
a base point for opposite face and vertex while the three remaining faces
osculate K with five-point contact.

11. A collineation of G which transforms P; into P; and so II; into II;
also transforms Q; into £;; for the three planes I' which intersect at P; must
be transformed into those which intersect at P;. Thus the tetrahedra £; also
afford a representation of the Klein group as a permutation group of degree 8;
but, as will soon be understood, they do more.

The bottom row of the matrix F, or its inverse — F, shows that the cor-
responding collineation of period 2 interchanges II, and II,, More generally:
the collineation corresponding to E*FE~* is also of period 2 and, since
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it transforms II; into II, and therefore £, into 2, The equations of the three
planes I which belong to £, are therefore

Bx+yelty +afe +1ft=o0,
Y
vet*r +  ay+ Bz + 1t =o0, II.1

e’ x+ By +yz . +Tet=0,

where s may have any one of the values 1, 2, 3, 4. 5, 6, 7. The equations of all
the planes I' have thus been found. The coordinates of all the points ¢ can
be deduced, since each point ¢ is the intersection of a base plane IT and two
planes I

Now it will be observed that

2B+t yety taefr+ 1N+ f{ystPr oy + Bz + 1 8300
Y 7 Yy
+ e (@t x + 8y + ye + v+ 2 (et + Py + &2+ 1)
y+y K
=72 + 2y® + 2% + 17,

go that there is a quadric Qo, with respect to which both £, and £, are self-
polar. This fact affords another means of determining the coordinates of the
points ¢, for those three points ¢ which are vertices of {2, are the poles with
respect to ¢os; of the planes 11.1; their coordinates are therefore given by the
rows of

5868 7838 (Z:Eﬁs T
y &b ol g T 11.2
aeSs [3633 7855 T.

Not only do P, and P, have, for their polar planes with respect to Qs I
and 71, but the polar plane of any base point is a base plane; the polar plane
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of (&84, &3t &% ¢71), which is Py, is
EQ.H—Gux + 8s+3uy + 84.(‘+5uz + T = 0,

which is Il;si6.; the suffix may of course be reduced by any mnultiple of 7.
Moreover, since 25 + 6(2s + 6u) =145 + 36 u = u, the polar plane of Pi..¢y is
IT,. Thus the vertices Py and Payicn of 2, and 2546, have for their polar
planes with respect to ¢« the faces ITy,.6, and II, of the same two osculating
tetrahedra. Indeed all four vertices of either £, or 2,16, have for their polar
planes with respect to o, faces of the same two osculating tetrahedra; this is
quickly verified by wsing 11.1 and 11.2; the vertices of £, are found by writing
u for s in 11.2, and the polars of these points with respect to . are precisely
the planes got by writing 25+ 6u for s in 11.1. The osculating tetrahedra
other than £, and £ are therefore interchanged in pairs by reciprocation in
Qos. Reciprocation in )y, thus subjects the osculating tetrahedra to a permuta-
tion; but it will be noticed that this is an odd permutation, whereas all 168
permutations in the representation of the Klein group as a permutation group

of degree 8 are even.

12. The Klein group, when represented as a permutation group of degree
8, is doubly transitive'; hence there are collineations of G which transform P,
and P into any specified pair P; and P; of the base points; these collineations
transform II, and II, into II; and II; and @, and £ into Q; and £;. They
therefore transform @ into a quadric ¢);; with respect to which £; and £ are
both self-polar; the existence of ;; could of course also have been established
directly, from the identity which must connect the squares of the left-hand sides
of the equations of the faces of £; and £; without appealing to the transitivity
of G. And we have the result that any two of the eight osculating tetrahedra are
self-polar for a quadric. There thus arise twenty-eight quadrics ;; and the
whole figure s its own reciprocal with respect to each one of them.

The reciprocations with respect to the quadrics ¢;; give twenty-eight cor-
relations of period 2 for which the figure is invariant. Now let ¢ be any cor-
relation, not necessarily one of these twenty-eight or of period 2, for which the
figure is invariant. Then, if ( is a collineation of G, ¢ C is a correlation for
which the figure is invariant; there are 168 correlations of this kind. Conversely:

if @ is any correlation for which the figure is invariant @~!@’ must, since it

' Bun~sipe: Theory of Groups Cambridge, 1911, 218,
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is a collineation for which the figure is invariant, belong to G and @', when
written in the form Q(Q~!'Q’), is seen to be one of the above 168 correlations.
Hence the collineations of G and the correlations for which the figure ts invariant together
form a group W of 336 transformations. If h is any operation, whether collinea-
tion or correlation, of H and C a collineation of (&, then A Ch~! is a collinea-
tion and so belongs to &; thus H contains G as a self-conjugate subgroup.

Every operation of H permutes the tetrahedra £; among themselves, and so
we have a geometrical representation of H as a permutation group of degree 8;
all permutations effected by the collineations of G are even, whereas the cor-
relations which make up the other half of the operations of H all produce odd
permutations. It is known that this permutation group contains precisely twenty-
eight odd permutations of period 2, so that there cannot be any quadries in
addition to the @; for which the polars of the eight base points are the eight
base planes.'

13. When the figure is subjected to one of the correlations of H the base
points are turned into the base planes and the quadries 3.1 into the quadric
envelopes linearly dependent on those appearing in 4.2. The curve K, the locus
of vertices of cones which pass through all the base points, is turned into a
developable %, the envelope of planes of conics which touch all the base planes,
while the planes I', having five-point contact with K, become the points ¢ through
which pass five »consecutive» planes of x. The cuspidal edge of x is of order
30, since this is the number of osculating planes of K passing through an
arbitrary point; the order of the surface ' generated by the tangents of this
cuspidal edge is the same as that of the surface S'® generated by the tangents
of K. There must be in all 96 intersections of K and 3'®, and, since both K
and I'® are invariant for &, these intersections form an invariant set of points
on K. But the only invariant sets of points on K are made up, apart from
sets of 168 points arising from one another by the different collineations of G,
of multiples of three groups of 24, 56, 84 points corresponding respectively to
the inflections, contacts of bitangents and sextactic points of %; an invariant set
of 96 points can therefore only consist of the 24 points ¢ taken four times, and
3'* must have fourpoint contact with K at each point c.

! The permutation group is given by Burnside: loc. cit., 219. This is the same as the ex-
tended congruence group discussed by Fricke: K.-F., 445, with s = 2. Just as H is obtainable
by adjoining a single reciprocation to @, so the representation as an extended congruence group
is obtainable by adjoining a single inversion to a group of bilinear transformations.
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11

Geometrical Developments.

14. Since (, operating as a permutation group on the base points, is doubly
transitive those collineations for which two given base points are both unchanged
form a subgroup of G of order 168/(8 X 7) = 3; that is they form a cyclic group
consisting of the identical operation and of two collineations of period 3, each
the square of the other. Moreover there are also three collineations of G which
interchange these two given base points; these, taken with the above three col-
lineations, constitute the set of collineations for which the two given base points
are either both invariant or are interchanged with one another, and so form a
subgroup of G of order 6. It has the cyclic group of order 3 as a subgroup
and is a dihedral group. This association of a cyclic group of order 3 and a
dihedral group of order 6 with a pair of base points corresponds to the asso-
ciation (K. III, 104; K.-F., 707, 710) of isomorphic groups of ternary substitutions
with a bitangent of £.

15. An involution (i.e. a collineation of period 2) that permutes the base
points among themselves must either interchange them in four pairs or leave
an even number of them unchanged. But the only collineations, other than
identity, for which any two base points are unchanged are, as has just been ex-
plained, of period 3; thus every involution belonging to G must interchange the
base points in four pairs, and of course the base planes and osculating tetra-
hedra correspondingly.

Involutions in space are of two kinds, central and biaxial; those lines which
are invariant for a central involution consist of all the lines through its centre
and all the lines in a certain plane, while those which are invariant for a bi-
axial involution consist of the transversals of its two axes. Since an involution
belonging to G leaves four lines p;; unchanged, and since no two of these lines
can interseet because no four of the base points are coplanar, it follows that
every involution belonging to & must be biaxial.

The number of involutions belonging to G is twenty-one, and they are all
conjugate to one another in the group (K. ITI, 93; K.-F., 381). Their matrices
must, since the involutions are all conjugate, all have the same trace, and an
involution is biaxial or central according as its trace does or does not vanish.

But the trace of F, which is the matrix of one of the involutions, vanishes with
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a+B8+y+1, so that we have a second proof that all involutions of G are

biaxial.

16. It is convenient, in order to obtain the first properties of the figure
which arises by considering an involution of &, to be able to allude to the
corresponding figure in the plane. Each of the tweunty-one imvolutory collinea-
tions in the plane of % is a harmonic perspectivity (K. IlI, 10z; K.-F., 709) with
a point O for centre and a line w for axis. Any two corresponding. points of
%k in the involution are collinear with O and harmonic with respect to O and
the point where their join meets «. Each line through O meets % in four points
consisting of two pairs of corresponding points, and there are four lines through
O for which these two pairs coincide with one another — these lines being four
of the bitangents of 4. There pass also through O four ordinary tangents of %,
namely those which touch £ at its four intersections with 1 ; these are four of
the sextactic points of % and are the only points of 4 which are invariant for
the involution.

The locus of chords which join pairs of points of K that correspond to one
another in an involution I of G is a scroll S containing K and the two axes
of I, the two intersections of a generator of S with K are harmonic with re-
spect to the intersections of this generator with the axes. Now when the qua-
drics of the net, of which K is the Jacobian curve, are represented by points
of the plane those which are represented by the points of a line through O are
the members of a pencil which includes the quadric ¢ represented by (). The
intersections of the line with % represent the four cones of the pencil, whose
vertices form a tetrahedron self-polar for ¢. But these vertices are four points
of K which consist of two corresponding pairs of points in 7, so that the gene-
rators of S are polars of one another with respect to g. In particular; those four
bitangents of % which pass through O give rise to four chords of A which are
generators of S and are their own polars with respect to ¢, so that they are
generators also of ¢. No point of S, other than the points of these four com-
mon generators of § and ¢, can lie on ¢ unless it lies on one of the two axes
which, as transversals of the four common generators, both belong to the op-
posite regulus on q. The four common generators are, since they join pairs of
points of K that correspond to pairs of points of contact of bitangents of %,
four of the lines p;;.

The order n of S is the number of its generators which meet an arbitrary
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line . Now A is transformed by I into a line g, and 1, g and the two axes
are on a quadric (not necessarily belonging to N). Any generator of S which
meets A must also meet u and so, since all generators of S meet both axes, lie
on this quadric. The curve common to S and the quadric therefore consists of »
generators and the two axes, so that 2w =u + 2s when s is the multiplicity of
the axes for S. But, since the common curve of S and ¢ consists of the axes
and four of the lines p;;, 2n =4 + 2s. It follows that § s a quartic scroll
having the two axes of I as nodal lines. This result is due to Baker (B, 476)
who obtained it by a different method.

It has been observed that the generators of S can be paired so that those
of a pair are opposite edges of a tetrahedron whose vertices form a canonical
set on K; such a pair of generators is a pair of conjugate chords of K in the
sense of Note I, p. 310. It follows that § is, in the sense of Note I, a self-
conjugate surface. The knowledge of this fact facilitates the task of finding the
equation of §; since the scroll also contains all the base points its equation has
for its left-hand side (Note I, 308, footnote) a skew bilinear form in the two

sets of variables z, v, 2, t and X, Y, Z, T.

17. Four of the lines p;; are invariant for I, and the point which is paired
by I with a point of any one of these four lines is a point of the same line;
I induces an ordinary involution of pairs of points on each of the four lines.
Let papr be one of the four lines; two of the pairs of the involution on pqp are
at once ideutified, namely the pair of intersections of pqs with K and the pair
of base points P, and P,. The pair which is harmonic to both these pairs con-
stitutes the double points of the involution, and is thus the pair of points where
the axes of I meet ps;. Now it will be observed that these intersections have
been identified quite independently of which other three of the twenty-eight
lines p;; are invariant for I, and it will be remembered that there are three
different involutions of (&, belonging to a dihedral group of order 6, which inter-
change P; and P;. It must follow that through any point where an axis of an
involution of ( meets a line p;; axes of three involutions pass.

Perhaps an example of a dihedral group, with its three involutions, may
appropriately be given here. The permutation f of the base points, as has been
mentioned in § 8, is (07) (16) (23) (45), and it is at once verified that e*fe* is
the permutation (043) (257). It therefore follows that those collineations of &

which either interchange P, and P, or leave them both unchanged subject the
12 — 61491112 Acta mathematica. 79
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base points to the following permutations in addition to the identical permu-
tation:
(043) (257) (034) (275)
{07) (16) (23) (45) (16 (02) (35) (47)  (16) (035) (24) (37).

The last three permutations arise from those involutions which interchange P,
and P, and the axes of each of these three involutions must meet p, in the

same two points.

18. The discussion has so far been concerned with the effect of an involu-
tion I on the base points; it is time to recollect that I has the corresponding
effect on the base planes and to enquire what further information can be ob-
tained thereby.

The axes of I, then, are nodal lines not only of a quartic seroll S generated
by chords of the curve K but also of a quartic scroll 3 generated by axes of
the developable x; the axes of I are themselves also axes of x. If p.» is a ge-
nerator of § then 7,y is a generator of =, and the generators of = are polars
of one another with respect to a quadric which touches all the base planes and
meets 3 in its two nodal lines and in the four lines 7;; which lie upon it. And
the plane which joins an axis of I to a line ., which meets it is the same for
each of the three involutions that interchange IT, and IT, and so contains an axis
of each of the three involutions. The two planes so arising through s, are har-
monic both to IT, and II, and to the two planes of » that pass through 7qs.

The involutions which interchange IT, and IT, are of course the same as those
which interchange P, and P, so that their three pairs of axes give two triads
of lines such.that the lines of either triad not only concur in a point of pe; but
also lie in a plane through m.;,. We therefore can say that

The forty-two axes of the involutions belonging to G consist of fifty-six triads
of lines, the lines of each triad being both concurrent and coplanar. Each axis
belongs to four of the triads.

19. Two quartic serolls § and = which arise from the same involution have
the same nodal lines, and therefore meet residually in eight common generators.
Since there are twenty-one involutions there thus appear 168 lines which are
both chords of A and axes of x; the axes of the involutions also have this
double property, so that 168 + 42 = 210 such lines are accounted for. And there
are no others. For the chords of K form a congruence of order 7 and class 13
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while the axes of » form a congruence of order 15 and class 7, so that Halphen's
formula tells us that the number of lines common to the two congruences is
7.15 -+ 15.7, which is 210.

20. Suppose now that one axis of an involution I meets K in R, and R}
while the companion axis meets K in R, and R;. These four points correspond
to collinear points of £ and so constitute a canonical set; it follows that the
three further intersections of any face of the tetrahedron R, Ri R, R; with K
lie on the trisecant which is conjugate to the opposite vertex, the trisecant ¢,
conjugate to R, lying in the plane R; R, R), and so on. Now R, is invariant
for I, so that f, must also be invariant and hence meet both R, R; and R, R5;
thus f; passes through R;, which therefore counts twice among the six inter-
sections of the plane R; B, R; with K. This in agreement with the fact that
the tangent of K at R is invariant for I and so meets' B, R2. We thus see that
the plane which joins the tangent at R, an intersection of K with either axis
of any involution belonging to @, to the companion axis meets K in two further
points collinear with I and harmonic with respect to R and the intersection of
their join with the companion axis.

The osculating ﬁlzine of K at K, is invariant for I, so that it passes either
through R, Ri or through R, R.. But it has just been explained that the plane
R, Ry R:, which contains the tangent of K at R,, also contains one of the tri-
secants through I?,; it cannot therefore be the osculating plane at R, unless the
trisecant and tangent coiucide which, since R, is not one of the points ¢, they
do not. Hence the osculating plane at R, contains R, Ri. Similarly the osculat-
ing plane at Ri also contains R, Ri. The chord R, R; is therefore the inter-
section of the osculating planes of A at R, and Ri, and so a principal chord
of K. The same argument applies to either axis of any involution belonging to
G: the axes of the Oivolutions are forty-two of the principal chords of K. They are
also, by dual reasoning, principal axes of z.

21. If two Dbiaxial involutions are permutable the axes of either are inter-
changed by or else both invariant for the other. In the second event the in-
volutions are such that both axes of either meet both axes of the other, so
forming two pairs of opposite edges of a tetrahedron; their product is then the
third involution whose axes are the remaining pair of opposite edges. If this
were to occur for three of the involutions of G the vertices of the tetrahedron
would be common to three quadrics of N; for it has been explained that the
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two axes of an involution of G lie (together with four of the lines p;;) on such
a quadric. If these three quadrics were to belong to a pencil there would cor-
respond to them three points O, centres of harmonic perspectivities for which
% is invariant, that are collinear; but it is known (K.-F., 712) that the centres
of any three such transformations that are permutable are not collinear. The
three quadrics cannot therefore belong to a pencil and any points common to
them must be among the base points. But no base point lies on an axis of an
involution of G, so that the assmﬂption that the axes of two permutable in-
volutions are edges of the same tetrahedron must be false.

It must be then that when two involutions of G are permutable each inter-
changes the axes of the other; the four axes must belong to a regulus and
constitute two harmonic pairs thereof. Now the product of the two permutable
involutions is a third involution permutable with both of them, and the three
involutions constitute, together with identity, a 4-group. The axes of the third
involution must belong to the same regulus and be harmonic to each of the
pairs of axes of the other two; the three pairs of axes of the involutions of the
4-group are thus all on the same quadric ¥ and constitute a regular sextuple,
each pair being harmonic, in a regulus, to both the others. The twelve inter-
sections of ¥ with K lie two on each of the six axes which lie on ¥, and so
are all of them points a corresponding to sextactic points of £.

It is known (K. III, 94; K.-F., 383, 712) that there are fourteen 4-groups
belonging to G and falling into two conjugate sets of seven; any involution be-
longs to one 4-group of each set. There are thus fourteen quadrics ¥ falling
into two sets of seven, the axes of an involution of G lying on one quadric of
each set. The two quadrics ¥, ¥’ containing the axes of an involution I have
in common two lines of the opposite regulus which meet ten axes in all, for they
must meet both axes of any involution belonging to either of the 4-groups con-
taining I as well as the axes of I itself. The seven quadrics of either set con-
stitute a composite surface of order 14 which cuts out on K the whole set of
a-points in which the axes of the twenty-one involutions meet it. Let the qua-
drics of one set be denoted by the symbol ¥ and those of the other set by the
symbol ¥’. Since each quadric ¥ or ¥ contains three pairs of axes, and since
each pair of axes lies on one quadric of each system, with each quadric ¥ there
is associated a triplet of quadrics ¥ while with each quadric ¥’ is associated
a triplet of quadrics ¥; there is a (3,3) correspondence between the quadrics ¥
and the quadrics ¥’. Thus not only are the seven quadrics of each set permuted
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among themselves by the collineations of G but so are the seven triplets of
quadriecs of each set. This feature of the Klein group, when regarded as a
permutation group of degree 7, of permuting not only seven objects but also,
at the same time and by the same operations, seven triplets of these objects,
was signalised by Nother.!

22. Bach involution of G interchanges the base points and the base planes
in pairs. Since the product of two different involutions which interchange the
same pair is a collineation, other than the identical collineation, which leaves
each member of the pair unchanged this product must be of period 3; it follows
that no two pairs that are interchanged by involutions belonging to the same
4-group can be identical. Now if an involution I; transposes the suffixes @, b
while an involution I; transposes a, ¢ the collineation I, I, transforms ¢ into b;
if, then, I, and I, are permutable the collineation I; I, must also transform ¢
into b so that if d is the suffix which I, transposes with ¢ the same suffix d
must be the one which I, transposes with 4. Thus I, induces, in addition to
two further transpositions, the transpositions (ad) (cd), I, induces (ac) (bd), while
I, I, = I, = I, I, induces (bc) (ad). The remaining four suffixes are subjected to
similar sets of transpositions by the three involutions. The six axes of I, I,,
I; lie on a quadric, ¥ say.

Consider now the tetrahedron formed by the base planes Il,, Iy, I1., Ij.
Take any one of the six edges of this tetrahedron, say m;.. Since IT; and II,
are transposed by I,, m. is invariant for I, and meets both its axes; more-
over II, and II; are also transposed by I, so that the two vertices joined by
7pe are harmonic to the pair of points in which their join meets the axes of I
and so are conjugate points for ¥. The same argument is applicable to every
edge of the tetrahedron, any two vertices of which are therefore conjugate points
for ¥; the tetrahedron is therefore self-polar for ¥. The same result holds for
the tetrahedron formed by the other four base planes, which undergo corre-
sponding transpositions when subjected to the 4-group of collineations. So that
we have

To each of the fourteen quadrics ¥ there corresponds a division of
the base planes into two sets of four, and the tetrahedra formed thereby
are both self-polar for ¥. The same result holds for the two tetrahedra whose
vertices are the two corresponding sets of base points.

' Math. Annalen 15 {1879), 94.
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There thus arise four tetrahedra self-polar for ¥, two of them with base planes
for faces and two of them with base points for vertices. And each of the four-
teen quadrics ¥ or ¥ is both inpolar to all the quadrics 3.1 as well outpolar
to all the quadries 4.2.

There are thirty-five different ways of dividing the base planes into com-
plementary sets of four; the two tetrahedra so arising are self-polar for the same
quadric whose point equation is obtainable forthwith from 4.1 by performing
the corresponding division, into complementary sets of four, of the eight terms
appearing there. And so, when the effect of the involutions of a 4-group of G
is known, the point equation of the quadric ¥ associated therewith can be found
quickly. The plane equation is similarly obtainable from the identity which con-
nects the squares of the equations of the eight base points, which is

R u+ e+ e+ v p) —tpt=o.

§=1
The point equation and plane equation of any quadric ¥ are obtainable from
one another by interchanging point and plane coordinates and, at the same time,

replacing ¢ by its reciprocal, &%

23. As examples, the two 4-groups which contain the involution I(F) as-
sociated with the permutation f may be given. It is found, on referring to
§ 8, that

f=(07) (23) (16) (45), €°fe*fe* = (02) (37) (14)(56), efe’fe’ = (03) (27) (15)(46).

These constitute, with the identical permutation, a 4-group, and the quadric which
contains the six axes of the associated involutions has, for self-polar tetrahedra,
the four arising from the division 0237/1456. The point equation of this quadric
is therefore, from 4.1,

(fx+ey+etzt+ i+ (Px+ fy+ b+ 0714

t—x+y+e+ ) 23.1

N N

The other 4-.group containing f consists of identity and the three permu-
tations

f=(07) (45) (16) (23), efe’fe® = (05) (47) (12) (36), e*fe® fe = (o4) (57) (13) (26).
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The quadric which contains the six axes of the associated involutions is now

associated with the division 0457/1236, and so has the eqnation

(‘x4 ey t+ee+ o'+ (Bt fy+ el i)

~3

9

=yt 2+ R 232

[N

The two axes of [ (F) must lie on both the above quadries.

These two axes, incidentally, also lie on the (uadric which contains the
four lines py:, g, P23y Py This quadrie has an equation of the form 3.1, and
the coefficients are easily devtermined, for example from the conjugacy of F’, and
P, and of three other pairs of base points; the equation is

B—n@—rta) +  — )@ —2tz) + (@ — B (2 — 1 ty) == 0.

The equations 23.1 and 23.2 are the point equations of those quadries ¥
and ¥ which contain the two axes of I (F); the plane equnations are deducible
immediately. From these equations it is quickly verified that the two (uadrics
are both inpolar and outpolar to one another, and that each of them isits own
polar reciprocal with respect to the other. And these geometrical relutions hold
between any one of the fourteen (uadrics ¥ or ¥’ and each member of its as-
sociated triplet.

24. Much more could be written about these fourteen quadries. and while
an exhaustive account of their properties would be inordinately long it is im-
portant to mention some of their more fundamental relations to the lines of the
figure. It would indeed be wrong to omit all mention of those features of the
three-dimensional figure that are related to the formation of equations of the
seventh degree whose Galois group is of order 168. It will be found that the
subjoined tables are useful. Herein the operations of period 2 of (i, regarded
as permutations of eight objects, are exhibited in commutative triads so that each
horizontal layer of each table corresponds to a 4-group; the seven 4-groups for
each table constitute a conjugate set. In the first column the permutations are
given in terms of the two generating permutations e and f; the second column
shows their effect on the base points, base planes or osculating tetrahedra. In
the third column appears that division, of the base points or base planes, into
two sets of four which gives tetrahedra self-polar for that quadric ¥ or ¥’ on
which lie the six axes of the three involutions of the 4-group; this division is
instantly read off from the three permutations of the eight digits. Below this
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division of eight digits into two tetrads appears another division into four duads;
this requires for its explanation, which is given subsequent to the tables, a re-
ference to the associated triplet of quadrics.

When e and f satisfy the relations 8.1 the operation e?~!fe!~?, where p is
any integer, is of period 2. Of the two 4-groups which include this and the

identical permutation one arises by taking the two permutations

et fe2fe3—» and erfedfes—»

while the-other arises by taking the two permutations

ertifelfe? and e?*!fedfe?r,

t  [(07)(23) (16) (45) t  |lo7)(43) (16) (23)
et 160 57 (1) 56| 745 | Lorres ol og) (17 12 3| 025711238
o2 04/12/36]57 sp 3 03/14/27/56
efe®fe’ |(03) (27) (15) (46) e*fe’fe (o4) (57) (13) (26)
efe’ |(o1)(34) (27) (56) efe’ (o1)(56) (27) (34)
. 0134/2567 s s pas 0156/2347
:e 3fe (03) (14) (25) (67) 05/23/16/47 e 3fe 3fe (06) (15) (23) (47) 04/13/25/67
etfesfe | (04) (13) (26) (57) e*fe’f |(o5) (16) (24) (37)
e*fe’ |(02) (45) (13) (67) e*fe® |(02) (67) (13) (45)
efe’f (oi) (i)(ﬁ) (32) 0245/1367 | | s pgr g (o; (26) (ii) (:4> 0267/1345
sp 3 06/15/27/34 PSP 05/17[24/36
e*fe’f |(03) (24) (16) (37) e*fe®fef|(06) (27) (14) (35)
e*fe* |(03) (56) (17) (24) e*fet 1(03)(17) (24) (56)
sersp 6l 0356/1247 s ens e 0137/2456
eifeafe“ (05) (36) (12) (47) 07/13/26/a5 er)fe3fea (o1) (37) (26) (45) 06/12/35/a7
e‘fe’fe’ (06) (35) (14) (27) e’ fe*fe’| (07) (13) (25) (46)
e*fe* [(o4)(67) (12) (35) e*fe’ |(o4) (12) (35) (67)
3Pa2fab 04671235 62 Pa2 0124/3567
eﬁfesfeb (06) (47) (15) (23) o1/24/37/56 eefeafe4 (02) (14) (37) (56) 07/23/15/46
e’ fe®fe’| (07) (46) (13) (25) efe’fe’ (o1) (24) (36) (57)
e*fe* |(os) (17) (23) (46) e’ fe® {os) (23) (17) (46)
4pa2 pal .| 0157/2346 . 9 0235/1467
esfesfe4 (07) (15) (26) (34) 02/14/35/67 fex fe3 (03) (25) (14) (67) 01/26/34/57
e*fe®fe’ (o1) (57) (24) (36) fe*fe® |(o2)(33) (16) (47)
of of
oo | | 8 R
. N 37} 4 03/17/25/46 , 43 7)\25 02/16/37/45
fe*fe® |(02)(16) (35) (47) efe’fe*|(03) (46) (15) (27)
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The fourteen 4-groups which belong to G are all accounted for by giving to p
the values 1, 2, 3, 4, 5, 6, 7. The tables can now be compiled forthwith and
are as shown.

The quadrics # and ¥’ which contain the axes of the involution 7 (EP~1FE!~?)
will be denoted by ¥, and ¥,; the quadrics ¥, correspond to the 4-groups of
the first table and the quadries ¥, to those of the second table.

The divisions, in the last columns of the tables, of the eight digits into
four duwads are now easily explained, Consider the three involutions in the top
layer of the first table; their axes lie on ¥, and the second table shows that
they also lie one pair on each of ¥, ¥, ¥; which therefore constitute the
triplet of quadrics ¥’ associated with ¥,. The three divisions into two tetrads
that arise for the quadrics ¥’ of this triplet show that the four lines

Posy Pizy Pasy  Psr

have the property that when they are divided into two pairs the lines of each
pair are polars of one another with respect to a quadric of the triplet, the three
quadrics of the triplet corresponding to the three divisions of the four lines
into two pairs. And the same is true of the four lines

oy TTrey  Tlye0  TTaie

This explains the division into four duads that appears in the first layer of the
first table. The thirteen similar divisions admit similar explanations.

The division is also associated with another property that will be met later
when those operations of G which are of period 3 are considered, namely that

each of the four pairs of lines
7oy Poss  “Tizs Pigy 736 Pags s Psr

is a pair of polar lines for ¥,.

25. Before we proceed to deduce further geometrical results another im-
portant aspect of these divisions into four duads must be signalised. It is known
(K. ITI, g5; K.-F., 384) that each of the fourteen 4-groups is self-conjugate in
one octahedral group of Q; the four lines p that correspond to a division into four
duads undergo all possible permutations when subjected to the corresponding octa-
hedral group of collineations, while the same of course holds for the four lines
. Such a set of four lines may be called an octahedral set (of lines p or of

lines #). The lines p of an octahedral set, since they join the eight base points
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in pairs, correspond to a set of four bitangents of £ whose points of contact lie
on a conic; that each octahedral subgroup of the Klein group of ternary col-
lineations has associated with it such a set of four bitangents on which it im-
poses all possible permutations is well known (K. III, 103; K.-F., 712). The
conics through the contacts of these octahedral sets of bitangents were first
obtained by Klein (K. III, 106, 108) and then figured in a paper by Gordan'.
Since the four bitangents of an octahedral set are not concurrent the four lines
p of an octahedral set do not belong to a regulus and so have only two trans-

versal lines. The same is true of an octahedral set of lines s

26. Suppose now that two pairs of lines [, I and m, m’ both consist of polar
lines with respect to any non-singular quadric surface ¢q. Then, if the four lines
do mnot belong to a regulus, their two transversals », »' are also polar lines
for gq. Of several short proofs of this result we select one which uses the re-
presentation of the lines of three-dimensional space by points of a guadric £
in five-dimensional space since we shall presently find it convenient to use this
representation for another purpose. The two reguli on ¢ are represented by the
conies y, and y, in which @ is met by two planes @, and @, that are polars of
each other; the lines [, m, m’ are represented by points L, L', M, M’ such
that L L' meets both @, and @,, say in L, and L, (not points of Q) while M M’
meets them in M, and M, The transversals », #»' are represented by the two
intersections N, N' of £ with that line which is the polar of the space L L’
M M’: this space is L, Ly M, M; and, since w, and w, are polars of one another,
its polar line joins the pole N, of L, M, with respect to y, to the pole N, of
L, M, with respect to y,. And therefore, since NN’ meets both @, and @, »
and »" are polar lines with respect to g.

It follows that the two transversals of an octahedral set of lines are polar
lines with respect to each of the three quadrics of a triplet; for example, the
transversals of Py, Py, Pss, Ps are polar lines for each of Wi, ¥; #7, as also
are the transversals of 7y, 7.5, T4, 75

Denote, for the moment, the two axes of I(F) by x and 2'; they lie on ¥,
and on ¥

Since p,, and p;; are interchanged by I (F) they belong to a regulus with
x and z’; for the same reason p;, and p, belong also to a regulus with x and
#. The quadric surfaces on which these reguli lie are, since an octahedral set

' Math. Annalen 20 (1882), 515—530.
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of lines does not belong to a regulus, distinet and so have in common, in ad-
dition to x and 2, two lines ¢ and ¢'; these are therefore the two transversals
of the octahedral set py, s, P1s, P and, since they meet z and z', are both
invariant for I (F). Similar reasoning shows that ¢ and ¢ also meet the axes of
those other two involutions whose axes lie on ¥,. Hence ¢, ¢ themselves must
lie on ¥, and belong to o,, the regulus complementary to that which contains
the axes of the three involutions.

Each quadric ¥’ of the triplet associated with ¥, contains two lines of o,
which are harmonically conjugate in ¢, to ¢ and ¢, for, as has been shown, ¢

and ¢ are polar lines for each quadric of the triplet. Hence we have:

Any one of the fourteen quadrics ¥ or ¥’ has among the lines of one
of its reguli axes of three permutable involutions of G. Through each of
the three pairs of axes passes a quadric of the associated triplet and this
quadric contains two lines of the complementary regulus o. The three pairs
of lines so arising have a common harmonic pair and so belong to an involu-

tion en o.

The double elements of this involution were obtained as the transversals of an
octahedral set of lines p. But the corresponding octahedral set of lines 7 clearly
yields, through the same associated triplet of quadrics, the same involution and
80 two corresponding octahedral sets of lines p and lines w constitute eight lines

with two common transversals.

27. Yet another connection can now be established with Klein’s work. When
Klein (K. IT, 413) put to himself the question of finding the simplest constructs
that only admit seven different positions when subjected to the collineations of
G he answered it by giving two sets of linear complexes. A second answer has
now been provided by obtaining the quadries ¥ and ¥’, and it may be sub-
mitted that these too have Klein's desired criterion of simplicity. The quadrics
and the linear complexes are intimately related, and this relation will now be
set forth.

Let us use again the representation of lines of three-dimensional space by
points of £; any quadric q has two complementary reguli represented on £ by
those conics y, and y, in which it is met by two planes @, and @, that are
polars of one another. Suppose now that any two lines « and j, represented
by points 4 and B of y,, are chosen in one of the reguli: what conics of £
through 4 and B represent reguli on quadrics ¢’ that are self-reciprocal with
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respect to ¢? (It will be remembered that quadrics ¥ and ¥’ are self-reciprocal
with respect to one another when each of them is a member of the triplet as-
sociated with the other.) The lines other than ¢ and 8 of such a regulus are
polars of one another with respect to ¢, and any such pair of lines is harmonic
in the regulus to « and 8. If then L is any point of an eligible conic y’ through
A and B the polar line with respect to ¢ of the line which is represented by
L must be represented by the other intersection M of y° with the line which
joins L to T, the intersection of the tangents of ' at 4 and B. Since L and
M represent lines that are polars of one another with respect to ¢ the tangent
primes of £ at L and M must intersect y, in the same pair of points, and since
the line joining these, being the polar of the intersection of LM and A B with
respect to y,, is not A B, the polar prime of 7, which certainly contains 4 B,
must contain the whole of w,. Wherefore T must lie in @,. The locus of the
eligible conics 7’ is the section of 2 by the prime which joins @, to 4 B.
Suppose now that a linear complex .4 contains reguli » and »’ which, having
two common lines, lie on ¢ and ¢’ respectively. The prime section of 2 which
represents .4 must contain, in the above notation, both y;, and y" so that the
pole of this prime must lie in w, on the polar of T with respect to y,. The
two points of y, which lie on this polar represent the two lines common to those
reguli on ¢ and ¢’ that are complementary to » and »". If then a single linear
complex 4 contains not only » but also three further reguli »i, »%, 73 lying re-
spectively on quadrics ), ¢b ¢3 that are all self-reciprocal with respect to ¢
(each of 7, 73, 73 containing two lines of r) it must be that those three lines
in @, which join the pairs of points of y, representing the pairs of lines of the
regulus ¢ complementary to r that lie respectively on ¢1, ¢z, gs, are concurrent;
or that the three pairs of lines belong to an involution in ¢. And the converse
is true also. Now this, as has been shown, is precisely what happens for any
quadric ¥ or ¥’ and its associated triplet, and so
On any one of the quadries ¥, is a regulus 7, containing the axes
of three permutable involutions of (. Each pair of axes belongs also to a
regulus on a quadric of the associated triplet, and these three reguli belong
to a linear complex .4, which also contains r,. And from each quadric ¥,

there arises similarly a linear complex .

This describes how to obtain the linear complexes from the guadries. As with

the quadrics, so with the linear complexes: they form two sets of seven and
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associated with each complex of either set is a triplet of complexes of the other
set. The quadrics are obtained from the linear complexes very simply: given
one of the complexes the corresponding quadric is that which contains the re-
gulus which is common to the three complexes of the associated {riplet.

The fourteen complexes A and A’ are Klein's linear complexes. Since equa-
tions for all the quadrics ¥ and ¥ are, as remarked in § 22, immediately avail-
able there is no hindrance to the verification of this statement. But space will
be saved here if the verification is suppressed, and perhaps countenance will
also be given to the suppression as some retaliation for the tantalising with-
holding {cf. K. 11, 413) by Klein of the geometrical discussions by which he
obtained the linear complexes.

Since each linear complex contains a regulus on the corresponding quadrie,
and since this regulus also belongs to each of the three associated linear complexes,
each of the fourteen complexes must be connected with the members of its as-
sociated triplet by a linear identity. These identities are not mentioned by
Klein, but they are immediately derivable from equations (23) on p. 414 of
K. II. The corresponding identities between conics which pass through the con-
tacts of octahedral sets of bitangents of % are given by Gordan (loc. cit. 520).

28. Nothing has yet been said about equations for the axes, or about coor-
dinates of points which lie upon them. It is however quite easy to approach
these matters with the help of the definition, given in § 17, of the pair of inter-
sections of p;; with axes as the common harmonic pair of two known pairs of
points on p;;. For it follows, from the remarks at the end of § 3, that the
point (&8 + A&%, &7 + A%, &7+ 16, ¢71 + ¢71]) lies on an axis when 4 is a
root of A* + 1 =0 and that (£, & &% 7=1 + u) lies on an axis when u is a
root of 2u®— 7 =o0; here ¢ and j are any two different digits, and s any one
digit, among 1, 2, 3, 4, 5, 6, 7. The fifty-six intersections of the axes with the
lines p;; are thus identified, and the fifty-six planes which join the axes to the
lines n;; are identified just as simply.

We are, for example, led to the following points on the axes of I(F):
on Por;

(1, 1, 1, =t + g17™Y) and (r, 1, 1, =
on Pig;
(e +76e% et +ie® e* + 26’ v i and (6 —i&® & — 7% &2 —1eb, v —d7)
on Pos;

(et + 7% e +ie®, e +ied, vl +iv Yand (e —de, e®— i, e —ied, v — i)
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on Pys,

(2426 e+ ie®, e+ e 171+ 4771 and (e — 7%, e —de?, &' —4e® 171 —is)

The four points written on the left are collinear, lying on one axis of I(F),
while the four points on the right are also collinear and lie on the compa-

nion axis.

29. It is known (K. ITI, 93; K.-F., 381) that G contains forty-two operations
of period 4. Any one of them, say J, generates a cyclic subgroup of G, the
square of .J, which is the same as the square of its inverse .J~! or J? being
one of the involutions. If the square of J is I any united point of J is also a
nnited point of I and so must lie on an axis of /. It cannot be that every
point of an axis is a united point of J, for each axis is a chord of K and it
is known (K. ITI, 98; K.-F., 381—2) that J has no united point on K; thus each
axis contains the two united points of the projectivity induced thereupon by J
which, since every point of the axis is invariant for [=.% is of period 2 and
so an ordinary involution.

The united points of J are thus the vertices of a tetrahedron, which will
be called a fundamental tetrahedron and denoted by 7, two of whose opposite
edges are axes. Since each point of either axis is transformed by J into its
harmonic conjugate with respect to the two united points on this axis the posi-
tion of the united points is known as soon as two pairs of corresponding points
on the axis are known. But one such pair, R,, R}, consists of the intersections
of the axis with K while a second such pair, S;, Si, consists of the intersections
of the axis with those trisecants of X that are conjugate to the points R,, R
in which K meets the companion axis; these two pairs are sufficient to deter-
mine two vertices V,, Vi of T and the vertices ¥, V: on the companion axis
are determined similarly. Other facts are available for finding these vertices, or
for verifying their positions when already found. There are, for instance, four
lines p;; which meet both axes of I; these are interchanged in pairs by J and
the vertices of T on either axis must be harmonic to its intersections with
either of the two pairs. And there is an analogous statement involving the four
corresponding lines ;.

Those edges of T which are not axes will be called transversals. Fach point
on a transversal belongs to a unique set of four points, obtained by subjecting
it repeatedly to the collineation .J, on the transversal; this set is invariant for
J, is linearly dependent on two particular sets consisting of a vertex of T counted
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four times, and so is harmonic. Moreover, since J° =1, each set consists of
two pairs both harmonic to the pair of vertices of 7 and so constitutes with
these vertices a regular sextuple. These remarks have some significance when

surfaces are considered which are invariant for the collineations of G.

30. Suppose now that C is one of the two collineations of period 3 for
which both P; and P; are invariant. The assumption that a third base point is
also invariant for C implies that at least five of the base points are invariant,
and so that C is the identical collineation which it is assumed not to be. The
remaining six base points are therefore permuted by C in two cycles of three:
say (Pq Py Pe)(Py P. P;). There are then at least four united points of C on p:j
namely P; P; and the intersections of p;; with the two planes P, Py P, and
Py P, Ps; it follows that every éndividual point of p:; is a united point of C. If
a line is invariant for € but yet is not such that every point on it is a united
point then it joins two united points of C, these being the united points of the
projectivity induced on the line by C. This projectivity is of period 3, and
each point of the line belongs to a unique triad of points that arises from any
one of its members by repeated applications of C; these triads all have the pair
of united points as their Hessian duad and are linearly dependent on the two
particular triads which consist of a united point taken three times. Such a line
is that common to the planes P, P, P. and Py P, Py; one triad of points thereon
consists” of the intersections with pic, Pea, Pop and a second of the intersections
with pes, D, pae; the two united points U;; and U/; are found as the Hessian
duad of either of these triads. The jundamental spaces of C, to use the standard
nomenclature®, are p;;, U;j, U;;; the united points of C are Uy, U;; and every
point of p;; while the united planes of C are U;;p;j, Uijp:; and every plane
through U;; Ui;. Now among the united planes of C are II; and IIj, neither of
which passes through p;;; it follows that the line U7;; Ui; must be ;. Reci-
procally it appears that p;; joins the point of intersection of I1,, IT,, II. to the
point of intersection of ITy, IT., II;. And we have

If any two base points, say P; and P;, are chosen the remaining six
are thereby divided into two triads and the line common to the planes of
these triads is m;;. Dually, if II; and II; are selected the remaining six
base planes are thereby divided into two triads, and the point of intersee-

tion of either of these triads is on p;;.

! BERTINI: Geomelria proiettiva degli iperspazi {Messina, 1923}, 76.
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Thus every line m;; is met by six of the lines p;;, every line p;; by six of the
lines 7.

As an example we may use the permutations given in § 17, by which it ap-
pears that the two planes which pass through = are P, P, P; and P, P, P..
This is easily veriied. The equation of P, P, P, is

y & t ‘
0o 0 -0 1 , .
0= R =(e—e&)z+ (et — &y + (& — &%z,
et g e !
3 5 6 —~1

x Yy ez rt) x y z aex+tyy +8z +ut

0— & & & 1| _ |8 & & aff+tye + B+ 1
& 8 € & & a4yl +pS+ 0
II I 11 't 11 a+f8 +y +1

where the lower three constituents of the last column are now all zero, so that

the equation is ex + yy + B2 + ¢t =0. But

e—r+(t—)y+ (P —d)e=cx + ety + ez + ot —(CPx+ely+ et
Y Y !

ax+yy+Bztat=cx+ ety + e+l t+ (Prteldy+elzrat),

and the passage of the two planes through =, is manifest, as is the fact that
they are harmonically conjugate to I1, and Il
These two harmonic pairs of planes through m,; determine a third pair,

harmonic to both of them, with equations
ex+ey+ e+t i(fr+ly+lz+rat)=o0. 30.1

This pair of planes, being harmonic both to IT, and II; and to P, P, P, and
P, P, P, must be the pair of united planes through =,; for each of the three
involutions of G which interchange II, and II,. Each plane of the pair therefore
contains axes of these three involutions and is determined as the join of 4 to
one of the two points of p,; where three axes meet. The coordinates of the two
points in question have been given in § 28, and it is at once verified that they
lie one in each of the two planes 30.1.

Dually there is, on each line p,; a regular sextuple of points. The three
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pairs of the sextuple are: (1) P:; and P;, (2) the points of concurrence of two
triads of base planes, (3) the intersections of p;; with axes of involutions.

31. Certain facts about the intersections of m;; with any surface /' that is
invariant for the collineations of G can be predicted in consequence of its in-
variance for the collineation € of period 3. For the intersections of I’ with
st;; must, as a whole, be unchanged by C and so consist of the united points
U,U" and a certain number of triads of points. Moreover, since there are in-
volutions of G which interchange U and U’, F must have equal multiplicities
at these two points and also equal orders of contact, or multiplicities of inter-
section, with U U’. Thus if the order of F is congruent to I to modulus 3 its
multiplicities of intersection at U/ and U’ must be congruent to 2, while if the
order of F is congruent to 2 to modulus 3 these muiltiplicities must both be
congruent to I.

32. A reference to the tables on p. 184 shows that the polar planes of P,
and P, with respect to ¥, are Py P, P, and P, P, P, while the polar planes of
the same two points with respect to ¥; are, although in the opposite order, the
same two planes. Hence p,, and 'm,; are polar lines with respect to both ¥,
and ¥7; — the two quadrics that correspond to the octahedral sets in which
pie and 7 oceur. The analogous property holds for any pair of lines p;; and
m;j: they are polar lines with respect to those two quadrics ¥ and ¥’ that cor-
respond to the octahedral sets in which p;; and m;; occur. Also: given any
guadric ¥ or ¥’ each of the four pairs p;; and n;; that belongs to the octahedral
set associated with this quadric is a pair of polar lines with respect to it. Kach
pair is a pair of polar lines also with respect to a quadric of the other set of
seven, and the four quadrics so arising are those which do #of belong to the as-
sociated triplet.

33. Suppose now that b,b" are the intersections of K with a line p (suf-
fixes may be dropped for the time being) and U, U’ are the united points of C
on the corresponding line =. Since & is a united point of C the tangent of K at
b is unchanged by C and so, as it is distinet from p, must pass through U or U;
let it pass through U. The plane Up bhas, apart from its contact at b and its
intersection at &', three further intersections with K which, since 2b + 2% is a
canonical set on K, are all on the trisecant conjugate to ¥’; this trisecant, since

it is unchanged by C, must pass through U. Similar statements hold for the
13— 61491112 Acta mathematica. 79
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trisecant conjugate to b, which passes through U’ and meets there the tangent
of K at V'. The scroll R® generated by the trisecants of K is of order 8 and
invariant for ; that it should pass through both U and U’ is in accordance
with § 31.

The osculating plane of K at b is a united plane of C which does not pass
through p and therefore must pass through s; the same is true of the osculating
plane at b’. Hence x is the line common to the osculaling planes of K at its inter-

sections with p.

34. Consider now the relation of & to the tangents of K, which generate
a developable S'. Both [/ and U’ lie, as has just been shown, on §'®; not
only does this happen but the tangent planes of S at U and U’, being the
osculating planes of K at b and b, both contain n which therefore touches S
at both U and U’. This, too, is in accordance with § 31. There remain twelve
further intersections of = with S'®; the tangent of K which passes through any
one of these gives rise, by repetitions of C, to a triad of tangents which are
cyclically permuted by C and which, since the plane joining any one of them
to n is a united plane of C, lie in a plane through =. Two such planes are
indeed familiar — the base planes which pass through s; there remain two
others. Thus, apart from the base planes II, there are two further tritangent
planes of K passing through each of the twenty-eight lines 7; there are thus
obtained, in addition to the eight base planes, fifty-six tritangent planes of K.
Formulae' that connect the different singularities of a twisted curve show that
K has sixty-four tritangent planes altogether; we have therefore accounted for
them all. The dual result is that the triple points of the cuspidal edge of the
developable » consist of the eight base points P and of two further points on
each of the lines p.

C permutes the tangents of K in triads, except for the two tangents at &
and " which it leaves unchanged; if a tangent of K meets p in a point other
than b or b all tangents that arise from it by repeated applications of C must
meet p in the same point. Now p meets twelve tangents of A other than those
at b and b'; these must therefore consist of four concurrent triads. The lines
p therefore account for 112 of those points through which pass three tangents
of K.

! ZeuTHEN: Nouwvelles Annales de mathématique (2), 7 (1868}, 402; CAYLEY: Collecled Mathe-
malical Papers, 8, 77.
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35. There are collineations of period 7 which beloug to G; there are forty-
eight in all and they are distributed in eight conjugate cyelic groups (K. III, 93;
K.-F., 375). Each such collineation has for united points the vertices of an
osculating tetrahedron £; one example is the collineation whose matrix is K or
one of its powers, for the matrix, being in diagonal form, is the instrument of
a collineation whose united points are the vertices of £,. Any point, other than
a vertex, on an edge of £ belongs to a unique heptad of points on this edge
which arises from any one of its members by repetition of the corresponding
collineation. It follows that any surface F' which is invariant for & can only
meet the edge in the two vertices lying thereon and in a number of these
heptads; if the order of F is congruent to » to modulus 7 then the sum of the
multiplicities of its intersections with any edge of 2 at the two vertices is also
congruent to n.

II1.

The Invariants.

36. We pass now to the consideration of invariants of the Klein group in
three dimensions; by an invariant of G is meant any surface which is trans-
formed into itself by every one of the 168 collineations of . There are two
ways of approaching this matter, and they supplement one another most con-
veniently. The first approach may be described as geometrical, and springs from
the fact that all combinantal covariants and contravariants of the net 3.1 give
surfaces with the desired property of invariance. Since several combinants of
a general net of quadrics have been identified the corresponding combinants for
the special net can be obtained; all combinants of the special net are obtain-
able in this way, although the specialisation may cause some to vanish identic-
ally, others to coincide one with another, and relations of linear dependence to
hold which do not hold for the general net. The second approach, which
emerges from the theory of group characters and depends on properties of groups
of linear substitutions, may be described as algebraical. The geometrical ap-
proach leads to the actual invariants themselves and yields polynomials that give
equations for the surfaces. The algebraical approach gives no information about
the form of these polynomials, but it tells precisely how many there are of any
given order which are linearly independent,
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37. A linear substitution both determines and is determined by a unique
square matrix, the number of rows and columns in the matrix being the number
of variables subjected to the substitution. In the geometrical representation of
the substitution as a collineation the coordinates of a point P are constituents
of a column vector which is premultiplied by the matrix; the constituents of
the product, which is another column vector, are the coordinates of the point
P’ into which the collineation transforms P. Now this geometrical representa-
tion, abundantly advantageous though it be, carries with it a certain complica-
tion for, since the position of a point is not altered when all its homogeneous
coordinates are multiplied by one and the same factor, a collineation, viewed
as a geometrical operation which changes the position of a point, is not altered
when every element of its matrix is multiplied by one and the same factor.
Thus, while a substitution determines a unique matrix and so a unique collinea-
tion, the converse does not hold: a collineation need not determine a unique
substitution. A group & of collineations may not determine a group, of the
same order, of substitutions but some group G* of substitutions whose order is
a multiple of that of G. It may be possible to find in G* a subgroup which is
simply isomorphic with G but, on the other hand, it may well be impossible.
The existence of simply isomorphic groups & and G* is indeed of proved im-
possibility even for the elementary example of the 4-group, which does not ad-
mit a representation as a group of four binary substitutions’; eight binary sub-
stitutions inevitably arise, forming a group in (2, 1) isomorphism with the 4-
group. And an analogous situation prevails for the Klein group &; it is not
possible to obtain a representation of &G as a group of 168 quaternary substitu-
tions, and the attempt to do so inevitably produces a group G* of 336 sub-
stitutions in (2, 1) isomorphism with G (K. II, 409; K.-F., 724). And it cannot
have escaped notice that in the group gemerated by the matrices E and F the
identical collineation corresponds to two different matrices E?'=1 and F*= —1;
to every one of the 168 operations of the permutation group generated by e
and f there correspond two operations, of the substitution group generated by
E and F, whose matrices are negatives of one another. It may be remarked
in passing that G* is not the group H encountered in § 12; the substitution
—E belongs to (* and has period 14 while no operation of H, which is a per-
mutation group of degree 8, can have this period.

! KLEIN: Vorlesungen iber das Ikosaeder (Leipzig, 1884), 37 and 46.
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38. A substitution group " has invariants; by this is meant that there
are polynomials, in the variables which are subjected to the substitutions, which
are unchanged by all the substitutions of G*. If an invariant of G* is equated
to zero the resulting surface is an invariant of (. A generating function which
yields important information about the invariants of (* can be construeted, and
we have the following theorem®:

If there are N operations in G* then the number of linearly independent
invariants which are of degree m is the coefficient of ™ in

I 1
¥

1=z (1—2z)...(1— )

summed over all the substitutions of G*, where 4,45, ..., 4» are the multi-
pliers (i. e. the latent roots of the matrix) of a substitution.

Two substitutions which are conjugate in G* have the same set of multipliers,
s0 that the terms of the sum can, if desired, be assembled in sets of equal terms
corresponding to the conjugate sets of G

We have then to construct a funetion

I 1
R R W [ [ [ e
The multipliers of the various substitutions of G* are given in the following
table. The number at the left-hand end of each line is the number of substi-
tutions which have the same set of multipliers as does the substitution chosen
for illustration; the number at the right-hand end of each line is the period of
these substitutions. A few lines of explanation follow the table.

1| I | 1, I, 1, 1 1

1| —1X —1, —1I, —I, —1 2
56 | —EF 1, I, o, o® 3
42 F Z, Z —1, —2 4
s6 | EF —1, —1, —w, —w? 6
241 E &8, &3, &b, I 7
24| E3 &, &, g, 1 7
84 | B*F | o1 (1+4), —oM1+s), v (1—2), —1(1—37)| 8
24| —E —e8, —e3, — &5, —1 14
24 | — K3 —et —&3, —e, —1 14

! BurNsIDE; Theory of Groups (Cambridge, 1911), 301,
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The multipliers of I, —I, —E and all its powers are obvious, since these
matrices are all in diagonal form. Those of F are determined by two facts:
first that ¥2=—1, so that the square of each multiplier of ¥ must be — 1,
and secondly that the sum of the four multipliers vanishes with the trace

g(ﬂ +a+y+ 1) of F. The multipliers of E*F are found similarly; the squares
of two of them must be ¢ and of the remaining two —¢, while the sum of the
four must vanish with the trace %(ﬂ€3+a€5+7£6+1) of E*F. Since (—EF)*=1
the multipliers of —EKF must all be cube roots of 1 and their sum must be
equal to the trace —%(ﬂe"-}—aea +y&® + 1) of —EF; this trace is equal to 1,

so that the four multipliers must be as in the table. Those of EF are got by
a change of sign immediately.

As for the numbers of substitutions with given multipliers, they can be
verified by appealing to the (2, 1) isomorphism between G and G* and the known
distribution of the operations of G in different conjugate sets'.

The table shows that

J— 1 1
@ (x) = ggg{f(x) + f—a)}
where
_ 1 ‘ 56 21 ' 24
f(x)'(l—x)* T (1 —a%) " () (—fx)(i—efx)(1—fa)(1—2)
, 24 42
(1—-a4x)(1—~e”9c)(1——ex)(1v—a:) * 1+ at
_ 1 26{1 +x+ax? 21 24(2+ x— 22 —-22%) 42
T {1—a)? (1 —ab)? (1+z%* 1—x' 1+t

On expansion it is found that

Olr)=1+az* +2°+ 328+ 220+ 52% + 52" + 102" + 92 + -

39. The first item of information furnished by @(x) is that there is one,
and only one, quartic surface tnvariant for G. This surface appears in the Klein-
Fricke treatise on p. 739, where it is actually derived as a surface which inter-
sects K at the 24 points ¢. The corresponding polynomial appears on p. 242

! Bee, for example, the table of group characters of & given by D. E. LirTLEwWooD: Proc.
London Math. Soc. (2) 39 (1935), 188 and 192.



The Klein Group in three Dimensions. 199

of Brioschi's paper'; there is no thought there of geometrical interpretation,
but Brioschi's A is, save for the difference in notation, identical with the X' (A)
in K.-F. Brioschi obtains this polynomial, as he obtains further invariants, as
a coefficient in a modular equation, while in K.-F. it is obtained as a symmetric
function of modular forms; it is proposed here to derive this quartic polynomial
by the geometrical method. 1t was explained in Note IV (p. 135) that there
exist quartic surfaces which are combinantal concomitants of a net of quadrics;
when the net is a Klein net those of these concomitants which do not vanish
identically must, since z* appears with coefficient + 1 in @ (x), all coincide with
a surface F*. Now there is, according to Note IV, a quartic surface F* having
all the lines =;; as bitangents; this is in agreement with the remarks in § 31
concerning the intersections of covariant surfaces with z;; and these remarks
tell us further that the two points of contact of F* with m;; must be the united
points of the two collineations of period 3 for which FP: and P; are invariant.
F* was found in Note 1V as the dual of Gundelfinger's contravariant ¢*; we
will then obtain ¢* which must also be invariant for &, directly. Once ¢* has
been found reciprocation with respect to ;, which amounts to replacing plane
coordinates u, v, w, p by point coordinates z, y, 2, {, gives the equation of F*.

The quadrics 3.1 of N meet a plane ux + vy + wz + pt =0 in conies which
are projected from P, by the cones

tux® + py? +Twex + Tvay =o,
eyt +pf +rwye + Tuxy =o0,
pat + 1wz + tvye + ruzx =o0.

Gundelfinger's contravariant is the envelope of those planes which are such
that Sylvester's invariant for the above three comies vanishes. This invariant
is given in full by Salmon in § 389 of his Conic Sections for any three conics
whatever, so that its value can be found for the above three particular omes.
If we denote, for the moment, by S (u, v, w) the sum of three terms derived
from one another by cyclic permutations of u, v, w the value of the invariant is

(P*+ 27uvw)® + 272 8u(vp —vwd) (2uv® + wp?) + 2 8u?(zv® — up)(zw® + vp)
—2tpSulru’—wp)(tw® —vp) + 27uvw(p® + 27uvw) — 4u* 2wl

The terms independent of p herein are seen to cancel one another, as also the
terms of the first degree in p. If the factor p® is removed and the resulting

Y Math. Annalen 15 (1879
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expression equated to zero we find
P+ 6ruvwp + 2(0*w + wlu + wlv)=o
for the equation of ¢*. The equation of F* is therefore
t*+6rxyzt+ 2@l + 2+ 2*y)=o.

This polynomial is, save for the modification caused by the introduction of the
irrationality z, the same as that obtained by Brioschi; Brioschi's notation is
changed into the present notation by replacing a, @, @, a, by 77¢, z, ¥, 2
respectively.

It is seen from its equation that F* is outpolar to every quadric 4.2; it
must therefore' be linearly dependent on the fourth powers of the base planes.
And in fact

14{t* + 6rxyzt + 2(yPz + 282 + 2% y)}

i
= Z (fx + &%y + &2%2 + v 1) + ({or 1 H%
8=1

It was indeed by observing that the right-hand side of this identity is a modular
form invariant for G* that the quartic surface was obtained in K.-F.

The base plane =0 meets F* in a Klein quartic; the lines of intersection
of {=o0 with the remaining seven base planes are, in accordance with the
reasoning of Note IV, an Aronhold set of bitangents of this curve. Their points
of contact could easily be found. By applying suitable collineations of G it
follows that every base plane meets F* in a Klein quartic.

40. There is, on a surface F” of order n, a flecrodal curve, or locus of points
whereat one of the inflectional tangents has four-point contact; it was shown
by Salmon that this curve is the intersection of F™ with a covariant surface
of order 11% — 24. The flecnodal curve of F* is therefore obtained as its inter-
section with a covariant surface of order 20, which must have the property of
being invariant for G. This surface, by § 31, passes through the fifty-six points
U which lie two on each of the lines m;;, and these points are therefore, since
F* also passes through them, on the flecnodal curve. Moreover the Hessian H®
of F* which is of order 8 and also invariant for &, must also, by § 31, pass
through these points. The points U are thus among the points of contact of

' REYR: Journal fiir Math. 78 (1874), 112—113.
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the parabolic and flecnodal curves of F*. It was shown by Clebsch' that the
parabolic and flecnodal curves of a surface touch wherever they meet, and that
on a quartic surface there are 320 of these contacts. The points U account for
56 of them, leaving 264 others. These outstanding points include the 24 points
¢, and moreover include them multiply; it is sufficient to establish this fact for
any one of the points ¢, since it will then also be established for the others,
which can all be obtained from the one by collineations of &. Consider, then,
the point y=z=t=o0. That this is on the flecnodal curve of F* is obvious
because the line y = z= o0 has all its four intersections with F* at this point.
As for it lying on the parabolic curve, it is sufficient to remark that the tangent
plane y =0 of F* meets it in the curve y = * + 2 2%z = o having a triple point;
it follows, from a result of C. Segre's?, that the point is a multiple point on
the parabolic curve. Segre's italicised statement (pp. 174—3) establishes indeed
that the parabolic curve has a triple point and also gives the necessary informa-
tion for determining its three tangents there; this information will be used when
the nature of the singularity possessed by the Hessian surface has been de-
termined. The necessary and sufficient conditions given by Segre (p. 173) for
the parabolic curve to have a point of higher multiplicity than 3 are not here
satisfied.

41. The second item of information furnished by @ (x) is that there is one,
and only onme, sextic surface invariant for &. The geometrical approach leads
instantly to this surface for, by § 18 of Note IV, the Jacobian of any net of
quadrics and a quartic covariant is, unless it vanishes identically, a sextic co-
variant. The Jacobian of F* and the net 3.1 is seen not to vanish identically,
and is the surface

| —t . TX 2+ 32y + 31yt
Ty —t . 22+ 3y 2+ 3c22t Y
vtz —t yPr+322z+ 3czyt '

-z —y —z 28 + 31xY2|

This surface contains the whole of K, since the four minors formed from the
first three columns of the determinant all vanish along the curve. On expansion,
and division by 2, there results

t Journal fir Math. 58 (1861), 105,
* Rom. Accad. Lincei Rendiconti (5) 6* (1897), 173—s5.
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=10+ soaxyztP + 533 yPz + 50t 3yt + Syl + 152ty = o,

where 3 denotes the sum of three terms obtained from any one of them by
cyclic permutation of z, y, 2. The polynomial on the left is, save for sign, pre-
cisely Brioschi's B; he was the first to find the polynomial, after which it seems
to have faded into oblivion and not to have been encountered by anyone since.
It will be observed that F*® also is outpolar to the quadrics 4.2, and that

42B=N(efx + &ty + 22+ 1) + ({ar 14"
e
=]

®

It is clear from the form of B that y = 2 =0 has all its six intersections with
F® at the point y =2z = ¢ =0; thus the line which joins any base point to any
one of the three points ¢ associated with is has all its six intersections with
F® at this latter point. This is in agreement with § 35. F® must circumscribe
each of the 21 fundamental tetrahedra (§ 29) and meet each transversal in points
forming a regular sextuple of which the vertices of the fundamental tetrahedron
joined by the transversal constitute one of the three pairs.

F® ig the locus of a point O such that the point O’ which, in the sense of
Note I; is conjugate to it with respect to the net 3.1 lies in the polar plane
of O with respect to F*. The curve common to F*® and F*is the locus of points
where F* is touched by quadrics of this net.

42. The generating function @ (x) shows that G has invariants of degree
eight and that these are linearly dependent on three of them; thus octavic
surfaces exist which are invariant for G and they all belong to a net N. Three
octavic surfaces not belonging to the same pencil have, in general, 512 common
points. 'But among the octavic surfaces invariant for G is the square of F* so
that the base points of N consist of the 256 points common to F* and to two
further surfaces of N, this set of points being counted twice over. These 256
points themselves may well include multiple sets, and more will be said about
them presently.

The geometrical approach furnishes at once several octavic invariants. There
are, besides (F*)?

IT%: the product of the base planes,
8®: the locus of conics which touch all the base planes,

E®: the locus of equianharmonic base curves,
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R3: the scroll of trisecants of K,
HE: the Hessian of F,
J3%: the Jacobian of F®,

and others. These must all belong to N. It is known from Note IV that S°
is a linear combination of I1° and (F*)%; other relations of linear dependence
will appear when equations for the surfaces have been obtained. There is no
difficulty in finding these equations, although some patience is necessary to work
them out to the last detail. The final forms are given, as compendiously as
possible, in the table.

It will be convenient to denote the left-hand sides of the equations of the
octavic surfaces by the same symbols as the surfaces themselves. We take

T
tIP=16t]] (" + &'y + 62 + 7 4),
s=1
the numerical multiplier being inserted so that ¢® does not have a fractional
coefficient.

S® is known to have triple points at the base points; this fact was not
mentioned in Note IV, but it is known {(cf. 0. S., 514) that the contravariant
dual to S%, namely the envelope of the cones which belong to 3.1, bas the base
planes as tritangent planes. Thus, since S®= I1°* — 1(F*)* for some constant &,
it is only necessary to choose i so that the term in ¢® disappears, whereupon

7
48 =8ct[lerx+ ety + e+ ) (' + 6rayet + 292 + 2282 + 22%y)%.
8=1
The surface generated by equianharmonic base curves of 3.1 is obtained by
writing y® —vtz, 2 — vtz 2® — vty instead of the line coordinates [, m, n in the
equation of the equianharmonic envelope of the Klein quartic % (cf. Note 1I,
§ 2). Since this envelope is

Im®*+mn®+nl?=o0
E=y—otx)(@? —vt2)® + (& — ct2) (2 — 2 ty)®+ (2 — o ty)(y® — vix)’. 421
This surface has all the base points P; as quadruple points.
The equation of R® can quickly be found in at least two ways. In the first

place R® is the fundamental surface for the Cremona transformation 3.5, and
so must be the Jacobian of the homaloidal web of cubic surfaces:
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| 12 2zty +22° 49z 2tz +7y?

. 0(X Y. Z T 42 £ 2rtz+22® 2ty +12?
0wy t)  |zotztoy? 4xy £ 2tz +ra?|
2Tyz 2Tz 2txy —3 %]

In the second place this Cremona transformation, placing two points in cor-
respondence when they are conjugate for the net 3.1, is involutory; when it is
applied twice to any surface this surface does not change. Take, as the simplest
example, the plane ¢=0; its conjugate surface is I'=o0, or t*=27vxyz. Per-
forming the transformation a second time produces the surface I°=27X Y Z,
which must therefore consist of R® and of the plane {=o0. Hence

tR=2ct(tPx + oty + 2928y + otz + 2228 (2 + vtz + 22y
—(2rzye —t*)°
For the Hessian of F* we take

2zy wet+axd wyt+2t yez|

. |zet+a 2ye txt+y? zx
Cloyt+ 2 Tzt +gl 22% xy
Yz zx xy ¢

The Jacobian of F°® need not be explicitly written down; when worked out its
coefficients are found to be as in the subjoined table.

This table simply exhibits each octavic invariant, placed on the left, as a
linear combination of the terms which appear along the top, the coefficients
being entered in the body of the table. Two invariants, in addition to those
already mentioned, have been added. The first of these, C° is Brioschi's poly-
nomial. Since there was only one invariant of degree four and only one of
degree six Brioschi was predestined to encounter them; but the invariant of
degree eight which he was to encounter need not by any means have been among
the simplest, as indeed it now proves mot to have been, nor has it necessarily
any convenient geometrical meaning. If in his polynomial C the letters o, a,,
as, ag are replaced by z7'¢ x, ¥, 2z and the result multiplied by the factor 8 the
outcome is C®. The second invariant which has been added is the outpolar in-
variant of degree eight, and is given by

NN

7
@= 3 (ew+ ety + e+ o1 + (ot e
=1
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43. These invariants are, by the theory expounded above, linearly dependent
on three of them, and the table vindicates this dependence. Any three which
are not themselves linearly dependent may be chosen for a basis in terms of
which all others can be linearly expressed. It is convenient to choose E?, the
only one of the surfaces with quadruple points at the base points P;, as one
member of this basis. Either S* or H® might then be added, both these sur-
faces having triple points at P;, and it is obvious that H® — S® =2 E5. We will
choose H® both because its coefficients are somewhat lower than those of S®
and because of its intimate relation with F*. As the last member of the basis
we add (F*?® The expressions for the other invariants in terms of the three
selected ones are as follows.

I = (F*? + 4 H® — 8 E8, S8 = H®— 2 E8,
R® = (F*)? — 4 H® JE=6(F*"? — 21 H® — E¥,
08 = 15(F*)? — 108 H® — 8 E¥, Q¥ = 43 (F*)® — 108 H® — 8 EB,

1t is noticeable that 02° — (%= 28 (F*)? and this, when written in the form

N N

C*=

N I

08 (I4 F4)2

[ SR

gives a simple expression for Brioschi’s polynomial in terms of the fourth and
eighth powers of the base planes, an expression which could indeed be obtained
quite easily from Brioschi’s standpoint.

44. We proceed now with the discussion of the base points of the net of
octavic invariants; there are 256 points, common to F* and two octavic surfaces,
to be accounted for.

The points U, two of which are on each line =, are, by § 31, on F* and
all the octavic surfaces. The curve common to F* and II® consists of eight
plane quartics, one in each base plane and each bitangent to seven lines = at
points U. The multiplicity of a point U among the set of 256 is the multiplicity
of the intersection of this composite curve with an octavic invariant not con-
taining the whole of it, say with R® It is quickly verified that R® has a simple
point at U and that its tangent plane there does not pass through =, so that
its intersection with the composite curve, two components of which touch = at
U, counts for two among the points F*=1I1* = R® = 0. Consider, for example,

7y, Whose equations are t=x + y + z = 0; it meets R® where
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t=x+y+te=wxyz(y®2+ 2223+ 2°y%) = o,

a set of eight distinct points.

The points U are therefore to be reckoned twice among the 256 points:
there remain 144 points to be accounted for, and it is found that these consist
of the 24 points ¢ reckoned six fimes. This is easily shown to hold for the
three points ¢ in the base plane = o0; it follows, as usual, for the remaining
points ¢ by applying the collineations of G. For ¢=o0 belongs to II?, meets F*
in the Klein quartic 2Ty*z=0 and R® in the composite curve zyz3y’e® = o.
The part zyz=o0 of this ecurve is one of the inflectional triangles of the quartic,
so that each of its vertices (which are points ¢ on K) counts for four among
the twelve intersections of the triangle and the quartic. Each of the three points
also counts for two among the intersection of the guartic and Iy*2® = o0; at
(1, 0,0,0), for instance, the quartic has an inflection with tangent y = o while
the quintic has a cusp with tangent z=o0. The section of R® by a base plane
has therefore for its intersections with the section of F*, in addition to fourteen
points U, three points ¢ counted six times. All points ¢ are then to be reckoned
six times among the points F*= II® = R® =0, and all 256 points are now ac-

counted for.

45. An invariant octavic surface which does not contain K touches it at each
of the 24 points ¢, the tangent plane of the surface there being the corresponding
base plane. The point counts for twelve among the 512 base points of the net
N of octavic surfaces. While the general surface of N has no multiple point
there, certain particular surfaces do have singularities; R® has K for a triple
curve and, at a point ¢, two of its three tangent planes coincide with the base
plane through the point, while H® has a uniplanar point, or unode, there. The
possession by H® of this singularity proves again what has already been estab-
lished in § 4o: that the points ¢ are multiple points on the parabolic curve of
IF*. The equations for F* and H® show that the tangent plane of I at a point
¢, for instance at (1,0, 0, 0), is also the plane of lines that have three-point
intersection with H® there; this plane (y =o0) meets H® in a curve having a
triple point and so (Segre: loc. cif. 174) the parabolic curve of F* has also a
triple point at which the tangents are the same as those of the section of H?®
by y=o0. It is seen, on closer examination, that two of these three tangents

coincide; if y is put equal to zero in H® the terms of the lowest degree in z
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and ¢ jointly are of the third degree, and there is only one of them, namely
—2z82 2"

The parabolic curve of F* has therefore the following property: it has a
triple point at each of the points ¢, one of the three tangents being that edge,
of the osculating tetrahedron to which ¢ belongs, which passes through the as-
sociated base point. The other two tangents coincide with that tangent of K
which passes through ¢ but whose point of contact with K is a different point
¢, this being that edge of the osculating tetrahedron which does not join ¢ to
the base point- but which passes through ¢ and lies in the tangent plane of F*
there.

46. The scroll R® has K for a triple curve; moreover the base planes are
tritangent planes of R® each of them containing three edges of an osculating
tetrahedron which are generators of R®. It follows that the reciprocal of R®
with respect to any one of the fundamental quadrics Q:; is a scroll ¢® which
has » for a tritangent developable and the base points for triple points, the
three generators of ¢® through any base point being the three edges of an
osculating tetrahedron which meet there. Now ¢® is an invariant surface and
so linearly dependent on (F*)*, H® and E®; since it has triple points at the base
points it must be linearly dependent on H® and E® only. The fact that it contains
edges of an osculating tetrahedron which lie on H® and not on E?® (the equation
of F? shows instantly that no edge of the tetrahedron of reference can lie on it)
means that ¢® can only be H® itself. This establishes the fact that the Hessian
of F* is a scroll. Since R®+ 4 H®=(F*)?® the two scrolls R® and H® touch
wherever they meet; every generator of either must be a quadritangent line of
the other and H® is, for the special net of quadries that admits a Klein group
of collineations, the scroll ¢® whose existence was established in Note III. The
curve of contact of the two scrolls lies on F* and is its parabolic curve, while
the developable of tangent planes to the two scrolls at the points of this curve
is circumscribed to Gundelfinger’s contravariant.

Since H® is a scroll of order 8 and genus 3 it has, by the standard formulae
for scrolls, a nodal curve of order 18 with twenty-four pinch points and eight
triple points. These points have already been identified; the pinch points are
the unodes at the points ¢ while the triple points are the base points. The
polar quadric of any base point with respect to F* is the associated base plane
taken twice; this is obvious, from the equation of F*, for P, and is therefore

true also for the remaining base points by invariance under the group G.
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47. The term 22' in @(x) shows that all invariants of degree ten are
linearly dependent on two of them, and so belong to a pencil p of surfaces.
One surface of p is the product of F* and F® and all invariants of degree ten
must be linear combinations of F* F® and some second invariant.

The geometrical approach leads to a second invariant instantly, namely the
surface F'® which is conjugate to F® in the sense of Note I; since F® passes
simply through K F° has K for a triple curve (Note I, p. 304). The curve com-
mon to F*® and F' consists, apart from K counted three times, of a curve C*?
which, since it is a self-conjugate curve, must, by p. 305 of Note I, have 84
intersections with K. This set of 84 points on K, which is invariant for @,
must be the set of intersections of K with the axes of the involutions. A se-
cond set of 84 points on C** consists of the vertices of the fundamental tetra-
hedra, for these tetrahedra must, by § 29, all be inscribed in F° as well as in
F®. Every surface of p must pass through C*%, while K must count triply as
part of its intersection with F®; every surface of p must also pass through the
curve of intersection of F'® and F* which, like F'° and F* themselves, must
touch every line s;; at both points U which lie on it.

The Jacobian of any invariant of degree eight either vanishes identically or
is an invariant of degree ten; thus several invariants of degree ten appear, all
of them linearly dependent on the Jacobians of (F*)?, H®, E®. But, by 42.1, the
Jacobian of E® vanishes identically; also the Jacobian of (F%)? is a numerical
multiple of F*F® The Jacobian of any invariant of degree eight must therefore
be linearly dependent on F*F°® and J'°, the Jacobian of H® Since the base
points are triple points of H® and lie on all the quadrics 3.1 they are triple
points of J'°. [t must of course be that J° is a linear combination of F*F®
and F'°; which précise linear combination it is can be found from the fact that
K is a triple curve on F'°, and this investigation is carried out below.

When it is desired to find the linear relation which connects three different
invariants of degree ten it is sufficient to know the coefficients of the two highest
powers of ¢ (the tenth and seventh powers as they prove to be) in these in-
variants; it will not then be necessary to write out any of the invariants in
full, but if they are extended beyond the two highest terms in ¢ convincing
means of verification are thereby afforded.

48. If we use the form for H® given in the table above we find, introducing

the multiplier 4 for convenience, that
14 — 61491112 Acta mathematica. 719
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-t . Tz 4ryztt —2183(32°2% + 2248
—2f (52t + y* —qxy’e’) + -
ty —t . gvzxtt—2:28(32%y + 292°)
10 = —28(5xyt + 2° — 42yt + -
1z —1t atxyt® —2783 (3922 + 222°)
— 25yt 2 —42tyte) + o
—x —y —z 20txyztt—63t33y* —4t3y2®
+8xytett + -

which gives
JU= —2rxyst’ + 283yl + 83y + 1528yttt — 4t Sy + .
Also, by direct multiplication,
FrFC=— " —qgxyet’ + 38392 + 5083922 + 52yt + 4 3y® + .
The invariant F' is a linear combination of these two and has K as a
triple curve; the linear combination must therefore be such that the plane {=o0
meets it in a curve with (at least) triple points at the vertices of the triangle

of reference in that plane. Now if ¢ is put equal to zero the two above in-
variants become

tx 62°y' — 280 — 294 — 8%yt —6atyte

7o Ty . . 6yt —2a2fy— 2280t — 820 yPs — 6yt
4JY = ,
° T2z . 6285 — 2yt — 22yt — 8y — 6aty 2t
| —x —y —z 2txyzXy®z
which gives
Il =—3yt —zysZat — 222y 2 Sl

and
FiFo=23y*23yz° + 302 y*2° 39’z

=23ytl +20yz3 + 32292 Sy,
The linear combination of JY and FiF$ must now be selected so that none of

x, y, £ occurs to a power higher than the seventh, and the desired combination
is 2J3° + Fy Fi. Hence

Fl=2JY 4 FPF=—"—soxyzt’ + 78 3y’2 + 72°3y*2°
+ 1052yttt — st Syt + o+ 282yt Syt
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Perhaps it is worth while to find the expressions in terms of F'° and F* F*®
of Brioschi’'s polynomial D and the outpolar invariant of degree ten. For D
(loc. ezt., 242) we find instantly

2D =10 — 237yt + 2188 3yPz + 7et® Syt + 105 2%yttt — 4ot Syl + -
=6F"— 7 F*F"

For the outpolar invariant we take

7
105 Q0= (e'x + ety + 'z + 7 ) + (o7 )",

s=1
O0=—g 0+ 3qxyzt’ + 788 3yz + 21085 3y%2% + 3152922280 + -
=g A FS — 4 J"
=7 F*F¢— 2 F*.

Iv.

Covariant Line Complexes.

49. It was explained in Note IIT how a net of quadric surfaces gives rise
to a five-dimensional figure consisting essentially of a quadric 2 and two Vero-
nese surfaces v and w that are polar reciprocals of one another with respect to
Q. This figure will now be set up for the net N (3.1) by following the procedure
of Note III. The Pliicker coordinates 4, u,», ', u’, ' will have the following
signification; if a line is the join of two points (x,, ¥,, 2y, t,) and (%, ¥,, 25, ) then

A=y 25— ys 2y, U= 21X3 — &3 Xy, V=X Y — a2 Yy

V=axt,—xyty, =y ty — sty V=2t —zt,
while if it is the intersection of two planes (uy, vy, wy, p,) and (us, Vs, ws, py),

A=ty Py — Uy Py, L=vp; — VP, Y =W P — Ws Py

’
V=vwy—vywy, p =wuy—weu, v =u vy — %0

The trisecant conjugate to a point (xz,, ¥, 2o, t,) of K is the line of inter-
section of the polar planes of this point with respect to any two quadrics of N,
and so has equations

— TXy X + fe + 2yt = o0,

by —t2,2 + Yyt = 0;
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its Pliicker coordinates are therefore
— T XYy — Zoly T2+ Yol — o — 220Xy — TX,. 49.1
These are seen, by using equations 3.3, to be proportional to
808 tEn*l — o8yt —<En? 280 28970 28090,

where (£, 7, ) is the point of % corresponding to the point (x,, ¥, 2y, fo) of K.
But, since £7® + n{®+ (=0, the binomial is equal to z&'%{, so that the
Pliicker coordinates of the trisecant can be taken to be

& 7% 5, wnl tEn, tlé 49.2

This result can also be obtained from 49.1 without appealing to 3.3; it is
perhaps more in harmony with the discussion in Note III to obtain it in this
way, which makes use of one of Hesse’s results. For Hesse showed® that

2 2 2 2
Zo, Yo, o, t(h Yo20: €0%oy Zo Yo xotm yOtOv Zoto

are proportional to the cofactors of the appropriate elements of the determinant
2.1, and so to

—E* =0 —CE =, —nl—8, 2898 9’0 &, T8 <08, il i’
Thus the Pliicker coordinates of a trisecant are proportional to

58 En°, &, winl 8 08,
and so again are given by 49.2.

so. The six expressions 49.2 for the line-coordinates of a trisecant of K
have been calculated on the supposition that (&, %, {) is a point of k. But if we
suppose that (£, %, {) is any point of @, not necessarily constrained to lie on £,
then the six expressions 49.2 are the coordinates of a point of a Veromese
surface v in a five-dimensional space 3; calling the expressions ¥y, ¥s, ¥3, Ys Y5 Ye
respectively they can, in matrix fashion, be arranged as the constituents of a
column vector

y=M[E % % oql vl& v&n] =ME5,
where

v Journal fir Math. 49 (1855), 288.
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1

1f (& %, §) lies on k then
YiYs+ Yo Us + Y =t(n5® + LB + En’) =0,

so that the point y is on the curve I' in which » is met by the quadric 2 whose
equation is 4’ Ay = o, with

1

This is of course the quadric in 3 whose points represent the lines of the three-
dimensional space.

The surface w which is the polar reciprocal of v with respect to £, and
whose section by £ represents the generators of the seroll H® is, by § 6 of
Note IIT,

y=M A)-1[2, m®, n®, emn, vnl, vlm] =M A)~1 4.

Since M is here orthogonal, M' = M~! and therefore

T

(M A)-'=ATM)1=AM=|" =~ = ",

so that the parametric form of w is

y=ltmn, vlm, enl, n®, m? 1}’ 50.1
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g1. There are set up, through the intermediary of the space figure,a (1. 1)
correspondence between the points (& 7, §) of the plane @ and the points of v
and a (1, 1) correspondence between the lines (I, m, n) of @ and the points of
w. We pass, starting from a point (&, %, {) of %, to K by the birational trans-
formation 3.3, and the trisecants of K are then, when the lines of space are
represented in the standard fashion by the points of £, represented by I', the
intersection of £ and v. It might at first be said that a (1, 1) correspondence is
set up only between £ and I'; but once I' is given there is only one Veronese
surface » which contains it and this must correspond to @. It is true that
different (1, 1) correspondences can be set up between v and @ in which I' cor-
responds, as it has to do, with %; but all these correspondences associate the
prime sections of v with the conics of @ so that any two of them can only
differ by a collineation of @ for which % is invariant, that is by a collineation
of the Klein group. It is presumed then that, £ having been related to I', any
definite one of the 168 correspondences is chosen to relate v and w. This being
so, any line (/, m, n) of & is represented by a conic of v; there is a prime which
touches v all along this conic (i.e. contains all the tangent planes of v at points
of the conic) and the pole of this prime with respect to £ is a point of w; this
is the definition of w, whose points are thus in (1, 1) correspondence with the
lines of @w. A curve on v corresponds to a locus in @, a curve on w to an
envelope in w.

The curve of intersection of 9 with v, being given by 5 M'AM 5= o,

is, since

[ . ) ) S T

wan—| . |

I

En® + n{® + (&8 =0 and corresponds to k; this is of course to be expected.
The curve ./ of intersection of Q with w is .4 (M AM)~! 4" = o; this, since
M AM is, like the matrices A and M, self-inverse, is Im® + m#® + nl* =0 and
corresponds to the equianharmonic envelope x of k. The relationship between
x and % is symmetrical; not only is x the equianharmonic envelope of % but %
is the equianharmonic locus of y.
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These results can now be interpreted in the space figure. There corresponds
to a line of 7 a point of o+, and the tangent prime of (2 there touches v along
a conic such that the four intersections of Q with it form an equianharmoniec
tetrad; thus a generator of H® is quadritangent to R® and the four generators
of R® through the points of contact are, in the regulus to which they belong,
equianharmonic. The relation between the two scrolls is mutual: the four gene-
rators of either which meet any generator of the other are equianharmonie.
The generators of both scrolls belong to the quartic complex of lines that are
cut equianharmonically by F*.

An incidental consequence of these remarks is that the parabolic curve of
F* has two complementary sets of qaadrisecants, generating respectively the scrolls
R® and H?®; every generator of either scroll is cut by the curve in an equian-

harmonic tetrad of points.

52. There is a simple and direct method of passing from @ and % to v and
I' and £ without the intervention of the space figure. This method is to con-
sider the group of substitutions which

& 1% 8 ol o8E o,

the constituents of 5, undergo when &, 7, { are themselves subjected to the group
of 168 ternary substitutions. These six constituents of 5 will be named

Ys) Yo Y15 Y45 Yoy Us

in this order so that they agree precisely with the six coordinates of a point of
v. Now it is known' that the group J of substitutions induced on the y; is one
of the irreducible representations of the 168 group, so that there is a Klein
group J of substitutions in 3. As for £, it arises at once on unravelling the
left-hand side of the equation of k by Sylvester's process®. For it is known
that the quadric which arises by Sylvester’s unravelment cuts v in the same
curve I', corresponding to %, as does £ and, further, that it is the unique quadric
through I which is outpolar to ». If, then, it can be shown that £ is outpolar
to v it must be 2 that arises on unravelment. But the row vector of coordinates

of a prime touching v along a conic has the form

[, m® I3, vmn, tlm, Tal],

* BurnsiDE: Theory of Groups (Cambridge, 1911), 371, Ex. 8.
* EpGE: Proc. Roy. Soc. Edinburgh, A, 61 (1942), 247.
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so that the quadries inscribed in v are all linearly dependent on the six

20,0, =1} 20,0y =13 2 Vv = 1%

Vy V5 = TV Va3V = TUgV VegUy =TV, V
4 Y5 2% 56 8 %4 6 Y4 195

where the v; are prime coordinates in I. All these quadrics are inpolar to 2,

since the equation of £ is
V1Yot Y2¥s + YsYe = O.

J may be defined as that group of substitutions of the y; for which v and
2 are both invariant. Now each substitution of the group G* in three dimen-
sions induces a substitution on the line coordinates; it is thereby represented
as a collineation in X for which £ is invariant and, since R® is unchanged by
all substitutions of G* for which v, the only Veronese surface through I, is
also invariant. Two substitutions of G* which are, in the (2, 1) isomorphism
between G* and G, associated with the same substitution of G yield the same
collineation in Z; for the two substitutions only differ by the signs they give
to the point coordinates, and therefore do not differ at all in their effect upon
the line coordinates. Thus the substitutions induced upon the line coordinates
by G* give a Klein group J of 168 substitutions in the five-dimensional space
3, while J is simply isomorphic with G (cf. K. II, 413).

53. § is a group of substitutions, and the results of the theory of group
characters are available to give information about its invariants; the relevant
generating function ¥ (x), in which the coefficient of 2™ is equal to the number
of linearly independent invariants of degree m, is easily obtained from a know-
ledge of the structure of the Klein group. On the other hand the geometry
of the figure in I allows many invariants to be detected instantly and the two
approaches, algebraical and geometrical, supplement one another as they did in
the study of the invariants of G*. '

Any invariant of J, when equated to zero, gives a primal which, if 2 does
not wholly belong to it, meets 2 in a locus whose points represent the lines of
some complex in the three-dimensional space; the order of the complex is the
degree of the invariant of J. This complex must be unaffected by the collinea-
tions of &, and so must be a covariant complex. Conversely: the lines of any
complex of order m which is covariant for the three-dimensional configuration
are represented by the points common to £ and a primal of order m which is
invariant for J.
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We now obtain the generating function ¥ (z). In the table the various rows
refer to the six different conjugate sets of operations in the Klein group. The
number on the extreme left of a row is the number of operations in the set;
this is followed by the three multipliers of any operation of the set when it
belongs to the ternary group of substitutions. From these the six multipliers of
the corresponding operation of J are immediately vdeduced, and the number at
the extreme right of a row is.the period of the corresponding operations.

1| 1, I, 1| 1, 1, 1, 1, 1, 1|1
21] 1, '—~1, —1] I, I, 1, I, —I1, —i|2
561 1, w, w1, , 1, b w)3
421 1, ¢, —i|1, —I, —I, I, —t, 71 4
241 e, &, eyt & e, &, & 7
24168, & &% &Y &b et & e|7

From this it follows that

b

_ . 21 56 B 42 o 48(1'—‘50)
168 zp‘(x) = (I___x)e + (l__xz)z(l_m)z * (I—xa)z + (I—xe)(l—x4) * 11—

Fle)=1+ax*+22°+32* + 42° + 82° + 102" +---

54. The presence of the term z® in ¥ (x) indicates that J has a quadratic
invariant I®; the primal I®*=o0 must of course be 2, and we may take
P=yy, + 4295 + Ys Yo

55. The presence of the term 22% in ¥ (x) indicates that J has two line-
arly independent invariants of degree 3. Now two cubic primals invariantly re-
lated to the figure in = are very prominent; namely those generated by the chords
of the respective Veronese surfaces v and w. The left-hand sides of the equa-
tions of these two primals may therefore be taken as the two linearly inde-
pendent cubic invariants of J; the parametric forms 49.2 for v and 50.1 for w
show at once that the cubic primals are, respectively, I°=0 and J*®= 0 where

TYs  Ys Y
Ys TYs Yy
, Y¢ Ys TY

13 == ,L-l

=20, Ys¥s + TYiYsYs — Y1 ¥s — Ya¥s — Ys Vi,




218 W. L. Edge.

TYe Ys Ys
=T Yy vy Y | =Y YsYs F 2YYsYe — Yile — Y2 Y — Y3 Ys
Ys Yy TYs

The loci in which I*=0 and J% =0 meet 2 must correspond to two cubic
complexes that are covariant for G. Now in Note III three cubic complexes
covariant for a net of quadrics were signalised: they were

(i) the complex of transversals of canonical sets of generators of RY;

(ii) the complex of transversals of canonical sets of generators of ¢° that
is, for the net N, of H?;

(iii) the complex of generators of quadrics of the net.

When the net of quadries is given by 3.1 there is associated with it the net of
quadric envelopes 4.2, so that there arises also

(iv) the complex of generators of quadrics which touch all the base planes.

It was also explained in Note III that the complex (i) is represented by the
section of 2 by the cubic primal generated by the chords of w while the com-
plex (ii) is represented by the section of 2 by the cubic primal generated by
the chords of v. The complexes (iii) and (iv) must, since J has only two line-
arly independent cubic invariants, be linear combinations of (i) and (ii), and this
dependence will now be verified by obtaining their equations.

Since (i) and (ii) are reciprocals of one another with respect to any quadric
@:; aud so, in particular, with respect to @, their eqnations must be derivable
from each other by interchanging dashed and undashed Pliicker coordinates; this
is in agreement with the fact that 7® and J* are interchanged when the suffixes
of the y; are subjected to the permutation (14) (25) (36). The same relation holds
between (iii) and (iv).

56. The equation of (iii} is at once obtainable from the fact that any line
of (iii) is cut in involution by the quadries 3.1, so that the join of (z,, v, 2;, t,)
and (zy, ¥s, 2, ;) belongs to (iii) if

Vi—rtx, Ty ys— (fxy + tz%) Yz — Tl o,

s —thy, 2,25 — Ly, + thy) Z—tty,|=o0.

—rtiz, vy — 2y + 62) x—Tthe,s

This determinant may be evaluated by remarking that the matrix within it is
the product obtained on premultiplying the transposed matrix of
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X% v o4 6 297 22, 22,9, 2zt 2yt 22t
Xy Xy Y1 Ys 2125 Uils Y123 Y2y 21020 X1YsF Xayy Tibat ety Yilat Yty 2yt 250
x ¥y 4 6 2y2, 22575 2Ty Y, 2Xaty 2yyty 22,1,
by the matrix
1 —z!
I —z!
—g1

I

so that the value of the determinant is the sum of all the products of cor-
responding threerowed determinants selected from the two matrices’. Only eight
sach determinants of the latter matrix do not vanish, and the one formed from
the last three columns is to be multiplied by a vanishing determinant, namely
that formed from the last three columns of the former matrix. There remain
only seven products which do not vanish and these, because of relations like

Z: yi 4
Xy Ty Yi1Ys 218 =*(.7/122’-.7/251)(311'2"“szx)(xl?/s“’xs%)=_“'““’,

2 2 2
o) Y2 &2

2 2
Yi 23 2zt

Yi1Ys 218 sHhte b=z —y2) (et —2t) =1,
¥ 23 225ty
xz 2zt 294
Xy wptytxely Yy tet y2‘t1 = 2(x, s — s y) (@, ty— 2o 1)) = 2913,
3 2zt 2%t
give, for the equation of the cubic complex,
Auy + 77 (A2 + uf N+ ) = A+ R
The lines of this complex (iii) are therefore represented by the intersection of
£ with the primal
Y1YsYs + T (Wiye + 4iYa + YiYs) =y ¥+ 0195 + o,

and this is simply the equation J3 =7 TI%

! This is of course the Binet-Cauchy theorem on the muiltiplication of determinantal arrays:
see SALMON: Lessons on Higher Algebra: 4th edition (Dublin 188s), 22.
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Similarly the complex (iv) is associated with the equation I® = 7 J?® and the
anticipated linear dependence is confirmed.

57. The complexes given by «I®+ gJ*=o0, where ¢ and 8 are any nu-
merical multipliers, are polar reciprocals of one another in pairs with respect
to the quadrics Q; of this pencil of cubic complexes there are two, namely
I* £ J® = o, which are self-reciprocal.

58. The presence of the term 3x* in ¥ (x) indicates that J has three line-
arly independent quartic invariants; one of these must of course be (7%)% Either
all these invariants are unaffected when the suffixes of the y; are subjected to
the permutation (14) (25) (36) or else there is a quartic invariant I* which is
changed by this permutation into a different invariant J* It is the latter con-
tingency which is, in fact, realised, and all quartic invariants must be linear
combinations of (I%)? I* J* I* may be taken to be any quartic polynomial
in the y; provided that it is invariant for the group and is not unchanged by
the permutation (14) (25) (36).

The geometrical approach leads readily to such polynomials. For example:
the coordinates of the polar prime of a point A with respect to a cubic primal
are quadratic in the coordinates of 4 while the condition for a prime to touch
a quadric is quadratic in the coordinates of the prime. Hence the locus of a
point which has the property that its polar prime with respect to either I3 =o0
or J®=o0 touches 2 is a quartic primal which affords an invariant of J. If the
quartic primals thus arising from 7®*=o0 and J®=o0 are different, as in fact
they prove to be, their equations are, like 7® and J* themselves, obtainable from
each other by the permutation (14) (25) (36) and so give two invariants 7* and
J* on which, together with (I®)? the whole set of quartic invariants can be
based.

The symbol § will now, to save space, be used to denote the sum of three
terms; these are obtained by applying the permutation (123) (456) to the term
to which § is prefixed.

The polar prime of the point y =% with respect to I3 =0 is

Sy, (2nm5— 03 + Sy, (vn505 — 293 m,) = 0;

this touches 2, whose prime equation is v, v, + v,v; + v3v, = 0, if 7 lies on
the quartic primal
I'= 82y 93 — 45 s ¥s — T390 = 0.
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Hence we take
P=8S{2ysysysYs + TY:1Ys¥s — 20 Y Y3 Ys — %3 Y
J=S{20,ysYs Yo T TY2 Vi ¥ — 27TY, Ys Yo — YiYal,
(I = S {yiys + 292 YsYs Y6}

Since I* is a quadratic form in the quadrics which contain v this surface
is a double surface on I* =o0. Each secant plane of v that contains a point of
I* =0 in addition to the conmiec, nodal on I*=o0, in which the plane meets v
therefore lies entirely on the primal. The three-dimensional locus I*=I*=o0
thus consists of a singly-infinite set of planes secant to v; it is easily verified,
by substitution of coordinates in I%, that a secant plane of ¢ lies on I*=o0
when, and only when, its four intersections with I" constitute an equianharmenic

tetrad. Similar relations hold between J*=o0 and w.

50. The primals aI* + BJ* + y(I?}* =0 obtained by equating to zero the
various quartic invariants constitute a net of which (I%)® is a member; on Q
itself they cut a pencil of loci all containing the surface I* = J* = I’ = 0. This
points to the existence of a pencil of quartic complexes covariant for the three-
dimensional figure.

One covariant complex is afforded by the lines which cut the surface F*=o0
equianharmonically. If the equation of a surface is ax = 0 its equianharmonic

complex is

a, as das a, |

by by by by

Uy Ug us Uy

:..—0’

v, Uy Uy U,

{{agbs — agbs)d + (agby — a bg) e + (a1 by — @ by)»
+ (@ by — a,b) X + (agh, — agby)u’ + {ag by — a, bg)v'}* = o.
Now
Fi=t*+6txyet+ 2(y’z + 2z + 22y),
so that every expression of the fourth degree in either Aronhold symbol a or b
vanishes except for
4

1
ai="by=1, a1a2a3a4=blbzb3b4=‘—;1

I
a§a3=b§b3=a§a,=b§b1:a§a2=b§62=5.
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Thus, for this particular quartic surface,
(abuv)=24a,a8,0,a,b,bybg by {A*4' 2 + u?p'%+ v*y'2
—2{up vy + vy AN+ AN pp')}
+24a,apa,a,(B3b, A2 p v + Bib, v A + Bbyv? A )
+ 24b bbby (asas A2 u'y + ala, 1y A + alasv* A )
+4at(B3bgu’®y + Bb v A +ada, 23 y)
+abi(adag 'y + ada,v'3 A + ala, M3 y)
+ 4@a, bib uly + adagbiby, v A + alay b3 by A3 )
+ 4B by asa, uby + Bibyata, v A + bib, aja, AP )
=3 A+ Pt 2y — 2 (uu vy vy AN+ A0 u))
+ 6Py + PV A+ N )+ 4 Y+ VI A )+ 2 (0P + 0L+ )
If this is subtracted from the vanishing expression 3 (14" + up' + »#')* and the
result divided by 2 we obtain, for the equation of the equianharmonic complex
of F'*=o,
6(up' vy + vy AN + A puy)
=37e(Au v+ u YA+ p) + 2(W Y R+ )+ e + R+ AP
The lines of this complex are represented by the intersection of 2 with the
primal
S{6YsysYs¥e — 3TY2 Y59 — 2Y3¥s — Y2Yst = O,
2I*+ J*=o.
The interchange of dashed and undashed Pliicker coordinates gives a second
covariant quartic complex, namely that formed by lines which have the property
that the four planes which pass through them and belong to Gundelfinger's

contravariant envelope form an equianharmonic set. This complex is represented

by the intersection of £ with the primal
I* + 2J*=o0.

These results tell us that the points of £ which lie on the surface I P=J*
= J* =0 represent those lines having the double property that the four points
of F* which lie on them form an equianharmonic range and, at the same time,
the four planes of ¢* which pass through them form an equianharmonic pencil.
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Such lines make up a congruence, and the generators both of R® and of H® are
(at least) double lines of it.

As for the pencil of covariant cubic complexes, so for the pencil of co-
variant quartic complexes; the complexes of the pencil are polar reciprocals of
one another with respect to the quadrics ¢, while two members of the pencil,
namely I* + J*=o0, are self-reciprocal.

—————



