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1. The equation <€ of the scroll R of tangents of the curve F of intersection of two
quadrics in general position in [3] was found by Cayley in 1850 «l), p. 50). Cayley also
considered special positions of the quadrics but we shall not be concerned with these.
<& was reproduced in Salmon's treatise ((8), p. 191) and Salmon, on this same page,
provides an equation in covariant form and so applicable to pairs of quadrics whether
in canonical form, or in general position, or not.

The procedure now proposed for finding the equation of R takes advantage from the
outset of every quadric through F being invariant under an elementary abelian group
E of eight projectivities; when, as below, the quadrics are in canonical form E is
generated by sign changes of the homogeneous coordinates. The basic fact is that all
points not in any face of the common self-polar tetrahedron U of the quadrics are
distributed in octads, and these octads can be handled as entities.

It is shown in § 3 how the equation now to be found for R can be written so as to
disclose the existence of a singly infinite system, of index 2, of quartic surfaces Q^
having R for their envelope. Q^ has fixed nodes at the vertices of the four cones through
F and has also nodes at an octad on F that varies with /i; it meets R in F (reckoned
twice because it is cuspidal on R) and touches R along an elliptic curve of order 12.

The opportunity is taken, in the second part (§§6-7) of the paper, of placing R
among the combinants of the pencil of quadrics which contain F, the complete system
of combinants being at hand in Todd's paper (9) of 1947. The quartic surface F, whose
covariant relation to the quadrics was discovered by Todd (10) and explained ((4),
pp. 4, 5) by Dye, is placed in the present context.

In the third part (§§8-15) of the paper R is transformed into a quartic surface,
W having a cuspidal line y and four nodes. The transformation has been used before,
but never applied to R; and although W was discovered long ago by Pliicker in his
pioneering researches in line geometry it can perhaps more easily be studied in the
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present less elaborate setting. I t can be generated by more than one quite elementary
geometrical process and one such, involving twisted cubics, is used in § 11 to obtain a
mapping of W on a plane. The figure of a line and four points naturally suggests, quite
apart from their being the main features of W, using the quadric <5> for which the
points are vertices of a self-polar tetrahedron and which contains the line; W proves
to be its own polar reciprocal with respect to <I>.

2. The curve Y is defined by
Qo = Qx = 0, (2-1)

3
where Qk = 2

i=o

and no two of the four at are equal. Write

and sk =

the sums being, save for one or two exceptions mentioned later, all of four terms. These
sk clearly satisfy the recurrence relation

sk~ eisk-i + e2Sfc-2- e3s*-s + e4sk_t = 0 (k > 4) (2-2)

with the initial conditions, verified at once by using the partial fractions for <j>n/f(<f>)
with n < 3, A . / o „.

sQ = Sj = s2 = 0, s3 = 1. (2-3)

In particular s4 = e^ s& = e\ — e2. (2-4)

All solutions x\ of (2-1) are linearly dependent on the two
x\ = l//'(a,), x\ = at-//'(af).

For these are solutions, by (2-3), and there cannot be more than two linearly inde-
pendent solutions. Hence the octads on Y are parametrized by

Since the tangent to Y at xt = £f is Sa^ £,• = Sa{ xt £f = 0 its points xt are obtained,
if no £,{ is zero, by varying A in

*t)> (2-6)

and xt traces R when A and d both vary. I t follows from (2-5) and (2-6) that the equation
of R is obtained by eliminating A, 6, K between the four equations

K{A + at)*/f'(ai), (2-7)

equations which imply, by (2-3) and (2-4),

6Q0 + Q1 = 0, 6Q1 + Q2 = K, dQ.2 + Q.3 = K(e1 + 2A),

4 = K(e\ - e2 + 2Aex + A2).
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These, in turn, imply

ei(Q0 Q 2 - n?) - (Qo Q 3 - n t Q2) = - 2A(Q0 Q 2 - of),

e2(Q0 Q2 - Q2) - ei(Q0 Q3 - flx Q2) + Qo Q4 - Qx Q3 = A2(Q0 Q2 - Qf)

so that, eliminating A,

{Qo Q3 - Qx Q2 - Cl(flo Q2 - Qf )}2

= 4(Q0 Q2 - Qf) {Qo Q4 - Qt Q3 - ei(Q0 Q3 - Q, Q2) + e2(Q0 Q2 - Qf)} (2-8)

3. This equation shows that either factor on the right represents, when equated to
zero, a quartic surface containing T (and whose intersection with R therefore includes
this cuspidal curve of R twice over) and touching R all along their residual intersection,
this curve C of contact lying on the quartic surface obtained by equating the left-hand
side of (2-8) to zero. A similar situation is apparent from Salmon's covariant equation,
but he was not concerned with this. And (2-8) is only one particular instance of a form
of equation that exhibits a whole family of contact quartic surfaces of R; one is
reminded of the standard situation in the study of the contact conies of a plane quartic
curve. For, if

/ (3-1)

(2-8) is equivalent, whenever /t + v, to

the only change being that (2-8) has been multiplied by \(JM — V)2.
One may take the liberty of calling the surface Q/t = 0 simply QM, and similar liberties

may be taken later.

4. Before describing the geometry it may be remarked that, with £ denoting a sum
of six terms throughout this § 4,

Q0Q2-Qf = Sfa-a,

so that the coefficient of «§a;f in Q^ is the product of (a0 — e^)2 and

ag + a0a1 + a\-(fi + e1)(a0 + a1)+ji2 + e1/i + e2 = /i2+fi{a2

so that, writing the leading term of the six summed,

Q^ = S(ao-a1)2(/t + a2)(^ + a3)a;2a;f) (4-2)

and the equation of R is, for any unequal pair /i and v,

= {2(o0 - a^2 (/i + a2)(/i + a3) x\x\}{L(a0 -ax)
2 (1̂  + a2) (v + a3) x\x\}.

1-2
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In particular, taking fi = oo and v = 0, the equation becomes

(4-3)

Cayley found ^ by taking U as tetrahedron of reference. If the unit point is then
chosen so that one quadric through F is Qo = 0 then a' = b' = c' = d' = 1 in <€ and the
outcome is equivalent to (4-3).

5. The identities (4-1) show that the surfaces Q have nodes at the vertices of U,
and they have other nodes too. I t is apparent from (2-2), or from the necessary linear
dependence of the rows of the zero determinant

Qo 1 1 1 1
Qx a0 ax o2 a3

Q2 a\ a\ a\ a\
Q3 a% a\ a\ a%

Q4 a% a\ a% a%

that £24 = ex Q3 - e2 Q2 4- e3 Qx - e4 Qo (5-1)

and so, substituting for Q.i in (3-1),

^ s ( ^ Q 0 + Q1)(;MQ2-(-g1Q2-Q3)-e4n§ + e3£20O1-(/t2 + e1/< + e2)Qf) (5-2)

showing that Q^ has nodes wherever

an octad of points on F. I t is thus what Cayley aptly calls ((3), p. 133) an octadic surface
and is, incidentally, a refutation of his over-hasty assertion ((3), p. 153) that an octadic
surface cannot have more than two additional nodes.

The four intersections of a tangent of F with Q^ consist of the contact with F and a
contact with this octadic surface. The curve Cy, of contact of Q^ with R is therefore a
directrix, unisecant to the generators, and so elliptic. Since the vertices of U are nodes
of QM and quadruple points of R they are multiple points of C .̂

Those four Q^ for which /i = —at are reducible. When, say, /i = —a3 three of the six
terms of the sum in (4-2) are zero while the others all have the non-zero factor

(o0 - a3) (ax -a3)(a2-a3);

Q_a} consists of the repeated plane x3 = 0 and the cone

i^-c^Q, , s (o0-a3)x2 + (a1-az)x\+(ai-a3)x\ = 0.

This cone touches R all along those four tangents of F that concur at x0 = xx = x2 = 0.
The rest of the duodecimic curve of contact consists of the nodal plane quartic of R in
x3 = 0, reckoned twice.

Cy, is of order 12 because the complete intersection of R, which has order 8, and Qp

which has order 4, consists of C^ and F both counted twice: Ĉ  because it is a curve of
contact, F because it is cuspidal on -fi.

II

6. R is a combinant of the pencil /\D0 + iix of quadratic forms; the complete list of
irreducible combinants, complete in the sense that every combinant is expressible in



Tangents of an elliptic quartic curve 5

terms of those in his list, was obtained by Todd ((9), p. 487). Since, as has been seen
above, R has order 8 in the xi and degree 6 in the coefficients of Cilt and so combined
degree 12 in the coefficients of any two forms on which the pencil may be based, it
must be a linear combination, in Todd's notation, of his

F\ A(3,l), 5(4,0); (6-1)

say R=pF2 + q&(3, l) + r#(4,0). (6-2)

Now whenever the quadrics are referred to their common self-polar tetrahedron no
powers x\ occur in R. The forms for A(3,1) and 5(4, 0) appear in the antepenultimate
and penultimate lines of Todd's equation (35), while the forms S, S', Q, Q' which he
uses appear in his earlier equations (22), (28), (29). His F is in (30), and easy calculations
show that the coefficients of â  in the three forms (6-1) are

36a262(a4 - &4)2. - 3a262(a4 - 64)2, 3a262(a4 - 64)2.

Hence 12p-q + r - 0 (6-3)

Examine, next, the terms in £4x4. That in F2 has coefficient-72a262(a4-64)2; the
calculations for the other two forms are somewhat longer but the coefficients prove
to be, on using Todd's equations,

- 2a262(a8 - 34a464 + 6«) in A(3,1),

in #(4,0).

Now take Salmon's equation ((8), p. 191) for R and adapt it to that canonical form
which, as Todd explains, is got by choosing one of its three pairs of mutually apolar
quadrics as base for the pencil. What does Salmon's coefficient (cd')2 (ab1)* become in
these circumstances? Since, using the apolar pair, Todd replaces Salmon's

la b c d\
\a' V c' d'j

by la a b b\
\b —b a —a)

the coefficient sought is (— 2afe)2 (— 2a6)4 = 64a666 and the identity (6-2) implies, on
dropping the common factor 2a262 and using the value for 12^ given by (6-3),

32a464 s -3 (? - r ) (a 4 -6 4 ) 2 -g(a 8

= - q(4a* - 40a464 + 468) + r(8a8 + 16a464 + 868),

requiring q = 2r and r = £. Hence

7. This placing of R among the octavic combinants of degree 12 enables one to base
them on three linearly independent ones of known geometrical significance. For F was
interpreted recently (4) by Dye, and Todd's definition ((9), p. 485) of 5(4,0) shows, on
referring to his equations (23) and (24), that it is, among the quadrics through F, the
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Hessian tetrad of the four cones. A(3,1) perhaps lies outside the domain of geometrically
significant forms; one can perhaps include it among those many forms for which
((7), p. 287) ' it commonly happens that the significance of some members of the
system is so remote as to render them of little geometrical importance'. But this could
surely not apply to F since it is unique: the only combinant of as low a degree as 6 in
the coefficients. Yet it had to wait 30 years after Todd discovered it for any mathe-
matician to provide the geometrical interpretation.

I l l

8. Now replace the squares x\ by X{ in the above account of R and its contact
octadic surfaces. The [3] S containing R is thereby changed into another [3] a, each
octad in S being mapped on a point of <r save for three exceptions.

(i) Each vertex At of the tetrahedron of reference u in cr maps a single point, the
corresponding vertex of U.

(ii) Each point, other than a vertex, on an edge of u maps a pair on the corresponding
edge of U, the pair being harmonic to the vertices of U on this edge.

(iii) Each point in a face, but not on an edge, of u maps the vertices of a quadrangle
in the corresponding face of U; the vertices of U in this face are the diagonal points
of the quadrangle.

This transformation is applied to F, though not to R, by Enriques ((6), p. 298); the
quadrics Qk = ~La\x\ = 0 in 8 become, as he says, planes (ok = Saf Xt = 0 in cr, so that
the octads on V are mapped by the points of the line

y: (o0 = «! = 0.

The intersections A'toiy with the faces of u opposite to its vertices Ai map the tetrads
in which Y meets the faces of U.

The transform of Q^ is, from (5-2),

q^ = (/fwo + w1)(/fw2 + e1w2-w3)-e4wg + e3wow1-(>«2 + e]l/i + e2)wf = 0,

a quadric cone whose vertex

w^-^ = 0

is the point on y mapping the octad of nodes of Q/t on F; ^ contains At as well as y.
The transform of R is a quartic surface W, the envelope of the cones qfl; its equation,
by (4-3), is

1, (8-1)

each sum here involving six terms. W has nodes at the vertices of u and y is a double
line, which will presently be seen to be cuspidal, on W. Since y counts twice as a
component of the complete intersection of W and q^ their residual contact has order
^(4-2 — 2-1) = 3 and so is a twisted cubic through Ao, Au A2, A3.

9. There is only one quadric cone, with a given vertex P on y, having y, PA0, PAX,
PA2, PA3 for generators so that one can define W ((5), p. 359) simply as the envelope
of those cones that belong to the net of quadrics containing y and circumscribing u.
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Since any two such cones meet, apart from 7, in that twisted cubic which contains
Ao, Alt A2, A3 and their two vertices the contacts of the cones with W are those
twisted cubics which contain Ao, Alt A2, A3 and touch 7; so W may be defined as
generated by such cubics ((12), p. 1105, fn. 885).

Those contact cones of W whose vertices are the four points A\ have three coplanar
generators and so are plane pairs. If P is at A'3 the two planes are A0A1A2 and yA3, i.e.
X3 - 0 and a3w0 = wv This splitting of the cone in a corresponds to the splitting in
S of an octadic surface into the repeated plane x3 = 0 and the cone a3 Qo = Qv The
planes Xi = 0 are tropes of W, touching it along conies; the contact conic of W with
X3 = 0 maps the repeated trinodal quartic that is the section of R by x3 = 0. The planes
yAi touch W along the lines AiA'i; this line of contact maps the four tangents to F at
its intersections with xt = 0, i.e. the four lines along which a{ Do = Oj touches R.

A plane ka)0 = Wj through y cuts W further in a conic wk that maps those eight
tangents of F common to kQ0 = Ox and R. Their contacts with F compose an octad
and exhaust the whole of their intersections with F, so that there is only a single point,
the map of this octad, common to wk and y; y is a tangent to wk. Just as there is a (1,1)
correspondence between octads on F and quadrics through F, the tangents to F at an
octad lying on the corresponding quadric, so is there a (1,1) correspondence between
points on 7 and planes through 7, the conies wk in the planes touching F at the corre-
sponding points. wk is a repeated line if k is any of the four at. As the faces of u are
tropes of W the lines in which they meet kw0 = wx touch wk; wk is the unique conic
touching the sides of the pentagram consisting of 7 and the intersections of ka)0 = Wj
with the faces of u, and W may be defined as generated by such conies as k varies
((5), p. 359).

10. The lines I, through a point P on a double line of a surface, having (at least)
three-point intersection with the surface at P lie in two planes through the double
line; if the surface is a quartic I has (at most) one further intersection. If P is on the
double line 7 of If there is a plane through 7 meeting W in 7 (repeated) and a conic
touching 7 at P; a line in this plane through P has (at most) one further intersection
with W. But any other plane through 7 meets W in 7 (repeated) and a conic touching
7 at a point distinct from P, so that lines through P in this other plane meet W twice
apart from P. (Should this plane be one of those four in which the conic is a repeated
line the argument stands because there is then a contact with W apart from P.) Thus
only a single plane through 7 satisfies the condition on lines through P, and 7 is a
cuspidal line on W.

The conic that completes with 7 the section of W by the plane yAi is, as already
remarked, the repeated line AiA'i; the lines in this plane through A\, other than AiA'i
and 7 themselves, have no further intersection with W: A\ is what Cayley ((2), pp. 339-
341) and Zeuthen ((ll); especially pp. 479-489) call a close point.

11. Since the plane yAi is %«„ = u)x the parameters ofthe^44 on any twisted cubic h
through them which has 7 for a chord compose a tetrad projective with (a0, alt a2, a3).
Take them, therefore, to be — a0, —av — o2, — o3 and h to have the parametric form
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where the at are constants. But then the third intersection of h with w0 = 0 has ijr = co
and so, as the three intersections with w0 = 0 are determined by

2a.; = 0. The same condition is imposed by the fact of the third intersection of h with
wx = 0 having \jr = 0. The parameters of the two intersections of h and 7 are therefore
the roots of the quadratic

Sal.{(e1-ai)f
2 + (e2-aiei + af)^ + e3-aie2 + a|e1-a?} = 0. (11-1)

Now four numbers ai summing to zero are such that, for some p, q, r,

aif'(ai) — P + <lai + rai
so that, by (2-3) and (2-4),

I.aiai = r, 2aia? = q + etr, 2aiaf = p + elq+{e\-e2)r

and (11-1) is, simply,
p-qi/r + ri/r2 = 0.

Thus the condition for h to touch 7 is q2 = 4rp, or

p : q : r = X
2: %X- 1,

each value of x providing one such twisted cubic. Its parametric form is

and its contact with 7 has ijr = x- The four equations (11-2) are a parametric repre-
sentation of W in terms of ijr and x ]as^ as> analogously, (2-7) is a parametric repre-
sentation of the octads on R.

12. The equations (11-2), whose rationalized form is led by

0), (12-1)

map W on the affine plane coordinatized by (i/r, x). Plane sections of W are mapped by
quintic curves which have

(a) a triple point M ' at infinity' at the concurrence of the parallels to \jr = 0,
(b) a node N at the concurrence of the parallels to ̂  = 0,
(c) simple points Lt at ijr = x = ~ ai> touching each other there with common

tangents i]f = ~a{.
They therefore, as they should, have genus 6 — 3—1 = 2 and grade

They could be changed to quartics by Cremona transformation but this, while lessening
the degree of the map, would mar its symmetry.

The line i/r = x maps y.
Lines through N map twisted cubics, those four mapped by the NLt being composite;

that mapped by NL0 consists of the conic in the trope A1A2A3 and of the line AOA'O.
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If one writes — a0 for x in (12-1) it appears that the conic in the trope Xo = 0 is
parametrized as

^ i K - « 2 ) (oi-Oa) = K - « o ) (ft + ̂ ) (ft + az) (12-2)

together with the two equations derived by cyclically permuting the suffixes 1, 2, 3.
These equations may also be written as

*i / ' (« i ) = K - «o)2 (ft + <*») (ft + «s) (12-3)

with its two companion equations.

13. Expressions for the wk in terms of ft and x a r e quickly found on writing
o-i + X~ft f° r X + ai m (12-1). For then, writing II for the product

(ft + a0) (ft + aj (ft + a2) (ft + a3),

so that
<ok = Ya\Xt = (ftsk + sk+1) n + 2(X - ft)

giving immediately

The multipliers of ft5 and ft* in o)k are zero, whatever k. The plane kco0 = o)x meets W in
the line ft = X> i-e- 7> reckoned twice, and the conic ft = — k.

The close points A\ are in the planes Xi = 0. Any plane through, say, A'o has an
equation po)0 + qw1 + rX0 — 0 and so cuts W in the section mapped by

(qft-p) (X - ft)2 + r(X + «o)2 (ft + «i) (ft + a%) (ft + «3)//'K) = 0.

This quintic curve has a node at ft = x = — «o> i-e- a* Lo; its genus is therefore 1, not 2.
This agrees with the fact that a plane through a close point gives a section not with an
ordinary cusp but with a tacnode ((11), p. 479).

14. At the opening and at the close of §9 two methods of generating W were
described

(a) as an envelope of cones containing pentads of lines through points of y,
(b) as a locus of conies inscribed in pentagrams in planes through y.
The duality of (a) and (6) is a reminder of what is only too obvious without any

involvement of W at all: there is a quadric $ invariantly related to the figure in <r,
namely the quadric for which u is self-polar and which contains y. Its equation is

oc0Xl + aiXl + a2 XI + a3X§ = 0,

where a,- are such that the two distinct points

X i = l / / ' ( a f ) and Xt = ajf'iaj

on y are both on <I> as well as being conjugate. The three linear conditions so imposed
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give, on solving them determinantally, unique values for a0: ax: a2: a3. Or perhaps it
is enough to say that, by inspection,

S/'(af) X\ = 0

satisfies all three necessary conditions.
The polar plane with respect to <I> of the point in Xo = 0 identified by (12-3) is

+ (<h ~ ao)2

and its envelope, as xfr varies, is

{(«1 - «o)2 (°2 + «3)
 Xl + («2 - ao)2 («3 + «l) X2 + («3 - aof K

= 4{(ax - a0)2 Xx + (a, - a0)
2 X2 + (a, - a0)

2 X3}

X {K - «o)2 «2 «3 •X'l + K - «o)2 a3 °1 -̂ 2 + (a3

which (8-1) shows to be the nodal cone of W at Xo. This is just one of the many aspects
of W being its own polar reciprocal with respect to <1>. The poles of the points of that
conic, in a plane n through y, which is inscribed in the pentagram formed by y and the
intersections of n with the faces of u are the tangent planes of a cone whose vertex P,
the pole of n, is on y and which contains y and the joins of P to the vertices of u. Just
as the points of the conic are on W, so are the tangent planes of the cone tangent planes
of W. Also: just as W is generated by those twisted cubics which circumscribe u and
touch y, so is W enveloped by those cubic developables that are inscribed in u and have
y for an axis.

15. One can use <J>, or indeed any non-singular quadric *F for which u is self-polar,
as a springboard to return from <r to S. By the reverse of the transformation of § 8
such a quadric £a,-X2 = 0 becomes a quartic surface K: "La^ — 0, each point of *F for
which no Xi is zero furnishing an octad on K with no xt zero.

A generator of Y, having equations 'Lpi Xt = S ^ Xt = 0, becomes a curve
'Lpixf = ~LqiX\ = 0 on K, in general an elliptic quartic; there are two families of such
curves on K, curves in opposite families having an octad in common whereas two
curves in the same family do not meet at all. But \F meets every edge of u in two points
and both generators through such a point meet, since u is self-polar, the opposite edge.
If a generator meets Xo = Xx = 0 and X2 = X3 = 0 it has equations

P0X0+PlXl = 92^2 + 23-̂ 3 = °

and the corresponding 'elliptic quartic' on K isp(>XQ-\-p1x\ = q2x\ + q3x\ = 0, a skew
quadrilateral whose diagonals are the opposite edges x0 — x^ = 0 and x2 = x3 = 0 of U.
Each family of elliptic quartics thus includes six such quadrilaterals, each pair of
opposite edges of U being diagonals of two of them; K contains 48 lines ((9), p. 484).
The harmonic relations of the three pairs of skew quadrilaterals in either family to one
another ((4), p. 467) are also immediate consequences of those of the pairs of generators
of Y meeting opposite edges of u.
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