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Introduction. 

The existence of a simple group of order 168 and tbe representation of it 

as a transitive permutation group of degree 7 were known to Galois, but  since 

the group was exhibited as a group of ternary linear substitutions by Klein in 

his famous paper >~Uber die Transformation siebenter Ordnung der elliptischen 

Funktionen* published in Volume 14 of Mathernalische A~ale~ (and later in the 

third volume of his collected mathematical papers) it  has been generally known 

as the Klein group. Klein's paper is indeed so masterful in its handling of 

material, so penetrating in insight and so rich in its yield of new results that  

it  is only fitting that  the group should be associated with his name. The paper 

was followed, in Volume I 5 of Mathernatische A~alen  a few months later, by a 

second paper ~t~ber die AuflSsung gewisser Gleichungen yore siebenten und 

achten Grade* ; this is in the second volume of the collected mathematical papers. 

I t  is these two papers, together with the cognate material in the first volume 

of the KleimFricke treatise on elliptic modular functions, that  constitute the 

indispensable sources of the work which follows. 

In the second of Klein's papers there is set out a geometrical basis for 

handling the Klein group operating as a group of quaternary collineations in 

three dimensions. Even a cursory glance over this paper leaves no doubt of the 

value, in Klein's estimation, of this approach to the subject. In the introduc- 

tion he tells us that  he has gladly again availed himself of geometrical delibera- 

tions for (he says) geometry does not merely make visual and illuminate but 

serves in these researches the prime purpose of discovery. And later, when he 

has disclosed the net of quadric loci and the net of quadric envelopes on which 



154 W . L .  Edge. 

the geometrical structure must arise, he says explicitly that  they form the proper 

starting-point for the main t reatment  of the subject. These are surely authorita- 

t i re  commendations, and Klein must have persisted in his opinion. When the 

first volume of the Klein-Fricke treatise was published more than ten years 

later  the net of quadric loci, together with the cubic surfaces containing its 

Jacobian curve, again appeared. And almost so long as half a century later, 

when the third and last volume of his collected mathematical papers was 

published in I923, we find Klein adding a note (pp. I77--8 ) in which he directs 

at tent ion to the Jacobiun curve and its scroll of trisecants. 

While however there can be no doubt of Klein's opinions, and while we 

may perhaps surmise that  he supplemented them with verbal exhortations to 

his numerous and expert lmpils, the fact remains that, except for Baker's >>Note 

introductory to the study of Klein's group of order I68>> the geometrical ex- 

ploration of the three-dimensional figure has been entirely neglected. Baker ob- 

tains twenty-one quartic scrolls of genus I which contain the Jacobian curve. 

But Baker builds his arguments on the Klein-Fricke treatise rather  than on 

Klein's two original papers, and as the treatise mentions the net of quadric 

loci but never the net of quadric envelopes Baker does not mention the reci- 

procations of the figure into itself. ~or ,  having signalised the quartic scrolls, 

does he proceed to deal with any other surfaces or loci. But his results are the 

only geometrical additions to Klein's own, and while I record this I must also 

declare that  it is to Baker's paper tha t  I owe my introduction to the subject. 

Perhaps it is of interest to remark that  its publication in I935 at once caused 

me to consult the original authorities to which I might not  have been led other- 

wise and that, in consequence of this, the generating function O(x) of w 38 was 

obtained in August I936. 

There is certainly one conspicuous reason why Klein's commendations have 

not been implemented to better  purpose; the geometry of the figure is that  of 

net of quadrics invariant for a group of 168 collineations whereas, up to 

some few years ago, very little was known about the geometry of ~ net of 

quadrics. When Klein discovered the plane quartic curve that  admits a group 

of I68 collineations he was able to appropriate at once the geometry of a general 

plane quartic; to lay hands upon its inflections, its bitangents, its sextactic 

points, its systems of contact cubics, and so on, and the brilliantly effective way 

in which he did so has been a source of delight to countless mathematicians. 

When, however, he offered a net of quadrics there was but little geometry ready 
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to hand. This defect is now, since the publication of five notes on a net of 

quadric surfaces, at least partly remedied and there is a sufficient knowledge of 

the geometry to enable one to undertake the exploration of Klein's three-di- 

mensional figure. And here I must again acknowledge my debt to Baker's note, 

for the form of (P(x) disclosed by the work which this note instigated was the 

main impetus to the examination of the geometry of a net of quadrie surfaces 

and the consequent writing of the five notes upon it. 

The following abbreviations will be used henceforward to signify certain 

references. 

K.-F. F. KLEIn: Yorle,s.u~gen tiber die Theorie der elliTtischen ~lodu~unclionen 
(ausgearbeitet and vervollst~ndigt yon R. FnIcK~), Band I. Leip- 

zig, 1890. 

K. II. P. KLEII~: Gesammelte 3fathen~atische Abhandlungen. Band 1I. Berlin, 

I922. 

K. I I I .  F. K~EIN: Gesammelte 3[atl~ematisehe Abhandlungen. Band If I .  Ber- 

lin, I923. 

B. H . F .  BAKEg: Note introductory to the study of Klein's group of order 

I68: Proceedbzgs of the Cambridge Philosophical Society 31 (I935), 

468--48 I. 

().S. W . L .  EDGE: Octudic surfaces and plane quartie curves: Proceedings of the 

London 3lathematical Society (2), 34 (1932), 492--525 . 

Note I. W . L .  EDGE: Notes on a ne~ of qu,~dric surfaces. I. The Cremon~ 

transformation: Proceedi~zgs of the Londou 3lathematical Society (2), 

43 (~937), 3o2--315. 
Note lI .  W. L. EDGE: Notes on a net of quadric surfaces. I t .  Anharmonic 

Covariants: Journal of the London 3lathematical Society I2 (I937), 

276--280. 

Note I I I .  W. L EDGE: Notes on a net of quadric surfaces. I I I .  The scroll of 

trisecants of the aacobian curve: Proceedings of the London Mathe- 

matical Society (2), 44 (I9y8), 466--480. 

Note IV. W . L .  EDGE: Notes on a net of quadric surfaces. IV. Combinantal 

covariants of low order: tb'oceedi~gs of the London Mathematical 

Society (2), 47 (I94~), I23--I4  I. 

The paper falls into four sections, the first of which is concerned with the 

setting up and description of the figure and an account of some of its primary 

properties. 
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The three-dimensional figure has a net of quadric loci as a cardinal feature, 

and this net may be identified immediately the left-hand side of the equation of 

Klein's plane quartic ]~ is obtained as a symmetrical four-rowed determinant J .  

For, the elements of d being linear forms in the coordinates (~, 7, ~), J may 

be regarded as the discriminant of a quaternary quadratic form whose coefficients 

are homogeneous and linear in ~, 7, ~; this form, when equated to zero, is a 

quadric which, as ~, 7, ~ vary, varies in a net of quadrics and always passes 

through eight fixed points P, the base points of the figure. The locus of ver- 

tices ot those quadrics of the net which are cones is its Jacobian curve K, which 

is hereby put into (I, I) correspondence with k. There is a known procedure 

for obtaining J and, moreover, the system of contact cubics associated with J 

(the cubics of this system are obtained by bordering A with a row and column 

of constants and so are associated each with a plane of the space figure) can 

b e  chosen to be that  to which the eight inflectional triangles of k belong. I t  

is important  to make this choice, for it facilitates the transition from the group 

of collineations in the plane to the simply isomorphic group G of collineations 

in space. Now an inflectional triangle of k not only has for its vertices points 

of k but  also has for its sides tangents of k: it is an in-and-circumscribed tri- 

angle of k. And it was shown in O.S. that  when a (I, I) correspondence is set 

up between a general non-singular plane quartic and the Jacobian curve ~ of a 

net of quadrics those eight in-and-circumscribed triangles of the quartic which 

belong to the system of contact cubics that  is, in the setting up of the corres- 

pondence, associated with the planes of space are associated with the eight 

tr i tangent planes of the scroll of trisecants of ~. By applying this result 'to the 

(z, z) correspondence between k and K it follows, in w 4, that  each of the eight 

triads of points on K that  correspond to the vertices of an inflectional trlangle 

of k has the properties that  the tangent  of K at each point of the tr iad inter- 

sects K again in a second point of the same triad and that  the plane / / o f  t h e  

triad is tri tangent to K. I t  is shown too, in w 9, that  the osculating plane of 

K at each point of the triad has five-p.oint contact and, in w Io, that  the three 

osculating planes of K at the three points of a triad have one of the eight base 

points P as their intersection. The eight p lanes /1  are themselves the base planes 

of a net of quadric envelopes. Each plane H forms, together with the osculating 

planes of K at its three contacts with it, a tetrahedron ~, and with each pair 

of these eight tetrahedra ~ there is associated a quadric Q with respect to 

which both tetrahedra of the pair are self-polar (w I2). The whole figure is its 
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own polar reciprocal with respect to each of these 28 quadrics Q. I t  is one of 

the tetrahedra ~ that  is tetrahedron of reference for the system of homogeneous 

coordinates employed to handle the algebraical work. 

The second section of the paper is concerned with the deduction by geo- 

metrical methods of further properties of the figure. These are obtained by using 

the subgroups of low order contained in G; the structure of the Klein group 

is well known, but new results appear in the light of its new representation. 

The involutions, or collineations of period 2, of G furnish Baker's quartic scrolls. 

The nodal lines of these scrolls are the axes of the involutions and are of some 

importance in the geometry of the figure; they are distributed in 56 copIanar 

and concurrent triads, each of them belonging to 4 of the triads. The point of 

concurrence of any triad lies on a join p of two of the base points while the 

plane of any triad contains an intersection ~r of two of the base planes (w 18). 

Consideration of pairs of permutable involutions discloses two sets each of seven 

quadrics, with a (3, 3) correspondence between the quadrics of either set and 

those of the other. Each of the fourteen quadrics possesses, among its self-polar 

tetrahedra, two whose vertices are complementary tetrads of base points and two 

whose faces are complementary tetrads of base planes. These fourteen quadrics 

are connected with the fourteen octahedral groups of collineations that  belong 

to G; each such octahedral group permutes, in all possible ways, a set of four 

lines ~v which join the base points in pairs as well as a set of four lines z of 

intersection of pairs of the  base planes. The fourteen quadrics are also very 

intimately related to fourteen linear complexes that  were obtained by Klein, 

and the geometrical aspect of this relation is considered in w167 24--27. 

The collineations of period 5 which belong to (~ also yield interesting in- 

formation. For example: through each line z pass two planes each of which 

contains three points P and their three joins j0 while, dually, on each line p lie 

two points through each of which pass three planes /1 and their three lines of 

intersection z. The osculating planes of K at its two intersections with a line 

p meet in the corresponding line z, while the tr i tangent planes (other than the 

eight planes H) of K pass two through each line z;  this accounts for every 

t r i tangent  plane of K. Moreover each line p contains four points at each of 

which concur three tangents of K. 

Section I I I  of the paper is concerned with the invariants of the group. 

There can be no question of how to obtain these; one must, as Klein surmised 
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(K. II.,  412), consider the combinantal covariants of the net of quadrics. I t  is 

now, since the publication of Note IV, practicable to do this. But a few of the 

invariants have been known for a long time. Invariants, one of each of the 

degrees 4, 6, 8, Io, I2, occur on p. 242 of Brioschi's paper >>~ber die Jacobische 

Modulargleichung vom achten Grade,> in Volume 15 of JIatherl~ati,s~clw A~ealen; 
there may not be, at this early date, a full appreciation of tile real significance 

of these invariants but their algebraic forms certainly appear, as indeed also do, 

on p. 244, equations which are in fact  those of cubic surfaces containing K. 

Two invariants of respective degrees 4 and I4 occur on p. 739 of the Klein- 

Fricke treatise and here, after having been obtained as linear combinations of 

modular forms, they are expressly regarded as surfaces which intersect K in in- 

variant sets of 24 and 84 points. 

The quartic invariant is the only invariant of this lowest possible degree 

and the corresponding non-singular quartic surface ~ has apparently never as 

yet been subjected to geometrical examination. A few of its many interesting 

properties are established below, and the surface is obtained by arguments in- 

dependent of any considerations save those concerned with the geometry of a 

net of quadrics. I t  is outpolar to the net of quadric envelopes and has every 

line z as a bitungent. Its Hessian is a scroll whose nodal curve has its pinch- 

points at the intersections of F 4 and K; its parabolic curve has at each of these 

points a triple point with only two distinct tangents. 

The group has one, and only one, sextic invariant. But there are several 

invariants of degree 8 a.nd algebraic expressions for them are given in the table 

on p. 2o 5. The generating function q)(x) of w 38 discloses instantly how many 

invariants of any given order exist which are not linearly dependent;  all in- 

variants of degree 8 are linear combinations of three of them and belong to a 

net of surfaces of which one member is F ~ repeated. Of other surfaces of this 

net some six are derived from geometrical definitions of combinantal covariants 

of the net  of quadrics. 

Section IV of the paper is concerned with covariant line complexes. This 

material is perhaps more relevant to a group of I68 substitutions on six vari- 

ables than to G, and a figure in five dimensions is the chief source of informa- 

tion. The group on six variables has a quadratic invariant which corresponds 

to the identical relation satisfied by the six Pliicker coordinates of a line and 

any other invariant gives, in combination with this quadratic invariant, a complex 

covariant for G. Since a little is already known about cubic complexes covari- 
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antly re la ted  to a ne t  of quadrics  it  is perhaps not  out  of place to add this 

four th  section to the paper  and to indicate,  in the course of it, equat ions for  

and geometr ica l  definit ions of some cubic complexes covar iant  for  G. A few 

remarks  are also made about  covar iant  quart ic  complexes which, so a coefficient 

in a genera t ing  func t ion  tells us, are all l inearly dependen t  on two among them. 

I. 

Primary Properties of the Figure. 

i. A plane q u a r t i e d  can, as was shown by HESSE 1, be put  into bira t ional  

correspondence with the sextic Jacobian  curve # of a net  of quadr ic  surfaces;  

the correspondence is always such tha t  any six coplanar  points of ~ correspond 

to six points of d which are the points of con tac t  of 6 with a con tac t  cubic, 

and which do no t  lie on a conic. There  is thus a system of o0 ~ contac t  cubies 

of 6 associated with the planes of space. There  are 36 systems of contac t  cubits  

of d whose sets of six contacts  do not  lie on conics; in set t ing up the bira t ional  

correspondence any one of these 36 systems may be chosen as the one to be 

associated with the planes of space. 

Each  of these 36 systems of contac t  cubics includes e ight  in and-circum- 

scribed tr iangles of (t; the  vert ices e, j l  g of such a t r iangle  lie on 6 and the 

sides .fg, 9e, e f  touch ~ at  points  l, m, n respectively.  This was shown in O.S., 

where it  was also shown tha t  if tha t  system ~ of contac t  cnbics is selected to 

which an in-and-circumscribed t r iangle  e fg  belongs, and a b i ra t iona l  correspond- 

ence, associat ing 2~ with the planes of space, is set up between d and the Ja- 

cobian curve ~ of a ne t  of quadrics the six copla~mr points 1'2, I", G, L, M, N of 

O, ~vhich corm'espousal to the six points e, f ,  g, 1, m, n old are such that MN, NL, L M  

pa.~'s through E, F, G rcspectivebj. The plane L M N  thus  contains three  tr iseeants  

of O. Each of the eight  in-and-circumscribed t r iangles  which belong to Y gives 

a plane of this k ind and there  are no planes, o ther  t han  these eight,  conta in ing  

three  t r iseeants  of 5~. 

The polar  planes of a point  of ~ with respect  to the quadries of the net  

all pass t h rough  a definite t r i seeant  of b~, and each t r i secant  may he so obta ined 

from one and only one point  of ~. A point  and t r i seeant  of O which correspond 

in this way are said to be conjugate to one another .  I t  was shown (O.S. 513~ 

5 I4) tha t  the t r isecants  conjuga te  to L, M, N are E M N ,  FNL,  GL3I  respectively. 

1 Jour~al far Math., 49 (I855), 279--332; Gesammelte Werke, 345. 
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Other properties of the trisecants, to which it may be convenient to allude sub- 

sequently, have been known for a long time. Through any point P of ~ there 

pass three trisecants: the plane of any two of these meets ~ in one further point 

not on either of them, and this (0.8. 5Io) is the point which is conjugate to 

the third trisecant through P. Each pencil of quadrics belonging to the net  in- 

cludes four cones, and the vertices of these cones form a canonical set of points 

on ~; the planes which join those sets of three points of ~ which make up 

canonical sets with P all pass through the trisecant conjugate to P and, con- 

versely, any plane through the trisecant conjugate to P meets ~ further in three 

points which make up a canonical set with P. 

The mention of the canonical sets on ~ affords an opportunity of stating 

another fact which will be used later. The Cremona transformation whereby two 

points correspond to one another when they are conjugate with respect to the 

net of quadrics was studied in Note I;  it  was there (p. 3IO) shown tha t  the 

locus of those points which are conjugate to the points of a chord PQ of @ is 

a second chord R S  of @, and that  P Q R S  is a canonical set. 

2. We now consider the plane quartic k which is invariant for a group of 

158 collineations. The equation of k may (K. I I I .  lO3; K.-F., 7 o i ) b e  written 

~,Ts + ~s + ~ _ ~  o. 

The vertices of the triangle of reference are on the curve and, moreover, they 

are points of inflection; the inflectional tangents at  ~7 = ~ ---- o, ~ ---- ~ ---- o, ~ ~ ~ ----- o 

are ~ ~ o, ~ = o, r~----o respectively. The triangle of reference is thus an in-and- 

circumscribed triangle, but each of the three vertices coincides w i t h  the point 096 

contact of  one of the sides. This happens, indeed, not only for the triaagle of refer- 

ence but also for each of the other seven in-and-circumscribed triangles that  

belong to the same system of contact cubics (K. I I i ,  II6;  K.-F., 718}. 

In order to establish a birational correspondence between k and the Jacobian 

curve K of a net of qhadrics we have to express ~ s  + r~S + ~ s  as a sym- 

metrical determinant J ,  of four rows and columns, whose elements are homo- 

geneous linear forms in ~, 7, ~; a system of contact cubics is then obtained by 

bordering J with a row and column of constants, and J can be found so tha t  

the bordering gives any chosen one of the 3 5 systems, A method of finding J 

was explained by A. C. Dixon1; it requires, for the calculation of the linear 

1 Proe. Cambridge Phil. Soc. 11 (I9O2), 350. 
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forms, prior knowledge of the equations of the contact cubics. Now this know- 

ledge is fully furnished by Klein himself in K. I I I ,  ~ 7 ;  the notation used by 

Klein is changed to the one being used now simply by writing g, 7, ~ instead 

of s ~,/~ respectively. Dixon's argument enables us to assert that  if, using the 

notation ~ of Klein's equations (38) and [39), the elements of 

A~ A1A2 A1A, A~Ao 
A~A~ Ag A~A~ A~Ao[ 
AaA~ A~A, A~ A~A o 
A~Ao A~Ao A~Ao A; 

are replaced by their expressions in terms of ~, 7, ~, and the cofactor of any 

element divided by the square of ~ +  r e 3 +  ~s ,  then the quotient is that  

linear form which is to occupy the corresponding position in z/. The determinant, 

on using Klein's equations, becomes 

~ - , ? - ~  ,?~ ,7~ ~ 

and easy calculations then give 

b 
,d-~ -=-(~v~ + , ~  + ~) .  

The determinantal form which will be used is, however, 

--T--I~ 

--T--I~ 
- -~-17  2 . I  

1 I n  K. I I I ,  I I 7  the re  is  a m i s p r i n t  in t he  l a s t  of t h e  e q u a t i o n s  (39); w h a t  is  p r i n t ed  as 

A2A1 o u g h t  to be  AaA1. In  t he  or ig ina l  pape r  in Math. Annalen I4 the re  i s  h a p p i l y  no m i s p r i n t .  
Obse rve  t he  a d u m b r a t i o n ,  in t h e  foo tnote  to t h e s e  equa t i ons ,  of  t h e  cubic  enve lopes  insc r ibed  in 

a deve lopab le  of  c lass  6 and  g e n u s  3 (cf. K.  I:I, 412). 

l 1 -  61491112 AcI~ mathematica. 79 
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where ~ =  2. The factor v-~ can of course be omitted from the last row and 

column without altering the equation of k; but it is eminently desirable tha t  it 

should be retained because its retention enables the self-duality of the space- 

figure that will be constxucted to be more immediately perceived. This square 

root  of 2 was indeed introduced by Klein (K. II ,  4o8), and for the same reason; 

it does not, however, reappear either in the Klein-Fricke treatise or in Baker's 

paper. 

The curve 

i t  Y W 

T--I~ 

- - , - 1 ~  2 

P 

u 

w ~ o 

P 

is a contact cubic of k, and the oo s different values of the ratios u : v : w : p  give 

all the contact cubics of one of the 36 systems. When u = v = w-----o the con- 

tact  cubic is ~ - - - - - o ;  the system of contact cubics is therefore the one to which 

the triangle of reference belongs. The remaining seven in-and-circumscribed tri- 

angles that  belong to the system are found by putt ing s == r, 2, 3, 4, 5, 6, 7 in 

the identi~y 

_ _ , - - 1 ~  ?- 

_~-1~ _~-lg _ ~ - ~  
4~s ~4s ,~2s 

C 8 

84S 

~;2s 

T--1 

T - 1  

- �89 (~0s~ + ~7~5,~ _~ ~ 3 , C ) ( ~ ,  ~ + r ~ 5 ~  + ~ ; ) ( ~ 0 ~  + ~ . ~ .  - ~~'~C), 
2 . 2  

where ~ is any primitive seventh root of unity and 

a = ~ + ~ o ,  ~ = ~ ' +  ~, 7 = ~ 4 +  ~3. 

These three expressions, as is pointed out by Baker (B., 469), are such that  

2.3 
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any polynomial in a, ~, 7 can thus be expressed as a linear combination of them; 

and, furthermore, e. + ~ +  7 = - - I .  I f  we write 

t } ~ : e  + e -~ + e  4, t~ 2 : , ~  + , 5 + , a ,  

where the indices appearing in 01 are the quadratic residues and those appearing 

in 02 the quadratic non-residues to modulus 7, then t? 1 and 0-. are the roots of 

(20+ i ) " +  7 : o .  

. 

- , t x )  + - + ( , - . - - , t v )  = o .  

This quadric is a cone with vertex (x, y, z, t) if 

The determinant which appears in 2.1 is the discriminant of the quadric 

3.1 

* T x - - , - l ~ t  = ~ y - - , - l ~ t =  ~z - -  *-1.7t -- ~x + *Tz + ~y = o. 3.2 

These equations give (B., 473), as well as ~.73+ .7~3+ ~ 3 =  o, 

x:Y:z:t--=r,~:*7, : ~.7-. : * ~ ;  3.3 

these are therefore the coordinates of that  point of K which, in the birational 

correspondence between k and K, corresponds to the point (~, *7, ~) of k. 

The quadrics 3.I for different values of ~, *7, ~ belong to a net N and the 

locus of the vertices of the cones of N, obtained by eliminating ~, *7, ~ from 3.2, is 

- - , - i t  y x 

X - - ~ - l t  ~ ~---O; 

- - v - i t  z y 

these are the equations of K, which is thus common to the cubic surfaces (ef. 

K . [ I I ,  i73 ; K.-F., 728; B., 473) 

X ~ t  2 x +  z t y  ~ + 2 y z - . = o ,  Y== t - . y+  z t z - .+  2 z x - . = o ,  

Z~--t-.z + *tx-. + 2xy 2=o, T ~  2*xY z - t a = o ,  3.4 

and to all the cubic surfaces that  belong to the linear system, of freedom 3, 

determined by these. The Cremona transformation in which corresponding points 

are conjugate with respect to N is (Note I, 303, footnote) given by 

x ' : y ' : z ' : t ' =  X: Y : Z : T .  3.5 
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All the quadries of N have in common the eight points Po:(O, o, o, I) and 

p,(,~,, ~3, #~,,-1);  these will be called the base points, and they are Klein's 

Hauptpunkten (K. II ,  4Io). The line PiP~ will be denoted by pij; these twenty- 

eight joins of pairs of base points are, by Hesse's classical discovery, all chords 

of the Jacobian curve K, and it may be verified, by means of 3-4, that  the point 

(~6 i+~6j ,  ~ + ~ 3 j ,  ,5~+ ~.,.~j, , ~ x + Z z - ~ )  lies on K when Z is a root of the 

quadratic 7 ~2+ 4Z ] / - - 7 - - 7  = o, one or the other sign being taken according 

as i - - j  is, or is not, a quadratic residue to modulus 7. Hesse's result is thus 

verified for the twenty-one joins not passing through /~0; as for the join /~o,, it 

is at once seen that  (~6,, ,3,, ,ss, z - l + / ~ )  lies on K when 2 / ~ +  4"/* + 7 = 0 .  

4. Suppose then, k being a Klein quartic, that  the vertices e,]i g of an 

in-and-circumscribed triangle coincide, respectively, with the points of contact 

m, n, l of the sides ge, e.f, fg; the corresponding phenomenon occurring also for 

each of the other seven in-and-circumscribed triangles which belong to the same 

system of contact cubics. Suppose further that, as in the algebra above, this 

system of contact cubics is associated with the planes of space when k is put 

into birational correspondence with the Jacobian curve K. Then the remaining 

intersections E, F, G of any three coplanar trisecants .3IN, NL, L M  with K 

must coincide with _M, _AT, L respectively. Thus the sides of the triangle L M N  

are the tangents of K at its vertices; M N  touches K at M, NL touches K a~ N 

and L M  touches K at L. Each side of the triangle is a trisecant two of whose 

three intersections with K coincide, and there are eight triangles of this kind. 

The equations of their planes are, as is seen on referring to the constants which 

border the determinant in 2.2, t -~ o and ,Sx + ~4~y + ~2, z + ~-1 t = o. We shall 

call these planes H o and / / ,  and speak of them as the base planes; they are 

Ktein:s Hauptebenen (K. II,  41o), and the left-hand sides of their equations 

satisfy the identity 
7 

t 2 ~ ( $ S  x 2 7 $'S v ~L $2S Z -~ T--1  t )2  - -  7 ~ O .  4. I 

I t  follows that  the base planes are common to three linearly independent quadric 

envelopes, and it is at once verified tha t  the quadrics 

v ~ -- ~pu ---~ O, ue 1 ~pw -~-- O, w ~ -- , p v  ---~ O, 4.2 

where (u, v, w,p) are plane coordinates contragredient to the point coordinates 
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(x, y, z, t), touch all the base planes. The self-duality of our three dimensional 

figure is now manifest, for these quadric envelopes arise from quadric loci be- 

longing to N simply by replacing point coordinates by plane coordinates; this 

simple replacement, without any fur ther  adjustment of coefficients, has been 

made possible by introducing the irrational z. I t  implies that  the figure is its 

own polar reciprocal with respect to the quadric x 2 + y~ + z ~ + t 2 ~  o; but it 

will presently appear that  this is only one of twenty-eight quadrics by means of 

which the figure can be reciprocated into itself. 

There is one fur ther  matter  of nomenclature;  the line common to the base 

planes Hi and //~. will be denoted by zij.  

5. When k is subjected to a collineation for which it is invariant contact 

cubics are t ransformed into contact  cubics. Moreover, since two contact cubics 

belong to the same system when, and only when, their two sets of six contacts 

together  form the complete intersection of k with a cubic curve, contact cubics 

which belong to the same system are transformed into contact  cubics also be- 

longing to the same system. Thus any system of contact cubics is either un- 

affected as a whole or else is t ransformed into a second system; but it is clear 

that  the system to which the eight inflectional triangles belong must be invariant 

for the collineation. The collineation must, in virtue of the birational corres- 

pondence between k and K, induce a birational t ransformat ion of K into itself; 

since a set of coplanar points of K corresponds to a set of points of contact of 

k with a contact cubic belonging to the same system as do the inflectional tri- 

angles it follows that  any set of coplanar points of K is transformed into an- 

other set of eoplanar points and so that  the transformation is a collineation. ~ 

There is thus a group G of I68 collineations in space for which K is invariant;  

it is the Klein group in three dimensions. 

6. I t  is natural  to presume that  equations for the collineations in space 

must be obtainable by combining the formulae for the birational correspondence 

between k and K with equations for the collinea~ions in the plane. The Klein 

group can, as Dyck pointed out ~, be generated by two operations of periods 7 

and z. These operations were given, as ternary collineations, by Klein (K. I I I ,  

Io7), and two corresponding quaternary collineations will generate G. The one 

1 This is a standard proposition; see, for example, SEVERI: Trattatto di Geometria Alge- 
brica I (Bologna, I926), 68. And, for the present application, the first footnote on p. 724 of K.-F. 

Math. Annalen 20 (z882), 4I. 
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of period 7 is, by using the equation for the eollineation in the plane together 

with equations 3.3, easy to obtain; not so, however, the one of period 2. Klein 

gives it (K. II,  409) in precisely the form that will be used here, but details as 

to how he obtained it do not seem to be available. In the Klein-Fricke treatise 

the quaternary involution is obtained from the ternary one not without trans- 

cendental methods, and the result is verified, but a posteriori, by Baker. Yet 

the quaternary eollineations are simply those transformations to which, in Klein's 

notation, AD A2, A3, A o are subjected in consequence of Z,/~, r undergoing the 

ternary collineations (K. I I I ,  I I7), and it ought not to be difficult to obtain the 

desired equations by purely algebraical methods. 

An alternative way of attempting this, depending on the relations between 

different operations of period 2 belonging to the group, might run on the fol- 

lowing lines. Each operation of period 2 is permutable with four others (K. 

I I I ,  94; K.-F. 382); these fall into two pairs such that  each pair, when taken 

with the original operation and the identity, forms a 4 - g r o u p -  as we shall 

call the Vierergruppe of Klein. An involution j for which k is invariant has 

(K. I I I ,  Io2; K.-F., 709) as axis a line containing four sextactic points rl, r~, r,, r~ 

of k; the other two involutions of a 4-group containing j permute these four 

points in pairs, both involutions yielding the same permutation. There thus 

arise two of the three such permutations, one for each of the two 4-groups, of 

the four points; there remains a third. Let  this outstanding permutation be 

(rlr~)(r2r~). Then it transpires that  the quaternary involution I induced by j is 

biaxial and has for its axes the two chords /~1 J~ and / t~/~ of K, where, as on 

other occasions, points of k and K correspond when denoted by the same small 

and capital letter. Now when j is given its axis can be found, and hence the 

coordinates of the four sextactic points thereon; equations 3.3 then give the 

corresponding points of K. When the permutations of the four sextactic points 

have been determined from a knowledge of the two 4:groups the two chords'of 

K which are axes of I are known and so equations for I e a n  be written down. 

7. We now take, as the collineations of periods 7 and 2 that  generate the 

Klein group G in three dimensions, those whose matrices are (cf. K. II ,  409) 

E =  e~ F = / ~  ~ # 
a # 7 

I r % I 
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where a'~= 7 and the other symbols have the same significance as in w 2. I t  is 

seen immediately that, if I is the unit matrix, E 7 =  I and F -~ - - -  I. The point 

P '  which arises from a given point 1 ~ by applying a collineation is found as follows: 

the four homogeneous coordinates of P are arranged as a column-vector and this is 

premultiplied by the matrix of the collineation; the resulting column-vector gives 

the coordinates of P'. Every point P is invariant for a collineation whenever 

the matrix is a scalar multiple of the unit  matrix. If, however, it is desired to 

obtain the plane ~' which arises by applying the collineation to a plane z (z' 

is of course the locus of those points which result from applying the eollineation 

to the points of ~r) then the four homogeneous coordinates of z are arranged 

as a row-vector; this is postmultiplied, in accordance with the principle of contra- 

gredience, by the m~trix inverse to the matrix of the collineation and the re- 

sulting row-vector gives the coordinates of ~r'. Both E and F must be non- 

singular s i n c e  I E 17 = I F  I ~ = x .  

I F I - I ) '  ~ ~ ~ 

~: T I 

Clearly I E [ ----- I, while 

t~ y a 

:91! 
as follows at once on adding the sum of the first three columns, each multiplied 

by ~, to the last column. Thus 

I F I  = ~ ( 3 a ~ 7 - -  a ~ - -  f l ~ - -  7~) 

= ~ ( ~  + ~ + 7~ - ~ 7 - 7 ~ - ~ ~) = + i .  

8. The 168 collineations must permute the base points among themselves, 

as also the base planes; and so there appears the representation of Klein's 

group as a pernmtation group of degree 8. The effect of E and F on the base 

points is to produce the respective permutations, sufficiently described by writing 

down only the suffixes, 

e = (i234567), f =  (o7) (i6) (23) (45), 

and the effect on the base planes is seen, by using the inverse matrices E -~ ~ E 6 

and F -~ ------F, to be precisely the same. 

These permutations satisfy the relations 

e 7 = f~ = ( e l )  s = ( e 4 f )  ~ = z, 8.i 
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where,  in products  of opera t ions ,  those  on the righ~ opera te  first, and the cor- 

r e spond ing  re la t ions  satisfied by E and F are easily obta ined.  W e  have  

( E F ) - I = _ _ F E  6 . . . . .  ~ 7 8 a8  i f ie s . 

a a8 f184 78 "2 
- T 8  T 8  4 T $  2 

I f  the  ma t r ix  on the left  is squared  and  the e lements  of the produc t  

simplified by us ing  ~.3, i t  is found  t h a t  

( E F ) ,  ~ I (I + 2 86 e~ - -  ,, + ~ § 2 8 3 ) ( E F ) - l / a .  
O'" 

Now ~G + 8 5 + ~ : ~  is a root  of the quadra t ic  ( 2 0 +  I) -~+ 7 = o ,  and  a can there-  

fore ~ be chosen to be t h a t  square  roo t  of 7 such t h a t  I + 2 86 + 2 8 ~ + 2 ~ = - -  ia; 
i t  then  follows t h a t  (EF)  2 = - - ( E F )  -~, or (EF)  ~ = - - I .  W e  nex t  r e m a r k  t h a t  

E 4 F = ~  7 85 a85 fie 5 ~85 / 

L ~  4 z e  ~ ~ I 

I f  these two mat r ices  are squared then  i t  is found,  on us ing  equat ions  2.3, 

t h a t  the  sum of the  two squares  is, e lement  by e lement ,  ident ical ly zero. Hence  

(E 4 F) 2 + (E 4 F) -2 = o, 

(E 4 F ) '  = - -  I .  

The  un imodu la r  ma t r i ces  E and F are the re fo re  such t ha t  

E 7 = I ,  F ~ = (EF)  3 = ( E ' F ) '  = - -  I .  

9. Le t  us r e tu rn  now, for  the  momen t ,  to the J acob i an  curve & which is 

in b i ra t iona l  cor respondence  wi th  a genera l  plane quar t ic  d. I t  is known s t h a t  

there  are 24 t r i secants  of & which are also t angen t s .  W e  may  therefore  specify 

four  sets of 24 poin ts  on ~, namely  

1 It  is of course of l i t t le importance which square root of 7 is chosen for a, since F can at 
any time be replaced by - - F ;  the choice made here gives a slightly better appearance to the 
sets of coordinates of the points which appear in w 28. 

s ZEUTHEN: Annali  di mat. (2), 3 (I869), I86; B A K ~ :  l~rinc~])les o f  Geometry 6 (Cambridge, 

I933), 3 2. 
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(i) the points of contac~ of those trisecants which touch `7; 

(ii) the remaining intersections of these trisecants with `7; 

(iii) the points of `7 to which these trisecants are conjugate; 

(iv) the points of `7 that  correspond to the 54 inflections of ~. 

For a general curve ~ there thus arise four distinct sets of points on `7. 

Now suppose that  ~ is a Klein quartic k; then the corresponding Jacobian 

curve K is invariant for a group of I68 collineations and each of the above 

four sets of points on K must also be invariant for this group. But there is 

only one set of 54 points on K that  is invariant for the group (K. I I [ ,  IoI; 

K.-F., 696), namely the set of points which corresponds to the inflections of k. 

Hence, for the special Jacobian curve K, the four sets of points must all be the 

same set. This statement can be verified; for it has been shown (O.S., 497 and 

509) that  a point ~r of K corresponds to an inflection of } when and only when 

the plane which joins I to its conjugate 

of points on K consists therefore of the 

for we have seen that the plane which 

contains the tangent  L M  of K at L. 

is the point of contact of K with the 

trisecant touches K at L The set (iv) 

eight triads of points such as L, M, 2V; 

joins L to its conjugate trisecant M N  

But L belongs to the set (i) because it 

trisecant LM;  it belongs to the set (ii) 

because it is the intersection of K with the trisecant NL, and, lastly, it belongs 

to the set (iii) because it is conjugate to the trisecant M_Y. We will call these 

24 points the points c on K, as does Klein (K.-F., 727). 

The plane of two trisecants which pass through a point P of the general 

Jacobian curve `7 meets `7 in a sixth point which is not on either of these two 

trisecants, and this point, as remarked in w I, is conjugate to the third trisecant 

of ,7 that  passes through P. Suppose then that T U  is one of those trisecants 

which touch `7, T being its point of contact and U its remaining intersection 

with `7; let P be that point of `7 to which T U  is conjugate. Then, of the three 

trisecants through P, two coincide with the trisecant -PQR conjugate to T; the 

tangents of `7 at Q and R are coplanar, and their plane meets `7 (apart from 

its contacts at Q and R and its intersection at i ~ in U. 

Apply this now to the curve K, supposing T and U to be the points M 

and N respectively; then P is the point L, and P Q R  is the trisecant _NL which 

is conjugate to d-P/. Thus Q and R both coincide with _Y, and the plane con- 

taining the tangents of `7 at Q and /~ becomes a plane having four-point con- 

tact with K at N. But this is not all, for U also coincides with _~; hence the 
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osc'ulating plane of K at N has five-point contact, and similarly for the osculating 

planes of K at L and M. Thus the osculating planes of K at the 24 points c all 

have five-point contact. ~ Each of these osculating planes has one intersection with 

K other than its point of contact, and this intersection also is one of the points 

c; the osculating plane at 31I, for example, meets K again in N. These 24 

planes may be described as stationary planes, and will be called the planes r .  

There is ~ formula s for the number of stationary osculating planes (i. e. of 

osculating planes which have four-point contact instead of the usual three-point 

contact) of a twisted curve. I t  is found, by applying this formula, that  K has 

48 stationary osculating planes; these consist of the 24 planes F each counted 

twice. There can be no other stationary osculating planes of K. 

IO. Each base plane is, by w 4, tri tangent to K and there is a point com- 

mon to the osculating planes at its three contacts. There thus arises a set of 

eight points which, like the set of base planes, must be invariant for G. But 

such a set of points, to wit the base points, has already been encountered, and 

if there is only one such set it follows that  the three stationary planes of K at 

its points of contact with a base plane have one of the base points as their inter- 

section. 

This is easy to verify. I t  is sufficient to give the verification for H o since 

it will then follow for the other planes /L  by applying the collineations of G. 

The equation of 110 is t = o ;  3.4 shows that  it touches K at the points 

(I, o, o, o), (o, I, o, o), (o, o, I, o) and that  the respective tangents are t =  z = o, 

t - - ~ x = o ,  t = y = o .  The line t = z = o ,  for example, is common to the sur- 

faces X - ~ o ,  T~--o and to the tangent  planes z----o of Y ~ o  and t = o  of 

Z-----o at (I, o, o, o). The three stationary osculating planes of K therefore pass 

one through each of these lines; if it can be shown that  they are z = o, x----o, 

y ----- o the verification will be completed because these intersect at Po. But x = o, 

for example, has, from the form of T, all its intersections with K on the plane 

t = o and since it contains both (o, I, o, o) and (o, o, I, o) but  not  the tangent 

of K at the second of these it must have five-point contact at the first of them. 

The verification can also be carried out by using the equations 3.3 for the 

t This is proved, by considering the zeros of modular forms, in K.-F., 727; the planes a r e  

there spoken of as Nebenebenen. 
2 This formula, which goes back to Cayley and Zeutben (see Cayley's Collected Mathe- 

matical _Papers, 5, 5 I5) is given in the standard treatises: B~RTI~I: Geometria Froiettiva dcgli 
iperspazi (Messina 1923) , 492; BAKER: Princilgles of Geometry 5 (Cambridge I933), 19 I. 
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birational correspondence between k and K, and this method too gives a further 

substantiation of the five-point contact. 

The tangent  and osculating plane at a point of K are determined, together 

with the multiplicities of their contacts, from the expansions for the coordinates 

of points of K in the neighbourhood of the given point as power series. These 

expansions are at once calculated by 3.3 provided that  corresponding expansions 

are known for k. Consider, for example, the points of k near V = ~ = o. Put t ing 

= I the equation of k becomes ~s + ~ 3  + ~ _~ o, so that  we have the expansions 

thus verifying incidentally tha t  the tangent  of k is ~ - - o  and that  it has three- 

point contact. The equations 3.3 now give 

x : y : z : t = - - v f  +v l~  

where only the first two terms of the power series for the coordinates have 

been written down; we may therefore take 

x = - - ~ ) §  y ~ - - 2 ~ t 2 ,  z =  I, t - - - - ~ + V g ,  

so proving that  the corresponding point on K is (o, o, I, o), tha t  the tangent  

there is y = t = o with ordinary contact and that  the osculating plane is y = o 

with five-point contact. 

I t  is thus clear that  the three stationary planes which osculate K at its 

points of contact with the base plane //5 have as their intersection the base 

point Pi; there thus arise, for i = o, I, 2, 3, 4, 5, 6, 7, eight tetrahedra ~2~. These 

may be called osculating tetrahedra; each has a base plane (tritangent to K ) a n d  

a base point for opposite face and vertex while the three remaining faces 

osculate K with five-point contact. 

II .  A collineation of G which transfoYms P/ into Pj and so H~ into Hj 

also transforms ~2i into ~2j; for the three planes U which intersect at _P~ must 

be transformed into those which intersect at Pj. Thus the tetrahedra [2i also 

afford a representation of the Klein group as a permutation group of degree 8; 

but, as will soon be understood, they do more. 

The bottom row of the matrix F, or its inverse - - F ,  shows that  the cor- 

responding collineation of period 2 interchanges //0 and I/7. More generally: 

the collineation corresponding to E~FE -~ is also of period 2 and, since 
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27 

/ [~ $6s  5~ I 

: J  LT. ~s T c4 s ,~ ,~2 s 

6 2s 

I 

it transforms //o into H, and therefore ~2 o into /),. The equations of the three 

planes F which belong to ~,  are therefore 

f l x  + z , a ' y  + a ~ s z  + , ~ 6 ~ t = o ,  

ye~SX -k a y  + ~$5sZ + T83st =O ,  I I . I  

~ ' x  + f l e 2 ' y  + 7 z + ~ 5 ~ t  = o, 

where s may have any one of the values I, 2, 3, 4, 5, 6, 7. The equations of all 

the planes F have thus been found. The coordinates of all the points c can 

be deduced, since each point c is the intersection of a base plane / /  and two 

planes F. 

Now it will be observed that  

d '~ ( f l x  + 7~3~Y + a ~ z  + ~ t )  ~ + ~ ( 7 ~ " x  + (zy + f lES 'z  + ~ ~ t )  ~ 

+ ~ " ( . ~ ' x  + f l ~ ' v  + r z  + ~ " t )  ~ + 2(~'~x + , " y  + ~ z  + ~-,t)'- 

- - 7 ( , ~ , x ~  + e*y ~ + ,48z2 + t~), 

so that  there is a quadric Q0, with respect to which both ~2 o and ~ are self- 

polar. This fact  affords another means of determining the coordinates of the 

points c, for those three points c which are vertices of ~2, are the poles with 

respect to Q0, of the planes I I . I ;  their coordinates are therefore given by the 

r o w s  o f  

~ ~6s 7 ~3s a ~ss ,~ 

~'e 6s a ~  3s f ie  5s z" I I , 2  

a e 6s f ie  3s 7 e 5s 7 .  

Not only do Po and iP~ have, for their polar planes with respect to Q~, I-Io 

and H, but the polar plane of any base point is a base plane; the polar plane 
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of (t 6'', t 3'', P", V-I), which is P~,, is 

e2s+6UX + $.~+3tty + e4.~-5u Z q_ ,r-1 t ~ O, 

which is I12s+6~; the suffix may of course be reduced by any multiple of 7. 

Moreover, since z s  + 6 ( 2 s  + 6u) ---- I48 + 36u ~ u, the polar plane of P.2~+~,, is 

H~. Thus the vertices P~, and P2~+~,, of ~,, and Y2~.;+~ have for their polar 

planes with respect to Q0.~ the faces / /~+~,  and I1,~ of the same two osculating 

tetrahedra. Indeed all four vertices of either s or Y22~+6~ have for their polar 

planes with respect to (20.~ faces of the same two osculating tetrahedra; this is 

quickly verified by using ; i . i  and ~ ~.2; the vertices of .Q,~ are found by writing 

u for s in II.Z, and the polars of these points with respect to Qo,. are precisely 

the planes got by writing 2s + 6u for s in I Z.I. The osculating tetrahedra 

other than s and .Q~ are therefore interchanged in pairs by reciprocation in 

Qos. Reciprocation in Qos thus subjects the osculating tetrahedra to a permuta- 

tion; but it will be noticed that  this is an odd permutation, whereas all I68 

permutations in the representation of the Klein group as a permutation group 

of degree 8 are even. 

12. The Klein group, when represented as a permutation group of degree 

8, is doubly transitive1; hence there are collineations of G which transform P0 

and P~ into any specified pair Pi and Py of the base points; these collineations 

transform //0 and H.~ into IL  and II:i , and P-0 and t2.~ into D-i and t?j. They 

therefore transform Q0.~ into a quadric Qii with respect to which .Q~ and Y2y are 

both self-polar; the existence of (d,,J could of course also have been established 

directly, from the identity which must connect the squares of the left-hand sides 

of the equations of the faces of -qi and D.j, without appealing to the transitivity 

of (I. And we have the result that any two of  the eiyht osculating tetrahedra are 

se~:polar Jbr a quadric. There thus arise twenty-eight quadrics (~j, and the 

whole figure is it.~ own reciprocal with re.sTeer to each one of them. 

The reciprocations with respect to the quadrics Q~j give twenty-eight cor- 

relations of period 2 for which the figure is invariant. Now let Q be any cor- 

relation, not necessarily one of these twenty-eight or of period 2, for which the 

figure is invariant. Then, if C is a eollineation of G, QC is a correlation for 

which the figure is invariant; there are I68 correlations of this kind. Conversely: 

if Q' is any correlation for which the figure is invariant Q-~Q' must, since it 

BUI~.X'SIDE: Tt~eory qf Gro~tps (Cambridge, J9IJ, 218. 
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is a collineation for which the figure is invariant, belong to G and Q', when 

written in the form Q(Q-~Q'), is seen to be one of the above I68 correlations. 

t tence the eollineations of G and the correlations for which the figure is invaria~t together 

form a group H of.735 transformations. I f  h is any operation, whether collinea- 

tion or correlation, of H and C a collineation of G, then h Ch -1 is a eollinea- 

tion and so belongs to G; thus H contains G as a self-conjugate subgroup. 

Ever)" operation of H permutes the tetrahedra ~i among themselves, and so 

we have a geometrical representation of H as a permutation group of degree 8; 

all permutations effected by the collineations of G are even, whereas the cor- 

relations which make up the other half of the operations of H all produce odd 

permutations. I t  is known that  this permutation group contains precisely twenty- 

eight odd permutations of period 2, so that there cannot be any quadrics in 

addition to the Qij for which the polars of the eight base points are the eight 

base planes. ~ 

I3. When the figure is subjected to one of the correlations of H the base 

points are turned into the base planes and the quadrics 3.I into the quadric 

envelopes linearly dependent on those appearing in 4.2. The curve K, the locus 

of vertices of cones which pass through all the base points, is turned into a 

developable • the envelope of planes of conics which touch all the base planes, 

while tile planes F, having five-point contact with K, become the points c through 

which pass five >>consecutive>> planes of x. The cuspidal edge of z is of order 

30, since this is the number of osculating planes of K passing through an 

arbitrary point;  the order of the surface 216 generated by the tangents of this 

cuspidal edge is the same as that  of the surface S ~6 generated by the tangents 

of K. There must be in all 96 intersections of K and 2 TM, and, since both K 

and 216 are invariant for G, these intersections form an invariant set of points 

on K. But the only invariant  sets of points on K are made up, apart  from 

sets of i68 points arising from one another  by the different collineations of G, 

of multiples of three groups of 24, 56, 84 points corresponding respectively to 

the inflections, contacts of bitangents and sextactic points of k; an invariant  set 

of 96 points can therefore only consist of the 24 points c taken four times, and 

Zle must have fourpoint contact with K at each point e. 

1 The permutation group is given by Burnside: loc. cir., 2I 9. This is the same as the ex- 
tended congruence group discussed by Fricke: K.-F., 445, with h ~ 2. Just as I[ i~ obtainable 
by adjoiniDg a single reciprocation to (~, so the representation as an extended congruence group 
is obtainable by adjoining a single inversion to a group of bilinear transformations. 
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I[.  

Geometrical Developments. 

14. Since G, operating as a permutation group on the base points, is doubly 

transitive those collineations for which two given base points are both unchanged 

form a subgroup of G of order I58/(8 • 7)---- 3; that  is they form a cyclic group 

consisting of the identical operation and of two collineations of period 3, each 

the square of the other: Moreover there are also three collineations of G which 

intercha~ge these two given base points; these, taken with the above three co l  

lineations, constitute the set of collineations for which the two given base points 

are either both invariant or are interchanged with one another, and so form a 

subgroup of G of order 5. I t  has the cyclic group of order 3 as a subgroup 

and is a dihedral group. This association of a cyclic group of order 3 and a 

dihedral group of order 6 with a pair of base points corresponds to the asso- 

ciation (K. I I I ,  IO4; K.-F., 707, 71o) of isomorphic groups of ternary substitutions 

with a bitangent of k. 

I5. An involution (i. e. a collineation of period 2) that  permutes the base 

points among themselves must either interchange them in four pairs or leave 

an even number of them unchanged. But the only collineations, other than 

identity, for which any two base points are unchanged are, as has just  been ex- 

plained, of period 3; thus every involution belonging to G must interchange the 

base points in four pairs, and of course the base planes and osculating tetra- 

hedra correspondingly. 

Involutions in space are of two kinds, central and biaxial; those lines which 

are invariant for a central involution consist of all the lines through its centre 

and all the lines in a certain plane, while those which are invariant for a bi- 

axial involution consist of the transversals of its two axes. Since an involution 

belonging to G leaves four lines .Ply unchanged, and since no two of these lines 

can intersect because no four of the base points are coplanar, it follows that  

every involution belonging to G must be biaxial. 

The number of involutions belonging to G is twenty-one, and they are all 

conjugate to one another  in the group (K. I I I ,  93; K.-F., 38I). Their matrices 

must, since the involutions are all conjugate, all have the same trace, and an 

involution is biaxial or central according as its trace does or does not vanish. 

But the trace of F, which is the matrix of one of the involutions, vanishes with 
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a + f l + y  + I, so that  we have a second proof that  all involutions of G are 

biaxial. 

I6. I t  is convenient, in order to obtain the first properties of the figure 

which arises by considering an involution of (~, to be able to allude to the 

corresponding figure in the plane. Each of the twenty-one involutory collinea- 

tions in the plane of k is a harmonic perspectivity (K. I I I ,  io2; K.-F., 709) with 

a point 0 for centre and a line w for axis. Any two corresponding points of 

k in the involution are collinear with 0 and harmonic with respect to 0 and 

the point where their .~oin meets w. Each line through 0 meets k in four points 

consisting of two p~irs of corresponding points, and there are four lines through 

0 for which these two pairs coincide with one another - - t h e s e  lines being four 

of the bitangents of k. There pass also through 0 four ordinary tangents of k, 

namely those which touch k at its four intersections with w; these are four of 

the sextactic points of k and are the only points of k which are invariant for 

the involution. 

The locus of chords which join pairs of points of K that  correspond to one 

another in an involution I of G is a scroll S containing K and the two axes 

of I;  the two intersections of a generator of S with K are harmonic with re- 

spect to the intersections of this generator with the axes. Now when the qua- 

dries of the net, of which K is the Jacobian curve, are represented by points 

of the plane those which are represented by the points of a line through 0 are 

the members of a pencil which includes the quadrie q represented by O. The 

intersections of the line with ]~ represent the four cones of the pencil, whose 

vertices form a tetrahedron self-polar for q. ]3ut these vertices are four points 

of K which consist of two corresponding pairs of points in L so that  the ge~e- 

rator.Y of S are polars of  o~e a~2other with resl~ect to q. In particular; those four 

bitangents of, X: which pass through 0 give rise to four chords of K which are 

generators of S and are their own polars with respect to q, so that  they are 

generators also of q. No point of S, other than the points of these four com- 

mon generators of S and q, can lie on q unless it lies on one of the two axes 

which, as transversals of the four common generators, both belong to the op- 

posite regulus on q. The four common generators are, since they join pairs of 

points of K that correspond to pairs of points of contact of bitangents of k, 

four of the lines 1~.~. 

The order n of S is the number of its generators which meet an arbitrary 
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line ~. Now 2 is t ransformed by I into a line /t, and )~, tt and the two axes 

are on a quadric (not necessarily belonging to N). Any generator of S which 

meets ~ must also meet /~ and so, since all generators of S meet both axes, lie 

on this quadric. The curve common to S and the quadric therefore consists of n 

generators and the two axes, so that  2 n ~ n + 2s when s is the multiplicity of 

the axes for S. But, since the common curve of S and q consists of the axes 

and four of the lines p~j, 2 n  = 4  + 2s.  I t  follows that  S is a quartic scroll 

having the two axes of  I as nodal lines. This result is due to Baker (B, 476) 

who obtained it by a different method. 

I t  has been observed that  the generators of S can be paired so that  those 

of a pair are opposite edges of a te t rahedron whose vertices form a canonical 

set on K; such a pair of generators is a pair of conjugate chords of K in the 

sense of Note I, p. 31o. I t  follows that  S is, in the sense of Note I, a self- 

conjugate surface. The knowledge of this fact facilitates the task of finding the 

equation of S; since the scroll also contains all the base points its equation has 

for its left-hand side (Note I, 308, footnote) a skew bilinear form in the two 

sets of variables x, y, z, t and X, Y, Z, T. 

I7. Four of the lines pij are invariant  for / ,  and the point which is paired 

by I with a point of any one of these four lines is a point of the same line; 

I induces an ordinary involution of pairs of points on each of the four lines. 

Let  p~b be one of the four lines; two of the pairs of the involution on ~ab are 

at once identified, namely the pair of intersections of pa~ with K and the pair 

of base points Pa and Pb. The pair which is harmonic to both these pairs con- 

stitutes the double points of the involution, and is thus the pair of points where 

the axes of I meet pa~. Now it will be observed that  these intersections have 

been identified quite independently of which other three of the twenty-eight 

lines p~j are invariant  for I, and it will be remembered that  there are three 

different involutions of (~, belonging to a dihedral group of order 6, which inter- 

change P~ and P~. I t  must follow that  through any point where an axis of an 

involution of G meets a line p~.j axes of three involutions pass. 

Perhaps an example of a dihedral group, with its three involutions, may 

appropriately be given here. The permutat ion f of the base points, as has been 

mentioned in w 8, is (07) (16) (23) (45), and it is at once verified that  e4 fe  ' is 

the permutat ion (o43) (257). I t  therefore follows that  those collineations of {] 

which either interchange PI and P6 or leave them both unchanged subject the 
1 2 -  61491112 Acta mathematica. 79 
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base points to the fol lowing permuta t ions  in addi t ion to the ident ical  permu- 

t a t ion  : 

(043) (257) (034) (275) 

(o7) (I6) (23) (45) (I6) (02) (35) (47)  (I6) (o5) (24) (37) .  

The  last  three  permuta t ions  arise f rom those involut ions which in te rchange  P~ 

and P , ,  and the axes of each of these three  involut ions mus t  meet  P~G in the 

same ~wo points. 

I8. The  discussion has so far  been concerned with the effect of an involu- 

t ion I on the  base points;  it  is t ime to recollect  t ha t  I has the cor responding  

effect on the  base planes and to enquire  what  f u r t h e r  in format ion  can be ob- 

ta ined  thereby.  

The axes of / ,  then,  are nodal  lines not only of a quar t ic  scroll S genera ted  

by chords of the  curve K but  also of a quar t ic  scroll ~ genera ted  by axes of 

the developable z; the axes of I are themselves also axes of z. I f  pa~ is a ge- 

ne ra to r  of S t hen  zab is a genera to r  of -~, and the generators  of ~ are polars 

of one ano the r  with respect  to a quadr ic  which touches all the  base planes and 

meets  ~ in its two nodal  lines and in the four  lines z,.j which lie upon it. And  

the plane which joins an axis of I to a l ine za~ which meets  i t  is the same for  

each of the three  involut ions  tha t  i n t e rchange  Ha and Hb and so contains an axis 

of each of the three  involut ions.  The  two planes so arising th rough  z,t ,  are har- 

monic both  to H~ and Hb and to the two planes of z t ha t  pass t h ro u g h  7~b. 

The involut ions  which in te rchange  Ha and Hb are of course the same as those 

which in te rchange  1)a and Pb, so tha t  the i r  three  pairs of axes give two tr iads 

of l ines s u c h  t ha t  the  lines of e i ther  t r iad  not  only concur  in a point  of p~b but  

also lie in a plane th rough  z ~ b  W e  there fore  can say tha t  

The forty-two axes of  the involutio~s belongi~g to G coJ~si~.t of.fifty-six triads 

of lines, the li~es of each triad bei~g both cow,current aml coplanar. .Each axis 

belongs to four of  the triads. 

19. Two quar t ic  scrolls S and 2 which arise f rom the same involution have 

the same nodal  lines, and the re fore  meet  residual ly in e ight  common generators .  

Since there  are twenty-one involut ions  there  thus  appear  168 lines which are 

bo th  chords of K and axes of z; the axes of the  involut ions also have this  

double proper ty ,  so t ha t  I68 + 42 ~ 21o such lines are accounted  for.  And there  

are no others.  For  the chords of K form a congruence  of order  7 and class I5 
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while the axes of z form a congruence of order I5 and class 7, so that  Halphen's 

formula tells us that the number of lines common to the two congruences is 

7.I5 + I5.7, which is 2Io. 

2o. Suppose now that  one axis of an involution I meets K in 1~1 and R~ 

while the companion axis meets K in R~ and /~ .  These four points correspond 

to collinear points of k and so constitute a canonical set; it follows that  the 

three further intersections of any face of the tetrahedron /~1 R'l/q~ B~ with K 

lie on the trisecant which is conjugate to the opposite vertex, the trisecant tl 

conjugate to /r lying in the plane B; Re R.'.,, and so on. Now R1 is invariant 

for /,  so that  tl must also be invariant and hence meet both R~ B~ and /~R~;  

thus tl passes through /~'1, which therefore counts twice among the six inter- 

sections of the plane B~/~  B~, with K. This in agreement with the fact tha t  

the tangent of K at 1~ is invariant for I and so meets'R~ R~. We thus see that  

the plane which joins the tangent  at B, an intersection of K with either axis 

of any involution belonging to G, to the companion axis meets K in two further 

points collinear with R and harmonic with respect to R and the intersection of 

their join with the companion axis. 

The osculating plane of K at R~ is invariant for /, so that it passes either 

through R~ R~ or through R.., R'.  But it has just been explained that  the plane 

R 1 R.~ R~, which contains the tangent of K at R~, also contains one of the tri- 

secants through R~; it cannot therefore be the osculating plane at R~ unless the 

triseeant and tangent  coincide which, since R~ is not one of the points c, they 

do not. Hence the osculating plane at RI contains R1 R~. Similarly the osculat- 

ing plane at /~  also contains R 1 R~. The chord R~ R~ is therefore the inter- 

section of the osculating planes of K at R, and R~, and so a pri~;cipal chord 

of K. The same argument applies to either axis of any involution belonging to 

G: the axes of the i~h'olutious are forty-two of the principal chords of K. They are 

also, by dual reasoning, principal axes of z. 

2i. I f  two biaxial involutions are permutable the axes of either are inter- 

changed by or else both invariant for the other. In the second event the in- 

volutions are such that  both axes of either meet both axes of the other, so 

forming two pairs of opposite edges of a tetrahedron; their product is then the 

third involution whose axes are the remaining pair of opposite edges~ I f  this 

were to occur for three of the involutions of G the vertices of the tetrahedron 

would be common to three quadrics of ~; for it has been explained that  the 
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two axes of an involution of (~ lie (together with four of the lines pij) on such 

a quadric. I f  these three quadrics were to belong to a pencil there would cor- 

respond to them three points 0, centres of harmonic perspectivities for which 

k is invariant,  tha t  are coll~near; but it is known (K.-F., 712) that  the centres 

of any three such transformations that  are permutable are not  eollinear. The 

three quadrics cannot therefore belong to a pencil and any points common to 

them must be among the base points. But no base point lies on an axis of an 

involution of (l, so tha t  the assumption that  the axes of two permutable in- 

volutions are edges of the same tetrahedron must be false. 

I t  must be then that  when two involutions of 61 are permutable each inter- 

changes the axes of the other; the four axes must belong to a regulus and 

constitute two harmonic pairs thereof. Now the product of the two permutable 

involutions is a third involution permutable with both of them, and the three 

involutions constitute, together  with identity, a 4-group. The axes of the third 

involution must belong to the same regulus and be harmonic to each of the 

pairs of axes of the other two; the three pairs of axes of the involutions of the 

4-group are thus all on the same qnadric T and constitute a regular sextuple, 

each pair being harmonic, in a regulus, to both the others. The twelve inter- 

sections of T with K lie two on each of the six axes which lie on T,  and so 

are all of them points a corresponding to sextactic points of k. 

I t  is known (K. I I I ,  94; K.-F., 383, 712) tha t  there are fourteen 4-groups 

belonging to (~ and falling into two conjugate sets of seven; any involution be- 

longs to one 4-group of each set. There are thus fourteen quadrics T falling 

into two sets of seven, the axes of an involution of  (~ lying on one quadric of 

each set. The two quadrics T, T '  containing the axes of an involution I have 

in common two lines of the opposite regulus which n~eet ten axes i~ all, for  they 

must meet both axes of any involution belonging to either of the 4-groups con- 

taining I as well as the axes of I itself. The seven quadrics of either set con- 

st i tute a composite surface of order I4 which cuts out on K the whole set of 

a-points in which the axes of the twenty-one involutions meet it. Let  the qua- 

drics of one set be denoted b y  the symbol T and those of the other set by the 

symbol T'. Since each quadric T or h u' contains three pairs of axes, and since 

each pair of axes lies on one quadric of each system, with each quadric T there 

is associated a triplet of quadrics T '  while with each quadric T '  is associated 

a triplet of quadrics T;  there is a (3,3) correspondence between the quadrics T 

and the quadrics T ' .  Thus not  only are the seven quadrics of each set permuted 
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among themselves by the collineations of G but so are the seven triplets of 

quadrics of each set. This feature of the Klein group, when regarded as a 

permutation group of degree 7, of permuting not only seven objects but also, 

at the same time and by the same operations, seven triplets of these objects, 

was signalised by NSther. 1 

22. Each involution of G interchanges the base points and the base planes 

in pairs. Since the product of two different involutions which interchange the 

same pair is a collineation, other than the identical collineation, which leaves 

each member of the pair unchanged this product must be of period 3; it follows 

that  no two pairs that  are interchanged by involutions belonging to the same 

4-group can be identical. Now if an involution Is transposes the suffixes a, b 

while an involution I s transposes a, c the collineation Is Is transforms c into b; 

if, then, I~ and Is are permutable the collineation I s Is must also transform c 

into b so that  if d is the suffix which ~ transposes with c the same suffix d 

must be the one which I s transposes with b. Thus I s induces, in addition to 

two further transpositions, the transpositions (ab) (cd), [ 3 induces (ac) (bd), while 

[~ Y3----I1 = [3 [~ induces (be) (a d). The remaining four suffixes are subjected to 

similar sets of transpositions by the three involutions. The six axes of I~, 12, 

I s lie on a quadric, h u say. 

Consider now the tetrahedron formed by the base planes Ha,  Tlb, He, H~. 

Take any one of the six edges of this tetrahedron, say Zbc. Since Hb and 1I,.. 

are transposed by /1, Zbc is invariant for I1 and meets both its axes; more- 

over Ha and Ha are also transposed by /1 so that  the two vertices joined by 

~ c  are harmonic to the pair of points in which their join meets the axes of 11 

and so are conjugate points for h u. The same argument is applicable to every 

edge of the tetrahedron, any two vertices of which are therefore conjugate points 

for W; the tetrahedron is therefore self-polar for T. The same result holds for 

the tetrahedron formed by the other four base planes, which undergo corre- 

sponding transpositions when subjected to the 4-group of collineations. So that  

we have 

To each of the fourteen quadrics h u there corresponds a division of 

the base planes into two sets of four, and the tetrahedra formed thereby 

are both self-polar for T. The same result holds for the two tetrahedra whose 

vertices are the t w o  corresponding sets of base points. 

1 Math. Annalen I5 (I879), 94. 
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There thus arise four tetrahedra self-polar for T, two of them with base planes 

for faces and two of them with base points for vertices. And each of the four- 

teen quadrics h u or T '  is both inpolar to all the quadrics 3.1 as well outpolar 

to all the quadrics 4.2. 

There are thirty-five different ways of dividing the base planes into com- 

plementary sets of four; the two tetrahedra so arising are self-polar for the same 

quadric whose point equation is obtainable forthwith from 4.1 by performing 

the corresponding division, into complementary sets of four, of the eight terms 

appearing there. And so, when the effect of the involutions of a 4-group of (] 

is known, the point equation of the quadric T associated therewith can be found 

quickly. The plane equation is similarly obtainable from the identity which con- 

nects the squares of the equations of the eight base points, which is 

7 
7 2 

8=1 

The point equation and plane equation of any quadrie T are obtainable from 

one another by interchanging point and plane coordinates and, at the same time, 

replacing e by its reciprocal, ~6. 

2 3 . As examples, the two 

sociated with the permutation 

w 8, that  

4-groups which contain the involution I(F)  as- 

f may be given. I t  is found, on referring to 

f = (07)(23)(I6)(45), e6 fe" f e - ' =  (02)(37)(I4)(56), e f e S f e  "~:  (03)(27)(I5)(46). 

These constitute, with the identical permutation, a 4-group, and the quadric which 

contains the six axes of the associated involutions has, for self-polar tetrahedra, 

the four arising from the division o237/1456. The point equation of this quadric 

is therefore, from 4.1, 

(,'~x + , y  + ~4z + ~-1t)2 + ( , ~ x +  ,~y  + ,6z  + *-1 t)" 

----7to'--(x + y + z + *-lt)~. 
2 

23.1 

The other 4-group containing f consists of identity and the three permu- 

tations 

f =  (07) (45) (I6) (23) , efe'~ f e  5 = (05) (47) (i2) (36), e~fe ~ f e  = (04) (57)(I3) (26). 
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The quadric  which contains the six axes of the associated involut ions is now 

associated with the division o457/ i236,  and so has the equat ion 

(~'~, + ~-~v + ~z  + , - 1  t)~: + ( ~ , :  + ~: ,f  + ~'~: + , - '  t) -~ 

._ 7t,___(.,. + .q + 2' § 1. I t)~. 23.2 
2 

The two axes of [ ( F )  must  lie on both the above quadries. 

These two axes, incidentally,  also lie on the (luadrie which contains the 

four  lines _Per, lq~, P~,  lh5 This (luadric has an equat ion of the form 3.I, and 

the coefficients are easily determined,  for  example from the eonjuo'aey of ]'o and 

P:  and of three  o ther  pairs of base points;  the equat ion is 

(3  - ~')(y~- - , t x )  + ( . , , -  ~ ) ( x  ~ - �9 t_~) + (~ - ~)(:.-' - - ,  t,~) := o 

The equat ions 23.I and 23.2 are the point  equat ions of those quadrics  W 

and ~ which conta in  the two axes of I (F); the p l a n e  e,luations are deducible 

immediately.  F rom these equat ions it is quickly verified tha t  the two quadries 

are bo th  inpolar  and  ou tpo la r  to one another ,  and tha t  each of them is its own 

polar  reciprocal  with respec'~ to the other .  And these g'~,ometrical relat ions hold 

between any one of the four teen  quadries  T or W' and each meml)er of its ~ts- 

sociated tr iplet .  

24. Much more could be wri t ten  about  these four teen  quadries, and while 

an exhaust ive  account  of the i r  proper t ies  would be inordinate ly  long it is im- 

por t an t  to ment ion  some of the i r  more fundamen ta l  re la t ions  to the lines of the 

figure. I t  would indeed be wrong to omit  all ment ion  of those features  of the 

three-dimensional  figure tha t  are re la ted  to the fo rmat ion  of equat ions  of the  

seventh  degree whose Galois group is of order  I68. I t  will be found t h a t  the 

subjoined tables are useful.  Here in  the operat ions  of period 2 of G, regarded  

as pe rmuta t ions  of e ight  objects, are exhibi ted in commuta t ive  t r iads so tha t  each 

hor izonta l  layer  of each table corresponds to a 4-group; the seven 4-groups for  

each table cons t i tu te  a conjuga te  set. In  the first column the permuta t ions  are 

given in terms of the  two genera t ing  permuta t ions  e and f; the second column 

shows the i r  effect on the base points,  base planes or osculat ing te t rahedra .  In 

the th i rd  column appears  tha t  division, of the base points or base planes, into 

two sets of four  which gives t e t r ahed ra  self-polar for  t ha t  quadric  W or W' on 

which lie the six axes of the three  involut ions  of the 4-group; this division is 

ins tant ly  read  off f rom the three  pe rmuta t ions  of the eight  digits. Below this 
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division of eight digits into two tetrads appears another division into four duads; 
this requires for its explanation, which is given subsequent to the tables, a re- 

ference to the associated triplet of quadries. 
When e and f satisfy the relations 8. I the operation eP-lfel-p,  where p is 

any integer, is of period 2. Of the two 4-groups which include this and the 
identical permutation one arises by taking the two permutations 

e p+5 fe 2 fe 3-p and e p fe s fe a-p 

while the--other arises by taking the two permutations 

e p+I fe 2 fe  -p and e p+I fe ~ fe  ~-~'. 

f 

e 6 fe ' -  fe'-' 

e f e  3 f e  2 

e f e  ~ 

f e  ~ f e  

e ~ f e ~ f e  

e" f e  5 

e f e ~ f  

e a f e  3 f 

e S f e  4 

e 2 f e ~ f e "  

e t f e a f e ~; 

e 4 f e  3 

e S f e 2 f e  .~ 

e 5 f e  3 f e  .~ 

e S f e  2 

e t f e "  f e  4 

e 6 f e  8 f e  4 

e e f e  

e 5 f e  2 f e  s 

f e  3 f e  s 

(07) (23)(I6) 
(o2) (37) (I4) 
(03) (27)(I5) 

(OI) (34)(27) 
(03) (14)(25) 
(04) (I3)(26) 

(02) (45) 
(04) (25) 
(05) (24) 

(03) (56) 
(05) (36 ) 
(06) (35) 

(04) (67 ) 
(06) (47) 
(07) (46) 

(05) (I7) 
(07) (I5) 
(0I) (57) 

(06) (,2) 
(oi) (26) 
(02)(16) 

(,3) 
(,7) 
(16) 

(17) 
(12) 
(14) 

(,2) 

(15) 
(13) 

(23) 
(26) 
(24) 

(34) 
(37) 
(35) 

(45) o237/1456 
(56) 

04/12/36/57 
(46) 

(56) 
0,34/2567 

(67) 
o5/23/I6/47 

(57) 

(67) 
0245/I 367 

(36) 
06/I 5/27/34 

(37) 

(24! o356/I247 
47) . . . .  

(27) ~ 

(35) 
(23) ~ 

oi/24/37/56 
(25) 

(46) 
o157/2346 

(34) 
o2/I4/35/67 

(36) 

(57) 
o, 26/3457 

(45) o3/17/25/46: 
(47) 

f 
e-~ re-" fe 6 
e 2 f e 3 f e  

e f e  e 

e 3 f e 2 f e  ~ 

e 3 f e  3 f 

e ~ f e  ~ 

e 4 f e  ~ f e  4 

e 4 f e  ~ f e  6 

e a f e  4 

25 fe'- fe  a 

e.~ fe3fe  .~ 

e ~ f e  3 

e 6 f e  ~ f e  ~ 

e 6 f e ~ f e  4 

e 5 fe" 

fe~fe  
f e a f e  a 

e 6 fe  
e f e 2 f  

e fe s fe  '~ 

(07) (45)(I6)(23) 
(05) (47)(12)(36 ) 
(04) (57)(I3)(26) 

(0,) (56)(27)(34) 
(06) ('5)(23)(47) 
(05) (,6)(24)(37) 

(O2) (67)('3)(45) 
(O7) (26)(I5)(34) 
(06) (27)(14)(35) 

(o3) (17) (24)(56 ) 
(OI) (37)(26)(45) 
(O7) (I3)(25)(46) 

(04) (12)(35)(67) 
(02) ('4)(37)(56) 
(0I) (24)(36) (57) 

(05) (23)( '7)(46 ) 
(03) (25)(14)(67) 
(02) (35)(I6)(47) 

(06) (34)(12)(57) 
(04) (36 ) (17) (25) 
(03) (46)(I 5)(27) 

o457/I236 
o3/I4/27/56 

O156/2347 
o4/I 3/25/67 

o267/1345 
o5/17/24/36 

oi37/2456 
06/'2/35/47 

o 124/3567 
07/23/15/46 

o235/I467 
o 1/26/34/57 

o346/I257 
o2/16/37/45 
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The fourteen 4-groups which belong to G are all accounted for by giving to p 

the values I, 2, 3, 4, 5, 5, 7. The tables can now be compiled forthwith and 

are as shown. 

The quadrics h u and T'  which contain the axes of the involution I (E~)-IFE l-p) 

will be denoted by ~/sp and Tp; the quadrics Tl, correspond to the 4-groups of 

the first table and the quadrics T~ to those of the second table. 

The divisions, in the last columns of the tables, of the eight digits into 

four duads are now easily explained, Consider the three involutions in the top 

layer of the first table; their axes lie on T1 and the second table shows that  

they also lie one pair on each of ha'l, hu~, T~ which therefore constitute the 

triplet of quadrics h u' associated with hal. The three divisions into two tetrads 

that  arise for the quadrics h u' of this triplet show tha t  the four lines 

Po~, Ply, P3~, P~7 

have the property that  when they are divided into two pairs the lines of each 

pair are polars of one another with respect to a quadric of the triplet, the three 

quadrics of the triplet corresponding to the three divisions of the four lines 

into two pairs. And the same is true of the four lines 

~T04, :7~12~ :7~36, 7K57, 

This explains the division into four duads that  appears in the first layer of the 

first table. The thirteen similar divisions admit similar explanations. 

The division is also associated with another property that  will be met later 

when those operations of G which are of period 3 are considered, namely that  

each of the four pairs of lines 

~o~, Po~; zrl_~, Ply; ~s6, P~6; ~7, P57 

is a pair of polar lines for ~/s 1. 

25. Before we proceed to deduce further geometrical results another im- 

portant aspect of these divisions into four duads must be signalised. I t  is known 

(K. I I I ,  95; K.-F., 384) that  each of the fourteen 4-groups is self-conjugate in 

one octahedral group of G; the jbur lines p that correspond to a division into four 

duads undergo all possible permutations when subjected to the corresponding oeta- 

hedral glvup o f  collineations, while the same of course holds for the four lines 

ev. Such a set of four lines may be called an octahedral set (of lines p or of 

lines z). The lines p of an octahedral set, since they join the eight base points 
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in pairs, correspond to a set of four  b i tangents  of k whose points of contac t  lie 

on a conic; t ha t  each oc tahedra l  subgroup of the Klein group  of t e rnary  col- 

l ineat ions has associated with it such a set of four  b i tangents  on which it  ira- 

poses all possible pe rmuta t ions  is well known (K. I I I ,  IO3; K.-F., 712). The 

conies t h rough  the contacts  of these oc tahedra l  sets of b i tangents  were first 

obta ined by Klein (K. I [ I ,  ~o6, to8) and then  figured in a paper  by Gordan  1. 

Since the four  b i tangents  of an oc tahedra l  set are not  concur ren t  the four  lines 

p of an octahedral  set do not  belong to a regulus  and so have only two trans- 

versal lines. The same is t rue  of an octahedral  set of lines ~. 

26. Suppose now tha t  two pairs of lines l, l' and m, m' both consist  of polar  

lines wi th  respect  to any non-s ingular  quadric  surface q. Then,  if the four  lines 

do not  belong to a regulus,  the i r  two t ransversals  n, n' are also polar  lines 

for  q. Of several short  proofs  of this resul t  we select one which uses the re- 

presenta t ion  of the  lines of three-dimensional  space by points of a quadr ic  1-2 

in five-dimensional space since we shall present ly  find it convenient  to use this 

representa t ion  for  ano ther  purpose. Tile two reguli  on q are represented  by the 

conics 7, and 7., in which t2 is met  by two planes ~ t  and ~,, t h a t  are polars of 

each other;  the lines l, l', m, m' are represented  by points L, L' ,  M, 31' such 

t ha t  L L '  meets bo th  ~1 and ~ ,  say in L, and L 2 (not points  of ~2) while M . M '  

meets them in M 1 and M 2. The t ransversals  n, n'  are represented  by the two 

intersect ions  N, N '  of ~2 wi th  tha t  line which is the polar  of the  space L L '  

MMr: this space is L 1 L 2 M I M ,  and, since ~ ,  and ~ are polars of one another ,  

its polar  line joins the  pole N, of L , M  1 with respect  to 71 to the pole N2 of 

L 2 21/.o with respect  to 7.~. And therefore ,  since N N '  meets  both  ~1 and "a~,~, n 

and n' are polar  lines wi th  respect  to q. 

I t  follows t ha t  the two transversals  of an octahedral  set  of lines are polar  

lines with respect  to each of the three quadrics  of a t r iplet ;  for  example, the  

t ransversals  of P0~, Ply, PaG~ P~7 are polar lines for  each of W'1, ~v~, W~, as also 

are the t ransversals  of z04, ~q,,, zv~, z'57. 

Denote ,  for  the moment ,  the two axes of I ( F )  by x and x ' ;  they lie on he1 

and on W'l. 

Since Po4 and j057 are in t e rchanged  by I ( F )  they  belong to a regulus with 

x and x ' ;  for  the same reason p~.~ and P.~6 belong also to a regulus with x and 

x'. The quadric  surfaces on which these reguli  lie are, since an oc tahedra l  set 

1 Math. Annalcn 2 0  (1882), 515--530. 
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of lines does not belong to a reffulus, distinct and so have in common, in ad- 

dition to x and x', two lines t and t'; these are therefore the two transversals 

of the octahedral set Poi, Ps:, P~,_, Ps(; and, since they meet x and x', are both 

invariant for I(F).  Similar reasoning shows that  t and t' also meet the axes of 

those other two involutions whose axes lie on T~. Hence t, t' themselves must 

lie on W~ and belong to %, the regulus complementary to that  which contains 

the axes of the three involutions. 

Each quadric h u' of the triplet associated with hu~ contains two lines of % 

which are harmonically conjugate in Q1 to t and t', for, as has been shown, t 

and t' are polar lines for each quadric of the triplet. Hence we have: 

Any one of the fourteen quadrics W or W' has among the lines of one 

of its reguli axes of three permutable involutions of ~. Through each of 

the three pairs of axes passes a quadric of the associated triplet and this 

quadrie contains two lines of the complementary regulus Q. The three pairs 

of  lines so arising have a eonmw~ har~o~ie lm i r  a~._t so belong to <m i~wolu- 

tio~ i,~ Q. 

The double elements of this involution were obtained as the transversals of an 

octahedral set of lines 1)- But the corresponding octahedral set of lines z clearly 

yields, through the same associated triplet of quadrics, the same involution and 

so two corresponding oetahedral sets of  lb~es p a~<l li~es ~ eo~stitute eight li~es 

with two eommo~ tra~sversals. 

27. Yet another connection can now be established with Klein's work. When 

Klein (K. II ,  413) put to himself the question of finding the simplest constructs 

tha t  only admit seven different positions when subjected to the colline~tmns of 

(~ he answered it by giving two sets of linear complexes. A second answer has 

now been provided by obtaining the quadrics W and W', and it may be sub- 

mitted that  these too have Klein's desired criterion of simplicity. The quadrics 

and the linear complexes are intimately related, and this relation will now be 

set forth. 

Let us use again the representation of lines of three-dimensional space by 

points of t2; any quadric q has two complementary reguli represented on .Q by 

those conics 7~ and 72 in which it is met by two planes w~ and ~2 that  are 

polars of one another. Suppose now that  any two lines a and fl, represented 

by points A and B of 7~, are chosen in one of the reguli: what conics of t2 

through A and B represent reguli on quadrics q' that  are self-reciprocal with 
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respect to q? (It will be remembered that  quadrics W aad W' are self-reciprocal 

with respect to one another when each of them is a member of the triplet as- 

sociated with the other.) The lines other than a and fl of such a regulus are 

polars of one another with respect to q, and any such pair of lines is harmonic 

in the regulus to a and ~. I f  then L is any point of an eligible conic 7' through 

A and B the polar line with respect to q of the line which is represented by 

L must be represented by the other intersection M of 7' with the line which 

.ioins L to T, the intersection of the tangents of 7' at A aad B. Since L and 

M represent lines that  are polars of one another with respect to q the tangent 

primes of Y] at L and M must intersect 71 in the same pair of points, and since 

the line joining these, being the polar of the intersection of L M  and A B  with 

respect to 7,  is not AB,  the polar prime of T, which certainly contains A B ,  
must contain the whole of ~1. Wherefore T must lie in ~2. The locus of the 

eligible conics 7' is the section of .Q by the prime which joins ~ to A B. 
Suppose now that  a linear complex z/ contains reguli r and r' which, having 

two common lines, lie on q and q' respectively. The prime section of t2 which 

represents J/ must contain, in the above notation, both 7L and 7' so that  the 

pole of this prime must lie in w~ on the polar of T with respect to 7~. The 

two points of 73 which lie on this polar represent the two lines common to those 

reguli on q and q' that  are complementary to r and r'. I f  then a single linear 

complex A contains not only r but also three further reguli r'l, r.~, r~ lying re- 

spectively on quadrics q'~, q~, q'3 that  are all self-reciprocal with respect to q 

(each of r'l, r~, r~ containing two lines of r) it must be that  those three lines 

iu ~ ,  which join the pairs of points of 7~ representing the pairs of lines of the 

regulus Q complementary to r that  lie respectively on q'~, q'2, q'3, are concurrent; 

or that  the three pairs of lines belong to an involution in Q. And the converse 

is true also. Now this, as has been shown, is precisely what happens for any 

quadric W or W' and its associated triplet, and so 

On any one of the quadrics Wp is a regulus rp containing the axes 

of three permutable involutions of G. Each pair of axes belongs also to a 

regulus on a quadric of the associated triplet, and these three reguli belong 

to a linear complex f/p which also contains rp. And from each quadric T~ 
r 

there arises similarly a linear complex Ap. 

This describes how to obtain the linear complexes from the quadrics. As with 

the quadries, so with the linear complexes: they form two sets of seven and 
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associated with each complex of either set is a triplet of complexes of the other 

set. The quadrics are obtained from the linear complexes very simply: given 

one of the complexes the corresponding quadric is that  which contains the re- 

gulus which is common to the three complexes of the associated triplet. 

The jburteen complexes A and A '  are Klein's linear con~plexes. Since equa- 

tions for all the quadrics ~g and W' are, as remarked in w 22, immediately avail- 

able there is no hindrance to the verification of this statement. But space will 

be saved here if the verification is suppressed, and perhaps countenance will 

also be given to the suppression as some retaliation for the tantalising with- 

holding (cf. K. II, 4r3) by Klein of the geometrical discussions by which he 

obtained the linear complexes. 

Since each linear complex contains a regulus on the corresponding quadric, 

and since this regulus also belongs to each of the three associated linear complexes, 

each of the fourteen complexes must be connected with the members of its as- 

sociated triplet by a linear identity. These identities are not mentioned by 

Klein, but they are immediately derivable from equations (23) on p. 414 of 

K. II.  The corresponding identities between conics which pass through the con- 

tacts of octahedral sets of bitangents of k are given by Gordan (lvc. cir. 520). 

28. Nothing has yet been said about equations for the axes, or about coor- 

dinates of points which lie upon them. I t  is however quite easy to approach 

these matters with the help of the definition, given in w I7, of the pair of inter- 

sections of 2)ij with axes as the common harmonic pair of two known pairs of 

points on pij. For it follows, from the remarks at the end of w 3, that  the 
point (~6i + ~86j, e3i A- ~63.i ~5i ~_ ~85j, T--1 ~_ T--I~) lies on an axis when 2 is a 

root of E'~ + I ~ o and that  (d TM, es,~, ~.~.~, T-~ + ~) lies on an axis when It is a 

root of 2 t t2- -7  ~--o; here i and j are any two different digits, and s any one 

digit, among I, 2, 3, 4, 5, 6, 7. The fifty-six intersections of the axes with the 

lines p~i are thus identified, and the fifty-six planes which join the axes to the 

lines zi j  are identified just as simply. 

We are, for example, led to the following points on the axes of I(F): 

on PoT; 
( I ,  1, I, 2:-1 + (I1-1) a n d  ( I ,  I ,  I ,  T -1 - (IT--l). 

o n  P16; 

(~ §  ~4§ ie~*,~-~ + i~'~,~-~ + i~ - ~ ) a n d ( ~ - i ~ ,  ~ 4  i~3 e-~_i~5 ~ - ~  iv- ' ) .  

on P'n ; 

(~4 + i~5, e._ + ie  6, ~ + i~ "~, ~-~ + i~ -~) and ( ~ i ~  '~,e ~ i e  6 , ~ i ~ ,  ~-~--i~-~). 
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on p~; 

(~2 + ies, e + it",  ~4 +.i~,;, ~-i  ~_ i , -1)  and ( ~ - - i e  3, ~--i~ ~, ~ - - i e  6, , - ~ - - i z - ' ) .  

The four points written on the left are collinear, lying on one axis of I(F), 

while the four points on the right are also eollinear and lie on the compa- 

nion axis. 

29. I t  is known (K. III ,  93; K.-F., 38I) that  G contains forty-two operations 

of period 4- Any one of them, say o r , generates a cyclic subgroup of G, the 

square of J, which is the same as the square of its inverse J-~ or j3, being 

one of the involutions. I f  the square of J is [ any united point of or is also a 

united point of [ and so must lie on an axis of L I t  cannot be that  every 

point of an axis is a united point, of J, for each axis is a chord of K and it 

is known (K. I I I ,  98; K.-F., 38I--z) that  Y has no united point on K; thus each 

axis contains the two united points of the projeetivity induced thereupon by o r 

which, since every point of the axis is invariant for 1 ~  J~, is of period 2 and 

so an ordinary involution. 

The united points of or are thus the vertices of a tetrahedron, which will 

be called a afi~mlamental tetrahedron and denoted by T, two of whose opposite 

edges are axes. Since each point of eH~her axis is transformed by or into its 

harmonic conjugate with respect to the two united points on th;s axis the posi- 

tion of the united points is known as soon as two pairs of corresponding points 

on the axis are known. But one such pair, R1, R'I, consists of the intersections 

of ~he axis with K while a second such pair, S~, S~, consists of the intersections 

of the axis with those triseeants of K that  are conjugate to the points B.2, B~ 

in which K meets the companion axis; these two pairs are sufficient to deter- 

mine two vertices V~, V~ of T and the vertices V~, V~ on the companion axis 

are determined similarly. Other facts are available for finding these vertices, or 

for verifying their positions when already found. There are, for instance, four 

lines pij which meet both axes of I;  these are interchanged in pairs by J and 

the vertices of T on either axis must be harmonic to its intersections with 

either of the two pairs. And there is an analogous statement involving the four 

corresponding lines zij. 

Those edges of T which are not axes will be called tra~sversals. Each point 

on a transversal belongs to a unique set of four points, obtained by subjecting 

it repeatedly to the collineation J, on the transversal; this set is invariant for 

J, is linearly dependent on two particular sets consisting of a vertex of T counted 
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four times, and so is harmonic. Moreover, since J ~  ii each set consists of 

two pairs both harmonic to the pair of vertices of T and so constitutes with 

these vertices a regular sextuple. These remarks have some significance when 

surfaces are considered which are invariant for the collineations of G. 

30. Suppose now that  C is one of the two collineations of period 3 for 

which both Pi and Pj are invariant. The assumption that  a third base point is 

also invariant for C implies that  at least five of the base points are invariant, 

and so that  C is the identical collineation which it is assumed not to be. The 

remaining six base points are therefore permuted by C in two cycles of three: 

say (P, Pb Pc)(Pd P~ Pf). There are then at least  four united points of C on pij, 
namely P,  Pj and the intersections of av~j with the two planes PaPbPc and 

P(l Pe Pf; it follows that  every indir/dual poi~t of 2gij is a ,tnited poi~,t of C. I f  

a line is invariant for C but yet is not such that  every point on it is a united 

point then it joins two united points of C, these being the united points of the 

projectivity induced on the line by C. This projectivity is of period 3, and 

each point of the line belongs to a unique triad of points that  arises from any 

one of its members by repeated applications of C; these triads all have the pair 

of united points as their Hessian duad and are linearly dependent on the two 

particular triads which consist of a united point taken three times. Such a line 

is that  common to the planes Pa PbPc and Pd PEP/; one triad of points thereon 

consists of the intersections with pb~, pea, Pob and a second of the intersections 

with pe/, pj~, p(7~; the two united points U~j and U~j are found as the Hessian 

duad of either of these triads. The j'u~;dan~e.ntal spaces of C, to use the standard 

nomenclature ~, are p~.j, Uij, U~j; the united points of C are U~j, U~j and every 

point of p~.j while the united planes of C are Uijp~j, U[jpij and every plane 

through Uij U~j. Now among the united planes of C are Hi and Hj, neither of 

which passes through p~,j; it follows that  the line ~ . j  U~i must be n~.i. Reci-. 

procally it appears that  p~-.~ joins the point of intersection of Ha, IIb, He to the 

point of intersection of II,~, 1L, IIf. And we have 

I f  any two base points, say Pi and Pj, are chosen the remaining six 

are thereby divided into two triads and the line common to the planes of 

these triads is z~j. Dually, if Hi and / / j  are selected the remaining six 

base planes are thereby divided into two triads, and the point of intersec- 

tion of either of these triads is on p,.j. 

I BERTI~-I: Geo~etria proiettiva degli iperspazi (Messina, I923) , 76. 
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Thus every line n~i is met by six of the lines p~i, every line p i j  by six of the 

lines z;j. 

As an example we may use the permutations given in w I7, by which it ap- 

pears that  the two planes which pass through ~16 are PoP4Pa and P.oP,~PT. 

This is easily verified. The equation of P0 P~/)3 is 

0 ~ -  

x y z t 

0 O �9 0 I 

~3 ~5 $6 T--1 

= - z + - y + - 

while that  of P~ P~ P: is 

x y z 
$2 ~ $4 

O --- 
e5 ~6 $3 

I I I 

~t 

I 

I 

x y 

~5 ~6 

I I 

z a x + T y  + 3 z  + v t  I 

$4 a e  ~ + 7 e + f i e  4 +  I i Sa a e 5 -}- )P ?6 + t~ ~a -b I ' 

where the lower three constituents of the last column are now all zero, so tha t  

the equation is a x  § 7Y + f l z  + zt  = o. But 

(~ - -  ~e)x + ($' - -  ~3)y + (~" --  ~ ) z  =-- ~x + ~ y  + ~ z  + ~-~ t - - ( ~ x  + ~ y  + ~ z  + ~ - '  t), 

a x  + 7 y  + f l z  + ~ t - -  $x  + $4y + ~"z + ~- l  t + ( $ 6 x + ~ y + $ ~ z + * - l t ) ,  

and the passage of the two planes through zj6 is manifest, as is the fact that  

they are harmonically conjugate to /11 and //6. 

These two harmonic pairs of planes through zl~ determine a third pair, 

harmonic to both of them, with equations 

e x + $~ y + ~2 z + z -~ t +_ i ($G x + es y + $5 z + 3-1 t )  = o. 3o.I 

This pair of planes, being harmonic both to / / i  and H 6 and to P o P  4P8 and 

P~/)5/)7, must be the pair of united planes through ~16 for each of the three 

involutions of G which interchange //1 and //6. Each plane of the pair therefore 

contains axes of these three involutions and is determined as the join of zj6 to 

one of the two points of p~ where three axes meet. The coordinates of the two 

points in question have been given in w 28, and it is at once verified that  they 

lie one in each of the two planes 30. I. 

Dually there is, on each line p~.j, a regular sextuple of points. The three 
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pairs of the sextuple are: (I) ~.i and /~j, (2) the points of concurrence of two 

triads of base planes, (3) the intersections of pij with axes of involutions. 

3 I. Certain facts about the intersections of z~j with any surface _~' that  is 

invariant for the collineations of (~ can be predicted in consequence of its in- 

variance for the eollineation C of period 3. For the intersections of F with 

~ij must, as a whole, be unchanged by C and so consist of the united points 

U, U' and a certain number of triads of points. Moreover, since there are in- 

volutions of (~ which interchange U and U', F must have equal multiplicities 

at these two points and also equal orders of contact, or multiplicities of inter- 

section, with UU'. Thus if the order of F is congruent to I to modulus 3 its 

multiplicities of intersection at U and U' must be congruent to 2, while if the 

order of 2 '  is congruent to 2 to modulus 3 these multiplicities must both be 

congruent to ~. 

32. A reference to the tables on p. I84 shows that  the polar planes of t)2 

and /)6 with respect to T,  are P0 Pa/)4 and P~/)5 P7 while the polar planes of 

the same two points with respect to T~ are, although in the opposite order, the 

same two planes. Hence PJs and 7r~6 are polar lines with respect to both T~ 

and ~ V ~ -  the two quadrics that  correspond to the octahedral sets in which 

P~6 and zc16 occur. The analogous property holds for any pair of lines pij and 

zt, j: they are polar lines with respect to those two quadrics T and T '  that  cor- 

respond to the octahedral sets in which p~j and z~j occur. Also: given any 

quadric T or T '  each of the four pairs p~j and zi j  that  belongs to the octahedral 

set associated with this quadric is a pair of polar lines with respect to it. Each 

pair is a pair of polar lines also with respect to a quadric of the other set of 

seven, and the four quadrics so arising are those which do not belong to the as- 

sociated triplet. 

33. Suppose now that  b,b' are the intersections of K with a line p (suf- 

fixes may be dropped for the time being) and U, U' are the united points of C 

on the corresponding line ~r. Since b is a united point of C the tangent of K at 

b is unchanged by C and so, as it is distinct from p, must pass through U or U'; 

let it pass through U. The plane Up has, apart from its contact at b and its 

intersection at b', three further intersections with K which, since 2 b + 2 b' is a 

canonical set on K, are an on the trisecant conjugate to b'; this trisecant, since 

it is unchanged by C, must pass through U. Similar statements hold for the 
1 3  - -  6 1 4 9 1 1 1 2  A c t a  m a t h e m a t i c a .  7 9  
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trisecant conjugate to b, which passes through U' and meets there the tangent 

of K at b'. The scroll B s generated by the trisecants of K is of order 8 and 

invariant for G; that  it should pass through both U and U' is in accordance 

with w 3I. 

The osculating plane of K at b is a united plane of C which does not pass 

through p and therefore must pass through ~; the same is true of the osculating 

plane at b'. Hence ~ is the li~w eommon to the osculali~g planes of K at its inter- 

section,s with p. 

34. Consider now the relation of 7r to the tangents of K, which generate 

a developable S ~G. Both U and U' lie, as has just been shown, on 8~6; not 

only does this happen but the tangent planes of S 16 at U and U', being the 

osculating planes of K at b and b', both contain zr which therefore touches S 16 

at both U and U'. This, too, is in accordance with w 3I. There remain twelve 

further intersections of zr with St6; the tangent  of K which passes through any 

one of these gives rise, by repetitions of C, to a triad of tangents which are 

cyclically permuted by C and which, since the plane joining any one of them 

to z is a united plane of C, lie in a plane through z. Two such planes are 

indeed familiar - -  the base planes which pass through ~; there remain two 

others. Thus, apart from the base planes H, there are two further t r i tangent  

planes of K passing through each of the twenty-eight lines z;  there are thus 

obtained, in addition to the eight base planes, fifty-six tr i tangent  planes of K. 

Formulae t that  connect the different singularities of a twisted curve show that  

K has sixty-four tr i tangent planes altogether; we have therefore accounted for 

them all. The dual result is that  the triple points of the cuspidal edge of the 

developable • consist of the eight base points P and of two further points on 

each of the lines p. 

C permutes the tangents of K in triads, except for the two tangents at b 

and b' which it leaves unchanged; if a tangent of K meets p in a point other 

than b or b' all tangents that arise from it by repeated applications of C must 

meet p in the same point. Now p meets twelve tangents of K other than those 

at b and b'; these must therefore consist of four concurrent triads. The lines 

p therefore account for 1 12 of those points through which pass three tangents 

of K. 

I ZEUTHEX" Nouvelles Annales de mathdmalique (2), 7 (I868), 402; CAYLEY: Collecled Mathe- 
malical PaTers, 8, 77. 
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35. There are collineations of period 7 which belong to G; there are forty- 

eight in all and they are distributed in eight conjugate cyclic groups (K. I I I ,  93; 

K.-F., 375). Each such collineation has for united points the vertices of an 

osculating tetrahedron ~2; one example is the collineation whose matrix is E or 

one of its powers, for the matrix, being in diagonal form, is the instrument of 

a collineation whose united points are the vertices of ~20. Any point, other than 

a vertex, on an edge of t] belongs to a unique heptad of points on this edge 

which arises from any one of its members by repetition of the corresponding 

collineation. I t  follows that  any surface F which is invariant for G can only 

meet the edge in the two vertices lying thereon and in a number of these 

heptads; if the order of F is congruent to n to modulus 7 then the sum of the 

multiplicities of its intersections with any edge of Y2 at the two vertices is also 

congruent to n. 

I I I .  

The Invariants .  

36. We pass now to the consideration of invariants of the Klein group in 

three dimensions; by an invariant of G is meant any surface which is trans- 

formed into itself by every one of the I68 collineations of G. There are two 

ways of approaching this matter, and they supplement one another most con- 

veniently. The first approach may be described as geometrical, and springs from 

the fact that  all combinantal covariants and contravariants of the net 3.I give 

surfaces with the desired property of invariance. Since several eombinants of 

a general net of quadrics have been identified the corresponding combinants for 

the special net can be obtained; all combinants of the special net are obtain- 

able in this way, although the specialisation may cause some to vanish identic- 

ally, others to coincide one with another, and relations of linear dependence to 

hold which do not hold for the general net. The second approach, which 

emerges from the theory of group characters and depends on properties of groups 

of linear substitutions, may be described as algebraical. The geometrical ap- 

proach leads to the actual invariants themselves and yields polynomials that  give 

equations for the surfaces. The algebraical approach gives no information about 

the form of these polynomials, but it tells precisely how many there are of any 

given order which are linearly independent. 
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37. A linear substitution both determines and is determined by a unique 

square matrix, the number of rows and columns in the matrix being the number 

of variables subjected to the substitution. In the geometrical representation of 

the substitution as a collineation the coordinates of a point /) are constituents 

of a column vector which is premultiplied by the matrix; the constituents of 

the product, which is another column vector, are the coordinates of the point 

P '  into which the eollineation transforms P. Now this geometrical representa- 

tion, abundantly advantageous though it be, carries with it a certain complica- 

tion for, since the position of a point is not altered when all its homogeneous 

coordinates are multiplied by one and the same factor, a collineation, viewed 

as a geometrical operation which changes the position of a point, is not altered 

when every element of its matrix is multiplied by one and the same factor. 

Thus, while a substitution determines a unique matrix and so a unique collinea- 

tion, the converse does not hold: a collineation need not determine a unique 

substitution. A group G of collineations may not determine a group, of the 

same order, of substitutions but some group G* of substitutions whose order is 

a multiple of that  of G. I t  may be possible to find in (]* a subgroup which is 

simply isomorphic with G but, on the other hand, it may well be impossible. 

The existence of simply isomorphic groups G and G* is indeed of proved im- 

possibility even for the elementary example of the 4-group, which does not ad- 

mit a representation as a group of four binary substitutionsl; eight binary sub- 

stitutions inevitably arise, forming a group in (z, I ) isomorphism with the 4- 

group. And an analogous situation prevails for the Klein group G; it is not 

possible to obtain a representation of (] as a group of I68 quaternary substitu- 

tions, and the attempt to do so inevitably produces a group G* of 335 sub- 

stitutions in (2, I) isomorphism with G (K. II ,  409; K.-F., 724). And it cannot 

have escaped notice that  in the group generated by the matrices E and F the 

identical collineation corresponds to two different matrices E 7~- I and F ~ - - I ;  

to every one of the I68 operations of the permutation group generated by e 

and f there correspond two operations, of the substitution group generated by 

E and F, whose matrices are negatives of one another. I t  may be remarked 

in passing that  G* is not the group H encountered in w I2; the substitution 

- -E  belongs to G* and has period I4 while no operation of H, which is a per- 

mutation group of degree 8, can have this period. 

1 KLEIN: Vorlesungen iiber das Ikosaeder (Leipzig, I884) , 37 and 46. 
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38. A substitution group G* has invariants; by this is meant that  there 

are polynomials, in the variables which are subjected to the substitutions, which 

are unchanged by all the substitutions of G*. If  an invariant of G* is equated 

to zero the resulting surface is an invariant of G. A generating function which 

yields important information about the invariants of G* can be constructed, and 

we have the following theorem1: 

I f  there are N operations in G* then the number of linearly independent 

invariants which are of degree m is the coefficient of x • in 

I I 

summed over all the substitutions of G*, where ki, k.~, . . . ,  k,~ are the multi- 

pliers (i. e. the latent roots of the matrix) of a substitution. 

Two substitutions which are conjugate in G* have the same set of multipliers, 

so that  the terms of the sum can, if desired, be assembled in sets of equal terms 

corresponding to the conjugate sets of G*. 

We have then to construct a function 

I I 

~O(X) --~ ~ Z ( I  - -  Z l x ) ( I - z  2Z) (I - - Z  3 x ) ( I - z  4x)" 

The multipliers of the various substitutions of G* are given in the following 

table. The number at the left-hand end of each line is the number of substi- 

tutions which have the same set of multipliers as does the substitution chosen 

for illustration; the number at the right-hand end of each line is the period of 

these substitutions. A few lines of explanation follow the table. 

I I I ,  

I - - I  - - I ,  

56 - E l  i, 

42 F i, 

56 E F  - - I ,  

24 E 

24 E* 

84 E ~ 

24 - -E  

24 - E  ~ 

I,  I, I 

--I, --I, - - I  

I, ~, ~2 

i, -- i ,  - - i  

- -  I ,  - - 0 1 ,  - - 0 )  2 

I 

2 

3 

4 

6 

~6, ~3, 6 5 , I 

8 4 , 6 ~ , e, I 

v - l ( I  + i ) ,  - - ~ - 1 ( I  + i ) ,  ~-1 ( I - - i ) ,  - - $ - 1 ( I - - i )  

7 

7 

8 

x4 

I4 

I BURNSIDE: Theory of Groups (Cambridge, I9II),  3oi. 
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The  mult ipl iers  

matr ices  are all in 

first that F ' 2 = - - I ,  

W. L. Edge. 

of I,  - - I ,  - - E  and all its powers are obvious, since these 

diagonal  form. Those  of F are de te rmined  by two fac ts :  

so tha t  the square of each mul t ip l ie r  of F mus t  be --  I, 

and secondly tha t  the sum of the  fou r  mult ipl iers  vanishes with the  t race  

(fl + a + 7 + I) of F. The  mult ipl iers  of E 4F are found similar ly;  the  squares  a 

of two of them must  be i and of the remain ing  two - - i ,  while the sum of the  

fou r  must  vanish with the t race ~ - ( / ? ~ 3 + e ~ + 7 ~ 6 + I )  of E4F. Since (--EF)3----1 

the  mult ipl iers  of - - E F  must  all be cube roots  of I and the i r  sum mus t  be 

equal  to the t race  - -  ~(t?~ ~ 4- a~ s + y ~  + I) of ~ E F ;  this  t race  is equal to I, 

so tha t  the four  mult ipl iers  must  be as in the  table. Those  of E F are" got  by 

a change of sign immediate ly .  

As for  the  numbers  of subst i tu t ions  with given multipliers,  they can be 

verified by appeal ing to the  (2, I) i somorphism between G and G* and the known 

dis t r ibut ion of the  opera t ions  of G in d i f ferent  con juga te  sets 1. 

The table shows t ha t  

I 
(x) ~ 3 ~  {f(x) + f ( -  x)} 

where 

I 56 2x 24 
f ( x ) -  (~ _x )~  + ( x - x ) ( ~  - x  ~) + {~--+x~) - ~ "  + ( I - ~ x )  ( I - ~ x ) ( ~  - ~ x ) ( 1 - x )  

24 42 

-~ ~ ) t  l~ J[ l'~--~xI--~'xI--~x"I--x" + - - - i  + x '  

r 56(t + x + x  ~) 2I 2 4 ( 2 + x - - x 2 - - e x  s) 42 
= ( ~ - x ) "  + (~ -x~)  ~ + (~ +x~? + ~ - x  ~ + --'~ +x"  

On expansion it  is found  t h a t  

@(x) ----- i + x 4 + x ~ + 3 x8 + 2 x  TM + 5 x  TM + 5 x14 + I o x  le + 9 x18 + - "  

39. The  first i t em of in format ion  furn i shed  by ~ ( x )  is t ha t  there is one, 

and only one, quartic surface invariant for G. This  surface appears  in the Klein- 

Fr icke  t rea t i se  on p. 739, where it  is actually der ived as a surface which inter- 

sects K at  the  24 points c. The  corresponding polynomia l  appears  on p. 242 

x See, for example, the  table of group characters of G given by  D. E. LITTLEWOOD: .~roC; 
London Math. Soc. (2) 39 (I935), ]88 and I92. 
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of Briosehi's paper~; there is no thought  there of geometrical interpretation, 

but Brioschi's A is, save for the difference in notation, identical with the X'(A) 

in K.-F. Brioschi obtains this polynomial, as he obtains further invariants, as 

a coefficient in a modular equation, while in K.-F. it is obtained as a symmetric 

function of modular forms; it is proposed here to derive this quartic polynomial 

by the geometrical method. I t  was explained in Note IV (p. I35) tha~ there 

exist quartic surfaces which are combinantal concomitants of a net of quadrics; 

when the net is a Klein net those of these concomitants which do not vanish 

identically must, since x 4 appears with coefficient + I in ~(x), all coincide with 

a surface ~ .  :Now there is, according to :Note IV, a quartic surface F 4 having 

all the lines z~.i as bitangents; this is in agreement with the remarks in w 3 I 

concerning the intersections of covariant surfaces with zij  and these remarks 

tell us further  that  the two points of contact of ~-4 with Igij mus t  be the united 

points of the two collineations of period 3 for which /)~. and Pj are invariant. 

F 4 was found in Note IV as the dual of Gundelfinger ~ 's contravariant r we 

will then obtain @4, which must also be invariant for 61, directly. Once @4 has 

been found reciprocation with respect to QoT, which amounts to replacing plane 

coordinates u, v, w, p by poin~ coordinates x, y, z, t, gives the equation of ~r4. 

The quadrics 3.1 of N meet a p l a n e u x +  v y + w z + p t = o i n c o n i c s w h i c h  

are projected from P0 by the cones 

~ u x  ~ + py~ 4- ~ w z x  + ~ v x y  ~ o, 

�9 vy  2 + p z  ~ §  ~ w y z  + ~ u x y ~ o ,  

p x  2 § ~ w z  2 § ~ v y z  + ~ u z x  ~ o .  

Gundelfinger's contravariant is the envelope of those planes which are such 

tha t  Sylvester's invariant for the above three conics vanishes. This invariant 

is given in full by Salmon iu w 38 9 of his Conic Sections for any three conics 

whatever, so that  its value can be found for the above three particular ones. 

I f  we denote, for the moment, by S~p(u, v, w) the sum of three terms derived 

from one another by cyclic permutations of u, v, w the value of the invariant is 

(p~ + 2 �9 u , w) ~ + 2 �9 s ~ (~p  - �9 w ~) (2 ~ v-" + ~ p ' )  + 2 s ~'  (~ ,,~ - . p )  (~ u s + v ~ )  

--2~pSu(~u ~ - w p ) ( ~ : w  ~ - v p )  + 2 ~ u v w ( p  a+  2 ~ u v w ) - - 4 u 2 v ~ w  i. 

The terms independent of p herein are seen to cancel one another, as also the 

terms of the first degree in p. I f  the factor p~ is removed and the resulting 

Math, Annalen 15 (1879). 
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expression equated to zero we find 

p4 + 6 , u v w p  + 2(vSw + w 'u  + u ~ v ) = o  

for the equation of ~4. The equation of ~ is therefore 

t 4+ 6 , x y z t +  2 ( y 3 z + z S x + x 3 y ) ~ o .  

This polyuomiM is, save for the modification caused by the introduction of the 

irrationality ~, the same as that obtained by Brioschi; Brioschi's notation is 

changed into the present notation by replacing a 0, an, a2, a3 by , - i t ,  x, y, z 

respectively. 

I t  is seen from its equation that  ~ is outpolar to every quadric 4.2; it 

must therefore 1 be linearly dependent on the fourth powers of the base planes. 

And in fact 

I4{t 4 + 6 z x y z t  + 2(yaz + zax + x3y)} 
7 

Z (~. sx + 8tSy + ~2, Z + T--lt)' + (i(1,--1 t)a. 

I t  was indeed by observing that  the right-hand side of this identity is a modular 

form invariant for (~* tha t  the quartic surface was obtained in K.-F. 

The base plane t = o meets /~'t in a Klein quartic; the lines of intersection 

of t = o  with the remaining seven base planes are, in accordance with the 

reasoning of Note IV, an Aronhold set of bitangents of this curve. Their points 

of contact could easily be found. By applying suitable collineations of G it 

follows that  every base plane meets F t in a Klein quartic. 

40. There is, on a surface ~ of order n, aflecnodal curve, or locus of points 

whereat one of the inflectional tangents has four-point contact; it was shown 

by Salmon that  this curve is the intersection of F n wi~h a covariant surface 

of order I I n - -  24. The flecnodal curve of F 4 is therefore obtained as its inter- 

section with a covariant surface of order 2o, which must have the property of 

being invariant for G. This surface, by w 3 r, passes through the fifty-six points 

U which lie two on each of the lines ztj, and these points are therefore, since 

/~'~ also passes through them, on the fleenodal curve. :Moreover the Hessian H a 

of F ~, which is of order 8 and also invariant for G, must also, by ~ 3 I, pass 

through these points. The points U are thus among the points of contact of 

REYE: Journal fi~r Math. 78 (I874), I12~I13. 
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the parabolic and flecnodal curves of F 4. I t  was shown by Clebsch 1 that  the 

parabolic and flecnodal curves of a surface touch wherever they meet, and that  

on a quartic surface there are 32o of these contacts. The points U account for 

56 of them, leaving 264 others. These outstanding points include the 24 points 

c, and moreover include them multiply; it is sufficient to establish this fact for 

any one of the points e, since it will then also be established for the others, 

which can all be obtained from the one by collineations of G. Consider, then, 

the point y = z = t = o .  That  this is on the flecnodal curve of P is obvious 

because the line y = z ~ -o  has all its four intersections with F 4 at this point. 

As for it lying on the parabolic curve, it is sufficient to remark that the tangent 

plane y = o of / ~  meets it in the curve y ~- t 4 + Z z B x  -~ o having a triple point; 

it follows, .from a result of C. Segre's ~, that  the point is a multiple point on 

the parabolic curve. Segre's italicised statement (pp. i74--5)  establishes indeed 

that  the parabolic curve has a tr iple  point and also gives the necessary informa- 

tion for determining its three tangents there; this information will be used when 

the nature of the singularity possessed by the Hessian surface has been de- 

termined. The necessary and sufficient conditions given by Segre (p. I75 ) for 

the parabolic curve to have a point of higher multiplicity than 3 are not here 

satisfied. 

4I. The second item of information furnished by (/)(x) is that  there is one, 

and only one, sextic surface invariant for G. The geometrical approach leads 

instantly to this surface for, by w 18 of Note IV, the Jacobian of any net of 

quadrics and a quartic covariant is, unless it vanishes identically, a sextic co- 

variant. The Jacobian of ~,4 and the net 3.~ is seen not  to vanish identically, 

and is the surface 

- - t  

vy  

�9 x g s +  3 x 2 y + 3 ~ y z t  

- - t  x s +  3 y 2 z  + 3 ~ z x t  
~ 0 .  

~ z  ~ t  yS + 3 z 2 x  + 3 ~ x y t  

- - x  - - . y  ~ z  2 t  s +  3 ~ x y z  

This surface contains the whole of K, since the four minors formed from .the 

first three columns of the determinant all vanish along the curve. On expansion, 

and division by ~, t h e r e  results 

x Journal f ~ r  Math. 58 (1861), lO 5. 
z l~m.  Acea& Lineei Rendiconti (5) 6' (I897), I73--5. 
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B E  - - t  6 + 5 ~xY  zt3 + 5 t2~Y sz + 5 ~ t ~ Y  ~zs + ~Y z'~ + I5 x~Y 2 z ~  o, 

where 2 denotes the sum of three terms obtained from any one of them by 

cyclic permutation of x, y, z. The polynomial on the left is, save for sign, pre- 

cisely Brioschi's B; he was the first to find the polynomial, after which it seems 

to have faded into oblivion and not to have been encountered by anyone since. 

I t  wiU be observed that  F ~ also is outpolar to the quadrics 4.2, and that  

7 

a 2 B -  + + + + (ia -lt) '- 
$ = 1  

I t  is c]ear from the form of B that  y ~ ~----o has all its six intersections with 

F ~ at the point y = z - ~  t----o; thus the line which joins any base point to any 

one of the three points c associated with is has all its six intersections with 

F 6 at this latter point. This is in agreement with w 35. Fe must circumscribe 

each of the 2I fundamental tetrahedra (w 29) and meet each transversal in points 

forming a regular sextuple of which the vertices of the fundamental  tetrahedron 

joined by the transversal constitute one of the three pairs. 

F ~ is the locus of a point 0 such that  the point O' which, in the sense of 

Note I,  is conjugate to it with respect to the net 3.I lles in the polar plane 

of 0 with respect to F 4. The curve common to F ~ and F 4 is the locus of points 

where F ~ is touched by quadrics of this net. 

42. The generating function q)(x) shows that  (~ has invariants of degree 

eight and that  these are linearly dependent on three of them; thus octavic 

surfaces exist which are invariant for (] and they all belong to a net _N'. Three 

octavic surfaces not belonging to the same pencil have, in general, 5 x2 common 

points. "But among the octavic surfaces invariant for G is the square of F 4 so 

that  the base points of N consist of the 256 points common to /r4 and to two 

further surfaces o f  N, this set of points being counted twice over. These 256 

points themselves may well include multiple sets, and more will be said about 

them presently. 

The geometrical approach furnishes at once several octavic invariants. There 

are, besides (Ft) ~, 

HS: the product of the base planes, 

88: the locus of conics which touch all the base planes, 

Es: the locus of equianharmonic base curves, 
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R8: the scroll of trisecants of K, 

Hs: the Hessian of F ~, 

j s :  the 

and others. 

is a linear 

will appear 
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Jacobian of F 6, 

These must all belong to _hT. I t  is known from Note IV that  S 8 

combination of H 8 and (F4)~; other relations of linear dependence 

when equations for the surfaces have been obtained. There is no 

difficulty in finding these equations, although some patience is necessary to work 

them out to the last detail. The final forms are given, as compendiously as 

possible, in the table. 

I t  will be convenient to denote the left-hand sides of the equations of the 

octavic surfaces by the same symbols as the surfaces themselves. We take 

S = I  

the numerical multiplier being inserted so that  t s does not have a fractional 

coefficient. 

S s is known to have triple points at the base points; this fact was not 

mentioned in Note IV, but it is known (cf. O. S., 514) that  the contravariant 

dual to 88, namely the envelope of the cones which belong to 3.I, has the base 

planes as tr i tangent planes. Thus, since S s--- y / s  A (/a)~ for some constant A, 

it is only necessary to choose ~ so that  the term in t s disappears, whereupon 

4 8 8 =  8 ~ t l I ( ~ x  + e ~ y  + e ~ z  + . -~  t ) - - ( t ~ +  6 ~ x y z t  + 2 y ~ z  + 2zSoc + e x ~ y )  ~. 

The surface generated by equianharmonic base curves of 3.1 is obtained by 

writing y~ - -  , t x ,  x ~ - -  ~ t z ,  g~ - -  v t y  instead of the line coordinates l, m, n in the 

equation of the equianharmonic envelope of the Klein quartic k (cf. Note II ,  

w 2). Since this envelope is 

lms  + m n  a +  n l  s ~ o  

E"  =-- (y '  - -  �9 I x ) ( x '  - -  ~ t z) n + (x '  - -  ~ t z ) ( z ' - -  �9 t y)S+ ( z ' - -  �9 ty)(!1' - -  ~ t x) ' .  4 z . I  

This surface has all the base points P~ as quadruple points. 

The equation of R 8 can quickly be found in at least two ways. In the first 

p l a c e r  s is the fundamental  surface for the Cremona transformation 3.5, and 

so must be the Jacobian of the homaloidal web of cubic surfaces: 
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o ( x ,  y ,  z ,  T) 
o (x, y, z, t) 

W. L. Edge. 

t ~ 2 z t y + 2 z  ~ 4 y z  2 t x + v y  ~ 

4 z x  t ~ 2 v t z + 2 x  ~ 2 t u + ~ z  ~ 

z ~ t x + 2 y  ~ 4 x y  t ~" 2 t z §  2 

2 ~ y z  2 ~ z x  2 t x y  - - 3  t~ 

In the second place this Cremona transformation, placing two points in cor- 

respondence when they are conjugate for the net 3.1, is involutory; when it is 

applied twice to any surface this surface does not change. Take, as the simplest 

example, the plane t-~ o; its conjugate surface is T ~  o, or t ~-~ 2 ~ x y z .  Per- 

forming the transformation a second time produces the surface T s -~  2 ~ X  Y Z ,  

which must therefore consist of 17 8 and of the plane t ~ o. Hence 

t R  s - -  2 ~ ( t ' x  + ~ t y  ~ + 2 y z ~ ) ( t ~ y  + ~ t z  ~ + 2 z x ~ ) ( t " z  + ~ t x  ~ + 2 x y  ~) 

- (2 ~ x y z  - t~) ~. 

For the Hessian of F ~ we take 

H 8 

2 x y  ~ z t  + x ~ ~ y t  + z ~ y z i 
z t + x  ~ 2 y z  z x t + y  2 z x  

y t  + z ~ v x t  + y ~ 2 z x  x y  

y z  z x  x g  t ~ 

The Jacobiau of F 6 need not be explicitly written down; when worked out its 

coefficients are found to be as in the subjoined table. 

This table simply exhibits each octavic invariant, placed on the left, as a 

linear combination of the terms which appear along the top, the coefficients 

being entered in the body of the table. Two invariants, in addition to those 

already mentioned, have been added. The first of these, C s, is Brioschi's poly- 

nomial. Since there was only one invariant of degree four and only one of 

degree six Brioschi was predestined to encounter them; but the invariant of 

degree eight which he was to encounter need not  by any means have been among 

the simplest, as indeed it now proves not to have been, nor has it necessarily 

any convenient geometrical meaning. If  in his polynomial C the letters ao, al, 

a~, as are replaced by ~-1 t, x ,  y, z and the result multiplied by the factor 8 the 

outcome is C s. The second invariant which has been added is the outpolar in- 

variant of degree eight, and is given by 

7 

7_ ~ _ ~ (8 ~x + ~'~u + ~2~ + ~- ,  t), + ( r  t),. 
2 

$ = 1  
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43. These invar iants  are, by the theory expounded  above, l inearly dependen t  

on three  of them, and the table vindicates  this  dependence.  Any th ree  which 

are no t  themselves l inearly dependent  may  be chosen for  a basis in terms of 

which all others  can be l inearly expressed. I t  is convenient  to choose E s, the 

only one of the  surfaces with quadruple  points at  the  base points Pi, as one 

member  of this  basis. E i the r  S s or H s migh t  then  be added,  both  these sur- 

faces having tr iple points at  Pi, and it  is obvious tha t  H s -  S s - -  2 E s. W e  will 

choose H s, both because its coefficients are somewhat  lower than  those of S s 

and because of its in t imate  re la t ion with F 4. As the last  member  of the  basis 

we add (Fa) ~. The expressions for  the o ther  invar iants  in terms of the th ree  

selected ones are as follows. 

/ /8  ~ (F4)-o + 4 H s - -  8 E 8, 

R s ~ (F4) ~ - -  4 H s 

C s ~- I 5 (/?,4).., _ _  m8 H s - -  8 E s, 

S 8 ~ H 8 - -  2 K s, 

j 8  = 6 (F4) 2 - -  2 ,  H s - E 8, 

~2s ~ 43  (F4) 2 - -  I08  H s - -  8 E s. 

I t  is noticeable tha t  ~2 s -  C S ~  28 (F4) ~ and this, when wri t ten  in the form 

7 c s _ 7 s2.  - ( , 4  
2 2 2 

gives a simple expression for  Brioschi 's  polynomial  in terms of the four th  and 

eighth powers of the base planes, an expression which could indeed be obta ined 

quite easily f rom Briosehi 's  s tandpoin t .  

44- We proceed now with the discussion of the base points of the  ne t  of 

octavic invar iants ;  there  are 256 points,  common to ~ and two octavic surfaces,  

to be accounted  for. 

The points U, two of which are on each line z ,  are, by w 3I, on /;,4 and 

all the octavic surfaces. The curve common to F * and llS consists of e ight  

plane quartics,  one in each base plane and each b i t angen t  to seven lines ~r at  

points U. The mult ipl ici ty  of a point  U among the set of 256 is the mult ipl ic i ty  

of the intersect ion of this composi te  curve with an octavic invar ian t  not  con- 

ta in ing  the whole of it, say with R s. I t  is quickly verified t h a t / ~ s  has a simple 

point  at U and tha t  its t an g en t  plane there  does not  pass th rough  z ,  so tha t  

i ts in tersect ion with the composi te  curve, two components  of which touch ~r at  

U, counts  fo r  two among the  points  F t = / 1  s-----: R s ~  o. Consider,  for  example,  

7r whose equat ions  are t = x + y + z = o; i t  meets  R s where  
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t ~ x + y + z ~ x y z ( y ~ z  ~ + z  ~x 3 + x  -~ys)-~o, 
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a set of eight distinct points. 

The points U are therefore to be reckoned twice among the 256 points: 

there remain I44 points to be accounted for, and it is found that  these consist 

of the 24 points c reckoned six times. This is easily shown to hold for the 

three points c in the base plane t ~  o; it follows, as usual, for the remaining 

points c by applying the collineations of (1. For t ~--o belongs to T/s, meets ] 74 

in the Klein quartie ~y3z----o and R s in the composite curve xyzY. y* ' z~o .  

The par~ x y z  ~ o of this curve is one of the inflectional triangles of the quartic, 

so that  each of i~s vertices (which are points c on K) counts for four among 

the twelve intersections of the triangle and the quartic. Each of the three points 

also counts for two among the intersection of the quartic and ~y~z s-~- o; at 

(I, o, o, o), for instance, the quartic has an inflection with tangent y ~-~ o while 

the quintic has a cusp with tangent z ~ o. The section of R s by a base plane 

has therefore for its intersections with the section of /74, in  addition to fourteen 

points U, three points c counted six times. All points c are then to be reckoned 

six times among the points F 4--  118~ 1~8~ o, and all 256 points are now ac- 

counted for. 

45. An invariant octavie surface which does not contain K touches it at each 

of the 24 points c, the tangent  plane of the surface there being the corresponding 

base plane. The point counts for twelve among the 512 base points of the net 

N of octavic surfaces. While the general surface of N has no multiple point 

there, certain particular surfaces do have singularities; R s has .K for a triple 

curve and, at a point c, two of its three tangent  planes coincide with the base 

plane through the point, while H s has a uniplanar point, or unode, there. The 

possession by H s of this singularity proves again what has already been estab- 

lished in ~ 40: that  the points e are multiple points on the parabolic curve of 

F 4. The equations for ~,4 and H s show that  the tangent plane of fi'4 at a point 

c, for instance at (I, o, o, o), is also the plane of lines that  have three-point 

intersection with H s there; this plane (y ~-o) meets H s in a eur~e having a 

triple point and so (Segre: loc. cit. I74 ) the parabolic curve of F 4 has also a 

~riple point at which the tangents are the same as those of the section of H s 

by y ~ o. I t  is seen, on closer examination, that  two of these three tangents 

coincide; if y is put equal to zero in H 8 the terms of the lowest degree in z 



908 W . L .  Edge. 

and t jointly are of the third degree, and there is only one of them, namely 

_ 2 z t 2 x  .~. 

The parabolic curve of /74 has therefore the following property: it has a 

triple point at each of the points c, one of the three tangents being that  edge, 

of the osculating tetrahedron to which c belongs, which passes through the as- 

sociated base point. The other two tangents coincide with that  tangent  of K 

which passes through c but whose point of contact with K is a different point 

c, this being that  edge of the osculating tetrahedron which does not join c to 

the base point, but which passes through c and lies in the tangent  plane of F ~ 

there. 

46. The scroll / t  s has K for a triple curve; moreover the base planes are 

t r i tangent  planes of R s, each of them containing three edges of an osculating 

tetrahedron which are generators of R s. I t  follows that  the reciprocal of R s 

with respect to any one of the fundamental  quadrics Qij is a scroll Qs which 

has z for a t r i tangent  developable and the base points for triple points, the 

three generators of Qs through any base point being the three edges of an 

osculating tetrahedron which meet there. :Now ~s is an invariant surface and 

so linearly dependent on (F~) 2, H s and ES; since it has triple points at the base 

points it must be linearly dependent on H s and ~s only. The fact that  it contains 

edges of an osculating tetrahedron which lie on H s and not on ~s (the equation 

of E s shows instantly that  no edge of the tetrahedron of reference can lie on it) 

means that  Qs can only be H s itself. This establishes the fact that  the Hessian 

o f  F ~ is a scroll. Since R s +  4 H S ~  (F4) ~ the two scrolls R s and H s touch 

wherever they meet; every generator of either must be a quadritangent line of 

the other and H 8 is, for the special net of quadrics that  admits a Klein group 

of collineations, the scroll Q8 whose existence was established in Note I I I .  The 

curve of contact of the two scrolls lies on 2 '4 and is i~s parabolic curve, while 

the developable of tangent planes to the two scrolls at the points of this curve 

is circumscribed to Gundelfinger's contravariant. 

Since H s is a scroll of order 8 and genus 3 it has, by the standard formulae 

for scrolls, a nodal curve of order I8 with twenty-four pinch points and eight 

triple points. These points have already been identified; the pinch points are 

the unodes at the points c while the triple points are the base points. The 

polar quadric of any base point with respect to ~-4 is the associated base plane 

taken twice; this is obvious, from the equation of /;~, for Po and is therefore 

true also for the remaining base points by invariance under the group G. 
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47. The term 2x  1~ in ~(x) shows that  all invariants of degree ten are 

linearly dependent on two of them, and so belong to a pencil p of surfaces. 

One surface of p is the product of F '  and F s, and all invariants of degree ten 

must be linear combinations of F 4 F 6 and some second invariant. 

The geometrical approach leads to a second invariant instantly, namely the 

surface F l~ which is conjugate to F e in the sense of Note I; since T-s passes 

simply through K F 1~ has K for a triple curve (Note I, p. 304). The curve com- 

mon to F s and F l~ consists, apart from K counted three times, of a curve C 46 

which, since it is a self-conjugate curve, must, by p. 305 of Note I, have 84 

intersections with K. This set of 84 points on K, which is invariant for G, 

must be the set of intersections of K with the axes of the involutions. A se- 

cond set of 84 points on C 46 consists of the vertices of the fundamental  tetra- 

hedra, for these tetrahedra must, by w 29, all be inscribed in F 1~ as well as in 

F ~. Every surface of T must pass through C 46, while K must count triply as 

part of its intersection with Fe; every surface of p must also pass through the 

curve of intersection of ~ 0  and F 4 which, like F i~ and F 4 themselves, must 

touch every line g~j at both points U which lie on it. 

The Jacobian of any invariant of degree eight either vanishes identically or 

is an invarlant of degree ten; thus several invariants of degree ten appear, all 

of them linearly dependent on the Jacobians of (F4) s, H 8, E 8. But, by 42. I, the 

Jaeobian of E a' vanishes identically; also the Jacobian of (F~) s is a numerical 

multiple of F 4 F  s. The Jacobian of any invariant of degree eight must therefore 

be linearly dependent on F ~ F  s and j10, the Jacobian of H a. Since the base 

points are triple points of H s and lie on all the quadrics 3.i they are triple 

points of j~o. I t  must of course be tha t  j~0 is a linear combination of F 4 ~  s 

and F~~ which precise linear combination it is can be found from the fact that  

K is a triple curve on F 1~ and this investigation is carried out below. 

When it is d,esired to find the linear relation which connects three different 

invariants of degree ten it is sufficient to know the coefficients of the two highest 

powers of t (the tenth and seventh powers as they prove to be) in these in- 

variants; it will not then be necessary to write out any of the invariants in 

full, but if they are extended beyond the two highest terms in t convincing 

means of verification are thereby afforded. 

48. I f  we use the form for H 8 given in the table above we find, introducing 

the multiplier 4 for convenience, that  
1 4 -  61491112 A c ~  mathematira.  79 
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4 j~o = 

- - t  

*y  - - t  

W. L. Edge. 

~ x  4 v y z t  ~ -  2 ~ t ~ ( 3 z ~ x  ~ + 2 x y  a) 

- -  2 t~ ( S z x ~ + ya - 4 x y~ z ~) + " .  

4 ~ z x t  ~ - 2 ~ t  ~ ( 3 x ~ y ~ + 2 y z  ~) 

--  2 ts(5 x y  ~ + z ~ -  4 x ~ y z  "~) + ""  

- - t  4 ~ x y t  ~ - 2 ~ t ~ ( 3 y ~ z  ~ + 2 z x  a) 

- -  2 t  2 ( S y z  4 + x  ~ - 4 x  ~y~z)  + . . .  

- - x  - - y  - - z  2 o ~ x y z t  4 - 6 z t ~ 2 ~ y ~ z s - 4 t y , y z 5  

+ 8 x ~ y ~ z : t  + . . .  

which gives 

j~6--_ _ 2 ~ x y z t  ~ + 2 t 6 ~ y s z  + ~ ta2~y~z  s + 15 x ~ y ~ z ~ t  ~ _  4 t ~ Y . Y  z~ + " " .  

Also, by direct  mult ipl icat ion,  

F ~ F 6  = - - - - t ~ ~  z t7  + 3 t~Y.Y s z  + 5z t62~Y  ~za + 75 x~Y  ~z~t~ + t~Y~Y za + ' " .  

The invar iant  F ~~ is a l inear combinat ion of these two and  has K as a 

triple curve; the l inear  combinat ion mus t  therefore be such t h a t  the plane t ~ o  

meets i t  in a curve wi th  (at least) triple points a t  the vel4ices of the  t r iangle  

of reference in t ha t  plane. 

var iants  become 

4 j~o 
~y 

~ X  

which gives 

~ Z  

- - y  

Now if t is put  equal to zero the two above in- 

�9 x 6 x ~ y  ~ - -  2 z 6 x -  2 y a z  ~ -  8 x a y z  s -  6 x ~ y a z  

6 yS z ~ __ 2 x6 y - -  2 zS x 4 - -  8 xS ya z - -  6 x y~ z ~ 

6 z~ x ~- - 2 y6 z ~ 2 xa y a -  8 x ya z a --. 6 x4 y z ~ 

- - z  2 ~ x y z Y ,  y a z  

# 1o Jo ~- - -  ~ y4 z6 - -  x y z y. xT - 2 x2 y~ z~ Y. x z a, 
and 

F~F~ = 2 2~y3 z 2~yz ~ + 30x  "~ y~ z ~ Y~ya z 

= 2Y. y 4 z  6 + 2 x y z ~ z  7 + 3 2 x ~ y ~ z ~ Y .  ySz .  

The l inear combinat ion of j~o and -~ooF2 mus t  now be selected so t ha t  none of 

x, y, z occurs to a power higher  than  the seventh, and the  desired combinat ion 

is 2 J ~ ~  Hence 

Flo--~--_ 2 J l O  + F 4 F  s - - - -  tl0__ 5 z x y z t  7 + 7 t6  y~y3z + 7 z t~Y . y ~ - z  a 

+ I o S x ~ Y e z ~ t  4 - T t 4 y . y z  5 + . . . +  2 8 x ~ y ~ z ~ 2 ~ y S z .  
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Perhaps i t  is worth while to find the expressions in terms of F ~~ and F ~ F 6 

of Brioschi 's polynomial D and the outpolar  invar ian t  of degree ten. For  D 

(foe. cir., 242) we find ins tant ly  

2 D ~ t t ~  23 v x y z t  7 + 2~ t 6 ~ y S z  + 7 ~ t ~ Y  ;za + Io5 x ~ y ~ z  ~ t ~ 4 9 t  a i 2 y z  ~ + "'" 

6 F ~~ -- 7 F~ F~. 

For  the outpolar  invar iant  we take 

7 

~o5 ~ , o ~ ( ~ / +  e,~y + ~'~z + ~-~t) '~ + ( i a v - ' t )  ~~ 
, ~ 1  

~2~~ ~ - -  5 t~~ + 3 ~ x Y  z t r  + 7 t~ ~ Y  s z  + 2~ ~t~.Ny~z s + 3~5 x~Y ~z~t~ § "'" 

-- 5 F ~ / ~  -- 4 J~~ 

__--___ 7 F ~ F  6 -  2F~O. 

IV. 

Covariant Line Complexes. 

49. I t  was explained in Note I I I  how a net  of quadric surfaces gives rise 

to a five-dimensional figure consisting essentially of a quadric ~ and two Vero- 

nese surfaces v and w tha t  are polar  reciprocals of one another  with respect to 

~. This figure will now be set up for  the net  N (3 . I )by  following the procedure 

of Note I I L  The Plficker coordinates ~, /~, ~, 2',/~', ~' will have the fol lowing 

signification; if  a line is the join of two points (xl, yl, zl, t~) and (x2, g~, e~, t2) then 

~' ----- x 1 t~ - -  x2 tD t~' --~ Yl ~ - -  Y2 tl, ~' ----- z~ t~ - -  z~ t~, 

while if i t  is the intersect ion of two planes (ul, vl, wl, p~) and (u~, v2, w~, P2), 

= u~ p~ --  u~ p~, ~ ~ V 1 p ~  - -  V~ P l ,  ~ ~ -  W~ P 2  - -  W2 P l ,  

~P ~ UlW2 - -  V 2 W l ~  ~$P ~"  W 1 8 2  - -  ~V2Ui~ ~P ~ ~1 U2 - -  g 2 Y l "  

The t r isecant  conjugate  to a point  (xo, Yo, zo, to) of K is the line of inter- 

section of the polar planes of this  point  wi th  respect to any two quadrics of N, 

and so has equations 

- - ~ x o x  + toZ + Z o t = O ,  

t o y - - ~ z o z  + Y o t - ~ o ;  
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its PHicker coordinates are therefore 

--~XoYo, --Zoto, ~z~+ yoto, --t~, - - 2 z  oxo, --~x0t0. 49.I 

These are seen, by using equations 3.3, to be proportional to 

where (g, 7, ~} is the point of k corresponding to the point (Xo, Yo, Zo, to) of K. 

But, since g U~+ ~2~+ ~ = o ,  the binomial is equal to ~g~U~, so that  the 

Pliicker coordinates of the triseeant can be taken to be 

~,  ~2', ~", ~U~, ~ 7 ,  ~ "  49.z 

This result can also be obtained from 49.i without appealing to 3.3; it is 

perhaps more in harmony with the discussion in Note I I I  to obtain it in this 

way, which makes use of one of Hesse's results. For Hesse showed ~ that  

x~, y~, z~, t~, YoZo, ZoXo, XoYo, Xoto, yoto, Zoto 

are proportional to the cofactors of the appropriate elements of the determilmnt 

2.I ,  and so to 

- ~ - C  ~, - C ~ - ' - ~  ~, - ~ C ~ - ~  ~, 2 ~ ,  ~C, ~ ,  ~ ,  ~C~ ~, ~ C  ~ , ~ .  

Thus the Pliicker coordinates of a trisecant are proportional to 

C:g, ~v", ~, ~vC,  ~ " v  ~C~ ~, 

and so again are given by 49.z. 

5 o. The six expressions 49.2 for the line-coordinates of a trisecant of K 

have been calculated on the supposition tha t  (~, 7, ~) is a point of k. But if we 

suppose that  (g, U, ~) is any point of ~ ,  not necessarily constrained to lie on k, 

then the six expressions 49.2 are the coordinates of a point of a Veronese 

surface v in a five-dimensional space ~; calling the expressions Yx, Y~, Y3, g~, Y~, Y6 

respectively they can, in matrix fashion, be arranged as the constituents of a 

column vector 

y = x[~-', ~-~, C ~, ~C,  ~C~, ~ ] ' = ~ Z ,  
where 

i Journal fa r  Math. 49 (I855), 288. 
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�9 I 

I 

I 
M =  

I 

I 

I 

~13 

If  (~, ~, ~) lies on k then 

yl~, + ~y~ + y~y~=~(,7~' + ~ + ~ ,~)=o ,  

so that  the point y is on the curve F in which v is met by the quadric ~ whose 

equation is y' I y = o, with 

I 

I 

I 
A = 

I 

This is of course the quadrie in ~ whose points represent the lines of the three- 

dimensional space. 

The surface w which is the polar reciprocal of v with respect to ~, and 

whose section by ~ represents the generators of the scroll H s, is, by w 6 of 

Note I I I ,  

y = (~l' A)-I [~,, m ~, n', ~ m . ,  ~nl ,  ~ z m ] ' =  (M' A)-1.4' .  

Since M is here orthogonal, M ' =  1i-1 and therefore 

I 

I 

I 

I 

I 

I 
( M ' A )  -1  = A - I  (M') - 1  = A M  = 

so that  the parametric form of w is 

y = [vmn,  ~ lm ,  $ n l ,  n ~, m s, l*] '. 5o.I 
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5I. There are set up, through the intermediary of the space figure, a (I. I) 

correspondence between the points (g, 7, ~) of the plane ~ and the points of v 

and a (I, I) correspondence between the lines (I, m, ~z) of ~ and the points of 

w. We pass, starting from a point (g, ~, ~) of k, to K by the birational trans- 

formation 3.3, and the trisecants of K are then, when the lines of space are 

represented in the standard fashion by the points of t?, represented by F, the 

intersection of t2 and v. I t  might at first be said that  a (i, I) correspondence is 

set up only between k and F; but once F is given there is only one Veronese 

surface v which contains it and this must correspond to ~.  I t  is true that  

different (I, I) correspondences can be set up between v and ~ in which Fcor-  

responds, as it has to do, with k; but all these correspondences associate the 

prime sections of v with the conics of ~ so that  any two of them can only 

differ by a collineation of ~ for which k is invariant, that is by a collineation 

of the Klein group. I t  is presumed then that, k having been related to F, any 

definite one of the I68 correspondences is chosen to relate v and ~.  This being 

so, any line (/, rn, n) of ~ is represented by a conic of v; there is a prime which 

touches v all along this conic (i. e. contains all the tangent planes of v at points 

of the conic) and the pole of this prime with respect to Y2 is a point of w; this 

is the definition of w, whose points are thus in (I, I) correspondence with the 

lines of ~ .  A curve on v corresponds to a locus in ~,  a curve on w to an 

envelope in ~ .  

The curve of intersection of ~ with v, 

is, since 

~ I ' A M  = 

being given by ~'  M 'A M ~ - ~  o, 

I 

I 

r  ~ / ~ +  ~ S = o  and corresponds to k; this is of course to be expected. 

The curve J of intersection of ~2 with w is A ( M ' A M ) - I A ' ~ o ;  this, since 

M'AM is, like the matrices A and M, self-inverse, is l m  8 + m n  3 + ~ 1 3 = o  and 

corresponds to the equianharmonic envelope Z of It. The relationship between 

Z and ]c is symmetrical; not only is Z the equianharmonic envelope of ]c but k 

is the equianharmonie locus of Z. 
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These results can now be interpreted in the space figure. There corresponds 

to a line of Z a point of J ,  and the tangent prime of t~ there touches v along 

a conic such that  the four intersections of t2 with it form an equianharmonic 

tetrad; thus a generator of H s is quadritangent to /t  8 and the four generators 

of / t  s through the points of contact are, in the regulus to which they belong, 

equianharmonic. The relation between the two scrolls is mutual: the four gene- 

rators of either which meet any generator of the other are equianharmonic. 

The generators of both scrolls belong to the quartic complex of lines that  are 

cut equianharmonically by E 4. 

An incidental consequence of these remarks is that  the parabolic curve of 

F * has two complementary sets of qaadrisecants, generating respectively the scrolls 

R 8 and HS; every generator of either scroll is cut by the curve in an equian- 

harmonic tetrad of points. 

52. There is a simple and direct method of passing from ~ and k to v and 

F and t~ without the intervention of the space figure. This method is to con- 

sider the group of substitutions which 

~-", v ~, ~", *v~, ~ ,  ~ v ,  

the constituents of ,~, undergo when ~, W, ~ are themselves subjected to the group 

of I68 ternary substitutions. These six constituents of ~ will be named 

Y~, Yz, Y,, Y4, Ys, Y5 

in this order so that  they agree precisely with the six coordinates of a point of 

v. Now it is known t tha t  the group J of substitutions induced on the yi is one 

of the irreducible representations of the I68 group, so that  there is a Klein 

group J of substitutions in 2. As for t2, it arises at once on unravelling the 

left-hand side of the equation of k by Sylvester's process ~. For it is known 

that  the quadric which arises by Sylvester's unravelment cuts v in the same 

curve 1", corresponding to k, as does t2 and, further, that  it is the unique quadric 

through F which is outpolar to v. If, then, it  can be shown that  t~ is outpolar 

to v it must be Y2 that  arises on unravelmtnt.  But the row vector of coordinates 

of a prime touching v along a conic has the form 

[n ~, m s, 1 ~, , m n ,  , l m ;  z , , l] ,  

1 BURNSIDE: Ths of Groups (Cambridge, I9II),  37I, Ex. 8. 
2 EDGE: _Proc. Roy. Soc. Edinburgh, A, 6I (1942), 247. 
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so that  the quadrics inscribed in v are all linearly dependent on the six 

. 5 2 V 3 '/31 ---  "/.'o 

L'4/75 ~ T U  27;6 V 5 v  6 ~ T~/SV4 V 6 v  4 ~ T V  t V 5 

where the v; are prime coordinates in ~. All these quadrics are inpolar to s 

since the equation of s is 

Yl Y4 -~ Y.~ Y5 -~ Y~ Yo -~ o. 

J may be defined as that  group of substitutions of the yi for which v and 

T2 are both invariant. Now each substitution of the group G* in three dimen- 

sions induces a substitution on the line coordinates; it is thereby represented 

as a eollineation in ~ for which ~ is invariant and, since R s is unchanged by 

all substitutions of G*, for which v, the only Veronese surface through F, is 

also invariant. Two substitutions of G* which are, in the (2, I) isomorphism 

between G* and G, associated with the same substitution of (~ yield the same 

collineation in :~; for the two substitutions only differ by the signs they give 

to the point coordinates, and therefore do not differ at all in their effect upon 

the line coordinates. Thus the substitutions induced upon the line coordinates 

by G* give a Klein group J of 168 substitutions in the five-dimensional space 

~, while J is simply isomorphic with G (cf. K. II ,  413). 

53. J is a group of substitutions, and the results of the theory of group 

characters are available to give information about  its invariants; the relevant 

generating function T(x), in which the coefficient of x ~ is equal to the number 

of linearly independent invariants of degree m, is easily obtained from a know- 

ledge of the structure of the Klein group. On the other hand the geometry 

of the figure in ~ allows many invariants to be detected instantly and the two 

approaches, algebraical and geometrical, supplement one another as they did in 

the study of the invariants of G*. 

Any invariant of J, when equated to zero, gives a primal which, if s does 

not wholly belong to i~, meets s in a lo.cus whose points represent the lines of 

some complex in the three-dimensional space; the order of the complex is the 

degree of the invariant of J. This complex must be unaffected by the eollinea- 

tions of (~, and so must be a covariant complex. Conversely: the lines of any 

complex of order m which is covariant for the three-dimensional configuration 

are represented by the points common to ~ and a primal of order m which is 

invariant for J. 
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We now obtain the generating function h u(x). In the table ' the various rows 

refer to the six different conjugate sets of operations in the Klein group. The 

number on the extreme left of a row is the number of operations in the set; 

this is followed by the three multipliers of any operation of the set when it 

belongs to the ternary group of substitutions. From these the six multipliers of 

the corresponding operation of J are immediately deduced, and the number at 

the extreme right  of a row is t h e  period of the corresponding operations. 

I 

21 

55 

42 

24 

24 

I, I, I 

I, ~ I ,  - - I  

I ,  (~, OJ ~ 

I, i, - - i  

8~ 8 3 , 8 4 

8~ 8 5 , 8 6 

I, I, I, I, I, I 

I, I, I, I, - - I ,  - - I  

I, ~2 ~, I, ~ ,  

I, - - I ,  - - I ,  I, --{, i ~ 

~6, s 6 5  8 4  ~2  

I 

2 

3 

4 

7 

7 

From this it  follows that  

I68 T ( x )  = I 2I  56 42  
(,_x)~ + (~_x~)~i,_x)., + (,_x--~/~ + (,_x~)(~_~,) 

+ 

kU(x)~-i + x  2 + 2 x  8 + 3 x * + 4 x  5+  8x  ~ +  IOX ~ + ' ' "  

48(I-x) 
I - - X  7 

54- The presence of the term x 2 in h u (x) indicates that  J has a quadratic 

invariant IS; the primal 1 3 = o  must of course be $2, and we may take 

IS = Yl Y4 + Y~ Y~ + Y8 Ys. 

55- The presence of the term 2x  s in ~U(x) indicates that  J has two line- 

arly independent invariants of degree 3. Now two cubic primals invariantly re- 

lated to the figure in ~ are very prominent; namely those generated by the chords 

of the respective Veronese surfaces v and w. The left-hand sides of the eqda- 

tions of these two primals may therefore be taken as the two linearly inde- 

pendent cubic invariants of J ;  the parametric forms 49.2 for v and 5o.I for w 

show at once that  the cubic primals are, respective]y, 1 8 =  o and j s ~  o where 

] ~ Y~ Y~ Y6 
2 

I a ~ - I  Y~ ~Y2 y~ - -  2y l y~y~  + ~ Y ~ Y s Y s - - Y l Y ~ - - Y ~ Y ~ - - Y a Y * ,  

I Ye Y4 vYl 
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] 3y6 Y2 Y81 
2 2 2 

j s = : z - i  ys zYs Yl ~ z Y t Y s Y s  + 2Y~YsY6--Y lY6- -Y2Y~--YsYs .  

I Ys Yt ~Y4 

The loci in which I s`= 0 and j s =  0 meet  ~ must  correspond to two cubic 

complexes that  are covariant for G. Now in Note I I I  three cubic complexes 

covariant for a net  of quadrics were signalised: they were 

(i) the complex of transversals of canonical sets of generators of as ;  

(it) the complex of transversals of canonical sets of generators of ~s, tha t  

is, for the net  N, of Ha; 

(iii) the complex of generators of quadrics of the net. 

When  the net  of quadrics is given by 3.I there is associated with it the net  of 

quadric envelopes 4.2, so that  there arises also 

(iv) the complex of generators of quadrics which touch all the base planes. 

I t  was also explained in Note I I I  that  the complex (i) is represented by the 

section of Y2 by the cubic primal generated by the chords of w while the com- 

plex (it) is represented by the section of ~2 by the cubic primal generated by 

the chords of v. The complexes (iii) and (iv) must, since J has only two line- 

arly independent  cubic invariants, be linear combinations of (i) and (it), and this 

dependence will now be verified by obtaining their  equations. 

Since (i) and (it) are reciprocals of one another  with respect to any quadric 

Qli aud so, in particular, with respect to Q07, their  equations must  be derivable 

from each other by interchanging dashed and undashed Pliicker coordinates; this 

is in agreement with the fact that  I a and j a  are interchanged when the suffixes 

of the y~ are subjected to the permutat ion (14)(25)(36). The same relation holds 

between (iii) and (iv). 

56. The equation of (iii) is at once obtainable from the fact tha t  any line 

of (iii) is cut in involution by t he  quadrics 3.I, so tha t  the join of (xl, Yl, zl, tl) 

and (x~, y~, z2, tj) belongs to (iii) if 

y ~ - - ~ t l x t  ~y ty~- - ( t l x~  + t~x~) y ~ - - ~ t 2 x  ~ 

z ~ - - ~ t l y l  ~z~zj--( t~y~ + t~yt) z ] - - z t 2 y  ~ = o .  

This determinant  may be evaluated by remarking tha t  the matrix within it is 

the product obtained on premultiplying the transposed matrix of 
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[x  X~ y~ z~ t[ 2 y~ zt 2 z~ x~ 2 x~ y~ 2 x~ t~ ~ yi t~ 2 z~ t~ 1 

1 x~ y~ y~ 2,~ 2"3 t~ t3 y~ z~ + Y3 z~ z~ x~ + 2"3 x~ x~ y~ + x3 y~ xx t3 + x3 t~ Yt t3 + Y3 t~ z~ t~ + z~ t~ 

X~ .y~ Z~2 ~ 2 y$ Z2 2 2"~ X 2 2 x 3 y,. 2 x3 t~ 2 y~ t~ ~ z~ t~ 

by the matrix 

I - - T  -1  

I - - T  - I  ] 
I - - T  - 1  

so tha t  the value of the determinant is the sum of all the products of cor- 

responding three-rowed determinants selected from the two matrices ~. Only eight 

sach determinants of the latter matrix do not vanish, and the one formed from 

the last three columns is to be multiplied by a vanishing determinant, namely 

that  formed from the last three columns of the former matrix. There remain 

only seven products which do not vanish and these, because of relations like 

x~ 

x t  X3 

x~ 

x~ x~ 

x] 

Yl Y., z~ z~ 

y~ z~ 

y~ y, z~ z~ 

y~ z~ 

2 x~ t t 

x~ t~ + x~ t~ 

2 X 2 t 3 

~ -  - -  ( ~ t  2"2 - -  Y2 2'1)(2"1 X$ - -  Z 3 X l ) ( X  1 ~ ] $ - - X  3 Y l )  = - - Z / - t  ~ ,  

2 z 1 tj  I 

z~ t~ + z,  t31 = (y~ z~ - y~ z~) 3 (z~ t2 - z~ t~) = Z 3 ~', 

2 Z 3 t 2 

2 y~ t~ 

y~ t~ § y~t~ = 2 (x~ ~_. - x~ y~) (x~ t , -  x3 t~)" = 2 �9 z '~, 

2y~4  

give, for the equation of the cubic complex, 

The lines of this complex (iii) are therefore represented by the intersection of 

~2 with the primal 

2 2 2 2 2 y~ y~. y~ + ~- 1 (yl Y6 + Y~ Y~) y2 Y4 § ~-- Y~ Y~ + Yl y5 + Y2 ys, 

and this is simply the equation j s ~  v i s. 

T h i s  is  of  course  t h e  B i n e t - C a u c h y  t h e o r e m  on  t h e  m u l t i p l i c a t i o n  of d e t e r m i n a n t a l  a r r a y s :  

s e e  SALMON: Lessons on Higher Algebra: 4 t h  ed i t ioh  (Dub l in  I885) , 22. 
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Similarly the complex (iv) is associated with the equation I s ----- ~ js ,  and the 

anticipated linear dependence is confirmed. 

57. The complexes given by a l S +  flJ~----o, where a and fi are any nu- 

merical multipliers, are polar reciprocals of one another in pairs with respect 

to the quadrics Q; of this pencil of cubic complexes there are two, namely 

13 + j3  = o, which are self-reciprocal, 

58. The presence of the term 3 x4 in W(x) indicates that J has three line- 

arly independent quartic invariants; one of these must of course be (I~) ~. Either 

all these invariants are unaffected when the suffixes of the yi are subjected to  

the permutation (14)(25)(36) or else there is a quartic invariant 14 which is 

changed by this permutation into a different invariant j r .  I t  is the latter con- 

tingency which is, in fact, realised, and all quartic invariants must  be linear 

combinations of (12) 3, I t, j r .  I t may be taken to be any quartic polynomial 

in the y~ provided that it is invariant for the group and is not unchanged by 

the permutation (I4)(25)(36). 

The geometrical approach leads readily to such polynomials. For example: 

the coordinates of the polar prime of a point A with respect to a cubic primal 

are quadratic in the coordinates of A while the condition for a prime to touch 

a quadrie is quadratic in the coordinates of the prime. Hence the locus of a 

point which has the property that  its polar prime with respect to either 1 a =  o 

or j 3 =  o touches 12 is a quartic primal which affords an invariant of J. I f  the 

quartic primals thus arising from 1 3 =  o and j s •  o are different, as in fact 

they prove to be, their equations are, like 1 s and j s  themselves, obtainable from 

each other by the permutation (I4) (25) (36) and so give two invariants 1 ~ and 

3 t on which, together with (I~) ~, the whole set of quartie invariants can be 

based. 

The symbol 8 will now, to save space, be used to denote the sum of three 

terms; these are obtained by applying the permutation (I23) (456) to the term 

to which S is prefixed. 

The polar prime of the point y----~/ with respect to l S =  o is 

s y~ (2 7.. v~ - v~) + s y t  (~,j~ v6 - 2 ,~ 7 , )  = o ;  

this touches 12, whose prime equation is v~v 4 + v~v~ + v a v e =  o, if y lies on 
the quartic primal 

I t ~ -  S (z  y~ Ya - -  Y~) (Y5 Ye - -  ~ Y~ Y4) - ~  o .  
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equianharmonical ly .  

complex is 

t al  ~2 ~3 a4] 4 
b~ b, b~ b~] 

(a b u V) 4 U 1 U~ ~l~ ~4 

I 
Vl V2 U~ V4 I 

+ ( a , b  4 - -  a4bl )A '  + (a2ba - -  a~b,)l.~' + ( a s b ,  - -  a~ba)~"}'----- o. 

:Now 
F 4 ~  - -  t ~ + 6 ~ x y z t  + 2 ( y a z  + z s x  + xSy), 

so t ha t  every expression of the  four th  degree in e i ther  Aronho ld  symbol a or b 

~anishes except  fo r  
] 

a ~ : b ~  I, a l a ~ a ~ a ~ b ~ b ~ b ~ b ~ - "  
4 

I 
a~ ~ a~ ~- b~ bs = a] a~ = b~ b~ ~ a~ a, -~- b ~ b~ : -.2 

I f  the  equat ion  of a surface is a*x = o its equianharmonic  

14 ---- S { ~ y~ Ys Ys Y~ + v Yl Y5 Y~ - -  2 �9 y ,  y~ Y4 - -  Y~ Ye }, 

J~ -~ 8 { 2 y, Ys Ys Y~ + ~ Y~ Y~ Y~ - -  2 ~ Yl Y~ Y~ - -  Y~ Y3}, 

( I ' )  3 - s + 2 

Since I ~ is a quadra t ic  fo rm in the  quadrics  which conta in  v this surface 

is a double surface on 1 4 ~  o. Each  secant  plane of v t h a t  contains  a point  of 

I ~--- o in addi t ion to the  conic, nodal  on 14~- o, in which the  plane meets  v 

the re fore  lies ent i re ly  on the  primal.  The  three-dimensional  locus 1 ~ 18--- o 

thus  consists of a singly-infinite set of planes secant to v; i t  is easily verified, 

by subs t i tu t ion  of coordinates  in I ~, t h a t  a secant  plane of v lies on I 4 ~ o  

when, and only when, its four  intersect ions with F cons t i tu te  an equ ianharmonic  

te t rad.  Similar  re la t ions  hold between j 4  ~ o and w. 

59. The  pr imals  a I  4 § f l j 4  § 7 ( p ) 2 _ _ _ o  obta ined  by equa t ing  to zero the  

various quar t ic  invar iants  cons t i tu te  a ne t  of which (I~) ~ is a member ;  on 

i tself  they  cut  a pencil  of loci all con ta in ing  the surface 14 -~ j 4  ~ i s _~ o. This 

points  to the  existence of  a pencil  of quar t ic  complexes covar ian t  for  the  three- 

dimensional  figure. 

One covar ian t  complex is afforded by the lines which cut  the surface ~ ' ~ o  



2 2 2  W . L .  Edge .  

Thus, for this particular quartic surface, 

(a b u v) 4 ~- 24 al as a8 a~ bl b~ b s b~ { ~ '  ~ + ,a ~ # '  ~ + v ~ 1)' ~ 

- -  2 ( ~ ' 1 ) V  + ,,~,' Z)~' + ; tZ'md)} 

+ 24ala2asa4v,2 3 # ' v +  bib I v'~ + b~b~v~).'#) 

+ 24bxb~bsb~(a~aa~S#'v + a~aa#~1)'~ + a~aov2~'#) 

4 3 1)* -3 ~ p 3 ,~t 8 A t + 4 a * ( b ~ b s / * ' s  + oaoj1) ~ + a ~ a l  a # , )  

4 8 1), 3 1 ) , ~ , +  a ~ a ~ ) , ~ # , )  + 4b4(a~aslz 's + a s a  1 

+ 4(a~asb~bt# 1) + a~aab~b2va~ + a~at 

8 a ~a ~ 6s a + 4 (hi b o (/3 a l  ~ a  1) + -2 (/a i a21)a ~ + b3 bl a a an ha #) 

: 3 { Z ' Z ' ~ + ~ ' # ' ~ + 1 ) ~ v  ''- 2 ( v ~ ' v v ' + v  Z Z ' + Z Z ' ~ ' ) }  

+ 6 ~(Z'~'1) + ~ 'v 'Z  + v' Z'.u) + 4 ( ~ " ~ ' +  ~ ' ~ Z ' + Z ' ~ ' ) +  2 (~,'1) + 1)~Z + ~.~). 

If  this is subtracted from the vanishing expression 3 (~Z' 4 - / ,# '  + v1)')* and the 

result divided by 2 we obtain, for the equation of the equianharmonic eomplex 

of F ~ = O, 

6(~'1)1) '  + ~v'ZZ' + ~ Z ' ~ ' )  

= 3,(Z*~'1) + ~ v ' X  + 1)*Z'#) + 2 (~'~1) ' + V~Z ' + Z ' ~  ') + V~1) + v~Z + Z*v. 

The lines of this complex are represented by the intersection of ~2 with the 

primal 
3 

2 1  * + J * ~ o .  

The interchange of dashed and undashed Pliicker coordinates gives a second 

eovarian~ quar~ic complex, namely that  formed by lines which have the property 

that  the four planes which pass through ~hem and belong to Gundelfinger's 

contravarian~ envelope form an equianharmonic set. This complex is represented 

by ~he intersection of ~ wi~h the primal 

I * + 2 J*  ~ o .  

These results tell us that  the points of ~ which lie on the surface I *-- I * 

J ~ =  o represent those lines having the double property that  the four points 

of F * which lie on them form an equianharmonic range and, a~ ~he same ~ime, 

the four planes of d~ * which pass ~hrough them form an equianharmonic pencil. 
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Such lines make up a congruence, and the generators both of /~s and of H s are 

(at least) double lines of it. 

As for the pencil of covariant cubic complexes, so for the pencil of co- 

variant quartic complexes; the complexes of the pencil are polar reciprocals of 

one another with respect to the quadrics Q, while two members of the pencil, 

namely 14__+ J~-~--o, are self-reciprocal. 


