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Introduction. 

W h e n  the proper t ies  of a general  net  of quadrics  in [41 are known it may  

be of interest  to discuss the properties of some part icular ised nets of quadrics, 

and this paper is devoted to such a discussion. The discussion makes no claim 

to be exhaustive; the general  net  of quadrics is merely part icular ised in different 

ways and, using the known properties of the general  net  as a basis, some pro- 

perties of the part icular  nets are obtained. 

Some properties of a general  ne t  of quadrics in [41 have recently been 

expounded~; they hinge, for the greater  part ,  upon the Jacobian  curve ~ of the 

i ~)The geometry of a net  of quadrics  in four-dimensional  space , .  Acta mathematica 64 
(1935), 185--242. This  paper  will be referred to as G.Z~.Q. 
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net. The more fundamenta l  of these propert ies  may be briefly recapi tu la ted  

here, as we shall of ten have to appeal  to them. The polar  solids, in regard  to 

the m ~ quadrics  of the  net, of any point  P of 3 have in common not  merely  

a line bu t  a plane, and this plane is a secant plane of 3,  meet ing  it  in six 

points; we say tha t  the secant plane is conjugate to P. There  is thus  a singly- 

infinite family of secant  planes of 3 :  they  genera te  a locus R~ ~ on which 3 is 

a sextuple curve. Every plane which has five intersect ions with 3 must  have 

a sixth intersect ion with 3.  Any solid passing th rough  a secant  plane of 3 

meets 3 f u r t he r  in four  points and these four  points,  toge the r  with the poin t  

P of 3 to which the secant  plane is conjugate ,  form a set of five points on 3 

which are the vert ices of five cones of the  net  all belonging to the same pencil  

of quadrics (G.N.Q. w167 5--6). Next :  3 has twenty  t r isecants ;  t h rough  each 

t r isecant  there  pass three  secant planes of 3,  and the three points of 3 to which 

these three secant planes are con juga te  lie on a second t r isecant ;  the three  

secant  planes which pass t h rouoh  this second t r i secant  are conjuga te  to those 

three  points of 3 which lie on the first t r isecant .  The twen ty  t r isecants  thus  

consist  of ten conjugate pairs: when two t r isecants  of 3 are con juga te  any point  

on e i ther  of them, whether  on 3 or not,  is con juga te  to every point  on the  

o ther  in regard  to every quadric  of the net  (G.N.Q. w IO). A secant plane a 

which passes t h rough  a t r i secant  t of 3 meets  3 f u r t h e r  in three  points which 

are not  on t, and the cones of the net  whose vertices are at  these three  points  

belong to the same pencil. The vertices of the remain ing  two cones of this  

pencil are on the  t r i secant  t' which is conjuga te  to t; they are those two of the 

three  intersect ions of t' with  3 o ther  t han  tha t  in tersect ion to which the secant  

plane a is conjugate .  

I t  was shown (G.N.Q. w 34) tha t  the equat ions  of three  l inearly independen t  

quadrics in [4] can, in general ,  be reduced s imultaneously to the canonical  form 

where 

al Xf  + a~ X]  + a~X~ + e Z 2 + bl Y~ + b.~ Y~ + b~ 

ai X~ + a'~X 2 ' X ~ c . . . .  2 + a3 3 +  Z ~ +  bl Y ~ +  b~ Y ~ + b a  
pp p !  ip 2 pp i t  pp 

al X~ .q- a2 Xg -b a3 X3 q- c" Z ~ q- bl Y~ + b2 y2  ._[_ b3 

x l  + + x . -  z = -  YI + r .  + Y3. 

~ 0 ~  

Y-~ ~ O~ 

Here  a fo rm of specialisation at  once leaps to the eye. The seven l inear  forms 

which occur are such tha t  six of them may be supposed to represent  a rb i t ra ry  
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solids while the seventh, Z, represents the solid which joins the line of inter- 

section of X l = o ,  X ~ = o  and X 3 = o  to the line of intersection of :YI=o,  

Y~- -o  and Ys = o .  If  then we specialise the canonical form I by omitting 

the terms in Z s and consider the net of quadrics 

where 

al X~ + as X~ + as X] + a~ X~ + a5 X] + as X~ = o, 

bl Xf + b~ X~ + b3 X] + b4 X] + b~ X~ + b6 X~ ---- o, 

C~X, ~+ c2X~+ c~X ~ +c~X~+ c~X~+c6X~=o, 

x , + ~ + ~ + ~ + ~ + ~ o  

I I  

and we have written - -X4,  - - X s ,  - -X6 for Yl, Y~, Y3 respectively, we have 

a net of quadrics related symmetrically to the six faces of a hexahedron. This 

however, although an admirable illustration, is somewhat too drastic a specialisa- 

tion to begin with; there are other specialisations of I which are not so parti- 

cularised as II. On the other hand there are nets of quadrics whose properties 

we shall consider that  are even more particularised than II. 

In order to keep the work within reasonable compass we must impose 

some limit on the extent to which we specialise, and we therefore decide that  

no consideration will be given here to any net of quadrics whose Jacobian curve 

breaks up into separate component curves or whose Jacobian curve has a multiple 

point. All the nets of quadrics that  are considered have Jacobian curves that  

are in birational correspondence with plane quintic curves, of genus 6, without 

multiple points. 

When the properties of a general net of quadrics in [4] were obtained the 

birational correspondence between the Jacobian curve and a plane quintic was 

discussed in some detail, and it is of interest to see, when the net of quadrics 

and its Jaeobian curve are specialised in any way, how the plane quintic is 

specialised correspondingly. For example (cf. G.N.Q. w 27 and w 35): the equa- 

tion of a plane quintic in birational correspondence with the Jacobian curve 

of I is 

~--1 + ~--1 + ~-1 + VX--1 + ~--1 + ~]~-1 _~. L (~-1 + ~-1 + ~:1 )(V-~-I + V.~-I -4- ~-1 ) = O, 

where L~cx+c'y+c"z. Hence, putting c = c ' - ~ c " = o ,  it follows that  a 

plane quintic in birational correspondence with the Jaeobian curve of I I  has an 

equation 
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~T 1 + ~T 1 + ~T 1 + ~T 1 + ~T 1 -~ ~ v l =  o, 

and is there fore  circumscribed to the hexagram formed by the six lines ~ : o. 

Thus the par t icular ised quint ic  curve has an inscribed hexagram,  whereas a 

general  quintic curve has not. I t  will also be shown tha t  the converse of this 

resul t  is t rue  in the sense tha t  if a plane quint ic  has an inscribed hexag ram it 

can always be pu t  into birat ional  correspondence with the Jacobian  curve of a 

ne t  of q u a d r i c s  given by the  canonical  fo rm I I .  

I f  three  conics are taken  in a plane any one meets any o ther  in four  

points, so tha t  there  are twelve intersect ions in all; there  are oo s quint ic  curves 

passing t h rough  these twelve points. Such a quint ic  curve has two fu r t h e r  in- 

tersect ions with each conic, and if we suppose that ,  on each conic, these two 

fu r the r  intersect ions coincide in a single con tac t  we impose th ree  fu r t h e r  condi- 

tions, thus  reducing  the aggrega te  of quint ic  curves to oo 5. Conversely:  there  

are ~ 20 quint ic  curves and ~ 15 sets of three  conics in a plane, so tha t  i t  would 

seem tha t  there  is a finite number  of such sets of three  conics associated with 

a general  plane quiutic. A set of three  conics which is such tha t  all the i r  in- 

tersect ions lie on the quintic and each conic touches the quintic makes up a 

contac t  sextic, i .e .  a sextic which has two intersect ions with the quint ic  wherever  

i t  meets it. I f  F 1 ~ o ,  F 2 = o ,  F ~ : o  are the equat ions of the conics t h e e q u a -  

t ion of the quintic can be wri t ten  

t 1 1 ~  1 -t- t21~  -1 + t3 I~',~ 1 :  O, 

where t, ~ o ,  t,~ ~ o ,  t . ~ : o  are the tangents  of the respective conics at  the  

points where the quintic touches them. I f  this could be established as a cano- 

nical form for  the t e rna ry  quint ic  the existence of the set of three  conics would 

follow immediate ly .  

Suppose now tha t  we specialise the configurat ion.  Le t  one of the th ree  

conics break up into a l ine-pair and, as the conic touched the quintic,  let  the  

intersect ion of the two lines be on the quintic.  Such a conf igurat ion of two 

conics and a l ine-pair  toge the r  cons t i tu t ing  a degenera te  contact-sext ic  does no t  

exist for  a general  plane quintic. But  we shall see tha t  when we specialise the  

net  of quadrics in [4] in a cer ta in  way its Jacobian curve is such tha t  any plane 

quintic t ha t  is in (I, I) correspondence with it  has a degenera te  contact-sext ic  

of this kind; indeed we shall actual ly  obtain the equat ion of such a plane quint ic  

by equat ing  to zero the  discr iminant  of the special net  of quadrics (w 5). 
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The plane configuration is specialised further when another of the conics 

becomes a line-pair whose intersection is on the quintic; we then have a plane 

quintic which passes through the six vertices of a quadrilateral and is such that  its 

remaining eight intersections with the sides of the quadrilateral are on a conic, 

this conic also touching the quintic. This type of plane quintic will also be 

obtained by specialising the net of quadrics in [4] and equating its discriminant 

to zero (w 12). 
I f  each of the conics is taken to be a line-pair whose intersection is on 

the quintic t hen  the quintic has an inscribed hexagram and is in birational 

correspondence with the Jacobian curve of a net of quadrics whose canonical 

form is II. The two special plane quintics alluded to above will thus arise 

from nets of quadrics in [4] intermediate between the general form I and the 

special form II.  

The consideration of plane quintic curves has shown how we may expect 

to find nets of quadrics in [4] which are special, and yet not so special as the 

net I I ;  similar consideration will also show how we may expect to find nets of 

quadrics in [41 that  are still more special than II.  The Jacobian curve of the 

net I I  is such that  any plane quintic which is in birational correspondence with 

it has an inscribed hexagram; we then enquire as to how a plane quintic with 

an inscribed hexagram may be further specialised. One mode of specialisation 

is obvious; we may suppose that  the six sides of the hexagram, instead of being 

any six lines in the plane, are six tangents of a conic. I t  is then found that  

there is an infinity of hexagrams inscribed in the quintic curve, and tha t  the 

sides of these hexagrams all touch this same conic. The condition for the six 

sides of the hexagram to touch a conic can be written down at once in terms 

of the coefficients in I I ;  it appears that  the Jacobian curve of a net I I  which 

is specialised in this way has not twenty but an infinity of trisecants. The 

properties of this Jacobian curve and of loci that  are associated with it are 

obtained in w167 I5--49. This particular net of quadrics may well be regarded 

as the analogue, in [4], of the net of polar quadrics of points of a plane in 

regard to a cubic surface in [3]. 

We can also consider another method of'speeialising a plane quintie with 

an inscribed hexagram. We may always suppose that  the equation of such a 

quintie is 
~-~ + ~-~ + ~-1 + ~-1 + ~;-~ + g~-~= o, 

where the six lines ~ =  o are the sides of the hexagram; then the tangent  of 
33--35150. Acta mathematica. 66. Imprim6 ]o 24 octobre 1935. 
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this curve at the vertex ~ = ~ j - ~ o  of the hexagram is ~ +  ~ j = o .  Now the 

six linear forms ~ must satisfy three linearly independent linear identities, and 

we might enquire how the curve is specialised when we assume these linear 

identities to be of a special kind; it must always however be remembered that, 

as no three sides of the hexagram are to be concurrent, it must never be pos- 

sible to obtain any linear identity between less than four of the forms ~. But 

let us suppose that  the identity 

#, + ~ + ~ + ~, + ~ + ~ - o  

holds. Then, if the six sides of the hexagram are divided into three pairs in 

any of the fifteen possible ways, each of the three pairs determines a vertex of 

the hexagram, and the three tangents of the quintic at these vertices are con- 

current; they are, indeed, concurrent in a point of the Curve. Thus, when this 

identity is satisfied, the fifteen tangents of the quintie at the vertices of the 

hexagram meet by threes in fifteen points of the curve. 

We can also enquire whether there are quintic curves with inscribed hexa- 

grams such that  some but not all of the fifteen triads of tangents are concur- 

rent in this way. These and many other matters will be treated of in their 

proper place; enough has been said here to indicate some few of the results to 

which our investigations may lead. 

The Jacobian Curve with two Pairs  of Concurrent Trisecants.  

I. Let  us suppose that  through a point 0 of ~ there pass two different 

trisecants OPQ, ORS; call these t 1 and t~ respectively. Then the plane OPQRS 
is a secant plane of ~, and meets ~ in a sixth point Z; the trisecants t~ and 

t~ which are conjugate to ti and t~ both pass through the point I' of ~ to which 

this secant plane is conjugate, and the plane which contains them is the secant 

plane conjugate to O. Let t~ meet ~ again in U and V, and let t~ meet 

again in W and X. 

The points Z, R, S are the three further intersections with ~ of a secant 

plane passing through the trisecant tl and conjugate to T; hence the five cones 

(Z), (R), (S), (U), (V), belong to a pencil; similarly (Z), (P), (Q), (W), (X) belong 

to a second pencil. But, if Z' is the sixth intersection of the secant plane 

T U V W X  with ~, it follows, in precisely the same way, that  each of the two 

sets of five cones 
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(z'), (u), (v), (R), (s) and (Z'), (W), (X), (P), (q) 

is a set of five cones belonging to a pencil. Thus the two cones (Z) and (Z') 

mus t  be the same, and the two points  Z and Z' must  coincide; the  point  of 

intersect ion of the planes tit ~ and t~ t~ is on ~. 

Since the four  cones (P), (Q), (W), (X) belong to a pencil  of quadrics 

conta in ing  (Z) the solid P Q W X  must  contain tha t  secant plane of ~ which is 

con juga te  to Z;  similarly this same secant  plane must  lie in the  solid R S U V :  
the  secant plane fl conjuga te  to Z is there fore  the plane of in tersect ion of the  

two solids tit'2 and t'lt~; it  meets  ,~ in 0 and T, and in four  fu r the r  points E ,  

F , G , H .  

2. The polar  lines of a secant  plane of ~ in regard  to the quadrics of 

the ne t  genera te  a cubic cone whose ver tex is t h a t  point  of ~ to which the 

secant  plane is conjugate,  and this cone contains the six secant  planes of 

which pass th rough  its ver tex (G.N.Q. w 9). In  par t icu la r  the polar  lines of 

the plane t~ t~ generate  a cubic cone 1Io whose ver tex  is 0; this cone contains 

the plane fl and the plane t lt~; i t  also contains the two o ther  secant planes, say 

21 and th ,  which pass t h rough  t I and the two o ther  secant planes, say ~ and 

#2, which pass t h rough  t2; tl and t~ are nodal  lines on Ho. Since the plane v 

common to the solids ~ltt I and ~tt,~ meets  1Io in four  lines i t  must  lie entirely 

on 11o; moreover  v passes t h rough  the  line OT since both  the solids ~1#1 and 

E2/t2 do so. The  section of 11o by an a rb i t ra ry  solid is a cubic surface H a with 

two nodes N 1 and N~; i t  contains  the line N1N2, two fu r the r  lines 11 and m 1 

th rough  N1, two fu r the r  lines 12 and m~ th rough  N~, the  line n in which the  

planes l~mt and l~m~ intersect  and  a line b which meets  n in a poin t  B on the  

line OT. The project ion of ~ f rom 0 is a curve 0, of order  9 and genus 6, 

on H'~; 0 has nodes at  N1 and N 2 and meets  the line N 1 N  2 in one fu r t h e r  point,  

also it  meets  each of l~ and ml in three  points o ther  than  its node N~ and each 

of l~ and m s in three  points o ther  than  its node N~, and i t  meets  b in five 

points,  one of which is B. I t  can be verified tha t  the canonical  series is cut  

out  on 0 by the cubic surfaces which contain  the three  lines b, l~, m~ and which 

have a node at  N 1 and pass simply th rough  N,,; the two nodes of 0 and its 

intersect ions with b,l~ and m~ are fixed points,  none of which be longs  to a 

general  canonical  set. Now among these cubic surfaces which cut  out  canonical  

sets on 0 there  are those which consist  of the plane llrn~ t aken  toge the r  with 

quadrics conta in ing  the line b and the two points N 1 and N2; thus  the quadrics 
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cut  out  canonical  se ts  on 0, but  all these canonical  sets include the  point  B 

since B lies not  only o n  each quadric  but  on the plane lira1. Conversely:  all 

the  canonical  sets on 0 to which B belongs can be obta ined as the intersect ions 

of 0 with quadrics conta in ing  the line b and the two points NI and N,,  as 

such quadrics form a system of f reedom 4, one less than  the f reedom of the 

canonical  series on a curve of genus 6. Hence  we may state  the fol lowing:  

Those canonical  sets of ~ which contain T are cut  out by the quadr ic  

cones, ver tex 0, which contain  the  plane ~ and the  lines tl and t~; the five in- 

tersect ions of -~ with #, o ther  than  T, and the intersect ions of ~ with t~ and 

t~, are no t  to be reckoned as points belonging to  the canonical  sets. The  twen ty  

intersect ions of such a quadric  cone with ,,~ consist  of 0, counted  twice, the 

eight  points P,  Q, R, S, E ,  F ,  G, H and a canonical  set of ten points,  of which 

T is one; conversely any canonical  set to which T belongs can be obta ined  in 

this way. 

We may, in part icular ,  take the quadric  cone to consist  of the pair  of 

solids t~ t~ and tl t~; the solid t~ t~ meets ~ in the set of points (OPQT WXEFGH) 
and the solid t~to. meets ~ in the set of points (ORSTUVEFGH); subt rac t ing  

f rom the sum of these two sets the set (O~PQRSEFGH) we find tha t  the  set 

(TsUVWXEFGtt) is a canonical  set on #. Similarly,  since the canonical  sets 

of ,,~ which conta in  0 can be cut  out  by the quadric  cones, ver tex T, which 

contain  the plane # and the lines t~ and t~, it  is found  tha t  the  set (O~PQRS 
EFGH) is a canonical  set on ,% This la t te r  resul t  also follows immedia te ly  

f rom the known resul t  (G.N.Q. w 28) that ,  when a quadric  meets  ~ in all the  

points of a given canonical  set, its res idual  intersect ions with ~ also form a 

canonical  set; for  we have jus t  seen above tha t  the set (O~PQRSEFGH) is 

residual  to all the  canonical  sets which conta in  T. 

3. Suppose now tha t  a birat ional  correspondence  is established between 

the curve # and a plane quint ic  r then any canonical  set on # must  correspond 

to a canonical  set on ~, i .e .  to ten  points of ~ which lie on a conic. Also if 

five points of # are the vert ices of five cones which belong to the same pencil, 

the  five points of ~ which correspond to them must  be eollinear. Hence,  if we 

denote  cor responding  points of ~ and # by the  same small and capital  le t ter ,  

we have on ~ two sets of five coll inear points  (zuw~s) and (zpqwx); a conic 

th rough  the points p, q, r, s and a conic t h rough  the points  u, v, w, x are such 

that  the i r  four  intersect ions e , f ,  g, h are on ~, while the first of these conics 
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touches ~ at  a point  o and the second touches ~ at  a point  t. A configuration 

of this kind does not  exist for a general  plane quintic curve; but  it  must  exist 

for any plane quintic which is in birational correspondence with  a Jacobian 

curve, of a net  of quadrics in [4], t ha t  has two pairs of concurrent  tr isecants.  

4. Le t  the equations of the three solids which contain the pairs of the 

three, secant planes th rough  t~ be Xx-~ o, X~ = o, X 3 = o, the plane t~ t 2 being 

the plane of intersection of X ~ = o  and X 3 = o ;  let Y l - ~ o ,  Y 2 = o ,  Y . ~ = o  

be the equations of the solids which contain the pairs of the three secant  planes 

through t~, the plane t; t.~ being the plane of intersection of Y~ ~ o and Ya = o. 

Then we may suppose tha t  any quadric of the net  has an equation of the form 

where 

a,X~ + a2X~ + a3X~ + c Z  ~ + b~Y[ + b.eY~ + b3Y~= o, 

� 9 0  G. 

This canonieal form for the equations ensures tha t  tl and t~ are conjugate  

tr iseeants of 9;  in order tha t  t~ and t~ should also be conjugate  tr isecants the 

coefficients will have to be restr icted in some way. This condit ion must  arise 

from the fact  tha t  every point of t~ is conjugate  to every point of t~ in regard 

to every quadric of the net. 

The coordinates of 0 are (o, o, o; o, I, -- I); here we put  the three X- 

coordinates before the semicolon and the three Y-eoordinates af ter  it, the Z- 

coordinate being omitted. Suppose tha t  t 2 joins 0 to the point (aq, o, o; y~, y~, 

y~). Also let t~ join T, whose eoordinates are (o, I , -  I; o, o, o) to the point  

(x~, x,'.,, x~; y~, o, o). Any point on t2 has coordinates (x~, o, o; y~, y~ + Z, Y3 -- X) 
p p ! P P 

while any point on t2 has coordinates (xi, x2 + ~t, X a -  ~t; yl,  o, o); these two 

points are conjugate if 
t p ! 

aix~x~ + cxjy~ + b~y~y~ = o 

o r  

, + c +  
yl xl 

~ O .  

The coefficients al, c, b 1 must  therefore be connected by this l inear relation. 

This relation may also be obtained by finding the condit ion tha t  the point  

of intersection of the two planes X~ = X3 = o and Y2 = Y~ ~ o should lie on 9. 

The coordinates of this point are (I, o, o; I, o, o) and its polar prime with re- 

spect tO the quadric is 
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a , X  1 + c Z  ~- b 1 [I71 ~ o.  

Since all these polar primes are t~o contain the same plane, whichever quadric 

of the net is taken, there must be a linear relation between the coefficients 

a,, c, b,. This linear relation can actually be found, because the plane through 

which the polar primes must pass is the plane, previously called {/, common to 

the solids t lt~ and t l t  2. The solid t~t~ joins the plane Z ~ X ~ - ~ o  to the point 
p p f f 

(x,, x2, x~; y,, o, o), so that  its equation is 

p p 

y l X l  - -  X l Z =  o .  

Also the solid tlt2 joins the plane Z =  Y~ = o to the poin~ (x~, o, o; yl, y~, y~), 

so that  its equation is 

- -  y~ Z + x l  I71 = o. 

We therefore have the relation 

l a~, c,, 
y l ,  - - X l ,  

0, ~ Yl, 

bl 
0 ~ 0 ,  

Xl 

which is the same as that, previously found. 

Conversely: suppose the quadrics of a net have equations of the canoni- 

cal form 

alX~ + %X~ + a3X~ + c Z  ~ + blY~+ b~Y~+ b~Y~=o;  

then the two lines X I - = X ~ : X  3 : o  and Y l =  Y2= Y~--~o are conjugate 

trisecants of the Jacobian curve ~, three secant planes passing through each 

trisecant. Let us also suppose, further, that  the coefficients of the three terms 

X~, Z ~, Y~ in the equation of every quadric of the net are subjected to a linear 

relation 

c ~ Qa 1 + abl; 

here of course Q and a are numerical constants, whereas the coefficients c, a,, bl 

differ for different quadrics of the net. Then, when this relation is satisfied, the 

two points 

( I ,O,O;  --0", I ~-~,, a--~,)  and (- -e ,  I +,u, Q - - # ;  I , o , o )  

are conjugate, in regard to every quadric of the net, whatsoever values Z and p 
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may  have. W h e n  ~ and  tt vary  these  poin ts  describe two lines which  will be 

con juga te  t r i secants  of ~;  the  first of t h e m  is a t r isecant ,  o ther  t h a n  X ,  = X~ - -  

= X3 = o, passing th rough  (o, o, o; o, I , -  I) and  the second is a t r i secant ,  

o ther  t h a n  171~- Y ~ =  Y a = o ,  pass ing t h r o u g h  (o, ~, - -  I ;  o , o , o ) .  Thus  when  

the  coefficients c, a, ,  b~ sa t i s fy  a l inear  re la t ion  the J acob i an  curve has  two 

pairs  of  in te rsec t ing  t r isecants .  

W e  can a lways find a quadr ic  be longing  to the  net  in whose equa t ion  the  

coefficients of any  two of the  seven squares  vanish.  Suppose t hen  we take  the 

quadr ic  for  which  the  coefficients of X~ and  Z ~ bo th  vanish;  then,  in v i r tue  of 

the  l inear  re la t ion  c = @a, + abe, the  coefficient of Y[ mus t  also vanish.  Hence  

the  le f t -hand side of the  equa t iou  of this quadr ic  is the  sum of only four  squares,  

so t h a t  the  quadric  is a cone with  ver tex  X~ = X a - -  Y= = Y~ - -  o. Hence ,  when 

there  is a l inear  re la t ion c == @a, + abl, the  in tersect ion of the two secant  planes 

X ~ X  a = o  and  Y ~ :  Y ~ : o  lies on ~. 

5. The  J acob ian  curve & is in b i ra t iona l  cor respondence  wi th  the  quint ic  

~1~2~3(~2~]3 "~ g]3~l -~- VI~]2) ~- ~]1~]2~3(~2~3 -~- ~3~1 -~ ~I~2) 

where  ~, ~, ~ are l inear  funct ions  of three  homogeneous  coordinates ,  and  where, 

in addit ion,  there  is now a l inear  ident i ty  be tween  ~ ,  ~, V,; say 

where @ and a are numer ica l  cons tants .  W e  have  the  ident i ty  

--(T@--lvI~2~3(V27~3 -~ ?]3Vl ~- ~IV'2 ~- G-'--I722I]3), 

so that, wri t ing  
~,,~3 + g3g, + ~1 ~,, + e - 1  ~,~.~ - -  r ,  

the  equat ion  to the  quintic curve is 
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(eL + a v , ) r d  = eo--'~,7~v~F + o e - ~ 7 , G G A .  

Wri t ing ,  in th is  equat ion,  

d - 7 , (7d+  73) 
~---1 72 78 = I q- O" 

it becomes 

, e-~L~-- r - g, G + g~) 
I+@ 

eG{(e + ,)~, + ( 0 +  ~ ) v , } r n  + ~,v,{e(e + ,)(w + w ) c  + ~(~ + ~)(~.~ + ~ ) n }  = o .  

F r o m  this  equat ion we can obtain  immedia te ly  the  conf igura t ion  of the  pa i r  

of lines and  the  pair  of conics, the  exis tence of which was es tabl i shed by the  

cons idera t ion  of cer ta in  canonieM sets on ~;  the  two lines are in fac t  ~l = o 

and 7~--~o, and  the  two conics are F~---o and  d = o .  The  in tersec t ions  of  the  

eonic F =  o wi th  the  curve consist  of  its four  in tersec t ions  with d - ~  o, i ts  two 

in tersect ions  wi th  ~ = o, i t s  two in tersec t ions  wi th  7, = o and  its two inter-  

sections wi th  ~a + G = o; but  these last  two in tersect ions  coincide in a single 

contact ,  since G + G = o is the t a n g e n t  of F - - - o  at  the  poin t  ~2 ~ G = o; this  

same line is also the t angen t  of the  quint ic  a t  the  same point.  Similar ly  for  

the  conic J = o. Final ly  the in te rsec t ion  of ~1 - o and  7~ ~ o is on the quint ic  

curve. 

T h a t  any quint ic  curve wi th  these  proper t ies  is in b i ra t ional  cor respondence  

wi th  a J a c o b i a n  curve ~ hav ing  two pairs  of concur ren t  t r i secants  follows a t  

once when  the le f t -hand side of its equa t ion  is expressed as a s y m m e t r i c a l  de- 

t e r m i n a n t  of five rows and columns (cf. G . N . Q .  w 35). 

6. W e  have  seen how the gacobian  curve  ~ and the  plane quint ic  ~ are 

specialised when  the  coefficients in the  canonical  f o rm are subjected to a ce r ta in  

type  of l inear  re la t ion,  and  the quest ion na tu ra l ly  presents  i tself  whe the r  f u r t h e r  

re la t ions  of th is  type  can in t roduce  fu r t h e r  speciMisations.  

Suppose  we have a pa i r  of re la t ions  such as 

c ~ @a~ + ab i = ~a~ + wbe, 

the coefficient a~ occurr ing  twice, There  is a quadr ic  of the  net  in whose equa- 

t ion the  coefficients of X~ and Z ~ bo th  vanish  and it  follows, f r o m  the  existence 

of these  l inear  relat ions,  t h a t  the  coefficients of  :Y[ and  Y~ also vanish;  hence 

the  le f t -hand  side of the  equa t ion  of this  quadr ic  is the sum of only th ree  

squares,  so t h a t  the  quadric  is a cone wi th  a l ine for  its vertex.  Hence ,  unless  
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the  ne t  of quadrics  is to conta in  a line-cone, there  canno t  exist  two such l inear  

re la t ions  ut  the  same t ime.  

W e  migh t  however  have  a pair  of re la t ions  such as 

c : @~ a, + a, b~ = @., a2 + a.z b~, 

in which none of the six coefficients a~, a2, a~, b~, b,~, ba occurs twice. I n  this 

case the  equat ion  of the  p lane  quint ie  is 

~--1 + ~-1 + ~,~l + V~I +VV1 + ~]~-1 + ~(V~-I + ~}2 1 + ?}~-1)(~1 + ~-1 .~_ ~ 1 )  ~_ O, 

where  ~ : o is the  line which joins the  point  ~ = ~]l = o to the  point  ~.~ : V.~ : o. 

The  J a c o b i a a  curve ~ now has three  pairs  of con juga te  t r i secants  t~, tl; t~, t~; 

t3, t.~ where  t~ and  ta mee t  t 1 and  t~ and  t~ mee t  t~. 

W e  m a y  also go a step fu r the r  and  suppose  t h a t  the  coefficients in the  

canonical  f o rm sat isfy the th ree  re la t ions  

c = @lal  + (r~b L - -  @.~a~ + a.eb~ = @.~a3 + o363.  

A plane quint ic  in b i ra t iona l  cor respondence  with  the  J a c o b i a n  curve of such a 

net  of quadr ics  is ob ta ined  if we take  a t r iangle  fo rmed  by three  lines ~ = o, 

~.~ ~ o, ~3 ~ o and then  a second t r iangle ,  in perspect ive  wi th  this,  f o rmed  by 

three  lines 'h  = o, ,;~ ~ o, ~a = o; we then  take  the quint ic  curve 

where now ~ =  o is the axis of perspect ive.  This  quint ic  curve has  th ree  con- 

t ac t  sextic curves each consis t ing of two lines and  two conics. The  curve 

now has  a pa i r  of con juga te  t r i secants  t and  t '  such tha t  t h rough  any inter-  

section of t or t '  with  ~ there  passes a second t r i secant .  The  t r i secants  which  

pass t h r o u g h  the three  in tersect ions  of & and t are con juga te  to those which 

pass t h rough  the  three  in tersect ions  of ~ and  t ' .  

The Jacobian Curve with four Concurrent Triseeants.  

7. Suppose t ha t  a ne t  of quadrics  in [4] is special ised in such a way t h a t  

there  is one secant  p lane  a whose six in tersec t ions  wi th  the  J a c o b i a n  curve 

are the  vert ices of a quadr i la te ra l ;  the  four  sides tt, t~, t 3, t~ of the quadr i l a te ra l  

are t r i secunts  of ~. Deno te  the  po in t  of in te rsec t ion  of tl and  t~ by Pt~, and  

34--35150. Acta  mathematica.  66. Imprlm6 le 24 octobre 1935. 
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similarly for the other five vertices of t h e  quadrilateral. The four trisecants 

t'~, t'2, t'3, t'~ which are conjugate to tl, t2, ta, t,~ all pass through that  point 0 

of 8 to which the secant plane a is conjugate and the six secant planes through 

0, conjugate to the six vertices of the quadrilateral in a, are the six planes 

which contain the pairs of the four lines t'i t~, t~ ~, t'i. 

Consider now the solid which is determined by the two secant planes t~t'~ 

and t~ ~t~, both passing through the trisecant t'~; since these are the secant planes 

conjugate to Pr) and P~a the solid must contain that  point of 8, which is the 

remaining intersection of & with t~, i.e. PLy, and P~,~ is the unique intersection 

of the solid with ~ which lies neither on the plane t~t~ nor on the plane t; t~. 

I t  therefore follows that  PI~ is that  intersection of the secant plane t~ t~ with,~ 

which lies neither on t~ nor on t[~. Hence the six points of ~ which lie in u 

are the intersections of  a with the six secant planes through O; the secant plane 

which is conjugate to any vertex of the quadrilateral in a meets a in the op- 

posite vertex of the quadrilateral, and the three pairs of opposite vertices of 

the quadrilateral are pairs of conjugate points in regard to all the quadrics of 

the net. 

8, The polar lines of a in regard to the quadrics of the net generate a 

cubic cone IIo, vertex 0, containing the six secant planes of # which pass 

through 0 and having" the four trisecants t'1, t,~, t~, t~ as nodal lines. An ar- 

bitrary solid, not passing through 0, meets H o in a four-nodal cubic surface and 

is projected from 0 into a curve 0, of order 9 and genus 6, lying on this surface 

and having a node at each node of the surface. The canonical series is cut out 

on this curve by the quadrics through its four nodes, and therefore the canonical 

series on # is cut out by those quadric cones with vertex 0 which coMain the four 
! * t ! trisecants t~, t~, ta, t~, The twenty intersections of such a cone with ~ consist 

of O, counted twice, the remaining eight intersections of ,~ with its four trise- 

cants through O, and ten points forming a canonical set. In particular we may 

take the quadric cone to be a pair of solids through 0 and, if Oi, 0'~ are the 

two intersections, other than O, of # with the trisecant t~, we may note the 

following six canonical sets on &: 

(02 o; o~ o~ ~'~ P2~ P.~ P~I P,2), 

(On O; 01 O~ p2 ~, pa~, Pli  P12 P2a), 

(0101' 0202' P342 PH P2~ P2~ Pa), 

(01 O; 04 O~ P~a Pa~ P~ P24 P34), 

(0~ O~ O~ O~ V~, P ,  P~ V~, P~,), 

(0~ O~ O~ O: P~ P~ P~, P,~ P~,). 
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The first of these, for  example, is obta ined if the quadric  cone consists of the  
r r e t ! p 

two solids tlt2t~ and t2t~t4; the o ther  five sets are obta ined similarly. Also, 

since any quadric  which contains a canonical  set of points on 4t meets  ~ resid- 

ually in ano the r  canonical  set, the point  0, counted  twice, and the eight  f u r t h e r  

intersect ions of ~ with its four  t r isecants  t h rough  0, make up a canonical  set 

on ~; hence we may note  the seventh canonical  set 

(o ~ o~ o~ o,, o~ o~ o~ o~ o~). 

9. Suppose now t h a t  the  quadrics of the  net  are represented  by the  points  

of a plane, ~ being thereby put  into bi ra t ional  correspondence wi th  a plane 

quint ic  curve ~; any set of ten  points of ~ which corresponds to a canonical  

set on ~ must  consist  of the intersect ions of ~ with some conic. Now it is 

seen at  once, on re fe r r ing  to the group of six canonical  sets on ~, that ,  so 

long as we do not  take a pair  of sets wr i t t en  in the same hor izonta l  row, any 

two of these six sets have in common six points of ~;  the two corresponding 

canonical  sets on ~ there fore  also have six points in common and so, since two 

different  conics can only have more than  four  common points when they  are 

both line-pairs, with a line common to both  pairs, i t  follows t h a t  the six conics 

which cut  out  the six canonical  sets on ~ are the six line-pairs which can be 

formed f rom the sides of a quadri lateral .  Two canonical  sets on ~ which correspond 

to a pair  of canonical  sets of ~ wri t ten in the same hor izonta l  row of the group 

of six are cut  out  by line pairs wi thout  a common line; two such sets have four  

points in common, and these points are four  of the vertices of the quadr i la tera l ;  

thus the  vertices of the quadr i la tera l  all lie on ~, being the points P~,P31, P~, Pt4, P~, 

P3, (we use, as here tofore ,  small le t ters  to d e n o t e  points  of ~ which correspond to 

points of ~ denoted  by the cor responding  capital  letters). I f  we take  the three  

points p wi thout  the suffix i then  the set of five points which consists of these 

three  points and the two points o~, o~ is a set of five coll inear points  of ~ and 

is common to three  of the  six canonical  sets. I f  we now refer  to the seventh 

canonical  set ment ioned  on ~ we see tha t  the e ight  points o~, o~, o~, o~, %, 0~, 

o~, o~ lie on a conic, and tha t  the two remain ing  intersect ions of this conic 

wi th  ~ coincide in a contac t  at o. Whence  we have the fol lowing:  

I f  the Jacobian curve ~ of a net of quadrics in [4] is such that there 

is a plane which meets it iz~ the six vertices of a quadrilateral then, i f  ~ is 

any plane quintic which is in birational correspondence with ~, these six 
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points o f  ~9 correspond to six points of  ~ which are also the vertices o f  a 

quadrilateral. The remaining eight intersections of  ~ with the sides o f  this 

quadrilateral are on a conic, and this conic touches ~. 

I t  should be noticed that  threecol l inear  vertices of the quadrilateral on ~ cor- 

respond to three non-collinear vertices of the quadrilateral on ~, namely to the 

vertices of a triangle obtained by omitting one side of the quadrilateral. This 

configuration of four lines and a conic is clearly a special case of the configura- 

tion, obtained in w 3, of two lines and two conics; here one of the two conics 

touching the quintic curve has become a line-pair intersecting on the curve. We 

can also anticipate a further speeialisation of the present configuration, namely 

when both conics in the configuration of w 3 have become line-pairs intersecting 

on the curve; the quintic is then circumscribed to a hexagram. 

Io. The existence of the quadrilateral inscribed in the plane quintic ~ can 

be established without any appeal to canonical sets. For it is known that  a 

secant plane which passes through a trisecant of ~ meets ~ further in three 

points which are the vertices of three cones belonging to the same pencil, the 

vertices of the two remaining cones of this pencil being those two points of ,~ 

which are on the conjugate trisecant and which are not conjugate to the secant 

plane. :Now the secant plane a contains the trisecant t4 and meets ~ further 

in the three points P~,  P4,2, Pea; hence these three points are vertices of cones 

belonging to the same pencil. The vertices of the two remaining cones of 

this pencil are the two points, other than O, in which ,~ is met by the trisecant 

t~; i. e. they are the two points 04, 0~. Thus the five points 01, O~, P~4, P42, 

P,23 are the vertices of five cones of a pencil. Similar arguments give three 

other such sets Of five points, and it follows that, if ~ is any plane quintic in 

birational correspondence with ~, the four sets of points 

(01 o'Pa~P4,2P~.~), (0`2 0"2pt, pl~p~4) (0,~ o~p12p,24Pa1) , (0 a O'~p,2.~p.~lpl,2) 

are four sets of five collinear points. Thus the six points p~j are the six ver- 

tices of a quadrilateral inscribed in ~. In order to establish the fact that  the 

eight remaining intersections of ~ with the sides of this quadrilateral are on a 

conic we show, as above, that  they correspond to eight points of ~ which be- 

long to the same canonical set. 

One or two further features of the correspondence between ,~ and ~ may 
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be pointed out (cf. G.N.Q.  w167 2I, 22). Since the six points Pf j  lie in the secant 

plane of ~ conjugate to 0 there is a cubic curve touching ~ at each of the six 

points ply, the three remaining intersections of this cubic with ~ lying on the 

tangent  of ~ at o. Again, the secant plane conjugate to P~ meets ~ in the 

six points O, 01, 0'1, 0~, 0~, P~;  hence there is a cubic curve touching ~ at 

the six points o, 01, o'1, o2, o'2, p ~  and meeting ~ again in its three intersections 

with its tangent  at p,~; there are five other cubic curves similarly associated 

with the five points pij other than Ply. Also, since the points 0, Of, O~ on 

are collinear there is a conic touching ~ at each of the points o, of, o~; thus we 

have three tr i tangeat  conics of ~ with a common point of contact. There is 

also a conic touching ~ at the vertices of any one of the four triangles formed 

by three of the sides of the quadrilateral, since the vertices of such a triangle 

correspond to three collinear points of ~. Since the two tr i tangent  conics as- 

sociated with two conjugate trisecants of ~ are such that  their four intersec- 

tions lie on ~, the four intersections of the conic touching ~ at o, o~, o~. with 

the conic touching ~ at the three points p with the suffix i lie on ~. 

II. We can obtain a canonical form for the net of quadrics when its 

Jacobian curve has a secant plane meeting it in the vertices of a quadrilateral 

and also, by taking the discriminant of a quadric of the net, obtain an equation 

for the plane quintic which corresponds birationally to the Jacobian curve. 

We take the four solids 

X I~0, X 2~0, Xs:o,  X 4~0, 

to be those solids which pass through 0 and which contain the sets of three 

of the lines t'~, t'~, t'3, t'~, the solid X i  ~ o containing the three lines other than 

t~; also we take the plane a to be Xs-----X 6 = o .  The six forms X arc homo- 

geneous linear forms in five variables, so that  they satisfy one linear identity; 

we may take this to be 

X I +  X 2 +  X~ + X 4 + X s +  X6------o. 

The plane a contains four trisecants t 1, t~, t~, t, of the Jacobian curve, and the 

equations of the trisecant ti are Xf ~ - X  5 - X 6 = o. The four pairs of lines 



270 W . L .  Edge. 

have the property that, if one point is taken on each line of any pair, such a 

pair of points is eonjugate in regard to every quadrie of the neK I t  then fol- 

lows easily that  ~he net of quadrics is given by a set of three equations of 

the form 

a~ X~ + a~ X~ + a~ X ~ X~ = ] q- a 4X~  + a 5 ~- a 6X~  q- 2 a ' X  5 X 6 o l  

X~ ~ ~ / I l l  bl X1 + b~ ~ q- b 8 Xa -t- b 4 X~ + b 5 X~ + b 6 X~ + 2/~ X 5 X 6 ~ o, 

2 X 2 2 GX~ + c,~X~ + ca ~ + c~X~+ c ~ X ~ + c ~ X ~ +  2 y X ~ X ~ - o .  

This form I I I  is not sufficiently general to represent a general net of quadries 

in [4], although it apparently contains the same number of constants as the 

general canonical form I; in fact we may, by using a suitable binary trans- 

formation of X~ and X~, assume that  two of a, fl, 7 are zero. 

I2. I f  we write 

~ x a i  + yb~ + zc i ,  ~ ~ x a  + y ~  + z7 ,  

the equation of an arbitrary quadrie of the net I I I  is 

~ x~ + ~. x~ + ~ x.~ + L x~ + ~ x~ + ~ x~ + 2 v x~ x~ o. 

Writ ing ~his as 

~ ( G  + x~ + x~ + x~ + x,~) ~ + ~ x~ + ~ x ~  + ~ x~ + ~ x~ + ~ x~ + 2 ~ x~ x~ - o 

we see that  the diseriminant of the quadrie is 

D 

The equation of the plane quintic is ]9 ~ o. Wri t ing this in the form 

( ~  + ~ d ,  + L~I~.. + ~ , ~ ) ( ~ -  ~ ) +  ~ (~,~ + ~ -  2 ~ ) -  o, 
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we see t ha t  the curve passes ~hrough the six vertices of the quadr i la tera l  fo rmed  

by the four  lines 

~ , = o ,  ~ = o ,  ~ = o ,  ~ , = o ,  

and also t h rough  all the  intersect ions of these four  lines wi th  the conic ~ s :  7 ~. 

Fu r the rmore  the remain ing  two intersect ions of the conic with the quintic 

are its two intersect ions with the line ~.~ + ~ = 2 7 and, as this is a t angen t  of 

the conic, these two intersect ions  coincide in a single contact .  The  t angen t  of 

at the point  5~ = _~j = o (i, j = I, z, 3, 4) is ~ + ~j = o. The point  ~gij on ~ is 

the intersect ion of the two sides of the quadr i la tera l  o ther  t han  ~s = o  and 

~ j = o .  

This form of the equat ion for  ~ enables us easily to verify the existence 

of the contact  curves tha t  have been ment ioned.  F o r  example,  the cubic 

~.~ + [~[~[, + [~g~g~, + ~ , ~  = o 

touches ~ at e~ch o f  the six vertices of the quadr i la tera l  formed by the four  

lines ~: = o; its remaining three  intersect ions with ~ ~re its intersect ions with 

~,~ + ~ = z T, and this is the  t angen t  of ~ at 0. I f  we write the equat ion 

of ~ as 

~,~ ( h ~ -  7~)(~  + ~,) + ~ {(~ + ~ ) ( ~ -  7 ~) + ~ , ~ ( ~  + ~ - ~ 7)} = o ,  

we see tha t  the intersect ions of ~ with the cubic 

(g, + ~ ) ( h h - 7  ~) + , ~  (h + g~-  27 )=o  

consist of the three  intersect ions of ~ with its t angen t  ~3 + ~, = o, o ther  t han  

the point  of contact  PJ2 of this tangent ,  and of the twelve intersect ions of the 

cubic with the quart ic  curve ~ 1 ~ 2 ( ~ 6 -  7 ~) = o. But  it  is clear, f rom the f o r m .  

of its equation, t ha t  the cubic passes t h rough  the in tersect ion of the two lines 

~1 = o, ~ = o and also t h rough  the  intersect ions of bo th  these lines with the 

conic ~5~6=72; also tha t  the  cubic touches the conic at  its point  of contac t  

wi th  ~5 + ~ = 2 7; hence the twelve intersect ions of the cubic and quart ic  coin- 

cide in pairs, and the cubic therefore  touches ~ at  six points;  these points are 
p p 

P34: 0: 01: 01: 02~ 02. 

W h e n  the equat ion of ~ is wr i t ten  

~ 3 ~  { h ~  - 7 '~ + ~ ( h  + ~ - 2 7)} + ~ i ( h ~  - 7~)(~3~ + ~ + s ~ )  = o ,  
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we see tha t  the two conics 

- v ~ + ~ (~., + i~ - 2 v )  = o ,  

~.~, + ~!,, + ~ ~ = o, 

are both  t r i t angen t  conics of ~ and tha t  the i r  four  intersect ions lie on ~; the  

first conic touches ~ at  the three  points 0, o~, 01 and the  second conic touches  

at the three  points P~2, P~a, P~a. And so on. 

I3. The locus of points  in which any given secant  plane a is met  by the  

other  secant  planes of ~ is, in general ,  a curve of order  13 with quintuple  

points at  the intersect ions of a with # (cf. G.N.Q. w 6). I f  however  a meets  

,,~ in the six vert ices of a quadr i la tera l  the  sides of this quadri lateral ,  each of 

which is a t r i secant  of ~ and lies in two secant planes o ther  than  a, all count  

twice as parts  of the curve of order  I3; hence the  residual  pa r t  is a quint ic  

curve passing th rough  the vert ices of the quadri la teral .  Thus,  for  this par t icu la r  

curve ~, the  double surface of the  locus R~ 5 genera ted  by the secant  planes of 

contains a plane quintic curve. This quint ic  curve circumscribes the quadri- 

la teral  formed by the four  t r isecants  of # which lie in ~, and is in b i ra t ional  

correspondence wi th  ~. 

Apar t  f rom the four  t r isecants  of # which lie in a and the four  t r isecants  

of # which pass t h rough  0 ~ has twelve o ther  t r isecants ,  these consis t ing 

of six con juga te  pairs. 

I4. 

form is 

where 

The  J a c ob i an  Curve whose  T r i s e c a n t s  a re  t h e  Edges  o f  a H e x a h e d r o n .  

W e  proceed now to consider  the net  of quadrics whose canonical  

2 . X 2 2 ] a I X L + a , X ~ +  a~ 3 + a a X ~  + a , ~ X s + a 6 X ~ = o ,  

J ~ + X 2 ~ 2 b i X ~ +  b~X~ + b.X~ b4 4 +  b~Xs+  b 6 X 6 = o ,  

2 X 2  2 C 1 X ~  J[- C 2 X 2 JV C 3 3 -]- C4 X 2  JF C 5 X 5 + C 6 X 6  2 ~ O, 

I I  

X L + X 2 + X a + X 4 +  X,~ + X G ~ o .  

The six solids X =  o are the  faces of a hexahedron ;  this hexahedron,  which we 

may call ~,  has fifteen vertices, twen ty  edges, and fifteen planes. Since we can 

combine the three  equat ions I [  l inearly so tha t  any two of the six squares 
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disappear it follows that  each of the fifteen vertices of ~ is the vertex of a cone 

belonging to ~he net; hence the Jaeobian curve ~ is circumscribed to ~. Moreover 

the polar prime of any vertex of ~ in regard to every quadric I I  contains the 

opposite plane of ~ (the plane of intersection of two faces of ~ being 'opposite' 

to that vertex which is the intersection of the remaining" four faces), so that  

the fifteen planes of ~ are secant planes of 4t, being conjugate, respectively, to 

the opposite vertices of 9. Also, since each edge of ,~ contains three vertices, 

the twenty edges of ~ are trisecants of O. and each plane of f2, us it contains 

four edges, meets ,,~ in the six vertices of a quadrilateral. The twenty trise- 

cants of ~ are thus all accounted for in this way; the trisecants of the Jacobian 

curve of a net of quadries given by the canonical form I I  are the edges of a hexa- 

hedron. Two trisecants are conjugate when they are opposite edges of gJ; i.e. 

when the three faces of ~ passing through one of the trisecants and the three 

faces of ~ passing through the other together constitute all the six faces of &. 

The double surface of R~ 5 now contains fifteen plane quintic curves; these are 

all in birational correspondence with ,,a and with each other. 

Any solid which contains a secant plane of ~ meets ~ further in four points 

which are vertices of four cones belonging to a pencil; hence, if ~ is any 

plane quintic in birational correspondence with &, the vertices of the tetrahedron 

in which any face of ,~ is met by four ~)f the other faces correspond to four 

collinear points on ~. I t  follows immediately that  any five faces of ~ form a 

simplex, inscribed in &, whose five. vertices correspond to five eollinear points 

of ~, and hence that  the fifteen vertices of ~ correspond to fifteen points of 

which are the intersections of six lines. Hence 

I f  the Jacobian curve of a net of quadrics in [4] is circumscribed to a 

hexahedron, then any plane quintic which is in biratio~al eorresponden.ce with 

it is circumscribed to a hexagram. 

The intersections of the quintic with a side of the hexagram correspond to 

tile vertices of a simplex formed by five faces of the hexahedron; the ten ver- 

tices of a pentagram formed by five lines of the hexagram correspond to the 

ten intersections of the Jacobian curve with a face of the hexahedron. The ten 

vertices of the pentagram must therefore be the points of contact of the quintic 

with a contact quartic. Also the vertices of the quadrilateral formed by any 

four  lines of the hexagram correspond to the six intersections of the Jacobian 

curve with a plane of the hexahedron; hence there is a cubic curve touching 
35--35t50. Acta  mathematica.  66. l m p r i m 6  le 24 oc tob re  1935 
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the quintic at each vertex of the quadrilateral, the remaining three intersections 

of the curves being the intersections of the quintie with its tangent  at the point 

of intersection of the remaining two sides of the hexagram. The vertices of a 

triangle formed by three sides of the hexagram correspond to three collinear 

points of the Jacobian curve, so that  there is a conic touching the quintic at 

the vertices of such a triangle. I f  we take two such triano'les whose sides con- 

sist of all the six lines of the hexagram the associated triseeants of ~ are con- 

jugate, so that  the four intersections of the two tr i tangent  conies are on the 

quintie curve. 

The equation of the quintie is obtained immediately by writing" zero in- 

stead of ~ in the determinant  D of w I2; it is therefore 

and the curve passes through the intersection of any 

~ i=  o. The quartic curve 

~-1 .A V ~-1 _~ ~-1 _~_ ~---1 JV ~-1 = 0 

two of the six lines 

touches the quintie at the ten vertices of the pentagram whose sides are tile 

sides of the hexagram with ~ - - o  omitted; also the equations of the cubic cur- 

ves and tr i tangent  conics just referr6d to can at once be writ ten down. 

Although every plane quintic which is in birational correspondence with 

a 3aeobian curve having an inscribed hexahedron has an inscribed hexagram it 

is not true, conversely, that  every Jacobian curve which is in birational cor- 

respondence with a plane quintie having an inscribed hexagram has an inscribed 

hexahedron. Nevertheless, when a plane quintic has an inscribed hexagram, a 

Jacobian curve can always be found which is in birational correspondence with 

it and which has an inscribed hexahedron. For we cau always suppose tha t  the 

equation of such a plane quintic is 

where 

~i ~ x a ~  + y b i  + z c i  = o ( i = I , 2 , 3 , 4 , 5 , 6 )  

are the equations to the sides of the hexagram. The equation to this quintic, 

when written in the determinantal  form, is at once seen to be the condition 

that  a quadric of the net  [ I  should be a cone, mud the Jacobi~n curve of the 

net I I  fulfills the required conditions. 
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I5. The locus of the poles of any solid S~ in regard to the quadrics of 

the net is a sextic surface on which lie ten lines. The line conjugate to any 

point of this surface lies in S 3 and, conversely, if a point is such that  the line 

conjugate to it lies in S~ then the point must lie on the surface (G.N.Q. w I3). 

Consider now the particular case when $3 is a face of the hexahedron. The 

remaining five faces of the hexahedron form a simplex whose ten edges are 

trisecants of &; the line conjugate to any point of any of these trisecants is 

the conjugate trisecant of ,a, and lies in $3. Hence the sextic surface which is 

the locus of poles of S~ passes through the ten edges of the simplex, and these 

are the ten lines which lie on the surface. 

The Jacobian Curve wi th  a Scrol l  of Tr isecants .  

I6. When a plane qnintie has an inscribed hexagram the sides of the 

hexagram will not, in general, touch a conic. We now prove that  if a plane 

quintie has an inscribed hexagram whose sides touch a conic then it has an 

infinity of inscribed hexagrams whose sides all touch this same conic. 

Let  us suppose that  the hexagram consists of the tangents to the conic 

xz-~y~ at the six points (0~, 0i, I), with i =  1,2, 3, 4, 5, 6. Then the equation 

of the quintie is of the form 

_  Voi + - - ~  
i = l  

Now take any point on this curve; if ~ and ~p are the parameters of the points 

of contact of the two tangents which can be drawn to the conic from this point, 

E _ - 0 , )  - o 

I f  99 is givell this is a quintic equation for ~p; it gives the parameters of the 

points of contact with the conic of those of its tangents which pass through 

the five intersections of the quintic with the tangent to the conic at the point  

whose parameter  is 9~. Suppose that  ~Pl and ~p~ are two roots of this quintic. 

Then 

Zi (~9 -- 0/) - I  (~1 --  0i) -1 = o, 

' ~  '~t ((~ ---  0 ; )  - 1  (~f12 - -  Of) - 1  - - -  O .  
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Subt rac t ing  

( ~  - -  ~ 1 ) Z ~ L  ( ~  - -  Of) - -1  ( ~ 1  - -  Oi)  - 1  (~ '~ - -  0 ' )  - 1  - -  O. 

A d d i n g  

(~J2 + ~)1) 2 .~ ,  (90 - 0/) - 1  ( ' [ /J l -  0i)-l('l]J'2 - -  0i) - 1 -  2 ~ ~i 0i  ((p --- 0/) - 1  ( ~ J l -  0,) - 1  (~)-2--0i)  - 1 =  o .  

The  first of these last  two equat ions gives 

( m  - - -  e D  - :  - -  o ,  

and the second then  gives 

Z Zi Oi ( ~  - -  Of) - 1  (~1 - -  07) - 1  ( ~  - -  Oi) i l  : -  o. 

Combining these two results we finally obtain 

z z ,  - 0 , ) - ,  - - 0 D  - 1  = o, 

and this is the condit ion tha t  the tangents  of the  conic at  the points  ~Pl and 

~p~ should intersect  on the  quintic.  Hence  i t  has been shown that ,  i f  any tan- 

gen t  of the conic is taken, the other  five tangents  which can be drawn to the  

conic f rom the five points in which this t angen t  meets  the quint ic  are such tha t  

the in te rsec t ion  of any pair  of them is on the  quintic.  Thns  any t an g en t  o~ 

the conic determines a hexagram whose sides are all t angents  of the conic and 

which is inscribed in the quintic;  since any t an g en t  of the conic belongs to one 

and only one hexagram the sets of tangents  of the conic which compose the 

hexagrams are the sets of an involut ion g~. This same a rgument  also proves 

tha t  if a curve C n of order  n passes th rough  the  I n ( n +  I) intersect ions of n + I 
2 

t angents  of a conic then  there  is an infinity of sets of n +  I t angen ts  of the  

same conic such t ha t  the  intersect ion of any two tangents  of the conic tha t  

belong to the same set is on C ~. In  part icular ,  since any five lines touch  a 

conic, the case ~ ~ 4  gives Li iroth 's  porism: if a quart ic  curve is c ircumscribed 

to a pen tagram then  it  is c ircumscribed to an infinity of pentagrams.  

17. Conversely:  if we taken  an involut ion g~ consist ing of sets of t angen ts  

of a conic 7 the locus of intersect ions of pairs of t angents  o f . /  which belong 

to the same set of g~ is a quintic curve. This can be shown if we appeal  to 

the  theory  of correspondence;  fo r  the g~ sets up a (S, 5) correspondence between 

the tangents  of the curve 7 of class 2, and there  are ten tangents  of 7 which 
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are self-corresponding; hence, since the correspondence is symmetrical ,  the  order  

of the curve which is the locus of intersect ions of corresponding pairs of t angen ts  

is I {2 .5  + z .  5 -- Io} = 5. This resul t  however  can also be established easily by 
2 

direct  algebra, wi thout  any appeal  to correspondence theory.  For  suppose tha t  

the six tangents ,  of the conic x z -  y2, which belong to a set of g~ are those 

the parameters  of whose points  of contac t  are the  roots  of the sextic 

a o -k- a l O  q- a~O ~ + a,~O ~ + a40 ~ + asO 5 + a60 G + 

+ t~(bo + blO + b,O ~ + b30 ~ + b40 ~ + bsO 5 + b60 G)-~ o,  

different  sets of g~ being given by different  values of ~. I f  (x, y, z) is the inter- 

section of the tangents  of the conic at  two points whose parameters  are the  

roots  of this sextie i t  follows, since these two parameters  are the roots of the  

quadrat ic  x - - z y O - i - z O  ' ~  o, t ha t  there  must  be an ident i ty  of the form 

a o +  a~O+ a.~O ~ + a303 + a~O ~ +  a~O 5 + a~O ~ + 

+ ,~(bo + bxO + b~O ~ + b~O ~ + b~O ~ + bsO '~ + b606) 

- (x - 2 y o  + ~o~)(. + ~o + zo" + 6o ~ + ~o'). 

Equat ing  the coefficients of the  different  powers of 0 in this  ident i ty ,  and elim- 

ina t ing  1, a, fl, 7, 6, s f rom the resulting" seven equations,  we see tha t  (x, y, z) 

must  lie on the curve 

ao al a~ az a~ a5 a~ 

bo bl b~ b~ b4 b5 bG 

x - -  2 y  z o o o o 

o x - - 2 y  z 0 o o 

o o x - - 2 y  z o o 

o o 0 x - -  2 y  z o 

o o o o x - - 2 y  z 

~ O .  

This is a quintic curve; it  is c ircumscribed to all the  hexagrams  formed by sets 

of the g~. 

I8. The  me thod  by which  we have established t h a t  the locus of inter-  

sections of pairs of lines belonging to sets of a g~ among the tangents  of a 
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conic is a quintic curve will also establish similarly the fact  that ,  if  a g~ is 

taken  whose sets consist  of t angen ts  of a conic, the  locus of intersect ions of 

pairs of lines be longing to sets of the g~ is a quart ic  curve. Any two sets of 

five tangents  of a conic de termine  a g~; hence if any two pen tagrams  are t aken  

which are c i rcumscribed to the same conic, the i r  twen ty  vert ices lie on a quart ic  

curve.  Now consider  the quintic curve ~, obta ined above as the locus of ver- 

tices of hexagrams given by the sets of a g~ among the tangents  of the conic 

7. I f  we take any two of the hexagrams,  and omit  one side of each, we obtain 

two pen tagrams  whose vertices, as well as being on ~', all lie on the same 

quurt ic  curve; the  twen ty  vertices of the two pen tagrams  therefore  fo rm the  

complete  set of intersect ions of ~ and the  quart ic  curve. If ,  for  the moment ,  

we keep one of these pen tagrams  fixed and allow the other  to vary cont inuously  

(the second pen tag ram is de termined when the omi t ted  side of the hexagram,  

to  which it  belongs, is given) we see t h a t  if any pen tag ram is t aken  whose 

sides are all sides of the same hexagram inscribed in ~ its ten vertices are 

points of contac t  of ~ with a contac t  quartic.  We have seen t h a t  any two such 

sets of contacts  all lie on the same quartic,  so that  all the  contac t  quart ics  

obta ined belong to the same system; moreover,  since the set of vertices of a 

pen tagram includes sets of four  colline~r points,  the system of contact  quart ics 

cannot  be one of those 2oI5 systems whose members  are such tha t  the i r  sets 

of t en  contacts  wi th  ~ lie on cubic curves;  it  mus t  then  be one of the  2080 

systems of the first kind. Where fo re  ~ can be pu t  into corre6To~dence with the ~ 

Jacobian curve ~ of  a net of  quadrics in [4J in such a way that the ten vertices 

of  a pentagram on ~ always correspond to ten cospatial poi~ts on ~. The six 

vert ices of a quadr i la tera l  whose sides all belong to the  same inscribed hexagram 

of ~ there fore  correspond to six coplanar  points of ~, and the three vertices of 

a t r iangle  whose sides all belong" to the same inscribed hexag ram of ~ correspond 

to th ree  collinear points of ~. Thus 4~ has a scroll of  trisecants and an infinity 

of  inscribed hexahedra. We have seen previously that ,  when ~ has an inscribed 

hexahedron,  ~ has a corresponding inscribed hexagram;  hence, if ~ has an 

infinity of inscribed hexahedra ,  any plane quint ic  in b i ra t ional  correspondence  

with i t  h~s an infinity of inscribed hexagrams.  I t  can be shown direct ly  (see 

w 20 below) t ha t  the sides of these hexagrams  all touch  the same conic; whence 

we have the fol lowing:  
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There exist in [4] nets of quadries whose Jacobian curves are circum- 

scribed to an infinity of hexahedra; any plane quintic which is in birational 

correspondence with such a Jacobian curve is circumscribed to an infinity of 

hexagrams whose sides all touch the same conic. Conversely: i f  a plane quintic 

is circumscribed to an infinity of hexagrams whose sides all touch the same 

conic it can always be put in birational correspondence with a Jacobian curve 

in [4] that is circumscribed to an infinity of hexahedra. 

19. Through any point of [4] there pass a finite number of faces of the 

hexahedra inscribed in ~; if this number is n We say that  the faces of the 

hexahedra generate a developable of class n. This developable is rational. For  

the ten intersections of ~ with a face of a hexahedron correspond to ten points 

of ~ which are the vertices of a pen t ,g ram belonging to an inscribed hexagram; 

the sixth side of this hexagram may therefore be regarded as corresponding to 

the face of the hexahedron, so that  the faces of the hexahedra are in (I, ~) 

correspondence wi~h the tangents of a conic. The class n can be obtained im- 

mediately by means of the principle of correspondence; for the hexahedra are 

the sets of a linear series g~ of sets of solids of the developable, and the plane 

of intersection of two faces of the same hexahedron is a secant plane of &; 

hence the locus R~ 5 of secant planes of ~ is generated by the intersections of 

pairs of solids which correspond to one another in a symmetrical (5, 5)cor-  

respondence between the solids of the developable of class n. Since the develop- 

able is rational the nmnber of self-corresponding solids is ~o; hence 

- [ (Sn+  5n-lo)~~5, 
2 

~ 4 .  

The faces of the hexahedra which are inscribed in ~ generate a developable of class 

4. The hexahedra can therefore be obtained as the sets of a g~ among the 

osculating solids of a rational normal quartic curve. 

20. Having shown that  the developable generated by the faces of the 

hexahedra is of class 4 it is interesting to prove, from the four-dimensional 

figure, that  the sides of the hexagrams which are inscribed in any plane quintic 

which is in birational correspondence with ,~ all touch the same conic. These 

lines envelop a curve whose class is the number of sides of hexagrams passing 
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through an arbitrary point of the plane; this point represents a quadric Q be- 

longing to the net in [4], and the five points of the quintic which lie on a side 

of a hexagram through the point correspond to five points of ~9 which are 

vertices of a simplex whose faces all belong to the same hexahedron and which 

is a self-conjugate simplex in regard to Q. The faces of such a simplex are 

common to two developables; namely the developable generated by the faces of 

the hexahedra and the developable generated by the polar solids of the points 

of ~9 in regard to Q. Conversely: suppose i~ is a point of ~ such that  the po- 

lar solid of P1 in regard to Q is a face of one of the hexahedra inscribed in ~9; 

this solid meets ,9 in the six points of the secant plane conjugate to P1 and in 

four further points P,2, Ps, P4,/95 which are the vertices of the remaining" four 

cones that  belong to the pencil determined by (P~) and Q. Then the respective 

polar solids of P~ ,P~ ,P4 ,  P5 in regard to Q are P s P 4 P s P 1 ,  Pa /95P1Ps ,  

Ps P1 Ps P~, P1 Ps P8 P~; and these are four of the faces of the hexahedron to 

which Ps P3 P~ Ps belongs. Thus the five points p~, p~, 79s, p~, P5 on the plane 

quintic are its intersections with a side of a hexagram, and the line on which 

they lie passes through the point that  represents Q. Wherefore the class of the 

envelope of the sides of the hexagrams is one-fifth of the number of solids com- 

mon to the two developables. Now the solids of both these developables pass 

through the generating planes of the locus R~ s, so that  the number of solids 

common to them can be calculated at once by the formula dual to that  which 

gives the number of intersections of two curves on a ruled surface3 The de- 

velopable generated by the faces of the hexahedra is of class 4; each solid of 

this developable contains five planes of R~ s and each plane of R~ 5 lies in two 

solids of the developable. The developable generated by the polar solids of the 

points of ~9 in regard to Q is of class IO; each solid of this developable con- 

rains one plane of R 1'~ while each plane of R~ s lies in one solid o f  the develop- 

able. Hence, by the formula referred to, the number of solids common to the 

two developables is 

4 . 5 -  i + io .  1 . 2 - - i 5  . 2 .  i =  io. 

Hence the sides of the hexagrams envelop a curve of class 2. 

1 I f  we  have ,  on a r u l e d  surface  of order  n, a curve  of order  m m e e t i n g  each g e n e r a t o r - i n  

k po in t s  and  st ich t h a t  s gene ra to r s  pass  t h r o u g h  each p o i n t  of t he  curve ,  and  also a cu rve  of 

order  m r m e e t i n g  each gene ra to r  in  k' p o i n t s  and  such t h a t  s '  g ene ra to r s  pass  t h r o u g h  each p o i n t  

of the  curve,  t h e n  t he  n u m b e r  of i n t e r s ec t i ons  of t he  two curves  is m s k ' + m ' s ' k - - n k k '  
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2I. When the quadrics of the net I I  are represented by the points of a 

plane the quintic curve whose points represent the cones of the net is circum- 

scribed to the hexagram formed by the six lines a~x + biy + c ~ z = o .  The ne- 

cessary and sufficient condition that  these lines should touch a conic is 

a~ a~ a~ a~ 

b~ b~ b~ bl 

d d d d 

bl el be c2 b3 c3 b~e~ 

C~ a t C e ~ 63 a 3 64 a~ 

ag a~ 

b~ b~ 

d d 
~ O .  

b5 e5 b6 % 

e5 a 5 e6 a6 

al bl ae be a3 b3 a~ b4 a5 b5 ae. b6 

Thus when the coefficients in the canonical form I I  satisfy the relation J - ~ - o  

there is an infinity of canonical forms I I  for the same net of quadrics, and the 

coefficients in any one of these canonical forms satisfy the relation analogous 

to z/----o. 

22. Suppose now that  a net of quadrics can be reduced to the canonical 

form II ,  and that  the coefficients satisfy the relation J =  o. Then the equa- 

tions of the quadrics can be expressed in terms of either of two (among an in- 

finite number of) sets of six squares; the first quadric, for example, in this way 

gives rise to an identity 

al X~ + ae X ~ +a3X3+ a 4 X ~ + a s X ~ + a ~ X ~ - - ~  
- -  P 2 t 2 t ~ 7 2  P 2 P 2 P 

a l  ]~1 + a2 ]/'2 -}- aa ~ + a~ Y4 -~ a5 Y~ + a6 ~z2. 

This identity involves the squares of twelve linear forms. Suppose we take any 

quadric which touches k of the twelve solids obtained by equating these linear 

forms to zero, and then substitute differential operators for  the coordinates in 

the prime equation of this quadric. I f  we then operate on the identity with 

the differential operator so constructed, the squares of the ]~ linear forms cor- 

responding to the solids touched by the quadric are annihilated. Suppose, in 

particular, tha t  k-~ 9, and tha t  the quadric touches all the twelve solids except 

the three X 1 = o, Xe = o, X 3 ~ o; the application of the operator corresponding 

to such a quadrie gives 

~la~ + L , a  e + k s a 3 = o ,  

where ~ ,  L~, ~3 are constants depending on the quadrie. Also we obtain, by 

means of the same differential operator, relations 

36--35150. Acta mathematica. 66. Imprim6 le 25 octobro 1935. 



~82 W . L .  Edge. 

~ l b l + ~ b ~  + E a b a = o ,  

E~c~ +E~c~ + ~3ca-=o, 

arising from identities associated with other quadrics of the net. But the coef- 

ficients in I I  do not satisfy any relation other than z / =  o, so that  the three 

linear equations just obtained for ),1, ~.2, s can only be satisfied by taking 

Thus, whatever quadrie we choose to touch the nine solids, the differential oper- 

ator constructed from its prime equation annihilates not only the nine squares 

corresponding to these solids, but also the other three squares as well; hence 

all quadrics which touch the nine solids touch all the twelve solids, and the 

twelve solids are touched by ~5 quadrics. The conclusion is, in general, that  

the twelve solids all osculate the same rational normal quartic curve. ~ 

Conversely: if twelve solids osculate a rational normal quartic curve there 

are three linearly independent identities connecting their squares; for the equa- 

tion of any one of the solids may be taken as 

04 P i ~ x 0 + x l O ; + x ~ O ]  +x~Oi ~ + x ~  i = o ,  

and so the twelve squares P2 are linearly dependent from nine quadratic func- 

tions of the coordinates x0, x~, x~, x3, x~. I f  then the twelve solids are divided 

into two sets of six there are three linearly independent quadrics whose equa- 

tions are expressible in terms of either set of six squares. We can indeed give 

the explicit form of the equations. For suppose we take the six primes 

0 ~ -  (~= i, 2, 3 4 ,5 ,6)  x 0 + x ~ 0 ~ + x ~ 0 ~ + x 3 0 ~ + x ~  / o, 

which osculate the quartic curve at the points whose parameters are 01, 0~, 0~, 

0~, 05, 06 and also the six primes 

x0 + xl 9~i + x2 ~ + x~ ~. + x~ ~ = o, (i = ~, 2, 3, 4, 5, 6) 

which osculate tile quartic curve at the points whose parameters are F1, ~02, ~0~, 

~4, ~%, ~06. If  we write 

1 See, for a corresponding argument in [31, A. C. Dixon, Proc. London Math. Soc. (2), 7 
09o9), I53. 
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f (t) == (t  - o~) ( t  - o , , ) ( t  - o~) ( t  - o~) ( t  - o~) ( t  - o~), 

v(t) - (t - 9 , ) ( t  - 9~)(t  - 9 r  ( t -  9~1 ( t -  9 ~ ) ( t -  9~), 

it  can be verified that ,  for  all values of the constants  a,/~, 7, 

~( ~, + ~o, + 7o~)(xo +f,x, o, + x~O~. + x~O~ + x~O~.) ~ 
,=~ (o,) g (o,) + 

+ ~ (~ + ~ 9, + z 94) (xo + x, 9,  + x~ 9~ + x~ 9~ + x~ 94) ~ 
,=1 f (9,) g' (9') ~ o. 

W e  thus obtain the th ree  quadrics 

0 ~ x~ 0~) ~ Q o ~  ( x o + x ~ 0 ~ + f x ~ 0 ~ + x ~  , +  = 
,~1 (o,) ~ (o,) - 

= _ _ ~ (Xo + x,  9 ,  + x~ 9~ + x~ 9~ + x4 9~) ~ 
i=~ f ( 9 ' )  g' (9') - -  o,  

6 0 '2 _ _  ,(~o + ~ o ,  + , ~ o ,  + x/o~ + x , O : )  ~ 
Q,, 

,=x ~ f (0,) g (0,) - -  
6 

_ ~ 9 ~ ( x 0 + x ,  9 , + x ~ 9 ~ + x ~ 9 ~ + x ~ 9 ~ )  ~ _  

i = 1  f ( 9 i )  g '  ( 9 i )  
O~  

g~ _= ~ Oy (x0 + xl 0,: + x2 OY + x~ 0~ + x~ O~) 2 _----- 
~=1 f '  (o~) g (0,) 

6 2 , X '2 ,~ --= - -  ~9, 9 '  (x0 + x~ 9 ,  ~- 3 9~ + x~ 9~ + x~ 9~) ~ 
,=~ f (~ , )  ~' (9,) = o.  

2 3. Le t  us now consider some of the  loci associated with the  Jacobian  

curve ~9 tha t  is c i rcumscribed to an infinity of hexahedra .  The ar 1 t r isecants  of 

are the edges of the  hexahedra ,  and are associated in conjugate  pairs, two 

tr isecants  being conjuga te  when they  are opposite edges of the same hexahedron ;  

the polar  solids of any point  on a t r i secant  of & in r ega rd  to the quadrics of 

the net  all pass t h rough  the  conjugate  t r isecant .  Each  point  P of ,9 is the  

ver tex of one and only one hexahedron;  the four  faces of the hexahedron  which 

intersect  in this vertex in tersect  by threes in the four  edges of the hexahedron  

passing th rough  t ha t  ver tex;  ~9 is a quadruple curve on the scroll o f  its b~isecants. 

We  can determine the order  v of this scroll, for  since its genera tors  are all 
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triseeants of 8 any cubic primal containing 8 meets the scroll in 8, counted 

four times, and 3 ~ - - 4 0  generators. Suppose, in particular, that  the cubic pri- 

mal containing 8 is the primal H which is the locus of lines conjugate, in re- 

gard to the net of quadrics, to the points of a plane z ;  there are �9 trisecants 

of 8 which meet z, and the ~ trisecants which are conjugate to these lie on H. 

Conversely: if a trisecant of 8 lies on /1, and is conjugate to a point of z,  its 

conjugate trisecant must be one of the ~ trisecants which meet z .  Moreover 

no trisecant of 8 can lie on H unless it is conjugate to some point of ~. For  

suppose t is any trisecant of 8 which lies on H; through an arbitrary point 0 '  

on t, as through any point on H, there passes a line j conjugate to some point 

0 of z ;  the line which is conjugate to 0 '  therefore passes through 0. But 

since O' is on t its conjugate line must be the trisecant conjugate to t; hence 

the line conjugate to 0 is t, and j coincides with t. I t  follows that  H contains 

r trisecants of 8, and no more; hence 

3 ~' - -  4 0  = r ,  

~ 2 o .  

The trisecants of 8 generate a scroll B~ ~ of order 20, on which 8 is a quadruple 

eu~ 've .  

Any trisecant of 8 is joined to its conjugate trisecant by a solid ~, so 

that  the solids ~ are determined as the joins of pMrs of generators of R~ ~ which 

correspond to one another in a symmetrical (I, I) correspondence. Since no ge- 

nerator  of /~2o can intersect its corresponding generator the solids ~ generate a 

developable D of class 2o. 

24. I t  is known (G. N. Q. w 28) that  any two canonical sets on 8 form 

the complete intersection of 8 with a quadric. Now a particular canonical set, 

as was seen in w 8 above, consists of any point P of 8, counted twice, and the 

eight other points in which the four trisecants through P meet 8;  any quadric 

which contains this canonical set contains the four trisecants of 8 through P 

and therefore, since these four trisecants do not lie in a solid, this quadric is 

a cone with vertex P. In  particular: the quadrie which contains the two cano- 

nicM sets which arise in this way from two different points /)1 and P~ of 8 is 

a line-cone whose vertex is P~P,2; thus the projection of 8 from any one of its 

chords is a plane octavic eight of whose fifteen nodes are on a conic. When 

the two points P1 and P~ coincide with the same point P of 8 we have the re- 
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sult that  the tangent  of ~ at any point P is the vertex of a line-cone {P} 

which touches ~ at each of the eight points in which # is met by the four tri- 

secants through P. 

25. The tangent  planes of a ruled surface at the different points of a ge- 

nerator  all lie in the same solid; thus if any curve, in space of dimension grea- 

ter  than or equal to 4, has an infinity of trisecants, the three tangents of the 

curve at the points where it is met by any one of its trisecants lie in a solid, 

this solid being the tangent  solid, along this particular trisecant, of the scroll 

generated by the trisecants. In  particular the three tangents of ~ at its inter- 

sections with any trisecant are cospatial~; if ~ is projected on to a plane from 

one of its tangents, the tangent  being supposed not  to meet  # except at  its 

point of contact, it becomes a plane octavic with four tacnodes; since the oc- 

tavic is of genus 6 it will have seven ordinary nodes in" addition to its tac- 

nodes. 

Any solid which contains a trisecant of ~ touches /~~ at some point of 

this trisecant; consider then the section of /~0 by a solid which is a face o~ a 

hexahedron inscribed in &. The other five faces of the hexahedron meet this 

face in five planes, and the ten lines of intersection of pairs of these planes are 

all trisecants of ~ and so form part  of the curve of section; there are three of 

these ten lines passing through each of the ten intersections of ~ with the solid. 

Thus the curve ~p, of order ten, which is the remaining part  of the curve of 

section, must pass through the ten intersections of # with the solid, as these 

are to be quadruple points of the curve of section. Each of the ten lines is 

therefore met by ~p in three points; it is also met by ~p in that  point of the 

line at which the solid touches /~~ The complete curve of section thus con- 

sists of the ten edges of a pentahedron and a curve ~p, of Order ten, passing 

through the ten vertices of the pentahedron and meeting each edge in one point 

other than the three vertices which lie on that  edge. The edges of the pentahedron 

are quadrisecants of ~p. I t  follows that a secant plane of ~ does not  meet R~ ~ 

except in the four trisecants of -~ which lie in the plane; for the curve ~p which 

lies in either of the two faces of the hexahedron which contain the secant plane 

T h i s  fo l lows i m m e d i a t e l y  also f rom t h e  ex i s t ence  of t h e  l ine-cones  {t~}. The  t a n g e n t s  

of ~ a t  i t s  t h ree  in t e r sec t ions  w i t h  a t r i s ecan t  are cospa t ia l  because ,  if P is a n y  one of t he  in ter-  

sec t ions  of t he  t r i s eean t  w i t h  ~, t h e y  lie in t h e  solid wh ich  t ouches  { P }  a long  t h e  p l ane  j o i n i n g  

t h e  t r i s ecan t  to t h e  t a n g e n t  of ,9 a t  ~P. T h e  four  t acnodes  of t he  p l ane  p ro jec t ion  of ~ are  on a 

conic w h i c h  t ouches  t h e  four  t acnoda l  t a n g e n t s .  
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is such that  all its ten intersections with the plane are on these four trisecants. 

There are ~ curves ~ on R~ ~ and they are all in birational correspondence 

with each other. 

26. Since there are three secant planes of ~ passing through each of its 

trisecants the scroll R~ ~ is a triple surface on the locus R1~ ~ generated by the 

secant planes; thus the double surface of R~ ~, which is, in general, of order 85, 

now consists of R~ ~ counted three times and of a surface F~ ~ of order 25 . This 

surface meets each secant plane of ~ in a quintic curve passing through the six 

points of ~ which lie in that  plane (cf. w I3) ; there are thus ~1 plane quintics 

on F~ ;  they are all in birational correspondence with each other and with ~, 

and any two of them intersect in the point which is common to their  planes. 

Through an arbitrary point of F~ ~ there pass two of the plane quintics, but if 

the point lies on ~ there are six quintic curves passing through it. To find the 

multiplicity of ~ on the surface 1~ ~ we consider the section of R~ ~ by a plane 

meeting ~ in a point P ;  this is a curve of order I5 and genus 6 and having 

therefore the equivalent of 85 double points. I t  has a sextuple point at P; also, 

since P is a quadruple point of R~ ~ the plane meets R~ ~ in sixteen fur ther  

points, and these are triple points of the curve of section; it follows that  the 

curve must have 22 fur ther  double points, and these are the intersections, apart  

from P, of the plane with F~ ~. Hence ~ is a triple curve on F~ ~. The scroll 

which is the section of R~ ~ by an arbitrary prime has a triple curve of order 20 

meeting each generator in four points and a double "curve of order 25 meeting 

each generator  in five points; both these multiple curves pass through the ten 

intersections of the prime with ~, these being sextuple points of the scroll, quad- 

ruple points of the triple curve and triple points of the double curve. 

The section of F~ ~ by a face of a hexahedron inscribed in ~ consists of 

five plane quintics. The section of R'~ ~ by a face of a hexahedron inscribed in 

consists of five planes and a scroll W of order ten; the five plane quintics in 

which the solid meets F~ ~ are all on T but are not multiple curves. The curve 

~p in which the solid meets R~ ~ is a triple curve on W, and the generators of T 

are all quadrisecants of ~p. 

27. Suppose now that  the rational quartic curve 74 which is osculated by 

the faces of the hexahedra inscribed in ~ is given by the the equations x 

1 W e  sha l l  a s s u m e  as  k n o w n  t he  p rope r t i e s  of t h e  r a t i ona l  qua r t i c  curve  and  of loci asso- 
c ia ted  wi th  i t ;  for e x a m p l e  t h e  loci gene ra t ed  by i t s  t a n g e n t s ,  by  i t s  chords  and  by i t s  o s c u l a t i n g  
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x0 : xl : x~ : xa : x~ --~ 0 4 : --  40s : 6 0 ~ : - -  4 0 : I , 

so tha t  the equation of the osculating solid at  the point  whose parameter  is 0~ is 

X 0 ~- X 1 0 i ~- X 2 0~ 2[- X8 0~ -~- X 4 0 4 ~ O, 

Suppose also tha t  the g~ on 7 4 which determines the hexahedra  is given by the 

pencil of sextics which includes 

ao06+  al0 ~+ a.20 ~ + as0 ~+ a40 ~+ a50 + a~-~o 
and 

b606+ bl05 + b ~ 0  ~ +  b~0 ~ +  b40 ~ +  b 5 0 +  b 6 ~ o .  

Then, if any point on ..~ is taken, the four points of 74 at  which the osculat ing 

solids pass th rough  this point must  all belong to the same member of the pen- 

cil of sexties; hence, given any point (xa, x~, x~, xs, x~) on .a it  must  be possible 

to find constants  ~, #, a, ~, 7 so t ha t  

.~(a006 + a l0  ~ + a s 0 4 +  a ,q03+a  40 ~ + a  5 0 +  a6)+ 

+/x(b006+ b105+b204+ b803+ b40 ~+b50+b6)  

~-(x0 + xl  0 + x~ 0 ~ + x~ 0 ~ + x4 0 4) (~ + fl 0 + 7 0"-). 

Equat ing  the different powers of 0 on the two sides of this identi ty,  and elimi- 

na t ing  ~,/~, a, fl, 7 from the result ing seven equations, we see t h a t  the coordina- 

tes of any point on ~ satisfy the equations 

a0 a l  aft a 3 a4 

b0 bl b~ b3 b4 

~4 X3 X2 Xl X0 

O X 4 X 3 X 2 X 1 

0 O X 4 X 3 X~ 

a5 a 6 

b5 b6 

0 0 ~ 0 .  

x o o 
I 

x l  32 o 

These equations are those of a curve of the t en th  order?  

28. I f  we take a point  on R~ ~ then  there are four osculating solids of 74 

passing through it, and t h r e e  of the four points of contact  must  belong to the 

planes.  Many of these propert ies  can be obtained very s imply  ei ther  from the projective method 

of genera t ing  the  curve or f rom its paramet r ic  representa t ion  (equivalent  to the  above) first given 

by  Clifford. 

For  the  order of a locus given by  the  van ish ing  of the  de te rminan t s  of a ma t r i x  see Sal- 
mon:  Higher Algebra (Dublin, 1885), Lesson 19. 
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same member  of the pencil  of sextics. Hence,  given any point  (x0, xl ,  x~, x~, x~) 

on R~ ~ there  must  exist  constants  ~, re, Q, a, a,/~, 7, 6, such t h a t  

{,~(ao 06 + alO 5 + a20 ~ + a~O 3 + a402 + asO + a6) + 

+ #(bo 06 + b~O 5 + b~O ~ + bsO ~ + baO" + b~O + b~)} (cO + a) 

- (Xo + x~ 0 + x .  0" + x~ o ~ + x~ 0 ~) (c~ + fl 0 + 70~ + ~ 0~); 

and, conversely, if the constants  can be de te rmined  so tha t  this ident i ty  holds, 

the point  (x0, x~, x~, x~, x~) lies on R~ ~ We can el iminate  at  once the e ight  

quanti t ies  Z e, tt ~, Z a, # o, a, t?, 7, $ f rom the e ight  equat ions obta ined by equat ing  

the coefficients of the  different  powers of 0 on t h e  two sides of the  ident i ty ;  

we thus  obtain the equat ion 

ao al a~ a 3 a~ a 5 a 6 

b o b I b~ b~ ba b5 b6 

o a o  ~1 a~  ~3 ~ ~5 

o b 0 b 1 b~ ba b4 b5 

x ~  x 3 x 2 x 1 x o O o 

o x 4 x 3 x 2 x 1 x o o 

o o x 4 x 3 x 2 x 1 x 0 

o o o x 4 x 3 x~  x 1 

0 

o 

a 6  

b6 
~ O ,  

o 

o 

o 

x 0  

This is the equat ion of a pr imal  of the four th  order ;  hence /r176 lies on a quartie 

pr imal  @. Also if (xo, xl ,  x,~, x3, x~) satisfies the equat ions of ~, every first minor  

of this eight-rowed de te rminan t  vanishes; hence ~ is a double curve on (P. Since 

the surface of in tersect ion of two quart ic  primals is only of order  sixteen, and 

since any quart ic  pr imal  on which ~ is a double curve must  contain all the  

t r isecants  of ~, which genera te  a surface of order  twenty,  there  is no quart ic  

pr imal  o the r  t han  (9 which has ~ us a double curve. Also, since //~o is a t r iple  

surface on /~1~, the complete intersect ion of R~ ~ with �9 consists of R~ ~ counted  

three  times. 

The polars of any three  points of [4] in regard  to @ are cubic primals  all 

conta in ing  the  curve ~;  t he i r  residual  curve of in tersec t ion  is of order  17 and 

has 30 intersect ions 1 with ~. But  there  are exact ly 3o tangents  of ~ which 

1 I f  t h r e e  p r i m a l s  i n  [4] of  o r d e r s  n l ,  n2, n 8 p a s s  t h r o u g h  a c u r v e  of  o r d e r  e o a n d  r a n k  e l  

t h e i r  r e s i d u a l  c u r v e  o f  i n t e r s e c t i o n  m e e t s  t h i s  c u r v e  i n  8 0 ( n t + n 2 + n s - - 3 ) - - ~ 1  p o i n t s .  S e e  V e r o -  

n e s e :  M a t h .  A n n a l e n  x 9 ( t 8 8 2 ) ,  2 o  5. 
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mee t  the plane of the th ree  points,  so t h a t  these  account  for  all the  points  com- 

m o n  to ~ and  the  res idual  curve of in tersec t ion  of the  th ree  cubic p r imals ;  

thus  @ canno t  have any  bispat ia l  points  on #. I t  follows tha t  t h e  class of q) 

is 4"  I 7 - - 2 "  3 o ~  8. 

The  lines which pass t h rough  any  poin t  P of the  double curve & of the  

pr imal  @ all have  two in tersec t ions  wi th  @ at  P, and  those which have  th ree  

intersect ions wi th  @ at  P genera te  a quadr ie  line-cone whose ver tex  is the t a n g e n t  

of ~ a t  P. Now these lines include the  four  t r i seeants  of ~ which pass t h r o u g h  

P,  so t h a t  the  four  planes which  join the t a n g e n t  of  ~ at  P to these t r i seeants  

are gene ra t ing  planes of this  line-cone, as they  are of the  cone {P}. 

I t  can in fac t  be shown t h a t  {P} is  actual ly  the tangent  cone o f  @ at  P .  

The section of ~ by any solid which conta ins  a t r i seeant  of ~ is a quar t ie  sur- 

face wi th  th ree  eol l inear  nodes P,  Q, t l ;  and it  can easily be shown t h a t  any  

such quar t ie  surfaee has  the s a m e  t angen t  p lane  a t  every po in t  of the line P Q R  

and, fu r the rmore ,  t ha t  this  p lane is also a t a n g e n t  plane of each of the  th ree  

nodal  cones, 1 touch ing  t h e m  all a long P Q_R. I t  follows t h a t  q) mus t  have  the  

same t angen t  solid a t  all  points  of a t r i seean t  P Q R of O, and  t h a t  th is  solid 

touches  the  t a n g e n t  l ine-cones of @ a t  each of the  points  P ,  Q, R.  This  solid 

mus t  therefore  conta in  the  t angen t s  of # a t  the points  P,  Q, R;  and  it  has  been 

seen t h a t  this  solid is a t angen t  solid of the  l ine-cone {P}. Thus  the t a n g e n t  

line-cone of q) a t  P and  the  line-cone {P} not  only have  four  common  g e n e r a t i n g  

planes,  bu t  they  touch  each o ther  a t  any poin t  of any  one of these four  p lanes ;  

the two eones mus t  the re fo re  be the  same. 

I f  a chord  P Q of ~ lies on @ then  i t  m u s t  lie on the  t a n g e n t  cones of 

@ at  P and Q. Now the cone {P} has  no in tersect ions  wi th  ~ o ther  t h a n  P 

i tself  and those points  of ~ which lie on the  t r i seeants  t h r o u g h  P ;  it  fol lows 

t h a t  there  can be no chords of ~,  o ther  t h a n  the  four  t r iseeants ,  which  pass 

t h r o u g h  P and  lie on @; every chord o f  ~ which  lies on q) is  a tr isecant  o f  ~ .  

The equation of a quartic surface with three collinear nodes can be written 

(x, Y)4 + z (x, y)~ + w @, y)~ + z ~ (x, Y)2 + z w @, y)~ + w ~ (x, y)'~ + z w (z- -  w) (a x + b y ) =  o. 

Then a x + b y = o  is ~he tangent plane of this surface ~t any point of the line x = y = o ,  and also 
touches along this line the three nodal cones 

(x,y)2-~w(ax+by)=o, (x, " z y).~-- (ax+by)=o,  

(x, y)~ + (x, y)'~ + (x, y)'~ + (z--w) (a x + by)= o. 

A similar statement holds for a surface of order n with n- - I  collinear nodes. 
37--35150. Acta mathematica. 66. Imprimg le 25 octobre 1935. 
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The chords of & genera te  a locus M~ ~ on which R~ ~ is a tr iple surface;  the com- 

plete in tersect ion of tO with M~ ~ must  consist  of the scroll /~o counted  six 

times. 

29 . W r i t e  now 

aoO s + a 1 0 5 +  a~O 4 + a sO s +  a~O 2 + a 5 0 +  a 6 =  

= a s (0 - -  Oa)(0 - -  0,2)(0 --  Os)(0 --  04)(0 --  05)(0 - -  0 6 )=  aof(O);  

boO ~  b105 + b,~O 4 + b 30 s +  b 40 ~ +  b sO+  b G=- 

= b 0 (0  - -  ~01)(0 - -  ~92)(0 - -  ~9s ) (0  - -  ~ 4 ) ( 0  - -  ~ 5 ) ( 0  - -  ~96) = bs  g (0 ) ;  

and mult iply the eight-rowed de te rminan t  occurr ing in the equat ion of tO by the  

eight-rowed de te rminan t  whose i th row consists of the six elements 

8--i  8-- i  08i - i ,  02 , O~ , O~ - i ,  0 s-i~ , O~S-i', 

the  remain ing  elements,  in the seventh and e ighth  columns, being arbi t rary .  Then  

the mat r ix  of the first six rows of the  product  de t e rminan t  is 

O O O O O 

o~ g (o~) o~ g (o2) o~ ~ (o~) o~ y (o~) o~ g (o~) 

O O O O O 

g (o~) ~ (o,,) g (o~) ~ (o~) g (o,~) 

0~ P1 0~ V~ 0~ P3 03 P~ 053 P5 

0~ P~ 0~/),2 0~/)3 0] P~ 0] P5 

O1 P~ 0.2/)2 03 Ps O~ P4 O~ P5 

PI P,~ Ps P~ ~5 

where, as 

@ may be wr i t t en  

0~ g (0~) 

(0~) 

O~ P1 

o~/'1 

O~ P1 
Pl  

before, P~ ~ .~o + xl 0~ + x,2 0~ + x 3 0~. + x 4 ~. 

o~ g (o,2 o~ g (o~) o~ 9 (o,) o~ g (o~) 

a (o~) a (o~) g (o~) g (o~) 

o~ P,~ o] P~ o~ P~ o] P5 

o~ P~ o~ P~ o, P ,  o~ P~ 

o 

Oo g (0~) 

0 

g (o~) 

o~ P~ 

o~ I~ 

o~ 1" 6 

Hence  the equat ion of 

o~ g (0~) 

a (0~) 

O] P6 
O .  

o~ p~ 

06 P6 

P~ 



Some Special Nets of Quadrics in Four-Dimensional Space. 291 

This form of the equation shows immediately that  @ passes through the 

twenty edges of the hexahedron whose faces are the six primes P~ = o, and  that  

the fifteen vertices of this hexahedron are double points of O. The expansion 

of the determinant, by Laplace's rule, by means of the two top rows, gives the 

equation 

y,  (o, f '~ ~y'(~ g (o~) p~ ~, ~ ,  ~, = o, 

where the summation extends to the fifteen pairs of indices (i j), and k, l, m, 

are the four numbers, other  than i and j,  of the set I23456. I f  we write 

Pi ~ X i f '  (Oi), so that  the linear identity between the six forms Xi is 

x ,  + x .  + x~ + x~ + x~ + x . = - o ,  

the equation of @ is 

f '  (o,) y '  (oj)J g (o~) g (oj) x~ x ,  xm x~ = o. 

Similarly, if Y~ g' (gf) ~ xo + x~ ~ + x~ 9~ ~ x~ 9~ + x~ 9~, we obtain an equation 

for (P in the form 

and we can similarly obtain an equation for �9 involving the six primes which 

are the faces of any one of the hexahedra inscribed in ~9. 

30. We obtained the equation of the primal 0) originally by equating to 

zero a determinant of eight rows and columns; we have now obtained another  

form of the equation in which a determinant of six rows and columns is equated 

to zero. We can proceed a step further  in this direction and, by multiplying 

the determinant of six rows and columns by another determinant  suitably chosen, 

reduce the number of rows and columns to four. 

Take then the six-rowed determinant which occurs in the equation for q) 

and multiply it by a six-rowed determinant the last four constituents of whose 

i t~ row are 

0~ O~ 0~ I 
y (o~) f '  (o,)' ~ (o,) f '  (o~)' g (o~) f '  (o~)' ~ (o~)y' (o~) ' 
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the  compos i t ion  of the  first two columns of this  new de t e rminan t  is i m m a t e r i a l  

save fo r  res t r ic t ions  t h a t  p reven t  the  d e t e r m i n a n t  f rom vanishing.  Then ,  in vir- 

tue of the  iden t i ty  

~=1 f '  (Oi) - -  O, 

which holds  when n = o, I, 2, 3, 4, the  lust four  cons t i tuen ts  in each of the  two 

top  rows of the  p roduc t  d e t e r m i n a n t  are zero. W e  thus  obta in  the  equa t ion  of 

q) in the  fo rm 

where  

O - -  

0 6 0 5 

O~ 03 O~ 

03 O~ 01 

(04 O~ 

~ 0 ~  
Ol 

Oo 

o,,=_ o:j / 
g 

The d e t e r m i n a n t  O is symmetr ica l ,  so t h a t  the quartic primal q) is a sym- 

metroid. The  section of (P by an a rb i t r a ry  solid is thus  the  well-known quar t ic  

symmet ro id  of Cayley, and  inc identa l ly  we have the  resul t  t h a t  i f  the Jacobian 

curve of  a net of  quadries in [4] has a scroll of  trisecants the ten points in which 

it  is met by any solid are the nodes of  a quarlic symmetroid. 

I t  can be verified t h a t  the ten first minors  of the  symmet r icM d e t e r m i n a n t  

0 all vanish  a t  any  point  of the  curve ~,  thus  showing aga in  t h a t  ~ is a double 

curve on q). I f  we refer  to the equat ions  of  the  quadrics  of the  ne t  as g iven 

in w 22 we see at  once t h a t  the equat ions  of  the  J a c o b i a n  curve ~ are 

Oo 01 02 O~ O~ 

01 O~ 03 04 05 

O~ 03 04 05 06 

~O~ 

every th ree- rowed d e t e r m i n a n t  of th is  ma t r ix  of five rows and  three  co lumns  

van ish ing  a t  any  point  on ~. There  are ten three- rowed de t e rminan t s  be longing  

to this ma t r ix ;  when equated  to zero they  rep resen t  ten  cubic pr imals  pass ing  

t h r o u g h  ~. Also there  are ten dis t inct  first minors  of the  d e t e r m i n a n t  O, and  

it  is a t  once seen t ha t  seven of these ten occur  also a m o n g  the  ten th ree- rowed 

de t e rminan t s  of the  mat r ix ;  these  seven minors  there fore  vanish  on the  curve ,~. 
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The remaining three minors of the determinant, although not occurring expli- 

citly as determinants in the matrix, are easily expressed linearly in terms of the 

actual determinants that  do occur in the matrix; for example 

6)6 6)5 6)a (0 6 

6) 5 

0 5 O~ 

03 O0 

~6 

+ 04 

Oa 

6)5 6)~ 

02 Oi 

Here the determinant on the left  is a first minor of @ which does not occur as 

a determinant of the matrix; the two determinants on the right do both occur 

in the matrix. Similarly each of the other two first minors of O which do not 

occur in the matrix can be expressed as the sum of two determinants which do. 

I t  then follows that  all the first minors of O vanish on the curve ~. 

31. When the equation of a primal is given by equating to zero a symme- 

trical determinant we can immediately write down, by bordering the determinant, 

the equation of a family of cow, tact primals, i .e. of primals which have two in- 

tersections with the given primal wherever they meet it. A point common to 

the two primals is in general an ordinary point on both of them, the two pri- 

reals having the same tangent prime there; but the point may also count for 

two among the points common to the two primals by being a node on one 

of them. 

The identity 

06 05 04 
05 O~ O~ O~ e~ 

O~ O~ O~ 01 a~ 

O~ O~ O, Oo % 

~1 ~2 ~3 ~4 0 

O~ O~ 04 08 

05 O~ 03 02 

03 0,2 01 Oo A 

0 

06 O~ O~ 03 a, 

05 04 Oa O~ a~ i 

04 O~ O~ 01 a~ 

03 0,~ O~ O o a~' 

06 O~ O~ O~ al fll 

O~ O~ 03 O~ a~ fl~ 

03 O~ 01 Oo a~ f14 

~l ~2 ~3 ~4 O O 

& A A o o 

0 

. . . . . . . . . .  (A) 
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shows at once 

cubic primal 

that, 

W. L. Edge. 

whatever the values of the 

06 05 04 ~2 a, 
05 O~ 02 02 a~ 

04 03 02 01 U3 

02 02 01 Oo a4 

~1 ~2 ~3 ~4 0 

constants al, a2, as, a4, the 

~ O  

is a contact primal of @; we thus obtain a triply-infinite family of contact cubic 

primals. Each of these primals touches q) along a sextic surface containing 

and, as follows at once from (A), the two sextic surfaces in which q)is touched 

by any two contact primals of the family together form the complete inter- 

section of q) with a cubic primal. 

32. The r162 contact cubic primals of q) all contain the curve ~, and we 

know that  any one of the ~6 planes of [41 gives rise to a cubic primal H also 

passing through #; H can be defined either as the locus of the polar lines of 

the plane in regard to the quadrics of the net or as the locus of the lines which 

are conjugate to the points of the plane (cf. G .N.Q.  w 4). The question may 

then be asked whether any of the primals H can be contact primals of O. 

[f the equations of a plane z are 

aoX o + a i x  1 + a  2x~ + a s x  s + a 4 x 4 - ~ o  , 

b o x o +  b l x l  + b~x~ + b 2 x  s + b 4 x 4 ~ o ,  

then the equation of the associated primal H is 

ao a I a2 a3 a 4 

b0 bl b2 ba b4 

Oo 01 O~ (O 3 04 

O1 02 Os 04 O~ 
O~ Os 04 05 06 

~ O ,  

and we therefore have to enquire whether it is possible to choose constants 

a, b, a so that  there is an identity 
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a o a 1 a~ a s 

b o b~ b~ b~ 

(90 Ot O~ O s 

(9~ 0~ 0s 0~ 

O~ O~ O~ O~ 

a4 

b4 

O~ 

O~ 

06 O~ O~ O~ a~ 

O~ O~ O~ O~ a~ 

O~ 03 O~ O~ as 

03 02 O1 O0 ~4 

~1 ~2 ~3 ~4 0 

295 

When we attempt to determine the constants so that  this identity is satisfied 

(it is not necessary to give the details of the Mgebra) we find that the identity 

must be of the form 

4 aa 3 ae 2 a I 

Oo O1 O~ O~ 

0~ 0~ 0~ 04 

0~ 0s 0~ 0~ 

I 

0 

6) 4 

0~ 

O~ O~ 04 03 I 

04 O~ O~ 0~ a2 

O~ O~ 01 (9o a3 
I ~ ~u ~s 0 

. . . . . .  (B)  

where a is arbitrary. The cubic primal H must therefore arise from a plane z 

whose equations are of the form 

a~Xo + a~x~ + ct2x~ + aX B + :c~-- O, 

4a3Xo + 3a~Xl + 2ax~ + x 3 ~ o .  

This is an osculating plane of the quartic curve 74, and hence we have the re- 

sult that the cubic pr imal  I I  associated with a plane ,J~ is a contact pri~nal of  @ 

when and only when z is an osculating plane o f  74. Such ~ cubic primal will be 

denoted by the symbol H~, the suffix signalising the fact that  the primal is 

associated not with a general plane of [4] but with an osculating plane of y4; 

there is then a singly-infinite set of cubic primals H~, and they are contact 

primMs of @. 

I t  may be remarked in passing that  the two determinants appearing in the 

identity (B) are also identically equal to the determinant 

a 2 0 4 - 2 a 0 s +  0,2 a ~ 0 , ~ - 2 a 0 ~ +  0~ a ' ~ 0 6 - 2 a 0 5 +  04l 

a ~0 s - 2 a 0 ~ +  01 a ~ 0 ~ - 2 a 0 ~  + 0.~ a ~ 0 . ~ - 2 a 0 4 +  @~1" 

a ~ 0 ~ - 2 a 0 1 +  0o a 2 0 ~ - 2 a 0 ~ +  0~ a ~ 0 4 - 2 a 0 s +  (9~ 

I t  follows that the quartic curve q whose equations are 
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0 o - - 2 a 0 ~  + a ~Oe_  
O~--2aO~ + a"@a 

0 1 - 2 a O , ~  + a ~0.~= 
0 2 - - 2 a 0 ~  + a~O 4 

0 ,2 - -2a0~  + a ~0~ 
0 ~ - - 2 a 0 4 +  ~ ~0~ 

_ _ 0 ~ - - 2 a 0 4 +  a ~0~ 
0 4 - - 2 a O s + a  ~06 

is a double curve on H~. Any point  whose coordinates satisfy these equations 

is on the primal q), so that  q lies on the surface a.long which H~ touches ~ .  

The sextic surface 

identity (B) is true for 

the identity 

q~ along which Ho~ touches (P can be identified. The 

all values of a; we deduce from it, by differentiation, 

~4 g8 ~2 

6 a ~ 3 a I o 

Oo 01 O~ O~ 

01 O~ O~ 04 

o~ o3 o~ o~ 

I 

o 

0 4 

05 

06 

06 05 04 O~ o 

O~ 04 O~ O~ I 

04 O~ O~ Ox 2 a  

I ~ ~g ~3 o 

When either of these two determinants is equated to zero we obtain the equa- 

tion of a cubic primal / / ' .  This is not a contact primal of @, but the form 

of the determinant on the right shows, when we refer to the identity (A), that  

1I' meets q) in two sextic surfaces one of which is q~, the surface of contact 

of //~ and q). On the other hand the form of the determinant on the left 

shows that  II' is the locus of the poles of a plane z '  in regard to the quadrics 

of the net, and that  z '  lies in the solid 

a 4 x  o + a 3 x  1 + a ~x  2 + a X  3 + x 4 ~ O .  

But this is the osculating solid of 74 at the point where z is the osculating 

plane; hence z and z '  both lie in this solid. Now when two planes z and ~' 

lie in the same solid the cubic primals associated with them have in common 

a cubic scroll and a sextic surface, the sextic surface being the locus of the 

poles of the solid in regard to the quadrics of the net (G. 2(. Q. w I5). Hence 

the cubic primal 1I~ which is associated with the osculating plane at a point P of 

74 touches q) along the sextic surface q~ which is the locus of the poles of the oscu- 

lating solid of 74 at P in regard to the quadrics of the net. Since the osculating 

solid of 74 at P is one of the six faces of a hexahedron inscribed in ~ the 

surface ~ contains the ten edges of the simplex ~ formed by the remaining 

five faces of this hexahedron (cf. w I5 above). 
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33. The equation of the contact primal H~ contains the parameter  a to 

the sixth degree, so that  through any point 0 of [4] there pass six of the pri- 

mals H~o. This can also be seen otherwise; for in order that  the cubic primal 

Ho~ associated with an osculating plane ~r of 7 ~ should pass through 0 it is 

necessary and sufficient that  the line conjugate to 0 should meet z .  I t  is known 1 

however that  the osculating planes of 74 generate a sextic locus /;~, so that  any 

line meets six osculating planes of 74. Suppose now that  the point 0 lies on 

q). Then when the coordinates of 0 are substituted in the left-hand side of 

the equation of a contact primal H~ the resulting sextic polynomial in a is the 

square of a cubic polynomial; this is clear on referring to the identity (A), 

remembering that the coordinates of 0 now satisfy (9 ~ -o .  Hence through an 

arbitrary point of @ there pass three of the primals H~. Incidentally the sur- 

faces ~ along which the primals H~ touch @ form a singly-infinite family of 

surfaces of index three, i t  follows too that  if 0 is any point of q) the line 

which is conjugate to 0 must be such that  its six intersections with F~ coincide 

in pairs, or tha t  the line must be a t r i tangent  of F~. This is so: for the line 

which is conjugate to any point of the sextic surface which is the locus of the 

poles of a solid S~ must lie in $3; hence, since there are three of the surfaces 

q~ passing through 0, the line conjugate to 0 is common to three osculating 

solids of 74. But if n is the osculating" plane of 74 at a point P the osculating 

solid of 7 4 at P is the tangent  solid of F~ at every point of z ,  so that  any 

line which lies in the osculating solid touches F~ at the point where it meets 

~; the line of intersection of three osculating solids of 7 ~ is therefore a tri- 

tangent  of F~. 

34. I t  has been remarked in w 28 that  if three cubic primals pass through 

4 their  residual curve of intersection meets @ in eight points not on 4 .  Sup- 

pose now that  the three primals are all contact primals of @; then any point 

which is common to @ and the three primals and which does not lie on 4 is 

such that  q) and the three primals all have the same tangent  solid there;  it 

therefore counts for eight among the points common to the four primals, and 

is therefore their only common intersection apart  from the curve 4 .  I t  is thus 

also the only point, apart  froul the curve 4 ,  which is common to the three 

sextic surfaces along which the primals touch @. In particular, when the three 

contact primals are all members of the singly-infinite family of primals //o,, we 

1 See, for example ,  Veronese, loc. cit., 2o2. 

38--35150. Acta mathematica. 66. Imprim6 le 25 octobre 1935. 



298 W . L .  Edge. 

see t ha t  any three of the surfaces ~ have in common, apar t  f rom the curve ~, 

one and only one point.  Thus  the line common to any three  osculat ing solids 

of y~ is con juga te  to a point  of (P. I t  has already been seen, conversely,  t h a t  

the line conjuga te  to any point  of @ is common to three  osculat ing solids of 

74; there  is thus  a (I, I) correspondence between the points of q) and the tri- 

t angents  of F~, and thus also between the  points of tP and the t r i secant  pla- 

nes of 7 ~. 

Take now two contac t  primals of q); the i r  surface of in tersec t ion  meets  

q) in ~ and a residual curve. Now any point  on this residual  curve is such 

t h a t  00 and the  two contac t  primals all have the same t angen t  solid there,  so 

tha t  this residual  curve must  be counted  four  t imes as par t  of the curve com- 

mon to q) and the two primals. Since the complete curve of intersect ion is of 

order  36, and since ~ is a double curve on q) and a simple curve on the two 

contac t  primals and therefore  counts  twice as par t  of the curve of in tersect ion,  

the residual  curve must  be a quartie.  This  quar t ic  curve has a cer ta in  number  

of in tersect ions  with :~, and this number  can be found  at  once f rom the  fac t  

t ha t  a th i rd  contac t  pr imal  th rough  ~ must  have a single contac t  with the 

quart ic;  of the twelve intersect ions of this th i rd  contac t  pr imal  with the  quar t ic  

ten must  therefore  lie on ~ ,  so t ha t  the  quart ic  meets  ,~ in ten points.  I t  

follows also tha t  the sextic surfaces a long which any two of the ~ 3 contac t  

primals touch q) have in common the curve @ and a quart ic  curve meet ing  ~ in 

ten points. Suppose, in part icular ,  t ha t  the two contac t  primals are both  pri- 

mals Hr the surfaces along which they touch @ are then  two of the  surfaces 

99.~; one of these two surfaces is the locus of the poles of an osculat ing solid 

~Q1 of 7 4 in regard  to the quadrics of the net,  the  o ther  arising similarly f rom 

a second osculat ing solid t2., of 7 *. Take  now any point  0 on the quar t ic  curve 

q~e which is common to these two surfaces ~ ;  the line which is conjuga te  to O 

lies in $21 and also in .(2..,, and hence in the plane of in tersect ion w12 of ~l  and 

Y2.~. But since 0 is a point  of q) the line conjuga te  to 0 must  also lie in a 

th i rd  osculat ing solid of 74; it  is the re fore  one of the  lines in which r is met  

by the osculat ing solids of 7 ~. These lines, as is well-known, are the t angen ts  

of a conic c1~; this is in accordance too with the fac t  (cf. G._Y. Q. w I6) t h a t  

the  order  of the scroll genera ted  by the lines con juga te  to the  points  of a 

quart ic  curve having ten intersect ions with ~ is 3 " 4 - - I o  = 2. Now the solid t2j is 

a face of a hexahedron  inscribed in ~;  the remain ing  five faces of this hexa- 

hedron  fo rm a simplex ~1 whose ten edges lie on the  surface q~ associated wi th  
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$21 and whose five vertices lie on ~. The secant plane of ~ which is conjugate 

to any one of these five vertices lies in t~ 1 and meets w12 in a tangent  of c~2; 

hence the five vertices of ~1 are all on the quartic curve q12. Similarly t2~ be- 

longs to a hexahedron whose five remaining faces form a simplex ~ whose five 

vertices are on qty. Hence the quartic curve ql~ is circumscribed to both the 

simplexes ~1 and ~2. The vertices of these two simplexes account for the ten 

intersections of q12 and ~. We have assumed that  Y21 and ~2 are not two faces 

of the same hexahedron; in that  case the curve q~ would degenerate into four 

concurrent trisecants of ~ .  

Consider now the limiting case in which t-21 and s both coincide with 

the osculating solid Y2 of 7 4 at a point P;  the plane wj~ then becomes the 

osculating plane of 7 4 at P, and the conic c~ becomes the conic c, the envelope 

of the lines in which z is met by the osculating solids of 7 4 . This conic c is 

"also the locus of points in which zg is met by the osculating planes of 7~; it 

passes through P, and its tangent at P is also the tangent of 7 4 at P.  The 

pr imal /L~ which is generated by the lines conjugate to the points of z touches 

�9 along the surface F{ which is the locus of the poles of ~ in regard to the 

quadrics of the net; q%s contains & and also ten triseeants of ,,~ which are the 

edges of a simplex ~ .  This surface ~v2 s is met by the surface which is the locus 

of the poles of any other osculating solid ~ '  of 7 4 in a quartic curve through 

the vertices of ~ ,  this quartic curve also meeting ~ in the vertices of a second 

simplex ~ '  associated with Y]' in the same way that  ~ is with ~ .  There is 

thus on ~ a singly-infinite family of quartic curves through the vertices of ~ ;  

these include a characterist ic cum'e q which touches ,,~ at the five vertices of ~ ,  

the lines conjugate to the points of q being the tangents of c. Since there are 

two tangents of c passing through any point of z the line conjugate to this 

point is a chord of q; conversely any chord of q is conjugate to a point of z ,  

for the lines which are conjugate to its two intersections with q are tangents 

of c, so that  the chord of q is the line conjugate to the point of intersection 

of these two tangents. Thus the primal Ho, is the cubic primal generated by 

the chords of q, and q is the double curve on / to  that  was noticed previously. 

I f  we take a point on c the line which is conjugate to it is a tangent  of q; 

not  only are the tangents of c conjugate to the points of q but the tangents 

of q are conjugate to the points of e. 
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35. Through any point 0 of [4] there pass four osculating solids of 74; 

any three of these meet in a tr i tangent of F~, so that  there are four tri tangents 

of ~'~ passing through 0. These are the four tritangents of F 6~ that  are con- 

jugate to the four points in which the line conjugate to 0 meets q). Suppose 

now that  0 lies on /~'~ and so in an osculating plane ~ of 74 . Then of the four 

osculating solids of 7 ~ which pass through 0 two coincide with that  osculating 

solid Y2 of 75 which contains z;  the plane of intersection of the remaining two 

meets Y2 in a line which is a tr i tangent of //~, this being the only tr i tangent 

whose point of contact is 0. Correspondingly, of the four intersections of the 

line conjugate to 0 with q) two coincide with the point to which this tr i tangent 

is conjugate; the two remaining intersections of the line with @ lie, as has been 

seen, on the double curve q of the cubic primal H~ associated with z ,  being 

those points of q to which the two tangents of c which pass through 0 are 

conjugate. 

The position of 0 may be particularised further. Suppose 0 lies on the 

tangent t of 74 at a point P ,  the osculating plane of 75 at P being z and the 

osculating solid t~; then of the four osculating solids of 75 that  pass through 

0 three coincide with Y2, and the remaining one meets ~ in that  tangent  ~, 

other than t, of c which passes through 0. Of the four intersections of @ with 

the line conjugate to 0 three now coincide with the point to which �9 is con- 

jngate, the remaining one being that  point, G say, to which t is conjugate; both 

these points are on the quartic curve q. Each generator of the cubic cone which 

projects q from G is conjugate to a point of t and has ~hree-point contact with 

@ at its other intersection with q. In particular the tangent of q at G has 

four-point contact with @ at G; this tangent is the line conjugate to P,  so that  

the lines conjugate to the points of 74 are all fleenodal tangents of ep. 

Consider lastly the case when 0 is on the conic c in the plane z;  0 is 

then the intersection of two osculating planes, z and z ' ,  of 74 and so lies not 

only on c but also on the conic c' in the plane ~'. The line conjugate to 0 

is therefore a tangent of two characteristic curves q and q'. The particular 

circumstance of ~ and t~', the osculating solids of 75 which contain z and z' ,  

being two faces of the same hexahedron inscribed in ,~ may be remarked; the 

curves q and q' then touch ~ at that  vertex V of the hexahedron which is the 

point of intersection of its remaining four faces; the common tangent of q and 

q' is now the tangent  of ~ at V, meeting (P in four points at V. The secant 

plane conjugate to V is the plane of the tangents of c and c' at their inter- 
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section, this being the plane of intersect ion of t? and t?'. Again:  when we 

choose the point  0 on c to be at  P,  the point  where ~ osculates 7 ~, c' coincides 

with c and q' with q; we have again the t angen t  of q at G having four-poin t  

contac t  with @. 

36. The character is t ic  curves q genera te  a surface Z whose order  we can 

obtain;  Z is the envelope of the singly-infinite set of surfaces ~ .  I t  has been 

seen tha t  the lines conjuga te  to the points of a t an g en t  t of 7 ~ genera te  a 

cubic cone, and it  is clear tha t  the complete in tersect ion of this cubic cone 

with @ consists of the curve q counted  three  times. I f  t hen  we take the  

pr imal  which is genera ted  by the lines conjuga te  to all the  points of all the  

tangents  of 7 t its complete surface of in tersect ion with �9 must  be the sur- 

face Z counted th ree  times. Now the tangents  of 7 ~ genera te  a sextic sur- 

face;  hence (G.~Y. Q. w 16) the primal which is genera ted  by the lines con- 

jngate  to the points of this surface is of order  e ighteen and has ~ as a 

sextuple curve. The  surface of in tersect ion of such a pr imal  with q ) i s  of order  

72 and has ,~ as a curve of mult ipl ici ty I2; hence Z is of  order 24 and has 

as a quadruple curve. Or we may argue as follows. The line which is con juga te  

to the point  of in tersect ion of any two osculat ing planes of 74 is, as has been 

seen, a b i tangent  of (/), both  its points of contac t  being on the surface Z. Now 

the points common to two osculat ing planes of 7 ~ form, as is welbknown,  a 

quart ie  surface V~-- the double surface of /~ .  The pr imal  genera ted  by the 

lines which are conjugate  to the points of V~ there fore  meets  q) in the surface 

Z counted twice. But  the lines conjuga te  to the points of V~ genera te  a pr imal  

of order  twelve on which ,,~ is a quadruple  curve, and the surface of in tersect ion 

of such a pr imal  with @ is of to ta l  order  48 and has ~ as a curve of multi- 

plicity eight.  W e  have again the re fore  the resul t  t ha t  2 is of order  24 and has 

�9 ,~ as a quadruple  curve. I t  may be noted,  as a par t ia l  verification, t ha t  the 

primal  which is genera ted  by the lines con juga te  to the  points of a surface of 

order  24 on which ~ is a quadruple  curve is of order  3" 2 4 - -4 "  15 = 12. NOW any 

point  of Z lies on a character is t ic  curve q, and the line conjuga te  to the point  

is therefore  a t angen t  of a conic c on V~, and so lies in an osculating" plane of 

74. All the tangents  of the ~1  conics c arise in this way and, since t h ro u g h  

any point  of an osculat ing plane of 74 there  pass two tangen ts  of a conic e, 

the pr imal  genera ted  by t he  lines conjugate  to the points of Z is F~, counted  

twice. Thus it  is of order  twelve, as i t  ough t  to be. 
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37. We have obtained on each of the character is t ic  curves q a poin t  G such 

t h a t  the  tangenb of q a t  G has four-point  contac t  with q); the locus of these points  

G is a curve g lyit~g on the surface g. Now the line which is conjuga te  to any poin t  

of 7 ~ has fourpoin t  contac t  with q), the point  of contac t  being on g; hence the scroll 

of lines which are conjugate  to the points of 74 meets (P in the curve g counted  

four  times. Since this scroll is of order  I2, the curve g is of order  I2. 

38. I t  has been seen tha t  t h rough  any point  of tP there pass three  of the  

surfaces ~v~; the  primal  q) may therefore  be defined as the locus of the poles of 
the osculating solids of 74 in re.qard to the quadrics of the ~et, and propert ies  of 

@ can be deduced direct ly f rom this definition. Each point  of q) is the  p o l e  

of three  different  osculating" solids of 74 in regard  to quadrics of the net;  bu t  

for  a point  of Z two of the three  solids coincide, while for  a point  of g all th ree  

solids coincide. 

On the curve ,$ there  is a l inear  series g], any set of this series being a 

set of vertices of five cones belonging to a pencil. Of these sets of five points 

~1  are sets of five vertices of simplexes ~ whose faces all osculate the quaxtic 

curve 7~; and we have seen tha t  the vert ices of any two of the simplexes ~ lie 

on a quart ic  curve q~; there  is thus a doubly-infinite system of curves q~2, in- 

cluding a singly-infinite system of character is t ic  curves q. This system of curves 

q,_o was obta ined as the system of curves in which pairs of surfaces ~ intersect ,  

but  it can also be obtained in o ther  w~ys. In  the first place there  is a pencil  

of quadrics, belonging to the net, in r ega rd  to which any given simplex ~ is 

self-conjugate;  the locus of the poles of any solid in regard  to the quadrics of 

this pencil is a quart ic  curve passing throuo'h the  five vertices of ~ .  I f  now 

we suppose tha t  the solid is an osculat ing solid Y2 of 74 we determine thereby  

a hexahedron  of which t~ is one face; the five remain ing  faces of this hexa- 

hedron  form a second simplex ~ .  The quart ic  curve passes also t h rough  the 

vertices of this second simplex, for  the secant  plane conjugate  to any one of these 

vertices lies in Y2, so tha t  t~ is the polar of this ver tex in regard  to all the  quadrics  

belonging to a pencil  - -  which pencil has a quadric  in common with the  pencil  

we are considering. Thus the quart ic  curve, since it  circumscribes two of the 

simplexes ~ ,  must  be one of the quart ics q~, and all the quart ics q~e are ob- 

ta inable  in this way. A character is t ic  curve q is obta ined when we take the  

locus of the poles of an osculat ing solid t~ of 74 in regard  to tha t  pencil, of 

quadrics of the net,  for  which the  simplex formed by the five remain ing  faces 



Some Special Nets of Quadrics in Four-Dimensional Space. 303 

of the hexahedron determined by ~ is a self-conjugate simplex. In  the second 

place the poles of the osculating solids of 7 ~ in regard to any quadric Q of the 

net lie on a quartic curve. This quartic curve meets ~ in the points which are 

such tha t  their polar solids in regard to Q osculate 7~; we have seen, however, 

in w 2o, tha t  there are ten such points on ,~, and that  they consist of the 

vertices of two of the simplexes ~ ;  the quartic curve we have obtained is again 

therefore one of the quartics q~. Moreover Q is the quadric which is common 

to the two pencils of quadrics for which the two simplexes ~ are respectively 

self-conjugate, so that  every curve q,~ can be qbtained in this way. We may 

thus look upon the curves q12 as polar reciprocals of 74 in regard to the quadrics 

of the net. 

The equation of the polar solid of the point (~]0. V~, V-~, ~]3, ~h) in regard to 

the quadric 2Qo + / z Q 1  + ])Q.2 = O, the notat ion being as in w 22, is 

" u = o .  

i='l 

I t  follows that the pole of the solid x o + x ~ 0 + x . ~ 0  ~ + x ~ 0  ~+ x 4 0 4 ~ o ,  which 

is an osculating solid of 74, lies, for all values of 0, on the quartic curve 

200 + tt6)l + vO~ __ 201 + tt~)e + vOa 

2('~ 1 + ~tO 2 + ])03 2(~. 2 -~ t t 03  -~ ])04 20~ + ttO 4 + ])05 204 + ttO~ + vO 0" 

We have in this way, as the ratios 2 :# ' ] )  vary, the doubly-infinite system of 

curves q12. A characteristic curve q is obtained when # 2 = 4 ] ) 2  , as is seen by 

comparing these equations with those of a characteristic curve given in w 32. 

39. The locus @ is rational and can be mapped on a space ~a by the 

usual method of mapping rational determinantal  loci 1, so that  its prime sections 

are mapped by quartic surfaces passing through a base curve ~p of order ten 

and genus eleven. The properties of @ can be obtained via this representation, 

but we content ourselves by indicating in a table the main features of the 

mapping; the trisecants of ~ are mapped by the points of ~p and the points of 

~,  each of which lies on four trisecants, are mapped by quadrisecant lines of ~p. 

These quadrisecants generate a scroll of order ten on which ~p is a triple curve. 

a See, for example, Room: t~roc. London Math. Soc. (2) 36, 1934, I2--I 5. 
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O 

Tr i secant  of &. 

Po in t  of ~ .  

P r ime  section. 

Surface along which @ is touched  by 

a contac t  cubic primal. 

Surface q~. 

Curve ql.~. 

Surface  Z 

Curve g. 

z~ 
Poin t  of ~P. 

Quadr iseeant  of ~p. 

Quar t ic  surface t h r o u g h  ~p. 

Plane.  

P lane  of a certain cubic developable V. 

Axis of V. 

Quar t ic  surface of genera t ing  lines of V. 

Cuspidal  edge of V. 

The quart ic  symmetro id  @ is a par t icu lar  case of one considered by L. 

l~othl;  Roth ' s  symmetroid  has also a double curve of order  ten with an infinity 

of t r isecants  genera t ing  a scroll of order  twenty,  bu t  this curve is not  necessari ly 

the Jacobian  curve of a net  of quadrics. 

Any secant plane of ~ contains four  t r isecants  of ~ ,  any two of which 

intersect  in a point  of ~;  correspondingly  we have a set of four  points of ~p 

the join of any two of which is a quadr isecant  of ~p; in o ther  words we have 

a t e t r ahed ron  whose vert ices ~re on ~ and whose edges are quadr isecants  of ~p. 

Any osculat ing solid K2 of 7 4 contains five secant  planes of ~ ,  any two of which 

have a t r isecant  of ~ as thei r  line of in tersect ion;  correspondingly  we have five 

t e t r ahed ra  whose vertices are all on ~p, any two of which have three  common faces;  

thus we have a pen tahedron  whose vertices are all on ~p and whose ten edges 

are quadrisecants  of ~ .  Proceed ing  a step fu r the r  we find that ,  associated wi th  

any one of the hexahedra  whose fifteen vertices lie on ~ and whose twenty  edges 

are t r isecants  of ~, we have in ~ a hexahedron  whose fifteen edges are quadri- 

secants of ~p and whose twenty  vert ices lie on ~p; thus  the curve ~p is  circum- 

scribed to a i u f i n i t y  o f  hexahedra.  A face of any one of these hexuhedra  is 

met  by the other  five faces in the five sides of a pen tagram;  these are quadri- 

secants of ~p and are associated with the vertices of a simplex | o n -% it follows 

tha t  the plane in :~3 is associated with the sextic surface q~ which contains the  

ten  edges of ~ ,  and the re fore  is a plane of the  developable V. The  faces of 

the inscribed hexahedra  of W therefore  all belong to V, and we see t h a t  W may 

be genera ted  very simply as the locus of the vertices of the  hexahedra  fo rmed  

1 1)roe. London Math. Soc. (2), 30, I93 o, 305. 
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by the sets of an involution of sets of six planes of the cubic developable V. 

We can thus, if we wish, obtain the whole of the geometry by starting from a 

twisted cubic curve; we take a gs ~ on the curve and consider the hexahedron 

formed by the planes which osculate the curve at the six points of a set of 

the g~. As the set varies the vertices of the hexahedron trace out a curve W, 

and the system of ~4 quartic surfaces through ~p represents a symmetroid @ 

in [4]. 

40. The lines of [4] which are cut in involution by the quadrics of the 

net are the lines of a cubic complex A; hence, since the trisecants of ~ gene- 

rate a scroll of order 2o, there must be sixty trisecants of ~ belonging to l / .  

Suppose that the trisecant PQR of ,~ belongs to _//; since the involution 

which is cut out on PQR by the quadrics of the net has two, and only two, 

double points, the line must be a generator of one of the three cones (P), (Q), 

(R); suppose ~ that  it is a generator of (P). Then Q and R are conjugate points 

in regard to every quadric of the net; hence, if U V W  is that  trisecant of 

which is conjugate to PQR, the secant plane conjugate to Q is U V W R  and 

the secant plane conjugate to R is UVWQ. Let X, Y be the remaining two 

intersections of the plane U VWQ with ~, and Z, 2" the remaining two inter- 

sections of the plane U V W R  with ~.  

There is, associated with any point K of ~,  a solid ~ ;  ~ joins K to its 

conjugate secant plane and all the quadrics of the net which pass through K 

touch ~ at K.  Thus the solids ~c~ and ~ n  associated with Q and R both coin- 

cide with the solid UVWPQR,  which we will denote by ~*. The cone (P) 

touches ~ at Q and ~R at R; hence :S* is the tangent  solid of (P) along its 

generator PQR. Also the solid ~ associated with the point K of # meets 

in K,  in the six points which lie in the secant plane conjugate to K,  and in 

three other points; these three points are the vertices of those cones of the net, 

other than (K) itself, which pass through K.  Hence the cones (X)and (Y)pass 

through Q while the cones (Z) and (I') pass through R. 

Every secant plane of # meets ,~ in the six vertices of a quadrilateral, and 

the line joining any two points of # which lie in the same secant plane is a 

trisecunt of ~. Hence QX, QY, BZ, RT, are trisecants of #; moreover they 

We need no t  cons ider  the  p o s s i b i l i t y  of the  t r i s e e a n t  b e i n g  a gene ra to r  of more  t h a n  one 

of t he  th ree  cones. The  on ly  chords  of # w h i c h  are gene ra to r s  of two  cones are the  I2o l i ne s  

w h i c h  are chords  bo th  of ~ and  of the  base  curve  of t he  net ,  and  none  of these  is  a t r i s e c a n t  of #.  

39--35150.  Acta  mathematica. 86. lmpr lm6 le 25 oetobre 1935, 
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are generators of (X), (Y), (Z), (T) respectively, so that  we have four further 

trisecants of ~ which belong to A.  The third intersection of each of these four 

trisecants with ~ must be one of U, V, W; since there are four trisecants and 

only three points U, V, W at least one of U, V, W must be common to two 

of the four trisecants; suppose that  this point is V, and that  Q X V  and R Z V  

are trisecants of ~.  Then Q X V Z R  is a secant plane of ~,  and Z X  passes 

through P; since this plane contains the trisecant P Q R  the point of -~ to which 

it is conjugate must be either U or W, suppose it is W; then the trisecant 

conjugate to Q X V  must be R ];V, vyhich we ma)," suppose to pass through T ,  

and the trisecaut conjugate to R Z V  is Q W, which now passes through Y. 

Then P Y T ,  U X Y ,  U Z T  are trisecants of ~; the figure now consists of a 

tetrahedron QR V W and of a plane meeting its six edges QR, V W ,  Q V, R W, 

QW, R V in the points P, U, X, T, Y, Z respectively. Also, since V and W 

are conjugate points in regard to every quadric of the net, the trisecant UV W 

belongs to A.  We have thus shown that  those trisecants of ,~ which belong to 

.4 are distributed in cospatial sets of six, each such set consisting of the six 

edges of a tetrahedron. Each pair of opposite edges of the tetrahedron is a 

pair of conjugate trisecants of ~, and each face of the tetrahedron is the secant 

plane conjugate to the opposite vertex. There are ten tetrahedra of this kind, 

lying in ten solids ~*. A solid ~* meets the quadrics of the net in a net of 

quadric surfaces all having QR V W as a self-conjugate tetrahedron; moreover, 

since Z* is a tangent solid of each of the cones (P), (U), (X), (Y), (Z), (T) the 

net of quadrie surfaces contain six plane-pairs. Each plane-pair has an edge of 

the common self-conjugate tetrahedron as its double line, and the Jacobian curve 

of the net of quadric surfaces consists of the six edges of the tetrahedron. 

Since each solid ~* is the join of three pairs of conjugate trisecants, namely 

the three pairs of opposite edges of the tetrahedron, these ten solids are 

triple solids of the developable D generated by the solids ~. Also each solid 

5" joins four points of ~ to their conjugate secant planes, so that  the ten solids 

are quadruple solids of the developable generated by the solids ~ .  

4I. Any solid which contains two secant planes passing through the same 

trisecant of -~ is a face of a hexahedron inscribed in @; in particular 5" is a 

face of such a hexahedron. Of the six faces of this hexahedron three pass 

through the trisecant P Q R  and the remaining three through the conjugate trise- 

cant UVW; thus one of the first three faces must coincide with ~*, as also 
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must one of the remaining three; hence two of the six faces of the hexahedron 

coincide with ~*. That there are ten hexahedra, inscribed in ~, two of whose 

faces coincide is in accordance with the fact that,  of the sets of a g~ among the 

osculating primes of a rational curve, there are ten sets two of whose members 

coincide. The four faces, other than 22", of this hexahedron intersect in tha t  

point 0* of ~7 to which the secant plane P X : Y Z T U  is conjugate; the lines 

O* Q, O'R, O* V, O*W are the four trisecants of ~ which pass through 0",  and 

these are the tangents of ~ at Q, R, V, W respectively. Of the trisecants of ~7 

there are forty which touch the curve, and these consist of ten concurrent sets of four. 

I t  has been shown elsewhere ~ that,  for a Jacobian curve of ~ general net of 

quadrics in [4], there are I2O secant planes touching the curve; here, for this 

special Jacobian curve, these I2o secant planes consist of 60 bitangent planes, 

each counted twice; each of the ten points 0* is joined to the six edges of the 

corresponding tetrahedron QR V W by six secant planes which are also bitangent 

planes of ,% 

Since /~* passes through the secant plane P X Y Z T U  and meets ,~ fur ther  

in the four points Q, R, V, IV, the four cones (Q), (R), (V), (W) belong to a 

pencil, the fifth cone of this pencil being (0"). 

42. The locus of the poles of ~* in regard to the quadrics of the net is 

a sextic surface qg* lying on @ and containing the ten edges of the simplex 

O*QRVW; on 9"  there is a quartic curve touching ,~ at the points 0" ,  Q, R, 

V, W; this curve consists however of the four lines 0* Q, 0*R,  0* V, O* W. These 

four lines therefore constitute the characteristic curve on 9~*, and so lie on the 

surface Z; we have thus obtained forty lines lying on )/, namely those trisecants 

of ~ two of whose intersections with & coincide. These forty lines, together 

with ~, make up the complete intersection of the two surfaces Z and /7~o. For  

we have seen that  )/ can be obtained us the surface of contact of @ and a primal 

of order twelve on which ~ is a quadruple curve; the complete intersection of 

such a primal with B~ ~ which is a curve of total order 240, consists of ,a counted 

sixteen times (~ being quadruple on both surfaces) and a curve of order eighty 

which, since the primal is a contact primal of g) and so touches Bi o wherever 

it meets it, must consist of a curve of order forty counted twice. 

A trisecant which touches & corresponds in ~ to a point of ~p such that  

two of the three quadrisecants which pass through it coincide; since there are 

G.N.Q. w ~6. 
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four such trisecants passing through the point O* of ~ we have correspondingly 

four such points lying on a quadrisecant s* of ~p; there are thus ten of these 

quadrisecants s*; this result also follows from the fact that  ~p can be generated 

by means of an involution of sets of six planes of the developable V. Now the 

line of ~:~ which represents the characteristic curve consisting of the four lines 

O* Q, O'R, O'V, O* W must pass through the four points of ~p which correspond 

to these tangent  trisecants of ~; it is therefore the quadrisecant s*. But, since 

the line represents a characteristic curve, it must be a generating line of V; 

hence the ten quadrisecants s* are generating lines of ~ .  

43. We now obtain some relations between loci connected with the two 

curves ~ and 74. On 74 there is an involution g~, the osculating solids of 74 at 

the six points of any set of g~ forming a hexahedron whose vertices are on ~. 

There are ten sets of gl which have double points; the ten points of 74 which 

are double points of sets of g~ form the Jacobian set J of g~. The solids which 

osculate 74 at the points of J are the ten solids ~*; the osculating plane of 7 ~ 

at a point of J is to be regarded as the plane of intersection of the two coin- 

cident solids ~* belonging to a hexahedron inscribed in ~, and we thus have 

ten planes a:': which are secant planes of 5 ~ and osculating planes of 74; the 

plane P X Y Z T U  found above is one of these. 

Let us consider the intersections of the curve 74 with the locus R~ 5. Each 

generating plane of R~ 5 is the plane of intersection of two osculating solids of 

7 ~, the points of contact of these two solids with 74 belonging to the same set 

of g~. But an osculating solid of 74 cannot meet 74 except at its point of oscul- 

ation; hence a point j of B~ 5 which lies on 74 must be such that  the two oscul- 

ating solids of 74 which contain the generating plane of R~ 5 through j both 

coincide with the osculating solid of 74 at j. Thus j must be one of the ten 

points of J, and ~he generating plane of t~ 5 which passes through j is the oscul 

ating plane of 74 at j, and one of the ten planes a*. There can be no other 

points common to R~ ~ and 7 ~ apart from the ten points of J ;  hence, since 74 

and / ~  must have sixty intersections in all, R~ ~ has six-point contact with 74 at 

each point of J. 

Suppose we take any locus R~ generated by a singly-infinite family of planes 

in [4], and consider the section of R 3 by an arbitrary solid S passing through 

one of its generating planes p: S meets the other generating planes in lines, 
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and these lines generate a ruled surface of which one generator g lies in p. Then 

S touches R 3 at every point of g. 

Apply this now to R~ ~, p being one of the planes a* and S the corresponding 

solid 2". In the first place let P be a~y point of 74 , t the tangent there, z Ihe 

osculating plane and S the osculating solid. The remaining osculating solids of 

74 meet S in.planes which osculate a twisted cubic 73; 73 passes through P, hav- 

ing t as its tangent and z as its osculating plane. A g~ on 74 gives correspond- 

ingly a g~ on 7 ". The planes of intersection of pairs of osculating solids of 74 

whose points of osculation belong to the same set of g~ generate a locus R~ ~, of 

which five generating planes lie in S; the lines of intersection of pairs of oscu- 

latino' planes of 73 whose points of osculation belong to the same set of the 

corresponding gl generate a ruled surface R~ ~ The five generating planes of /~5  

which lie in S, taken together with R~ ~ make up the complete intersection of 

S with R '53. There is a generator of -R~ ~ in each generating plane of R~ 5. Now 

let P be one of the ten p o i n t s j  belonging to J, so that  z is a plane a* and 

S a solid ~*. Then a* is a generating plane of R~ ~ and contains a generator 

of /~0. But, since j is a double point of the g~ on 74 it must also be a double 

point of the g~ on 73; thus a* osculates 73 at a double point of the g~, and 

therefore the tangent of 7 ~ at j,  which is also the tangent of 74 at j ,  is a gene- 

rator of R~ ~ I t  follows that ~* touches R~ 5 at every point of the tangent  of 

74 at j. Hence we have the result that a~y o~e of the ten solids ~* is the tangent 

solid of R~ ~ at all the points o./" the tangent to 74 at the point where it is osculated by ~*. 

Since the osculating plane a* of 74 at any one of the ten points of J i s  a 

secant plane of ~, having six intersections with ~, all the sixty intersections of 

with the sextic locus F~ generated by the osculating planes of 74 are accounted 

for in this way. 

44. Consider now the curve of intersection of B~ ~ and the sextic surface 

F~ generated by the tangents of 74. This curve includes the tangents of 74 at 

the ten points of J. Now the generating plane of R~ ~ at a point j of J is the 

osculating plane a*, which touches /~  at every point of the tangent to 74 at j,  

and the tangent solid of /~5 at every point of this tangent is ~*, the oscu- 

lating solid of 74 at j.  Consider then the section of this figure by an arbitrary 

solid S. The section of F~ is a curve f and that of R~ 5 a ruled surface r; 

the point in which the tangent to 74 at j meets S is common to f and r, the 

tangent of f being a generator of r and the osculating plane of f ,  which is the 
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plane in which S meets ~*, being the tangent plane of r. I t  follows that  this 

point counts for three among the intersections of f and r, and hence that  the 

tangents of 74 at the ten points of J are to be reckoned three times as part of 

the curve of intersection of B~ ~ and F~. 

The curve of intersection of /r and _N~ will include, apart from these ten 

tangents of 7 ~, a curve F. Through an arbitrary point there.pass four osculating 

solids of 74; if however the point lies on a tangent  of 74 the solid which oscu- 

lates 7 t at its point of contact with this tangent  counts for three among these 

four, and so there is only one other osculating solid of 74 passing through the 

point. Now any point of B~ ~ is common to the osculating solids of 74 at two 

points which belong to the same set of g~; if then a tangent of 7 ~ meets R~ ~, 

~nd its point of contact with y 4 is not one of the ten points of J, its intersec- 

tion with / ~  can only be one of its five intersections with those solids which 

osculate 74 at the remaining five points of that  set of g~ which contains the 

point of contact of the tangent with 7 ~. Hence a tangent  of 74 meets B~ ~ not 

in fifteen points but only in five distinct points; it will be an inflectional tangent  

of R~ 5 ~t each of these five points. Again: an arbitrary plane meets six tangents 

of 74, but if the plane lies in an osculating solid of 74 the tangent of 74 at the 

point of osculation of this solid counts for three among the six tangents which 

meet the plane. But a plane of B~ ~ is common to two osculating solids of 74 , 

and therefore the only tangents of 74 which it can meet are the two which touch 

74 at the points where these two solids osculate it. I t  follows that  the curve F 

meets each generating plane of / ~  in two points ~nd each tangent of 74 in five 

points, and that  F is to be included three times as part of the curve of inter- 

section of B~ ~ and F~. Since the complete curve of intersection of these two 

loci is of order 90, and since it includes ten tangents of 74 , each of which is to 

be counted three times, the curve F is of order 20. 

45. Consider now the curve of intersection of the scroll B~ ~ generated by 

the trisecants of 9, and the locus F~, generated by the osculating planes of 74. 

The generating planes of ]~'~ include the ten planes a* and each of these, being 

a secant plane of 9, contains four generators of 1~0; we have thus forty gene- 

rators of Ri o lying on F~. The complete intersection of B~ ~ and F~ will also 

include, apart from these forty lines, a curve A. 

Any generator of B~ ~ is the intersection of three osculating solids of 74, 

and therefore meets the three osculating planes of 7 ~ which lie in these respec- 
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tire solids; moreover any osculating solid of 7 4 is the tangent solid of ~-6 at 

every point of the corresponding osculating plane, so that  the generators of It~ ~ 

are tritangents of F~. The intersections of a generator of /~0 with the sextic 

locus iv~ are thus all accounted for. Again: take a generating plane z of fi,6 3~ 

other than the ten planes ~*. The point of contact of ~ and 7 4 determines a 

set of g~; the osculating solids of 7 4 at the remaining five points of this set 

meet z in five lines, and the ten vertices of the pentagram formed by these 

lines are on R~ ~ Conversely: let P be an intersection of z and R~ ~ Then 

through P there pass three osculating solids of 7 * whose points of osculation all 

belong to the same set of g~. But there are only two osculating solids of 7 4 

passing through P, apart from the osculating solid which contains z;  hence, 

since ~v is not one of the planes a*, these other two solids must osculate 7 4 in 

points which belong to that  set of g~ determined by the point of contact of 

and 7 4 . Thus P is one of the ten vertices of the pentagram just found, and 

the intersections of z and /~2o 2 consist of the ten vertices of this pentagram, 

counted twice. The curve A therefore meets each generator of Ii~ ~ in three 

points and each generating plane of F~ in ten points; R~ ~ and F~ intersect in the 

forty lines already noticed and in the curve A counted twice. Since the com- 

plete intersection is of order ~2o, A must be of order 4 o. 

46. Let us now consider the configuration of points on the plane quintic 

corresponding to the intersections of ~ with 5*. Since ~* meets the six cones 

(P), (X), (Y), (Z), (T), (U) in plane-pairs the contact quartic of ~ whose points re- 

present quadrics touching ~*  has nodes at the six points p, x, y, z, t, u of ~; 

hence this contact quartic, having six nodes, must consist of four lines whose 

intersections are these six points. The remaining intersections of the quartic 

with ~ consist of four contacts at q, r, v, w; since the cones (P), (X), (Y)all  pass 

through Q the three points p, x, y of ~ lie on the tangent  of ~ at q; similarly 

p t z  touches .~ at r, u z x  touches ~ at v and u y t  touches ~ at w; the contact 

quartic associated with ~* is an in-and-cirCumscribed quadrilateral, and ~ has ten 

such in-and-circumscribed quadrilaterals. Since the cones (Q), (R), (V), (W), (0") 

all belong to a pencil the four points of contact of the sides of the in-and-cir- 

cumscribed quadrilateral with ~ are collinear, and the line on which they lie 

meets ~ again in 0". 

The vertices of the quadrilateral formed by the four lines p x y ,  p t z ,  uzx ,  

u y t  correspond to the six intersections of ~ with a secant plane; hence this 
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quadrilateral is part of one of the inscribed hexagrams of ~; the other two sides 

of this hexagram both coincide with qrvwo*. Now through any point of ~ there 

pass two sides of an inscribed hexagram, these being the two tangents which 

can be drawn from the point to the conic 7 which is the envelope of the sides 

of the hexagrams; for the point 0* however these two sides coincide, so that  o* 

must be on 7. This again shows that  there are ten points o*, since 7 meets 

in ten points. 

Those quadrics of the net in [4] which touch any one of the solids 2~ are 

represented in the plane of ~ by t h e  points of a contact quartic which breaks 

up into two tr i tangent conics of ~; of the system of ~* contact quartics there 

are therefore ~ which break up in this way, and these include ten special 

quartics which break up further into in-and-circumscribed quadrilaterals. Since 

the developable D is of class twenty there are forty solids 2~ touching an arbi- 

trary quadric; hence through an arbitrary po in t  in the plane of ~ there pass 

forty of the composite contact quartics. 

47. The quadrics of the net which are represented by the points of t h e  

conic 7 have as their envelope a quartic primal ~* on which the base curve C 

of the net of quadrics is a double curve (G.N.Q. ~ 31). The forty intersections 

of ~* with ~ correspond to the forty points of ~ which are the points of con- 

tact with ~ of the forty common tangents of ~ and 7; in other words they cor- 

respond to the points where ~ is touched by the sides of its inscribed hexagrams. 

These forty points are the ten sets of four points such as q, r, v, w; hence the 

forty points of contact of ~ with those of its tri.~eeants which touch it lie on a 

quartic primal ~* having C as a double curve. Tow if K is any intersection of 

with a quartic primal on which C is a double curve the tangent  solid of this 

primal at K is the solid ~ associated with K; hence, since 2~* is the solid 

associated with each vertex of the tetrahedron Q R V W,  each of the ten solids 

2~* is a quadritangent solid of ~* and so meets ~* in a quartic surface with 

twelve nodes. Through any point o'f ~9 there pass four chords of C, these all 

lying in the solid W associated with the point; in particular the four chords of 

C which pass through ~ny one of the points Q,/~, V, W all lie in 2". Where- 

fore the eight base points of the net of quadric surfaces in which 2~* meets the 

quadrics of the net in [4] can be regarded as two tetrahedra in perspective from 

any one of the points Q, R, V, W; hence these eight base points form, when 
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taken with Q, R, V, W, a set of three desmic tetrahedra. The section of ~* by 

~* is thus a desmic quartic surface. 

48. We can obtain a form for the equations of the quadrics if we take 

as simplex of reference the simplex formed by a solid ~* and the four other 

faces of the hexahedron of which ~* is two coincident faces. Take the equa- 

tions of the four solids O*RVW, O*VWQ, O*WQI~, O*QRV to be X , ~ o ,  

X ~ - - o ,  X~ = o, X ~  o respectively, and let the solid Q R V W  have the equa- 

tion X~-~ o. Since any quadric of the net  is met by ~* in a surface with re- 

gard to which Q R V W  is ~ self-polar tetrahedron its equation must be of the 

form 

a I X~  -~- a~ X~ + a s X~ + a~ X~ + X~ (~1 X l  "~- a o X 2 + c~ 3 X 3 ~- ~4 X 4  "~- ~5 X5)  = o .  

The polar solid of 0* in regard to this quadric is 

a~X1 + a~X~ + asX ~ + %X~ + asX.~, = o, 

and this must meet X 5 = o  in the secant plane conjugate to 0" ;  we can sup- 

pose that  this secant plane is given b y  

X a + X ~ + X ~  + X 4 = X s = - o  , 

and therefore that  the equation of the quadric is 

a 2 a 72 a~X~l + a.~X~ + ~X~ + a~X~ + ~ X ~ :  zaX~(X~ + X,~ + X3 + X~ + X~). 

He'nee, if a net of quadrics can be reduced to the canonical form II ,  with the 

coefficients satisfying J - ~  o, it can be reduced, and that  in ten ways, to the 

more special canonical form 

where 

I f  we write 

alX~ + a~X~ + a,~X] + a 4Xi + a~Xg + 2 a X ~ X ~ = o ,  

blX~ + b~X~ + b3X~ + b~X~ + b~X~ + z f l X s X s = o ,  

cI X~ + c~ X~ + c~ X~ + c~ X~ + es X~ + 27 Xs Xs = o, 

XI + X~ + Xs + X~ + Xs + Xo ~ o. 

~ i~xa~+yb~+zc~ ,  - - V ~ - - x a + y f i + Z T ;  

. . . . . . . . . .  IV 

the diseriminant of a general quadric of the net IV is 

40--35150.  Acta  mathematica.  66. Imprim6 le 26 octobre 1935, 
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o ~2 

0 0 

0 0 

7 7 

o o 7 

0 0 7 

~s o V 

o ~4 7 

7 7 ~5+27 

The Jacobian curve of the net is thus in birational correspondence with the 

plane quintic 

~1 ~2 ~3 ~4 (~5 -~ 2 7) = 7 2 (~2 ~3 ~ ~- ~3 ~4 ~1 "{- ~4 ~1 ~2 "~- ~1 ~2 ~3)" 

This qnintic curve is circumscribed to the quadrilateral fformed by the four lines 

~1=o, ~.,=o, ~a-o, ~ = o .  

Also each of these four lines touches the quintic, the four points of contact all 

lying on 7 = o. 

49. We can write down the equation of the primal ~* when the quadrics 

of the net are given by IV. Calling the three equations of IV 

q0=o, q~=o, Q~=o 

respectively, the equation of ~* is 

AQo ~+ BQ~ + CQ~W2F92Q~ + 2GQ29o + 2 H Q o 9 1 - o ,  
where 

A1 ~ + B m  s +  Cn ~ 4 2 F m n  + 2 G n l  + 2 H l m = o  

is the tangential equation of 7. But 

the five lines ~, = o, ~ = o, ~a = o, 

~* in the form 

7 is determined from the fact that it touches 

~ = o, 7 ~-o, and we have the equation of 

Q~ Q~ Q~ (21Q~ Q~Qo Qo Q~ 

a~ b~ c~ bl cl el al as bl 

a~ b~ c~ b~c 2 c2a~ a~b.2 
2 2 2 a ~ b~ ca b 8 c a c a (t a a s b a 

a~ b] c] b~c~ c4a ~ a~b~ 

a~ g~ 7 ~ f17 7 a aft 

= 0 .  
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When X~ is put identically equal to zero in this equation there results the equa- 

tion of the desmic surface which is the section of ~* by ~*. 

I t  has been seen that  the quadrics of the net reciprocate the curve 7 ~ into 

the curves ql~ lying on the primal q~: the primal ~* is the envelope of those 

quadrics of the net which reciprocate 7 ~ into the characteristic curves q. 

The Net of  Polar  Quadrics of Points  of a Plane in regard to a Segre 

Cubic Primal. 

50. The equation to a Segre cubic primal is 

X~ + X~ + X~ + x~ + X~ 4. X ~ = o ,  

where the six forms X, which are linear homogeneous functions of five coordi- 

nates, satisfy the identity 

x1 + x o+ X~ + x 4 +  x ~ +  x~---o.  

The ten points for which 

x~ = z~ = x~ - -  x~ = x~ - x~, 

i.e. those points for which three of the six coordinates have the value + I and 

the remaining three the v a l u e -  i, are nodes of the primal; and the fifteen 

planes whose equations are 

Xi  + X j =  Xk + X ~ =  X ~  + X n = o ,  

where (idklmn) is a permutation of (I23456), all lie on the primal. Each plane 

contains four nodes and each node lies in six planes. Call the primal t2. 

The hexahedron i) bounded by the six solids X = o has important relations 1 

with s and Y2 is uniquely determined when ~ is given. The fifteen vertices of 

can be divided in fifteen ways into sets of three such that  no two vertices of 

the same set lie on the same edge of ~; the fifteen planes determined by these 

sets of three vertices are the fifteen planes on ~.  The three vertices of ~) be- 

longing to any one of the sets are the diagonal points of the quadrangle formed 

by the four nodes of ~ which lie in the plane of the set; e.g. the plane 

1 Concerning the Segre primal and its associated hexahedron see Castelnuovo: Atti ~[s~. 
Veneto (6), 6 (i888), 547--565. 
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+ + X =o 

contains the four nodes 

( I , - - I ,  I , - - I ,  I , - - I ) ;  

and the three points 

( - - I ,  I, I , - - I ,  I , - - I ) ;  (I, - - I , - - I ,  I, I , - - I ) ;  

(I, - - I ,  I, ~ I ,  - - I ,  I) 

( I , - - I ,  O, O, O, 0); (0, O, I , - - I ,  O, 0); (0, O, O, O, I , - - I ) .  

The last three points are vertices of w and are the diagonal points of the qua- 

drangle formed by the preceding four; no two of them lie on the same edge of ~. 

The Hessian of t2 is the quintic primal Y whose equation is 

X ]  1 ~- X21 AF X31 -~ X4 1 -~ X51 ~- X 6 1 :  O; 

this also contains the fifteen planes which lie on t~, these planes forming the 

complete intersection of t2 and Y. The polar quadric of the point x, whose 

coordinates are (xl, x~, x~, x4, xs, x6) , in regard to ~ is 

xlX~ + x~X~ + x~X~ + x4X~ + xsX~ + x6X3 = o. 

If  this quadric is a cone then x lies on Y; also the vertex x' of the cone lies 

on Y, and the vertex of the polar cone of x' is x. The primal Y, as well as 

containing the fifteen planes of Y2, also contains the fifteen planes of intersection 

of the pairs of faces of ~; the twenty edges of ~ are double lines on Y and the 

fifteen vertices of ~) are triple points of Y; this follows immediately from the 

form of the equation of Y. The polar cones of the points in a plane of ~ all 

have the opposite vertex of ~) for their common vertex. The polar cones of the 

points of an edge of ~ are line-cones with the opposite edge of ~ for vertex; 

the polar cone of a vertex of ~ is a pair of solids passing through the opposite 

plane of ~ and harmonically conjugate in regard to the two faces of ~ which 

intersect in that  plane. All this follows at once if the appropriate values for 

the coordinates x are substituted in the equation of the polar quadric. I t  also 

follows easily that  the polar cone of any point in one of the fifteen planes of t2 

has its vertex in that  same plane; e.g. the polar cone of the point (x, --x,  x', 

--x',  x " , - - x" ) ,  which lies in the plane 

+ x .  + x , =  + X =o, 
is 
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x(X~ --  X~) + x '  (X~--  X~) + x " ( X ~ - -  X~) = o, 

and the ver tex of this cone is (x- ' ,  - - x  -1, x '-1, - - x ' - ' ,  x " - ' ,  - -x"-~) .  

5I. Consider now the net  of polar quadrics of the points of a plane z i n  

regard  to s The cones of the net  are the polars of the  points  of the section 

of Y by z ;  ~ is a quintic curve circumscribed to the hexagram formed by the 

lines in which the faces of D meet  ~, and ~ is in b i ra t ional  correspondence w i t h '  

the  curve ~, lying on Y, which is the  locus of the vertices of the  cones. Since 

each plane of ~ meets ~ in a ver tex of the hexagram ~ passes t h ro u g h  each 

ver tex of I?, and the vert ices of I? correspond,  in the bi ra t ional  correspondence 

between ~ and ~, to the  vert ices of the hexagram in z.  Also each plane on Y2 

meets z,  so tha t  ,,~ meets  each plane of s in one point  o ther  than  the three  

vertices of ~ which lie on tha t  plane. Since all the  polar quadries pass th rough  

all the  nodes of t2 the fifteen planes on /2 are quadr iseeant  planes bo th  of the 

Jaeobian  curve ~ and of the base curve C of the net  of quadries. The Jacobian  

curve is circumscribed to ~ and is such t h a t  any plane which contains three ver- 

tices, no two of which lie on the same edge of ~, meets the curve in a fourth point. 

This proper ty  of the Jacob ian  curve of the net  of polar quadries of the points 

of a plane in regard  to Segre cubic pr imal  does not  hold for  the  more general  

net  of quadries I I  whose Jaeobian  curve is c ircumscribed to a hexahedron.  I t  

can c~sity be shown tha t  if the  plane 

X I +  X ~ = - : X . ~ + X 4 = X s + X 6 = o ,  

which contains three  vertices of ~ no two of which lie on the same edge, meets  

the  Jacobian  curve of the  net  I I  in a fou r th  point,  then  the  coefficients in I I  

mus t  satisfy the condi t ion 

112,34,  561 ~ 

a 1 q -  a o a 3 q-  a 4 a 5 -1- a 6 

bl + b~ ba + b4 b5 + b6 

c 1 ~- % e3 �9 c 4 e 5 + c 6 

~ o .  

Moreover,  when this de te rminan t  vanishes the  conics in which the plane is me t  

by the quadrics of the net  all belong to the same pencil, so tha t  the plane is 

quadr isecant  plane not  only of the Jacobian  curve but  also of the base-curve of 

the net.  

This condition,  t o g e t h e r  with the four teen  similar condit ions,  is cer ta inly  

satisfied for  the net  of polar  quadrics;  for  the quadrie  
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X 2 2 a~X~l + a~ ~ + a~X~ + a4X~ + a~X~ + aoX]~-o 

is the polar quadric of a point in regard to ~ if and only if 

a~ + a~-]- a s + a 4 + a 5 + a 6 - -O.  

Similar conditions for the coefficients b and c ensure that  the fifteen determi- 

nants ]ij, kl, mn] all vanish. 

52. I t  follows, exactly as in w 14, tha t  ~ is in birational correspondence 

with the plane quintic 

but now we have the additional information that  one of the linear identities 

satisfied by the six forms ~ is 

~ , + ~ + ~ + ~ + ~ + ~ o .  

Now this identity shows that  three lines such as 

~ + ~ j = o ,  _~+~--o, ~ + ~ , , = o ,  

are concurrent, and it will be remembered that  these lines are tangents of the 

plane quintic ~ at vertices of its inscribed hexagram. Moreover the equation of 

is satisfied when the equations of these three lines are simultaneously satisfied. 

Hence the Jacobian cur~:e of the net @polar quadrics is in birational correspon- 

dence with a plane quintic which is circumscribed to a hexagram, and which is 

such that i f  any three vertices of the hexagram are taken such that no two of them 

lie on the same side, the tangent," of the quintic at these three vertices are concurrent 

in a point <f the cur~;e. The quadrilateral formed by any four sides of the hexa- 

gram is such that  the tangents of the quintic at any pair of opposite vertices 

intersect on the curve; the three points of the quintic so obtained from the three 

pairs of opposite vertices are collinear, and the line on which they lie is the 

tangent of the quintic at the intersection of the remaining two sides of the 

hexagram. 

The plane which contains any set of three vertices of ~)no two of which 

lie on the same edge of ~ meets ~ in a fourth point; since the plane is a qua- 

drisecant plane of the base curve of the net of quadrics, and since this fourth 

point of ~ is not a diagonal point of the quadrangle formed by the four points 
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of C, the cone whose vertex is at this fourth point must contain the plane en- 

tirely. Thus the point of the plane quintic ~ which corresponds to this fourth 

point of $ must lie on the three tangents of ~ at the points which correspond 

to the three vertices of ~. We thus obtain again the fifteen concurrent triads 

o f  tangents of ~; the points of contact are vertices of the inscribed hexagram 

and the points of concurrence are on ~. 

The linear identity between the six forms ~ shows that  the two lines 

~ + ~ + ~ k = o  a n d ~ + ~ + ~ = o  

coincide: the tangents of ~ a t  the three vertices of a triangle whose sides belong 

to the inscribed hexagram meet the opposite sides of the triangle in three col- 

linear points; the lines so obtained from two triangles whose sides together con- 

stitute the whole hexagram coincide for the special quintic curve we are now 

considering. 

I f  PQR is a trisecant of ~ the corresponding points p, q, r are the vertices 

of a triangle whose sides belong to the hexagram inscribed in ~; the tangents 

of ~ at the vertices of this triangle meet the opposite sides in three collinear 

points, and it has been shown (G.N.Q. w z6) that the points of the line on 

which these three points lie represent the quadrics of a pencil in [4], the pencil 

being defined by the fact that  the Hessian points of the triad PQR are a pair 

of conjugate points in regard to all the quadrics belonging to it. I f  then the 

net of quadrics in [4] consists of the polar quadrics of the points of a plane in 

regard to a Segre primal, and if PQR and U V  W are a pair of opposite edges 

of ~ and so of conjugate trisecants of ~, every quadric of the net which is such 

tha t  the Hessian points of either triad, P Q R  or U V W, are conjugate in regard 

to it is also such that  the Hessian points of the other triad are conjugate in 

regard to it. 

53. I t  has been shown that  any plane quintic which is in birational cor- 

respondence with the Jacobian curve of a net of polar quadrics has an inscribed 

hexagram with certain properties; it may now be shown, conversely, that  such a 

plane quintic can always be put into birational correspondence with a Jacobian 

curve of a net of polar quadrics. 

The plane quintic ~ is circumscribed to a hexagram; it may therefore be 

supposed that, absorbing certain constants into the linear forms ~ if necessary, 

its equation is 
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The tangent of ~ at the intersection of the two lines ~ i = 0  and ~ j =  o is 

~i + ~j = o. Take now any quadrilateral formed by four of the six sides of the 

hexagram, say by ~ i = o ,  ~j=O, ~k=O, ~/=O; then the two tangents of 

at any pair of opposite vertices of this quadrilateral intersect on the line 

~ +  ~j+ ~ + ~ = o .  But ~ is to be such that  this line is the tangent  ~t the 

intersection of the two remaining sides of the hexagram; in other words it must 

be the same line as ~m + ~,~= o. Hence there is an identity 

#~ § ~j + ~ + ~ + Q (#m + #,,) ---- O, 

where @ is a constant. Similarly there is another identity 

~ + ~J + ~ + ~ + e' (~  + ~) =- o. 

From these two identities it follows that  

~ + ~ @~ + ~)  ~ ~ + e' (~,,, + ~), 

and therefore, since the three lines El= o, ~ ~-o,  ~ ~-o are not concurrent, 

we must have @ = @'-- I. Wherefore the six linear forms ~ satisfy the identity 

~ 1 + ~ + ~ + ~ + ~ + ~ o .  

Now the quintic curve ~, having an inscribed hexagram, can, as has been seen, 

be put into birational correspondence with the Jaeobian curve of the net of 

quadries II, the six linear forms X being such that  

X I +  X ~ +  X 3 +  324+ X s +  X 6 ~ o .  

But now the identity which is satisfied by the six forms ~ shows that  all the 

quadrics of the net I I  are, in the present instance, polar quadrics of points in 

regard to the primal 

X ~ 3 X~ . X ~ + ~ 2 + X ~ + X ~ +  + X ~ - o .  

and this is, in virtue of the identity satisfied by the six forms X, a Segre 

primal. 

54. In  order tha t  the net of quadrics I I  should be the net of polar quadrics 

of points of a plane in regard to a Segre primal it is necessary and sufficient 
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t h a t  the condit ions 
~ a i  ~ Y. bi : -  Y. ci ~- o 

should be satisfied; when these relat ions are satisfied the fifteen de te rminan ts  

] i j ,  k l ,  m n ]  all vanish. I t  is there fore  na tura l  to enquire  whe the r  the net  I I  

can be specialised in such a way tha t  some, but  not  all, of these fifteen deter- 

minants  vanish. Associated with each vanishing de te rminan t  there  is a quadrise- 

cant  plane of ~ .  Also when [ i j ,  k l ,  ran] = o we have a set of three  concur ren t  

tangents  of ~, namely 

and conversely. In  a general  net  I I  there  is no such concur ren t  t r iad :  for  the 

ne t  of polar quadrics there  are fifteen such concur ren t  tr iads:  we wish to con- 

sider whether  there  are any in te rmedia te  cases. I t  must  always be borne in 

mind tha t  none of the twenty  de te rminan ts  such as 

ai  a j  

oi cj Ck 

vanishes;  for  the  vanishing of such a de te rminan t  means  t h a t  a quadric  of the  

ne t  I I  can  be found  whose equal.ion is ob ta ined  by equat ing  to  zero the  sum 

of only three  squares X{, X~,  X:'~, such a quadric  is a line-cone, and it  is 

always supposed t ha t  no member  of the  net  of quadrics can be a line-cone. The  

six l inear forms [ satisfy three  l inear  identi t ies;  in the in te rmedia te  cases tha t  

we now wish to consider it  must  not  be possible to deduce f rom these three  

the  ident i ty  ~ [ - - o ,  nor  mus t  i t  be possible to obtain, by combining the three  

identi t ies in any way, an ident i ty  involving only th ree  of the  six forms ~. 

I f  one of the identi t ies satisfied by the ,six forms forms ~ is 

e + + + + + - =  o ,  

where Q, a, ~ are unequal  nmner ica l  constants,  then  a single de te rminan t  

l i j ,  ]~l, m n  I vanishes, and we have one concur ren t  t r iad of t angents  of ~. Also 

there  is one plane which contains  th ree  vertices of w no two of  which lie on 

the same edge of ~, and which meets ~ in a four th  point  o ther  t han  these 

three  vertices; the equat ions of this plane are 

41--35150. Acta mathematica. 66. Imprim6 le 26 octobre 1935. 
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Suppose now that  the six forms ~ satisfy the identity 

(i, + ij) + i~ + i~ + ~ + ~ --- o ,  

where Q is a constant different from unity; then 

lij ,  kl, rn.I ~-[ij, kin, "ll =-[ij ,k . ,Zm[= o, 

three of the f i f t een  determinants vanish!ng. The plane quintic ~ now has an 

inscribed hexagram with three concurrent triads of tangents. The tangent  

~-§ g ; = o  belongs to each of these three triads; it meets ~ in three points 

other than its point of contact, and through each of these three points there 

pass two other tangents of ~ whose points of contact are a pair of opposite 

vertices of the quadrilateral formed by the four sides of the hex~o.ram other 

than gi ~ o ~nd g j - - o .  

The net of quadrics I I  with coefficients satisfying the three relations 

lij ,  k~, ~ 1  = I iJ ,  ~m, ~ 1  = l i j ,  k~, ~.~1 = o  

has a Jaeobian curve ~ of which the three planes 

X ,  + X j =  X~ + X~ : X,~ + X .  = o ,  

X ,  + X j ~ -  Xk + Xm = X,, + X~ : o ,  

X i  + X ~ X k  + X~ : X ,  + X ~ : o  

�9 re all quadrisecant planes; these three planes all lie in the solid Xi  + Xj  = o 

~nd intersect where Xk -~ X1 ~ Xm ~ X ,  = o. 

I t  may be pointed out tha t  if two of the three determinants 

]ij, kl, rn.I, lid, km, .Zl, lid, k . ,  lm] 

vanish then the other one must vanish Mso. For suppose, for example, that  

liJ, kin, ~.ll-~ lij, kn, lml-~ o. 

Then there exist two identities 

@~ + ~j) + o ( ~  + !.~) § ~ ( ~  + Is) - o ,  

(~ + ~.) + ~' (~ + ~,) + ~' (~ + ~,,~)-- o. 

or o' = ~ '  then the third determinant  l i j ,  ld,  mn I I f  either a ~ ,  will cer- 
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tMnly vanish. I f  neither a ~ - ~  nor a ' - - ~ '  we deduce from these two identities 

the third identity. 

(o - o' - + + s j) + - + + + - o .  

If  the coefficients here vanish we must have a = a' and v ~ T'; the two previous 

identities then give a - - a ' ~ - v : =  ~', and we are supposing this not to be so. 

I f  the coefficients in the last identity do not vanish, then we deduce 

lij, k l ,m. l=o.  

55. The gaeobian curve ,~ of the net of polar quadrics of the points of 

a plane n in regard to a Segre cubic primal is cirSumscribed to a hexahedron 

and, in general, ~ is the only hexahedron inscribed in ~; but • can be 

chosen so that  ~ is circumscribed to an infinity of hexahedra. For suppose, the 

cubic primal t? and the associated hexahedron ~ being given, z is chosen so 

that  the six lines in which it is met by the faces of D are tangents to the 

same conic; of the ~6 planes of [4] there are ~5 satisfying this condition, 

those planes which fulfil the condition a.nd lie in an arbitrary solid being the 

tangent planes of the surface reciprocal t o  a Weddle surface. The plane 

meets the Hessian Y in a quintie curve ~, and a hexagram is inscribed in 

and circumscribed to a conic; hence ~ has an infinity of inscribed hexagrams 

whose sides all touch this same conic (cf. w I6). Now the polar cones, in 

regard to ~2, of the points of ~ lie on a curve ,9, and those points of zc whose 

polar quadrics, in regard to s touch an arbitrary solid lie on a contact quartic 

of _~. But if the arbitrary solid is chosen to be one of the six faces of ~ the 

ten points of contact of the quartic curve with ~ are the ten vertices of the 

pentagram formed by the lines in which the five remaining faces of ~ meet z. 

I t  follows that  the system of contact quarries of ~ associated with the solids of 

[4] must be the same system as that  which is determined, as in w 18, by the 

pentagrams which belong to the inscribed hexagrams of ~. Hence, just as in 

w I8, ,a has an infinity of inscribed hexahedra. 

56. Of the inscribed hexagrams of ~ there is one such that  the tangents 

at its fifteen vertices are a set of fifteen lines which are concurrent in threes in 

fifteen points. The equation of a plane quintic with these properties can easily 

be obtained. For suppose the sides of the hexagrams all touch the conic 

x z  = y ~ ,  and that  ~ is circumscribed to the hexagram formed by the six lines 
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x - -  2 y O i  + z O ]  - - ~ o .  ( i =  I, 2~ 3,4,  5, 6). 
Le t  us write 

f ( t )  ~- ( t  - -  01)( t  - -  0~) (t - -  0~) (t  - -  0~) (t  - -  05) ( t  - -  06), 

2 PO x - 2 u 0i + z 0~ - -  ~ i f  ( ~); 

then  the three  l inear  identi t ies  connect ing the six forms ~ are 

2 ~ o ,  :~0~ ,~ -~o ,  ~ 0 ~ o .  

Since the quintic circumscribes the hexagram formed by the six lines ~ = o we 

may suppose tha t  i t  has an equat ion of the fo rm 

A~ ~-~ + A2 ~:-r + A~ g~-i + A~ ~T ~ + A5 ~;-~ + A6 ~;-~ = o, 

the t a nge n t  at  the point  ~ ~ ~j ~ o then  being A~ -1 ~,: + Aj -~ ~3" - o. The fifteen 

tangents  at  the vertices of the  hexagram will then  cer ta in ly  form fifteen eon- 

cur ren t  t r iads  if we choose 

A-[ -I =- q + a Oi + ~ 0] ,  

the  constants  Q, a, z being the same for  all six values of i .  Hence,  given the 

conic and the hexagram,  any quintic curve of the doubly-infinite family given 

by the equat ion 
6 

y ~ f '  (o~) (e + ,,o, + ~o: . ) -1 (~_  ~yo ,  + zo~)--~ = o 
i = 1  

fulfils the required condit ions.  

The F r e e d o m s  o f  t he  Di f fe ren t  K i n d s  o f  J aeo b i an  Curves .  

57. The word >>freedom>> is here  used in the  sense of the  Germun K o n -  

s t a n t e n z a h l ;  when we say tha t  a curve, with cer ta in  specified propert ies  and 

assumed to lie in a definite space In], is of f reedom f we mean t h a t  the mani- 

fold of curves in [n] with tbese specified proper t ies  is of dimension f ;  or, other- 

wise, tha t  a curve with these specified proper t ies  can be regarded  as belonging 

to a set of a finite number  of such curves if we assign the  values of f para- 

meters  on which the  curve depends. For  example:  elliptic plane cubics are of 

f reedom 9, ra t ional  plane cubics of f reedom 8; plane cubics with a node at  

fixed point  of f reedom 5, and so on. 
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The freedom of spaces [k] in In] is (k + I ) ( n - - k ) ;  we shall appeal  to this 

result  occasionally in the  par t icu lar  case k ~ z, using the fact  t ha t  the f reedom 

of planes in [~] is 3 n - - 6 .  

58. The Jacobian  curve of a ne t  of quadrics  in [41 is of order  IO and 

genus 6, and is a par t icu lar  case of the determi~antal curve whose equat ions are 

obtained by equat ing to zero all the  three-rowed de te rminants  of a mat r ix  of 

three  rows and five columns whose elements  are all l inear  funct ions  of the  

coordinates.  Such a de te rminan ta l  curve is genera ted  by the intersect ions  of 

sets of corresponding solids of five project ively re la ted doubly-infinite systems; 

it is not, however,  even for  the most  general  of these project ive generat ions,  

the most  general  curve of order  lo  and genus 6 in [4]. I t  follows f rom a resul t  

obta ined by Brill  and NSther  ~ tha t  the f reedom of the most  general  curve of 

order  Io and genus 6 in I4] is 45, while it  is found  by Room ~ t h a t  the f reedom 

of the de te rminan ta l  curve is 42. The f reedom of the Jacobian  curve can be 

calculated quite easily. The quadrics in [4] are of f reedom I4, this being one 

less than the number  of terms in a homogeneous  quadrat ic  polynominal  in five 

variables; moreover  they fo rm a l inear  system, and so can be regarded  as points 

in [I4]. The f reedom of nets of quadrics in [4] is therefore  the same as t h a t  of 

planes in [I4], which is 36. Since each net  of quadrics  determines  a Jacobian  

curve, and conversely, we have our  first result :  the Jacobian curve of  a general 

net of  quadrics in [4] is o f freedom 26. Inc identa l ly  it  follows tha t  in order  to 

be a Jacobian  curve a general  curve of order  Io and genus 6 in [4] must  be 

subjected to nine condit ions while a de te rminan ta l  curve must  be subjected to 

six conditions. 

59. The f reedom of the general  Jacobian  curve can also be obta ined by 

an appeal  to the canonical  form I. A given net  of quadrics can be reduced  to 

the canonical  form I in a finite number  of ways, and the net  can be identified 

in two stages; first by ident i fy ing the seven l inear  forms whose squares occur  

in I and secondly by iden t i fy ing  the coefficients. Now of the seven l inear  forms 

Z is completely de termined  when X1, Xe, X3, :Y1, :Y~, Y.~ are given, and these 

last  six forms can represent  any six solids in the space. Since the ident i t ies  

X l - ~  X2Av X3 ~ z ~  ~r12F ]T2-~- ~3 

1 Math. Annalen 7 (I874), 308. 
2 ~Proc. London Math. Soc. (2), 36 (1933), 25--26. 
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mus t  be satisfied the  seven l inear  forms  are, except  for  a cons tan t  mul t ip l i e r  

the  same for  all, comple te ly  identified when  the  six solids have once been 

chosen. Then  the  quadrics  whose equat ions  are ob ta ined  by equa t ing  to zero a 

sum of mul t ip les  of squares  of these  seven fo rms  cons t i tu te  a l inear  sys tem of 

dimension 6 and  so can be r ega rded  as points  in [6]; the  f reedom of the' ne ts  I 

when the six solids are chosen is the re fo re  the  same as the f r eedom of planes 

in [6], which is I2. Bu t  six a rb i t r a ry  solids in [4] make  up a conf igura t ion  

whose f r eedom is 6 . 4  = 24; hence the  f r eedom of the  genera l  net  of quadrics  

I is 24 + I2 = 36, as before.  

I f  now we wish to calcula te  the  f reedom of the J acob i an  curve which  has  

two pairs  of concur ren t  t r i secants  we may  aga in  appea l  to the  canonical  f o r m  I .  

As before  we have  a configurat ion of six a rb i t r a ry  solids wi th  f reedom 24, but  

we canno t  now choose every net  of quadr ics  I ,  only those  for  which a d e t e r m i n a n t  

e' b 

vanishes be ing eligible; in o ther  words, when  we regard  the  quadries  as points  

of  [6], the six solids in [4] hav ing  been previously  chosen, we canno t  t ake  every 

plane of [61 and  so obtain a ne t  of quadrics ;  if we wish to obta in  a J a c o b i a n  

curve with  two pairs  of concur ren t  t r i seeants  we may  only choose those planes  

one of whose coordinates  vanishes.  The  f r eedom of the  planes t ha t  may  be 

chosen is the re fo re  not  I2 but  I I, and  the  J a c o b i a n  curve now has  f reedom 35. 

Similar ly if  two or th ree  of the de t e rminan t s  

a 1 c b~ de c b~ ~3 C b 3 

c" 

vanish  the  J aco b i an  curve has f reedom 34 or 33 respectively.  

6o. We  pass now to the ca lcula t ion  of the f reedom of the  J acob i an  curve 

wi th  four  concur ren t  t r isecants .  

W e  can choose any point  0 of [4] to be the  point  t h r o u g h  which the  four  

t r i secants  pass, thus  impos ing  four  condit ions on the  complete  conf igurat ion.  W e  

then  choose any four  solids t h r o u g h  0;  when 0 has  been  fixed such a set  of 

fpur  solids has f reedom I2, the  same as the  f reedom of t e t r a h e d r a  in [31; the  

lines of in tersect ion of sets of th ree  of these  four  solids can be t aken  to be the  
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four trisecants through 0. We then may choose the secant plane c~ conjugate 

to 0 to be any general plane of [41; thus when 0 and the four trisecants through 

it are given the choice of a depends on 6 constants, this being the number of 

constants on which a plane in [4] depends. We now have to choose the net of 

quadrics so that  each of its members has the following property: every point of 

the line of intersection of a with any one of the four solids through 0 is con- 

jugate, in regard to the quadric, to every point of the line of intersection of 

the remaining three solids through O. We saw in w II that, when a and the 

four trisecants through 0 are given, such quadrics form a linear system of 

freedom 6: hence the nets consisting of such quadrics are of freedom I2, this 

being the freedom of planes in [6]. Wherefore the freedom of a Jacobian curve 

with four concurrent trisecants is 

4 +  I2 -1- 6 -[- 12---34. 

A Jacobian curve must therefore be subjected to two conditions if it is to have 

four concurrent trisecants. 

61. A ne~ of quadries whose Jacobian curve has an inscribed hexahedron 

can be reduced to the canonical form II,  and in only one way. I f  then we 

choose six arbitrary solids to be the faces of the hexahedron the six linear 

forms X, which are to satisfy the identity 

X ~ +  X, ,+  X ~ +  X ~ + X ~ +  X 6 ~ o ,  

are completely determined except for a constant nmltiplier the same for all. 

Every quadrie of the net must then belong to the linear system of quadries 

determined by the squares of these six forms X, and this linear system is of 

dimension 5; hence, when the six solids are given, the net of quadries has the 

same freedom as a plane in [5], and this is 9. t tence, since a configuration of 

six arbitrary solids in [41 has freedom 24, the net of quadries has total freedom 

33. This then is the freedom of the Jaeobian curve whose twenty trisee~nts 

are the edges of a hexahedron. I f  however, as in w 54, we restrict the coeffi- 

cients in I I  so that  they satisfy the relation lij, kl, mn[--o the resulting 

Jacobian curve has only freedom 32, while if the coefficients are to be such that  

l i j ,  ]d, mnl = l i j ,  kin, .ZI = l i j ,  k . ,  Zml = o, 

a set of conditions which we saw to be the equivalent of two conditions only, 

the Jacobian curve has freedom 3I. 
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52. W h e n  ~ Jacobian  curve has an infinity of inscribed hexahedra  its 

f reedom can be de te rmined  quickly f rom the fac t  t ha t  it  is the locus of inter- 

sections of sets of four  osculat ing solids of a quart ic  curve when the i r  four  

points of osculation are all members  of the same set of a g~. I t  is known, and 

can be established, fo r  example,  by appeal ing to the general  resul t  of Brill  and 

NSther  a l ready quoted,  t ha t  the f reedom of a ra t ional  quar t ic  curve in [4] is 2I, 

while the f reedom of u g~ on any ra t ional  curve is Io; hence the f reedom of a 

Jacobian  curve with a scroll of t r isecants  is 3I. 

63. Consider now the  Jacobian  curve of the ne t  of polar  quadrics  of the  

points of a plane in regard  to a Segre primal.  The  pr imal  determines  a hexa- 

hedron  I) and, conversely,  is de termined when ~) is given; hence a Segre pr imal  

in [4] has f reedom 24. Moreover  a plane in [41 has f reedom 5; hence the  

f reedom of the Jacobian  curve in this case is 3 ~ . This  s t a tement  assumes 

taci t ly  t ha t  the  same ~[acobian curve cannot  arise for  two Segre primals or two 

planes, but  if the same curve arose for  two different  primals i t  would have to 

be c i rcumscr ibed to both  the corresponding hexahedra ,  whereas the Jacobian  

curve has, it  is supposed, only one inscr ibed hexahedron.  Thus  there  can  only 

be one Segre pr imal  associated wi th  any Jacob ian  curve, and hence,  clearly, 

only one plane also. In  the  par t icu la r  case when the Jacobian  curve of the  

net  of polar  quadrics  has an infinity of inscribed hexahedra  we can again, in 

order  to obtain such a net  of quadrics, choose an a rb i t ra ry  Segre primal,  bu t  

we are then  res t r ic ted  to ~ 5 of the  ~ 6 planes of [4), and so this par t icu lar  ne t  

o f q u a d r i c s  has only f reedom 29. 

64. The Jacobian  curve of a net  of quadrics in [4] can always be put  

into birat ional  correspondence with a plane quint ic  and, conversely, a plane 

quint ic  can always be put  into bi ra t ional  correspondence  with the Jacobian curve 

of a net  of quadrics  in [4].  The Jacobian  curve of a general  net  of quadrics  

in [4] is, as we have seen, of f reedom 36, while the  f reedom of a general  quint ic  

curve in a plane is zo. I f  then  we take a specialised net  of quadrics whose 

Jacobian  curve has f reedom 3 6 - - x  it is to be expected tha t  the  specialised 

plane quintic with which it  is in b i ra t ional  correspondence will be of f reedom 

2 o - - x .  W e  can verify this s t a tement  by calculat ing direct ly  the f reedoms of 

the various spec!al types of plane quint ic  curves t h a t  we have obtained.  

Suppose then  t ha t  we calculate the f reedom of a plane quintic which has, 

as in w 3, an associated configurat ion of a l ine-pair  and two conics; the quint ic  
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passes th rough  the intersect ions of the  two conics and t h ro u g h  all the intersec- 

t ions of the l ine-pair  with the  conics; moreover  the two remain ing  intersect ions 

of the  quintic with e i ther  conic are to coincide in a single contact ,  and the 

quint ic  is also to pass t h rough  the intersect ion of the  two lines. Since the  free- 

dora of a conic in a plane is 5 and the f reedom of a line is 2, the f reedom of 

the configurat ion which consists of two conics and a l ine-pair is 14. Now, when 

such a configurat ion is given, we have to impose 15 condit ions on the quintic 

curve, namely 4 to pass th rough  the intersect ions of the conics, 8 to pass t h rough  

the intersect ions of the line-pair and the conics, z to touch the conics and I to 

pass t h rough  the in tersect ion of the line-pair. Hence,  when the configurat ion of 

the  two conics and the line-pair is given, the f reedom of a quintic curve with 

which this par t icular  configurat ion is associated is 2 o - - I  5 = 5. Hence  the ag- 

gregate  of plane quintics wi th  which such configurat ions are associated is 

I4 + 5 ~ 19. Like the  net  of (luadrics in [4] with whose Jacobian  curve it  is 

in birat ional  correspondence,  the quintic is subjected to one condit ion.  

The f reedom of this curve can also be obta ined from its equat ion;  the 

equat ion  of a general  plane quint ic  being of the form 

~-1 + ~-1 ~ ~71 + v71 + v?l + ~71 + ~ (771 + v~-i + v71) (~71 + ~?~ + ~ )  o, ' b2 ~ t  2 

where the seven let ters  ~ ,  ~2, ~..~, ~h, ~ ,  W, ~nd ~ denote  l inear  forms in three  

homogeneous  coordinates;  the quintic becomes one of the special kind tha t  we 

are now considering if we assume tha t  ~" is l inearly dependent  on ~1 and '21. 

The  equat ion of the general  plane quint ic  contains 2I a rb i t ra ry  coefficients (three 

for  each of the seven l inear  forms), so tha t  the general  curve is of f reedom zo; 

when, however,  the line ~ = o is supposed to pass t h ro u g h  the intersect ion of 

~1 = o and ~]~ = o the number  of a rb i t ra ry  coefficients which enter  into the  

equat ion is one less than in the general  case, so tha t  the f reedom is one less 

also; thus  the special quint ic  curve tha t  we are consider ing is of f reedom 19. 

Similarly, if we suppose tha t  ~ - - o  joins the in tersect ion of g l - - o  and 

~ h = ~  to tha t  of ~ 2 = o  and ~ , 2 = o  the quintic curve so arising is of f reedom 

18; while the still more specialised curve for  which ~ =  o is the axis of per- 

spective of two tr iangles,  one t r iangle  being formed by the three  lines ~ = o 

and the  other  by the three  lines ~2 = o, is of f reedom 17 . 

65. Suppose now tha t  a plane quint ic  passes t h rough  the six vert ices of 

a quadri lateral ,  t ha t  its eight  remaining" intersect ions  with the sides of this  

quadr i la tera l  are on a conic and t ha t  its two remain ing  intersect ions with this  
4 ~ 2 - - 3 5 1 5 0 .  Actct mathematica. 66. I m p r i m 6  le  28 o c t o b r e  1935 .  
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conic coincide in a single contact .  The  p lane  conf igura t ion  of four  lines and  a 

conic is of  f reedom 4 .  z + 5 = I3. W h e n  such a conf igurat ion is g iven u p lane  

quint ic  associa ted with it  is subjected to I5 condit ions,  namely  six to pass 

t h r o u g h  the  ver t ices  of the quadr i la tera l ,  e ight  to pass t h r o u g h  the in tersec t ions  

of the  sides of the  quadr i la te ra l  wi th  the conic and one to touch  the  conic. 

Hence  the f r eedom of quint ic  curves associated wi th  a pa r t i cu la r  conf igura t ion  

is 2 o - - 1 5  = 5. W h e r e f o r e  the  f reedom of a plane quintic associa ted wi th  an 

a rb i t r a ry  conf igurat ion is 5 + I 3 - ~  I8. L ike  the aacob ian  curve wi th  four  con- 

cur ren t  t r isecants ,  wi th  which it  is in b i ra t iona l  correspondence,  such a p lane  

quintic is subjected to two condit ions.  

66. W e  nex t  suppose t h a t  the  p lane  quint ic  has  an inscr ibed h e x a g r a m ;  

this is in b i ra t iona l  cor respondence  with  the J acob i an  curve whose t r i secants  

are the  edges of a hexahedron,  and we have  seen t ha t  this  J a c o b i a n  curve is of 

f reedom 33. W e  there fore  expect  t h a t  the p lane  quint ic  has  f r eedom 17. This  

is immedia te ly  verified; for  the  f reedom of a h e x a g r a m  in a plane is 6 . 2 - ~  12, 

and in order  t h a t  a quintic curve should pass t h rough  the  vert ices of the  hexa-  

g r a m  it mus t  be subjected to 15 condi t ions;  hence,  g iven a definite h e x a g r a m ,  

the  f r eedom of the  quint ic  curves which pass t h r o u g h  its ver t ices  is 2 o - -  I5 ~- 5. 

W h e r e f o r e  the  f reedom of quintic curves c i rcumscr ibed  to an a rb i t r a ry  h e x a g r a m  

is 5 + i z - -  I7. This  resul t  also follows immedia te ly  f rom the equat ion to the  

quint ic  which,  when  i t  has  an  inscr ibed hexag ram,  nms t  be of the  f o r m  

gy~ + ~7 ~ + ~-~ + g7 ~ ~-.-_~ 

and so conta ins  e igh teen  a rb i t r a ry  coefficients.  

W h e n  a plane quint ic  has an inscr ibed h e x a g r a m  we have seen t h a t  i t  can 

be special ised in cer ta in  ways so as to have  t r i ads  of t a n g e n t s  t h a t  are con- 

cur ren t  in points  of the curve;  the  poin t  of con tac t  of each of the  t angen t s  of 

the  t r iad  is an in tersect ion of two sides of the  hexagram,  and the th ree  t a n g e n t s  

of the  t r iad  give all the  six sides of the  h e x a g r a m  in this way. The  exis tence 

of one concur ren t  t r i ad  of t angen t s  is secured, as we have  seen, by impos ing  

one condi t ion  on the  coefficients;  the  cor responding  quint ic  curve is the re fo re  of 

f r eedom 16. Also, if one of the  ident i t ies  be tween the six forms  is 

there  are th ree  concur ren t  t r iads  of t angen t s ;  we have seen t ha t  this  can be 
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secured by imposing two condit ions on the coefficients, so t h a t  the cor responding  

quintic curve is of f reedom 15. Fur the r ;  if the  six forms ~ are such tha t  

~1 + ~_~ + ~3 + ~ + ~ + ~ - - -  o 

the  plane quintic has fifteen concur ren t  t r iads of tangents .  Here  we may choose 

any five of the six forms ~ to be arbi t rary ,  but  the sixth is then  completely 

determined;  hence there  are now only fifteen a rb i t ra ry  coefficients en te r ing  into 

the equat ion of the quintic curve, which is the re fore  now of f reedom I4. Like  

the Jacobian  curve of the net  of polar quadrics of the points of a plane in 

regard to a Segre primal,  with which it  is in b i ra t ional  correspondence,  such a 

plane quint ic  is subjected to six conditions.  

67. There  remain those quintic curves which are circumscribed to an in- 

finity of hexagrams,  the sides of these hexagrams  all touch ing  the same conic. 

The most  general  quintic of this type, which is in b i ra t ional  correspondence  

with a Jacobian  curve having  a scroll of tr isecants,  is obta ined by taking  a 

conic and a g~ thereon;  the locus of the vert ices of those hexagrams  which con- 

sist of the tangents  of the conic at  the points fo rming  the  sets of the g~ is the  

quintic curve tha t  we are to consider. Since the f reedom of a conic in a p lane 

is 5, and the f reedom of a g~ on a conic is Io, the f reedom of quint ic  curves 

of this kind is 5 + IO ~ r 5. The quintic curve can, however,  be specialised so 

tha t  its tangents  at the fifteen vertices of one of the hexagrams fall  into fifteen 

concur ren t  tr iads;  we have seen in w 56 tha t  when a conic and a hexagram,  

consist ing of t angents  of this conic, are given, there  is a doubly-infinite family  

of such quintic curves. Hence the f reedom of quintic curves of this type is 

5 + 6 + 2 - - ~  3. 

Table Showing the Various Nets of Quadrics in [4]. 

68. In  conclusion we exhibi t  in tabular  form the different  kinds of nets  

of quadrics tha t  have been encounte red ;  the table shows the pecul iar i ty  of the  

Jacobian curve tha t  character ises  the net,  the  f reedom of the net  and its 

canonical  form. In  each case any plane quint ic  in b i ra t ional  corr respondence  

with the Jacobian  curve has a corresponding peculiari ty,  and the f reedom of the  

plane quint ie  is always less by I6 t han  tha t  of the corresponding Jacobian  curve. 

A 
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