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Introduction.

When the properties of a general net of quadrics in [4] are known it may
be of interest to discuss the properties of some particularised nets of quadries,
and this paper is devoted to such a discussion. The discussion makes no claim
to be exhaustive; the general net of quadrics is merely particularised in different
ways and, using the known properties of the general net as a basis, some pro-
perties of the particular nets are obtained.

Some properties of a general net of quadrics in [4] have recently been
expounded'; they hinge, for the greater part, upon the Jacobian curve & of the

! »The geometry of a net of quadries in four-dimensional space». Acta mathematica 64
(1935), 185—242. This paper will be referred to as G.N. Q.
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net. The more fundamental of these properties may be briefly recapitulated
here, as we shall often have to appeal to them. The polar solids, in regard to
the 2 quadrics of the mnet, of any point P of % have in common not merely
a line but a plane, and this plane is a secant plane of 9, meeting it in six
points; we say that the secant plane is conjugate to P. There is thus a singly-
infinite family of secant planes of J: they generate a locus R}® on which ¢ is
a sextuple curve. Every plane which has five intersections with % must have
a sixth intersection with 2. Any solid passing through a secant plane of 9
meets 9 further in four points and these four points, together with the point
P of 3 to which the secant plane is conjugate, form a set of five points on %
which are the vertices of five cones of the net all belonging to the same pencil
of quadrics (G.N.Q. §§ 5—6). Next: ¢ has twenty trisecants; through each
trisecant there pass three secant planes of &, and the three points of & to which
these three secant planes are conjugate lie on a second trisecant; the three
secant planes which pass through this second trisecant are conjugate to those
three points of ¢ which lie on the first trisecant. The twenty trisecants thus
consist of ten conjugate pairs: when two trisecants of 9 are conjugate any point
on either of them, whether on J or not, is conjugate to every point on the
other in regard to every quadric of the net (G.N.Q. § 10). A secant plane «
which passes through a trisecant ¢ of & meets & further in three points which
are not on ¢, and the cones of the net whose vertices are at these three points
belong to the same pencil. The vertices of the remaining two cones of this
pencil are on the trisecant ¢ which is conjugate to ¢; they are those two of the
three intersections of ¢ with & other than that intersection to which the secant
plane « is conjugate.

It was shown (G.N.Q. § 34) that the equations of three linearly independent

quadrics in [4] ean, in general, be reduced simultaneously to the canonical form

a, Xi+ay Xo+a, Xo+c¢ Z2+b, Yi+b, Yi+b, Yi=o0,
a Xi+amXit+tas Xs+cd Z2+by Yi+ by Yi+bs Yi=o, I
al X2+t an Xe+as X5 +¢6"Z2 + b0 Y5+ b3 Y5+ b5 Yi=o,

where

X, + X, +X,=Z=Y,+ Y, + T,

Here a form of specialisation at once leaps to the eye. The seven linear forms

which oceur are such that six of them may be supposed to represent arbitrary
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solids while the seventh, Z, represents the solid which joins the line of inter-
section of X;=o0, Xy,=0 and X;=o0 to the line of intersection of Y, = o,
Y,=o0 and Y;=o0. If then we specialise the canonical form I by omitting
the terms in Z? and consider the net of quadries

a, Xi+a, Xs+a, X3 +a, Xi+a;Xi+a,Xi=o0,
by Xi+ 0, Xa+0, X5 +0, X5+ 0, X3+, Xs =0, 11
e Xi+ e Xs+ e, X3+ e, Xi+ 0, X3+ ¢, Xs =0,

where
X+ X+ X+ X, + X;+ X;=0

and we have written — X,, — X, — X, for Y,, Y,, Y, respectively, we have
a net of quadrics related symmetrically to the six faces of a hexahedron. This
however, although an admirable illustration, is somewhat too drastic a specialisa-
tion to begin with; there are other specialisations of I which are not so parti-
cularised as II. On the other hand there are nets of guadrics whose properties
we shall consider that are even more particularised than II.

In order to keep the work within reasonable compass we must impose
some limit on the extent to which we specialise, and we therefore decide that
no consideration will be given here to any net of quadrics whose Jacobian curve
breaks up into separate component curves or whose Jacobian curve has a multiple
point. All the nets of quadrics that are considered have Jacobian curves that
are in birational correspondence with plane quintic curves, of genus 6, without
multiple points.

When the properties of a general net of quadrics in [4] were obtained the
birational correspondence between the Jacobian curve and a plane quintic was
discussed in some detail, and it is of interest to see, when the net of quadrics
and its Jacobian curve are specialised in any way, how the plane quintic is
specialised correspondingly. For example (cf. G.N.¢Q. § 27 and § 35): the equa-
tion of a plane quintic in birational correspondence with the Jacobian curve
of T is

E S Tt g bt LET S ST+t Y = o,
where L=cx + ¢y + ¢’2. Hence, putting ¢=c¢ =c¢’ =o0, it follows that a

plane quintic in birational correspondence with the Jacobian curve of IT has an

equation
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1+ AT T+ =0,

and is therefore circumscribed to the hexagram formed by the six lines § = o.
Thus the particularised quintic curve has an inscribed hexagram, whereas a
general quintic curve has not. It will also be shown that the converse of this
result is true in the sense that if a plane quintic has an inscribed hexagram it
can always be put into birational correspondence with the Jacobian curve of a
net of guadrics given by the canonical form II.

If three conics are taken in a plane any one meets any other in four
points, so that there are twelve intersections in all; there are ® % quintic curves
passing through these twelve points. Such a quintic curve has two further in-
tersections with each conie, and if we suppose that, on each conic, these two
further intersections coincide in a single contact we impose three further condi-
tions, thus reducing the aggregate of quintic curves to o5 Conversely: there
are o 2° quintic curves and %! gets of three conics in a plane, so that it would
seem that there is a finite number of such sets of three conics associated with
a general plane quintic. A set of three conics which is such that all their in-
tersections lie on the quintic and each conic touches the quintic makes up a
contact sextic, i. e. a sextic which has two intersections with the quintic wherever
it meets it. If I'y, =o0, I, =0, I';=0 are the equations of the conics the equa-

tion of the quintic can be written
LI+ LI+ I =0,

where t;,=o0, f,=0, t,=0 are the tangents of the respective conics at the
points where the quintic touches them. If this could be established as a cano-
nical form for the ternary quintic the existence of the set of three conics would

follow immediately.

Suppose now that we specialise the configuration. Let one of the three
conics break up into a line-pair and, as the conic touched the quintic, let the
intersection of the two lines be on the quintic. Such a configuration of two
conics and a line-pair together constituting a degenerate contact-sextic does mnot
exist for a general plane quintic. But we shall see that when we specialise the
net of quadrics in [4] in a certain way its Jacobian curve is such that any plane
quintic that is in (1, 1) correspondence with it has a degenerate contact-sextic
of this kind; indeed we shall actually obtain the equation of such a plane quintic
by equating to zero the discriminant of the special net of quadrics (§ 3).
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The plane configuration is specialised further when another of the conics
becomes a line-pair whose intersection is on the quintic; we then have a plane
quintic which passes through the six vertices of a quadrilateral and is such that its
remaining eight intersections with the sides of the quadrilateral are on a conie,
this conic also touching the quintic. This type of plane quintic will also be
obtained by specialising the net of quadrics in [4] and equating its discriminant
to zero (§ 12).

If each of the conics is taken to be a line-pair whose intersection is on
the quintic then the quintic has an inscribed hexagram and is in birational
correspondence with the Jacobian curve of a net of quadrics whose canonical
form is II. The two special plane quintics alluded to above will thus arise
from nets of quadrics in [4] intermediate between the general form I and the
special form II.

The consideration of plane quintic curves has shown how we may expect
to find nets of quadries in [4] which are special, and yet not so special as the
net II; similar consideration will also show how we may expect to find nets of
quadrics in [4] that are still more special than IT. The Jacobian curve of the
net IT is such that any plane quintic which is in birational correspondence with
it has an inscribed hexagram; we then enquire as to how a plane quintic with
an inscribed hexagram may be further specialised. One mode of specialisation
is obvious; we may suppose that the six sides of the hexagram, instead of being
any six lines in the plane, are six tangents of a conic. It is then found that
there is an infinity of hexagrams inscribed in the quintic curve, and that the
sides of these hexagrams all touch this same conic. The condition for the six
sides of the hexagram to touch a conic can be written down at once in terms
of the coefficients in II; it appears that the Jacobian curve of a net II which
is specialised in this way has not twenty but an infinity of trisecants. The
properties of this Jacobian curve and of loci that are associated with it are
obtained in §§ 16—49. This particular net of quadrics may well be regarded
as the analogue, in [4], of the net of polar quadrics of points of a plane in
regard to a cubic surface in [3].

‘We can also consider another method of specialising a plane quintic with
an inscribed hexagram. We may always suppose that the equation of such a
quintic is ‘

EHETHET ST HET 6 =o,
where the six lines § = o are the sides of the hexagram; then the tangent of
33—35150. Acta mathematica. 66. Imprimé lo 24 octobre 1935,
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this curve at the vertex & =& = o0 of the hexagram is & + § =0. Now the
six linear forms & must satisfy three linearly independent linear identities, and
we might enquire how the curve is specialised when we assume these linear
identities to be of a special kind; it must always however be remembered that,
as no three sides of the hexagram are to be concurrent, it must never be pos-
sible to obtain any linear identity between less than four of the forms &. But

let us suppose that the identity

E+&+&5+6E+5+H5=0

holds. Then, if the six sides of the hexagram are divided into three pairs in
any of the fifteen possible ways, each of the three pairs determines a vertex of
the hexagram, and the three tangents of the quintic at these vertices are con-
current; they are, indeed, concurrent in a point of the curve. Thus, when this
identity is satisfied, the fifteen tangents of the quintic at the vertices of the
hexagram meet by threes in fifteen points of the curve.

We can also enquire whether there are quintic curves with inscribed hexa-
grams such that some but not all of the fifteen triads of tangents are concur-
rent in this way. These and many other matters will be treated of in their
proper place; enough has been said here to indicate some few of the results to

which our investigations may lead.

The Jacobian Curve with two Pairs of Coneurrent Trisecants.

1. Let us suppose that through a point O of 9 there pass two different
trisecants OP¢, ORS; call these ¢, and ¢, respectively. Then the plane OPQRES
is a secant plane of &, and meets J in a sixth point Z; the trisecants # and
ta which are conjugate to #; and f, both pass through the point 7' of & to which
this secant plane is conjugate, and the plane which contains them is the secant
plane conjugate to O. Let # meet ¢ again in U and V, and let # meet &
again in W and X.

The points Z, R, S are the three further intersections with 3 of a secant
plane passing through the trisecant ¢, and conjugate to 7'; hence the five cones
(Z), (BR), (8), (U), (V), belong to a pencil; similarly (Z), (P), (@), (W), (X) belong
to a second pencil. But, if Z' is the sixth intersection of the secant plane
TUV WX with &, it follows, in precisely the same way, that each of the two

sets of five cones
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(2, (0), (V), (B), (8) and (Z), (W), (X), (P), (Q)

is a set of five cones belonging to a pencil. Thus the two cones (Z) and (Z')
must be the same, and the two points Z and Z' must coincide; the point of
intersection of the planes #,£, and #i#; is on J.

Since the four cones (P), (@), (W), (X) belong to a pencil of quadrics
containing (Z) the solid P@Q WX must contain that secant plane of 9 which is
conjugate to Z; similarly this same secant plane must lie in the solid RSU V:
the secant plane @ conjugate to Z is therefore the plane of intersection of the
two solids # % and f#1f,; it meets ¢ in O and 7, and in four further points E,
F, G, H.

2. The polar lines of a secant plane of 9 in regard to the quadrics of
the net generate a cubic cone whose vertex is that point of 9 to which the
secant plane is conjugate, and this cone contains the six secant planes of 9
which pass through its vertex (G.N.Q. § 9). In particular the polar lines of
the plane % # generate a cubic cone II, whose vertex is O; this cone contains
the plane @ and the plane #¢,; it also contains the two other secant planes, say
A, and u,, which pass through #; and the two other secant planes, say 4, and
uy, which pass through %,; #;, and %, are nodal lines on IIy. Since the plane v
common to the solids A,u, and A,u, meets ITp in four lines it must lie entirely
on IIp; moreover v passes through the line OZ' since both the solids i,u, and
A,u, do so. The section of ITp by an arbitrary solid is a cubic surface II® with
two nodes N; and N,; it contains the line N;N,, two further lines [, and m,
through N,, two further lines /, and m, through N,, the line n in which the
planes /;m; and lym, intersect and a line b which meets # in a point B on the
line OT. The projection of J from O is a curve 0, of order 9 and genus 6,
on IT%; 0 has nodes at N, and N, and meets the line N, N, in one further point,
also it meets each of [, and m, in three points other than its node NV, and each
of I, and m, in three points other than its node N,, and it meets b in five
points, one of which is B. It can be verified that the canonical series is cut
out on & by the cubic surfaces which contain the three lines &7, m, and which
have a node at N, and pass simply through N,; the two nodes of @ and its
intersections with 4,7, and m, are fixed points, ‘none of which belongs to a
general canonical set. Now among these cubic surfaces which cut out canonical
sets on 6 there are those which consist of the plane /;m; taken together with
quadrics containing the line b and the two points N, and N,; thus the quadrics
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cut out canonical sets on @, but all these canonical sets include the point B
since B lies not only on each quadric but on the plane I,m;. Conversely: all
the canonical sets on 6 to which B belongs can be obtained as the intersections
of 6 with quadrics containing the line b and the two points N, and N,, as
such quadrics form a system of freedom 4, one less than the freedom of the
canonical series on a curve of genus 6. Hence we may state the following:

Those canonical sets of 9 which contain I are cut out by the quadric
cones, vertex O, which contain the plane @ and the lines #, and %,; the five in-
tersections of ¢ with B, ofher than 7', and the intersections of < with ¢, and
f,, are not to be reckoned as points belonging to the canonical sets. The twenty
intersections of such a quadric cone with J consist of O, counted twice, the
eight points P, @, B, S, E, F, G, H and a canonical set of ten points, of which
T is one; conversely any canonical set to which 7 belongs can be obtained in
this way. ’

We may, in particular, take the quadric cone to consist of the pair of
solids ¢, t; and # ¢,; the solid ¢, ¢, meets % in the set of points (OPQT WXEFGH)
and the solid # ¢, meets 3 in the set of points (ORST UV EF G H); subtracting
from the sum of these two sets the set (0°PQRSEFGH) we find that the set
(T*UVWXEFG@H) is a canonical set on . Similarly, since the canonical sets
of 9 which contain O ecan be cut out by the quadric coumes, vertex 7T, which
contain the plane # and the lines # and ¢, it is found that the set (0*PQRS
EFGH) is a canonical set on . This latter result also follows immediately
from the known result (G.N.Q. § 28) that, when a quadric meets & in all the
points of a given canonical set, its residual intersections with J also form a
canonical set; for we have just seen above that the set (O°PQRSEFGH) is
residual to all the canonical sets which contain 7.

3. Suppose now that a birational correspondence is established between
the curve & and a plane quintic {; then any canonical set on & must correspond
to a canonical set on {, i.e. to ten points of { which lie on a conic. Also if
five points of 9 are the vertices of five cones which belong to the same pencil,
the five points of { which correspond to them must be collinear. Hence, if we
denote corresponding points of { and % by the same small and capital letter,
we have on { two sets of five collinear points (zuvrs) and (¢pqwzx); a conic
through the points p, ¢, r, s and a conic through the points », v, w, x are such
that their four intersections e, f, g, h are on {, while the first of these conics



Some Special Nets of Quadrics in Four-Dimensional Space. 261

touches { at a point o and the second touches { at a point £. A configuration
of this kind does not exist for a general plane quintic curve; but it must exist
for any plane quintic which is in birational correspondence with a Jacobian
curve, of a net of quadrics in [4], that has two pairs of concurrent trisecants.

4. Let the equations of the three solids which contain the pairs of the
three secant planes through ¢, be X, =0, X, =0, X;=o0, the plane i, ¢, being
the plane of intersection of X,=o0 and X;=o0; let Y,=0, ¥Y,=0, Yy=0
be the equations of the solids which contain the pairs of the three secant planes
through ¢, the plane # ¢ being the plane of intersection of ¥,=o0 and Y, =o.
Then we may suppose that any quadric of the net has an equation of the form

lllX? + ang‘{‘ Cngg"’ cZ? + b1Y12+ b2Y§+ b3Y§:O,
where
X+ X+ X,=Z=Y,+ Y, + Y.

This canonical form for the equations ensures that ¢, and #; are conjugate
trisecants of &; in order that ¢, and # should also be conjugate trisecants the
coefficients will have to be restricted in some way. This condition must arise
from the fact that every point of #, is conjugate to every point of #; in regard
to every quadric of the net.

The coordinates of O are (0,0,0; 0, 1, — 1); here we put the three X-
coordinates before the semicolon and the three Y-coordinates after it, the Z-
coordinate being omitted. Suppose that #, joins O to the point (x;, 0, 0; ¥;, ¥,
'ys). Also let # join 7, whose coordinates are (0, 1, — I; 0, 0, 0) to the point
(x1, 25, 73; %1, 0,0). Any point on £, has coordinates (x;, O, O; ¥y, ¥s + 4, y3 — A)
while any point on #; has coordinates (xi, #% + u, x5 — u; 1, 0, 0); these two
points are conjugate if

a,x 21 + cxyyt + by yi =o

or
7
a,ry . by
L= 4 ¢+ —H =o.
N X4

The coefficients «,, ¢, b, must therefore be connected by this linear relation.
This relation may also be obtained by finding the condition that the point

of intersection of the two planes X, = X;=o0 and Y, = Y,; = 0 should lie on J.

The coordinates of this point are (1,0, 0; 1,0, 0) and its polar prime with re-

spect to the quadric is



262 W. L. Edge.
ale + CZ + bIYIZO.

Since all these polar primes are to contain the same plane, whichever quadric
of the net is taken, there must be a linear relation between the coefficients
a,, ¢, by. This linear relation can actually be found, because the plane through
which the polar primes must pass is the plane, previously called 8, common to
the solids ¢ #» and t#,. The solid # ¢; joins the plane Z = X, =0 to the point

(x1, 25, 25; 91, 0, 0), so that its equation is
!’ ’
nX,—x1Z=o.

Also the solid #it, joins the plane Z= Y, =o0 to the point (z;, 0, 0; ¥;, ¥, ¥s),
so that its equation is ‘
—yZ+x Y, =o.

‘We therefore have the relation

ay, ¢, bl

’ ’
Y1, —x1, O |=0,
O, —Yy, *

which is the same as that previously found.
Conversely: suppose the quadrics of a net have equations of the canoni-

cal form
a, X! +a,Xo+a X5+ cZP + b0, Y+ b, Y5 + b, ¥ =0;

then the two lines X, = X,=X;=o0 and Y,= Y,= Y,=0 are conjugate
trisecants of the Jacobian curve <, three secant planes passing through each
trisecant. Let us also suppose, further, that the coefficients of the three terms
i, Z2, Y7 in the equation of every quadric of the net are subjected to a linear
relation
¢=pa, + oby;

here of course ¢ and ¢ are numerical constants, whereas the coefficients ¢, a,, b,
differ for different quadrics of the net. Then, when this relation is satisfied, the

two points
(1,0,0; —6, 1 +A 0-4) and (—e¢, 1 +u, ¢ —u; 1,0, 0)

are conjugate, in regard to every quadric of the net, whatsoever values 4 and u
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may have. When A and u vary these points describe two lines which will be
conjugate trisecants of &; the first of them is a trisecant, other than X, = X, ==
= X, = o0, passing through (0, 0,0; 0,1, — 1) and the second is a trisecant,
other than Y, = ¥,= Y, =0, passing through (0, 1, — 1; 0, 0,0). Thus when
the coefficients ¢, a;, b; satisfy a linear relation the Jacobian curve has two
pairs of intersecting trisecants.

We can always find a quadric belonging to the net in whose equation the
coefficients of any two of the seven squares vanish. Suppose then we take the
quadric for which the coefficients of X} and Z? both vanish; then, in virtue of
the linear relation ¢=ga, + ob,, the coefficient of ¥7 must also vanish. Hence
the left-hand side of the equatiorn of this quadric is the sum of only four squares,
so that the quadric is a cone with vertex X, = X;= Y, = Y, = 0. Hence, when
there is a linear relation ¢==g9a, + 0b,, the intersection of the two secant planes
X,=X;=o0and Y,= Y;=o0 lies on 4.

5. The Jacobian curve & is in birational correspondence with the quintic

§18:8s(nams + memy + 771772) + 771"72773(§z§3 + && + §1§2)
+ §(§g§a + & + §1§2)(772’73 + ngm + ’71772) =0,

where £ 7, { are linear functions of three homogeneous coordinates, and where,

in addition, there is now a linear identity between &, {, n,; say
CE 051 + 077]1
where ¢ and o are numerical constants. We have the identity

E.5:8s(mamy + mamy + mume) + i (5.8 + 58 + §5)
+ (& + om)(&sds + 58 + §5)mams + meny + 0y 1)
=(0&; + on)) (5.8 + 58 + §85 + 015, E) mams + memy o+ pimy + 0T 1)
— 00 E (8.8, + & + 58 + 0L
— o0 E,85(nems + memy + ume + 0N amg),

s0 that, writing
E.8s + 58+ 5& + o155 =T,

NeMy + MMy + Yy + 0T =,

the equation to the quintic curve is
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(08 + on)I'd =90 g n.my I + 00 'y, 5,54
Writing, in this equation,

=& + &)

]

4 — n,(n, + ny)
—1 J— —l_:_w,i},.., —1 —
0 17 I +0 088 I+ o

it becomes
eaile +- NE + (0+ 1)n} T + Enlole + 1)y + ny) T + o(o + 1)(& + &)} = 0.

From this equation we can obtain immediately the configuration of the pair
of lines and the pair of conics, the existence of which was established by the
consideration of certain canonical sets on J; the two lines are in fact § =o
and 7, = 0, and the two conics are I"=0 and 4 =o0. The intersections of the
conic I' =0 with the curve consist of its four intersections with = o, its two
intersections with £, = o0, its two intersections with 7, = o and its two inter-
sections with §, + £ =o0; but these last two intersections coincide in a single
contact, since &, + & = o0 is the tangent of I'=o0 at the point §, = &, = o; this
same line is also the tangent of the quintic at the same point. Similarly for
the conic 4 = 0. Finally the intersection of & =0 and g, == 0 is on the quintic
curve.

That any quintic curve with these properties is in birational correspondence
with a Jacobian curve J having two pairs of concurrent trisecants follows at
once when the left-hand side of its equation is expressed as a symmetrical de-
terminant of five rows and columns (cf. G.N.Q. § 33).

6. We have seen how the Jacobian curve < and the plane quintic { are
specialised when the coefficients in the canonical form are subjected to a certain
type of linear relation, and the question naturally presents itself whether further
relations of this type can introduce further specialisations.

Suppose we have a pair of relations such as
¢=ga, + ocb, =7a, -+ wb,,

the coefficient @, occurring twice, There is a quadric of the net in whose equa-
tion the coefficients of X} and Z2? both vanish and it follows, from the existence
of these linear relations, that the coefficients of Yi and Y3 also vanish; hence
the left-hand side of the equation of this quadric is the sum of only three
squares, so that the quadric is a cone with a line for its vertex. Hence, unless
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the net of quadrics is to contain a line-cone, there cannot exist two such linear
relations at the same time.
We might however have a pair of relations such as

¢ =0,a) + 0,0, = @ya5 + 0, by,

in which none of the six coefficients a,, a,, a4, b, by, by occurs twice. In this

case the equation of the plane quintic is
EH T A A T A ot LT At T ET T ET ) = o,

where {=o0 is the line which joins the point £ =%, =0 to the point §,=1,=o0.
The Jacobian curve  now has three pairs of conjugate trisecants ¢, t1; &, f;
ty, t» where ¢, and f, meet #, and # and & meet .

We may also go a step further and suppose that the coefficients in the

canonical form satisfy the three relations
¢=0,ay + 0,b, = @,ay + 0,b; = @3, + 0;b;.

A plane quintic in birational correspondence with the Jacobian curve of such a
net of quadrics is obtained if we take a triangle formed by three lines § = o,
§ =0, §=0 and then a second triangle, in perspective with this, formed by

three lines 7, =0, 1, ==0, 1, = 0; we then take the quintic curve
EH ST A gt T L T ) ET ST B = o,

where now {=o0 is the axis of perspective. This quintic curve has three con-
tact sextic curves each consisting of two lines and two conics. The curve 9
now has a pair of conjugate trisecants ¢ and ¢’ such that through any inter-
section of ¢ or ¢ with & there passes a second trisecant. The trisecants which
pass through the three intersections of & and # are conjugate to those which
pass through the three intersections of % and ¢.

The Jacobian Curve with four Concurrent Trisecants.

7. Suppose that a net of quadrics in [4] is specialised in such a way that
there is one secant plane ¢ whose six intersections with the Jacobian curve &
are the vertices of a quadrilateral; the four sides ¢,, ¢, #;, ¢, of the quadrilateral
are trisecants of J. Denote the point of intersection of f#, and ¢, by P, and

34—35150. Acta mathemarica. 66, Tmprimé le 24 octobre 1935.
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similarly for the other five vertices of the quadrilateral. The four trisecants
t, ta, t3, tu which are conjugate to ¢, ¢, t;, t, all pass through that point O
of 3 to which the secant plane ¢ is conjugate and the six secant planes through
0, conjugate to the six vertices of the quadrilateral in «, are the six planes
which contain the pairs of the four lines # f, #;, #i.

Consider now the solid which is determined by the two secant planes t¢;
and ##;, both passing through the trisecant #; since these are the secant planes
conjugate to P;, and P,, the solid must contain that point of % which is the
remaining intersection of 9 with ¢, i.e. P, and P,, is the unique intersection
of the solid with & which lies neither on the plane # ¢ nor on the plane & .
It therefore follows that P, is that intersection of the secant plane ## with &
which lies neither on # nor on #. Hence the six points of ¢ which lie in «
are the intersections of a with the six secant planes through O; the secant plane
which is conjugate to any vertex of the quadrilateral in o meets o in the op-
posite vertex of the quadrilateral, and the three pairs of opposite vertices of
the quadrilateral are pairs of conjugate points in regard to all the quadrics of
the net.

8. The polar lines of ¢ in regard to the quadrics of the net generate a
cubic cone IT,, vertex O, containing the six secant planes of ¢ which pass
through O and having the four trisecants ¢, 3, ¢, ti as nodal lines. An ar-
bitrary solid, not passing through O, meets II, in a four-nodal cubic surface and 9
is projected from O into a curve 6, of order 9 and genus 6, lying on this surface
and having a node at each node of the surface. The canonical series is cut out
on this curve by the quadries through its four nodes, and therefore the canonical
series on 3 is cut out by those quadric cones with vertex O which contain the four
trisecants i, ty, t3, ti, The twenty intersections of such a cone with & consist
of O, counted twice, the remaining eight intersections of & with its four trise-
cants through O, and ten points forming a canonical set. In particular we may
take the quadric come to be a pair of solids through O and, if O;, O; are the
two intersections, other than O, of ¢ with the trisecant t;, we may note the

following six eanonical sets on 9:
(02 03 0, 0’31)?4P24P34P31 Pm): (0, 04 0, O;P§3P31 P12P24P34)7

(03 05 0, 0L Py Py, Py Py Pyy), (0, 050,04 P5, Pyy Py Py, Pyy),
(0, 05 0, 02 P3y Py, Py, Py, Pyy), (0; 03 0, 04 Piy Poy Py Py Pyy).
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The first of these, for example, is obtained if the quadric cone consists of the
two solids #1#:t; and fyfs¢i; the other five sets are obtained similarly. Also,
since any quadric which contains a canonical set of points on 9 meets & resid-
ually in another canonical set, the point O, counted twice, and the eight further
intersections of % with its four trisecants through O, make up a canonical set

on ; hence we may note the seventh canonical set
(0* 0, 01 0, 03 0,05 0, 04).

9. Suppose now that the quadrics of the net are representedby the points
of a plane, 9 being thereby put into birational correspondence with a plane
quintic curve {; any set of ten points of { which corresponds to a canonical
set on 9 must consist of the intersections of { with some conic. Now it is
seen at once, on referring to the group of six canonical sets on -, that, so
long as we do not take a pair of sets written in the same horizontal row, any
two of these six sets have in common six points of &; the two corresponding
canonical sets on { therefore also have six points in common and so, since two
different conics can only have more than four common points when they are
both line-pairs, with a line common to both pairs, it follows that the six conics
which cut out the six canonical sets on { are the six line-pairs which can be
formed from the sides of a quadrilateral. Two canonical sets on { which correspond
to a pair of canonical sets of % written in the same horizontal row of the group
of six are cut out by line pairs without a common line; two such sets have four
points in common, and these points are four of the vertices of the quadrilateral;
thus the vertices of the quadrilateral all lie on £, being the points psg, D1, Pie, Pras Poss
s, (we use, as heretofore, small letters to denote. points of { which correspond to
points of & denoted by the corresponding capital letters). If we take the three
points p without the snffix 7 then the set of five points which consists of these
three points and the two points o;, 0; is a set of five collinear points of { and
is common to three of the six canonical sets. If we now refer to the seventh
canonical set mentioned on 9 we see that the eight points o;, 01, 05, 03, 05, 03,
04, 04 lie on a conic, and that the two remaining intersections of this conic
with { coincide in a contact at 0. Whence we have the following:

If the Jacobian curve 9 of a net of quadrics in [4] vs such that there
18 a plane which meets 1t tn the six vertices of a quadrilateral then, ¢f § s

any plane quintic which 4s in birational correspondence with %, these six
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potnts of & correspond to six pornts of § which are also the vertices of a
guadrilateral. The remaining eight inlersections of § with the sides of this
quadrilateral are on a conie, and this conic touches .

It should be noticed that three collinear vertices of the quadrilateral on 9 cor-
respond to three non-collinear vertices of the quadrilateral on £, namely to the
vertices of a triangle obtained by omitting one side of the quadrilateral. This
configuration of four lines and a conic is clearly a special case of the configura-
tion, obtained in § 3, of two lines and two conics; here one of the two conics
touching the quintic curve has become a line-pair intersecting on the curve. We
can also anticipate a further specialisation of the present configuration, namely
when both conics in the configuration of § 3 have become line-pairs intersecting

on the curve; the quintic is then circumsecribed to a hexagram.

10. The existence of the quadrilateral inscribed in the plane quintic { can
be established without any appeal to canonical sets. TFor it is known that a
secant plane which passes through a trisecant of J meets J further in three
points which are the vertices of three cones belonging to the same pencil, the
vertices of the two remaining cones of this pencil being those two points of &
which are on the conjugate trisecant and which are not conjugate to the secant
plane. Now the secant plane « contains the trisecant f, and meets 4 further
in the three points P,, P, Ps; hence these three points are vertices of cones
belonging to the same pencil. The vertices of the two remaining cones of
this pencil are the two points, other than O, in which & is met by the trisecant
t1; i. e. they are the two points O,, 0;. Thus the five points O, 01, Py, P,
P,; are the vertices of five cones of a pencil. Similar arguments give three
other such sets of five points, and it follows that, if { is any plane quintic in
birational correspondence with J, the four sets of points

(04 01 pgy Das Peg)y (00 05 Dt PrsPss) (0305 D1 Pay Pa)y (04 08 Psg Pyt Prs)

are four sets of five collinear points. Thus the six points p;; are the six ver-
tices of a quadrilateral inscribed in {. In order to establish the fact that the
eight remaining intersections of { with the sides of this quadrilateral are on a
conic we show, as above, that they correspond to eight points of 9 which be-
long to the same canonical set.

One or two further features of the correspondence between ¢ and { may
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be pointed out (cf. G.N.Q. §§ 21, 22). Since the six points P;; lie in the secant
plane of 9 conjugate to O there is a cubic curve touching { at each of the six
points p;;, the three remaining intersections of this cubic with { lying on the
tangent of { at 0. Again, the secant plane conjugate to P, meets 3 in the
six points O, O, O, O,, 03, P,; hence there is a cubic curve touching { at
the six points o, 0,, 01, 0y, 03, Ps, and meeting { again in its three intersections
with its tangent at p,,; there are five other cubic curves similarly associated
with the five points p;; other than p;,. Also, since the points O, 0;, O; on &
are collinear there is a conic touching { at each of the points o, o;, 0j; thus we
have three tritangent conics of [ with a common point of contact. There is
also a conic touching { at the vertices of any one of the four triangles formed
by three of the sides of the quadrilateral, since the vertices of such a triangle
correspond to three collinear points of . Since the two tritangent conics as-
sociated with two conjugate trisecants of 9 are such that their four intersec-
tions lie on , the four intersections of the conic touching [ at o, 0;, 0; with
the conic touching { at the three points p with the suffix ¢ lie on .

11. We can obtain a canonical form for the net of quadrics when its
Jacoblan curve has a secant plane meeting it in the vertices of a quadrilateral
and also, by taking the discriminant of a quadric of the net, obtain an equation
for the plane quintic which corresponds birationally to the Jacobian curve.

We take the four solids

X,=o0, X,=0, X,=o0, X,=0,

to be those solids which pass through O and which contain the sets of three
of the lines t1, t3, 3, i, the solid X;=o0 containing the three lines other than
t;; also we take the plane ¢ to be X;= X,=o0. The six forms X are homo-
geneous linear forms in five variables, so that they satisfy one linear identity;
we may take this to be

X+ X, + X, + X, +X, + Xy=o.

The plane o contains four trisecants ¢, &5, &5, t, of the Jacobian curve, and the
equations of the trisecant t; are X;= X;= Xy=o0. The four pairs of lines

X,= X,— X,—o0 .&EXﬁXFw}.&=XFXFm}.&z&zXfm}
Xlz X5:X6:O X2:X5:X6:O X5:X5:X6:O X4: X5:X6:O
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have the property that, if one point is taken on each line of any pair, such a
pair of points is conjugate in regard to every quadric of the net. It then fol-
lows easily that the net of quadrics is given by a set of three equations of
the form

a; Xi+a, Xs+a, X5+ a, Xi +a; X+ a X +2a X, X,=0,

by XP 4+ b, X5+ by X5+ b, X0+ by X2+ b, X2+ 28X, X, =0, I

G Xi+ e Xs ey Xs+oe, Xi+ e X+, Xe 4+ 29X, X, =o.
This form IIT is not sufficiently general to represent a general net of guadrics
in [4], although it apparently contains the same number of constants as the

general canonical form I; in fact we may, by using a suitable binary trans-

formation of X; and X,, assume that two of «, 8, y are zero.

12. If we write

i=xa; + ybi + 2ci, n=xa+yp+ ey,
the equation of an arbitrary quadric of the net III is
EXTHEXIHEXI+HEXIHEXIHEXI+ 29X, Xy —o.
Writing this as
X+ Xg+ X+ X+ XS+ E6EXT+5 X5+ EXI+EXI+E X+ 20 X, Xy =0

we see that the discriminant of the quadric is

& EE &g
& &+& & 3 &
§1 §| 51 + §4 §1 §1
& 3 § &+& &+
3 & & &t &t

=5,8:6.8:86 + E38u8s8edt + L8588 8 + §5eEi5ds + B LGS + 5 5EEE
—27§8:8,8, — 772 (§2§3§4 + &8.8 + 5,68 T & §2§3)

~
i

The equation of the plane quintic is D =o0. Writing this in the form

(§2§3§4 + &&,8 + §,5& + §1§2§3) (§5§6 - 772) + 5,588 (§5 + & — 277) =0,



Some Special Nets of Quadrics in Four-Dimensional Space. 271

we see that the curve passes through the six vertices of the quadrilateral formed
by the four lines

§l:O7 52:0) §3:o7 §4207

and also through all the intersections of these four lines with the conic & §=1*
Furthermore the remaining two intersections of the conic with the quintic
are its two intersections with the line § + §;= 27 and, as this is a tangent of
the conic, these two intersections coincide in a single contact. The tangent of
{ at the point & =& =0 ((,7=1, 2, 3,4) is § + §=o0. The point p;; on { is
the intersection of the two sides of the quadrilateral other than & = o and
§=o. '
This form of the equation for { enables us easily to verify the existence

of the contact curves that have been mentioned. For example, the cubic
Eo858u + 538,8, + £i5,6, + §168, =0

touches { at each of the six vertices of the quadrilateral formed by the four
lines & = o0; its remaining three intersections with { are its intersections with
5 + & =27, and this is the tangent of { at o. If we write the equation
of { as

& (55 — 77 (& + &) + EE (& + &) (&8 — 1°) + 55 (& + & — 277)} =0,

we see that the intersections of { with the cubic

G+ &)EE—7) T 586G +5—29)=0

consist of the three intersections of [ with its tangent & 4+ §, = o, other than
the point of contact p;, of this tangent, and of the twelve intersections of the
cubic with the quartic curve §§, (& — 5?) =o0. But it is clear, from the form .
of its equation, that the cubic passes through the intersection of the two lines
£ =o0, & =0 and also through the intersections of both these lines with the
conic && =1n®; also that the cubic touches the conic at its point of contact
with & + §, = 217; hence the twelve intersections of the cubic and quartic coin-
cide in pairs, and the cubic therefore touches { at six points; these points are
Pss, 0, 04, 01, 0y, Oa.

When the equation of [ is written

E 58 85— 0" + 5 (& +E—2 )} + §(&5 — 7°) (58, + 515 + 5 &) =0,
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we see that the two conics
E&g—n° + §.(§ + E,—21m)=o0,
§& + 58 + 585 =0,

are both tritangent conics of { and that their four intersections lie on {; the
first conic touches { at the three points o, o,, 01 and the second conic touches

[ at the three points p;,, p;s, pu- And so on.

13. The locus of points in which any given secant plane « is met by the
other secant planes of & is, in general, a curve of order 13 with quintuple
points at the intersections of ¢ with & (c¢f. G.N.Q. § 6). If however ¢ meets
J in the six vertices of a quadrilateral the sides of this quadrilateral, each of
which is a trisecant of & and lies in two secant planes other than e, all count
twice as parts of the curve of order 13; hence the residual part is a quintic
curve passing through the vertices of the quadrilateral. Thus, for this particulér
curve ¢, the double surface of the locus R}’ generated by the secant planes of
J contains a plane quintic curve. This quintie curve circumscribes the quadri-
lateral formed by the four trisecants of 9 which lie in «, and is in birational
correspondence with (.

Apart from the four trisecants of 9 which lie in ¢ and the four trisecants
of 9 which pass through O J has twelve other trisecants, these consisting

of six conjugate pairs.

The Jacobian Curve whose Trisecants are the Edges of a Hexahedron.

14. We proceed now to consider the net of quadries whose canonical

form is
a, Xi+a, X5+ a; X5+ a, X5 + a; X + a, X = o0,
b X+ by X3+ by X2+ b, X+ b, X2 4 by X2 =0, 11
G X4 e, X3+ e X2+ 0, X3 + ¢, X2+ ¢, X2 = o,

where

X +X,+ X+ X, + X, + X,=o0.

The six solids X = o are the faces of a hexahedron; this hexahedron, which we
may call §, has fifteen vertices, twenty edges, and fifteen planes. Since we can
combine the three equations II linearly so that any two of the six squares
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disappear it follows that each of the fifteen vertices of § is the vertex of a cone
belonging to the net; hence the Jacobian curve & ¢s circumscribed to §. Moreover
the polar prime of any vertex of 9 in regard to every quadric Il contains the
opposite plane of  (the plane of intersection of two faces of § being 'opposite’
to that vertex which is the intersection of the remaining four faces), so that
the fifteen planes of § are secant planes of &, being conjugate, respectively, to
the opposite vertices of §. Also, since each edge of § contains three vertices,
the twenty edges of © are trisecants of ¢ and each plane of §, as it contains
four edges, meets 9 in the six vertices of a quadrilateral. The twenty trise-
cants of & are thus all accounted for in this way; the trisecants of the Jacobian
curve of a net of quadrics given by the canonical form II are the edges of a hexa-
hedron. Two trisecants are conjugate when they are opposite edges of 9; ie.
when the three faces of © passing through one of the trisecants and the three
faces of § passing through the other together constitute all the six faces of 9.
The double surface of R}® now contains fifteen plane quintic curves; these are
all in birational correspondence with ¢ and with each other.

Any solid which contains a secant plane of & meets & further in four points
which are vertices of four cones belonging to a pencil; hence, if { is any
plane quintic in birational correspondence with &, the vertices of the tetrahedron
in which any face of § is met by four of the other faces correspond to four
collinear points on £. It follows immediafely that any five faces of § form a
simplex, inscribed in &, whose five- vertices correspond to five collinear points
of [, and hence that the fifteen vertices of © correspond to fifteen points of {

which are the intersections of six lines. Hence

If the Jacobian curve of a net of quadrics in (4] 4s circumscribed to a
hexahedron, then any plane quintic which vs in birational correspondence with
it 4s circumseribed to a hexagram.

The intersections of the quintic with a side of the hexagram correspond to
the vertices of a simplex formed by five faces of the hexahedron; the ten ver-
tices of a pentagram formed by five lines of the hexagram correspond to the
ten intersections of the Jacobian curve with a face of the hexahedron. The ten
vertices of the pentagram must therefore be the points of contact of the quintic
with a contact quartic. Also the vertices of the quadrilateral formed by any
four lines of the hexagram correspond to the six intersections of the Jacobian

curve with a plane of the hexahedron; hence there is a cubic curve touching
35—35150. Acta mathematica. 66. lmprimé le 24 octobre 1935
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the quintic at each vertex of the quadrilateral, the remaining three intersections
of the curves being the intersections of the quintic with its tangent at the point
of intersection of the remaining two sides of the hexagram. The vertices of a
triangle formed by three sides of the hexagram correspond to three collinear
points of the Jacobian curve, so that there is a conic touching the quintic at
the vertices of such a triangle. If we take two such triangles whose sides con-
sist of all the six lines of the hexagram the associated trisecants of 3 are con-
jugate, so that the four intersections of the two tritangent conics are on the
quintic curve.

The equation of the quintic is obtained immediately by writing zero in-
stead of 7 in the determinant D of § 12; it is therefore

E+ ST HET T A 5T =0,

and the curve passes through the intersection of any two of the six lines

& =o0. The quartic curve
BT E R =0

touches the quintic at the ten vertices of the pentagram whose sides are the
sides of the hexagram with & =0 omitted; also the equations of the cubic cur-
ves and tritangent conics just referréd to can at once be written down.
Although every plane quintic which is in birational correspondence with
a Jacobian curve having an inscribed hexahedron has an inscribed hexagram it
is not true, conversely, that every Jacobian curve which is in birational cor-
respondence with a plane quintic having an inscribed hexagram has an inscribed
hexahedron. Nevertheless, when a plane quintic has an inscribed hexagram, a
Jacobian curve can always be found which is in birational correspondence with
it and which has an inseribed hexahedron. For we can always suppose that the

equation of such a plane quintic is

E T+ ST T E T =0,
where
§iExai+ybi+ch':O (Z.:I:Z, 3 4, 5:6)

are the equations to the sides of the hexagram. The equation to this quintic,
when written in the determinantal form, is at once seen to be the condition
that a quadric of the net Il should be a cone, and the Jacobian curve of the
net II fulfills the required conditions.
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15. The locus of the poles of any solid S; in regard to the quadrics of
the net is a sextic surface on which lie ten lines. The line conjugate to any
point of this surface lies in S; and, conversely, if a point is such that the line
conjugate to it lies in S; then the point must lie on the surface (G.N.Q. § 13).
Consider now the particular case when S§; is a face of the hexahedron. The
remaining five faces of the hexahedron form a simplex whose ten edges are
trisecants of &; the line conjugate to any point of any of these trisecants is
the conjugate trisecant of &, and lies in §,. Hence the sextic surface which is
the locus of poles of S, passes through the ten edges of the simplex, and these
are the ten lines which lie on the surface.

The Jacobian Curve with a Scroll of Trisecants.

16. When a plane quintic has an insceribed hexagram the sides of the
hexagram will not, in general, touch a conic. We now prove that if a plane
quintic has an inscribed hexagram whose sides touch a conic then it has an
infinity of inseribed hexagrams whose sides all touch this same conic.

Let us suppose that the hexagram consists of the tangents to the conic
xz=y* at the six points (6, 0;, 1), with ¢=1, 2, 3, 4, 5, 6. Then the equation
of the quintic is of the form

& }.;
Zx~2y0i+é‘0§:

i=]1

0.

Now take any point on this curve; if ¢ and y are the parameters of the points

of contact of the two tangents which can be drawn to the conic from this point,

G

\
%(90 — )y —0)
If ¢ is given this is a quintic equation for ; it gives the parameters of the
points of contact with the conic of those of its tangents which pass through
the five intersections of the guintic with the tangent to the conic at the point
whose parameter is ¢. Suppose that ¥, and v, are two roots of this quintiec.
Then

Zhilg — 0w, — 0 =o,

S — 0 (s — 6 = o.
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Subtracting
(W, =) Zhilp — 0 (y — 0)7 (Y, — O) T =o.
Adding

(Wz + 1/’1) 2l (q) - 01‘)—1 (W1 - 0,-)_1(1;12 — 01 —232,6; (‘P — ) (W1 - 01?)—1 ("Pz“at’)_l =o.

The first of these last two equations gives
Ehilep — 07w, — 07 (Y, — 0 =o,
and the second then gives
21:0,p — 6)7 (w, — O, ~ ) —o.
Combining these two results we ﬁﬁally obtain
T k(g — O (Y, =07 = o,

and this is the condition that the tangents of the conic at the points v, and
1, should intersect on the quintic. Hence it has been shown that, if any fan-
gent of the conic is taken, the other five tangents which can be drawn to the
conic from the five points in which this tangent meets the quintic are such that
the intersection of any pair of them is on the quintic. Thus any tangent of
the conic determines a hexagram whose sides are all tangents of the conic and
which is inscribed in the quintic; since any tangent of the conic belongs to one
and only one hexagram the sets of tangents of the conic which compose the

hexagrams are the sets of an involution gi. This same argument also proves
i . 1 . .
that if a curve C" of order = passes through the S (n+ 1) intersections of n+1

tangents of a conic then there is an infinity of sets of n-+1 tangents of the
same conic such that the intersection of any two tangents of the conic that
belong to the same set is on (" In particular, since any five lines touch a
conie, the case » =4 gives Liiroth’s porism: if a quartic curve is circumscribed
to a pentagram then it is circumseribed to an infinity of pentagrams.

17. Conversely: if we taken an involution ¢; consisting of sets of tangents
of a conic y the locus of intersections of pairs of tangents of .y which belong
to the same set of g; is a quintic curve. This can be shown if we appeal to
the theory of correspondence; for the g sets up a (5, 5) correspondence between
the tangents of the curve y of class 2, and there are ten tangents of y which
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are self-corresponding; hence, since the correspondence is symmetrical, the order
of the curve which is the locus of intersections of corresponding pairs of tangents

is é{z 5+ 2.5 — 10} = 5. This result however can also be established easily by

direct algebra, without any appeal to correspondence theory. For suppose that
the six tangents, of the conic xzz = y® which belong to a set of g; are those

the parameters of whose points of contact are the roots of the sextic

a, + a,0 + a,0° + a,0° + a,0* + a;0° + a,0° +
+ Ay + b0 + by0° + by0° + b,0* + b,6° + by6°) = o,

different sets of gi being given by different values of 4. If (x, y, 2) is the inter-
section of the tangents of the conic at two points whose parameters are the
roots of this sextic it follows, since these two parameters are the roots of the
quadratic —2 yf+20" = o, that there must be an identity of the form

ay + a0 + a,0® + a,0° + a0 + a,0° + a,0° +
A+ by + 5,0 + D607 + b,6° + b0 + b,6° + b0 =
=(x—2y0 + 20°)(c + 80 + y0* + 00° + £6%).
Equating the coefficients of the different powers of € in this identity, and elim-

inating 4, e, 8, 7, 0, ¢ from the resulting seven equations, we see that (x, y, 2)

must lie on the curve

ay @, Ay g Qg Az g
b, b b, b, b, by b

r —2y =z o) o o O

o} x —2y z o] o o }|=o0
0 o r —2y z o o

o} o 0 x —2y & O

o 0 0 o « —29 2z

This is a quintic curve; it is circumscribed to all the hexagrams formed by sets
of the gs. '

18. The method by which we have established that the locus of inter-
sections of pairs of lines belonging to sets of a g; among the tangents of a
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conic is a quintic curve will also establish similarly the fact that, if a g3 is
taken whose sets consist of tangents of a conic, the locus of intersections of
pairs of lines belonging to sets of the gi is a quartic curve. Any two sets of
five tangents of a conic determine a g;i; hence if any two pentagrams are taken
which are circumscribed to the same conic, their twenty vertices lie on a quartic
curve. Now counsider the quintic curve {, obtained above as the locus of ver-
tices of hexagrams given by the sets of a ¢gi among the tangents of the conic
y. If we take any two of the hexagrams, and owit one side of each, we obtain
two pentagrams whose vertices, as well as being on , all lie on the same
quartic curve; the twenty vertices of the two pentagrams therefore form the
complete set of intersections of { and the quartic curve. If, for the moment,
we keep one of these pentagrams fixed and allow the other to vary continuously
(the second pentagram is determined when the omitted side of the hexagram,
to which it belongs, is given) we see that if any pentagram is taken whose
sides are all sides of the same hexagram inscribed in § its ten vertices are
points of contact of { with a contact quartic. We have seen that any two such
sets of contacts all lie on the same quartic, so that all the contact quartics
obtained belong to the same system; moreover, since the set of vertices of a
pentagram includes sets of four collinear points, the system of contact quartics
cannot be one of those 2015 systems whose members are such that their sets
of ten contacts with [ lie on cubic curves; it must then be one of the 2080
systems of the first kind. Wherefore  can be put into correspondence with the
Jacobian curve & of a net of quadrics in (4] tn such a way that the ten vertices
of a pentagram on § always correspond to ten cospatial pornts on . The six
vertices of a quadrilateral whose sides all belong to the same inseribed hexagram
of { therefore correspond to six coplanar points of 2, and the three vertices of
a triangle whose sides all belong to the same inseribed hexagram of { correspond
to three collinear points of 3. Thus I has a scroll of trisecants and an infinety
of enscribed herahedra. We have seen previously that, when & has an inscribed
hexahedron, { has a corresponding inscribed hexagram; hence, if J has an
infinity of inscribed hexahedra, any plane quintic in birational correspondence
with it has an infinity of inscribed hexagrams. It can be shown directly (see
§ 20 below) that the sides of these hexagrams all touch the same conic; whence
we have the following:
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There exist in [4] nets of quadries whose Jacobian curves are circum-
seribed to an tnfinity of hexahedra; any plane quintic which is in birational
corvespondence with such a Jacobiun curve is circumscribed to an infinity of
hexagrams whose sides all touch the same conee. Conversely: if a plane quentic
ts circumscribed to an infinity of hexagrams whose sides all touch the same
conic it can always be put tn birateonal correspondence with a Jacobian curve

in [4] that 7s cercumscribed to an infinity of hexahedra.

19. Through any point of [4] there pass a finite number of faces of the
hexahedra inscribed in ; if this number is » we say that the faces of the
hexahedra generate a developable of class ». This developable is rational. For
the ten intersections of 9 with a face of a hexahedron correspond to ten points
of £ which are the vertices of a pentagram belonging to an inscribed hexagram;
the sixth side of this hexagram may therefore be regarded as corresponding to
the face of the hexahedron, so that the faces of the hexahedra are in (1, 1)
correspondence with the tangents of a conic. The class » can be obtained im-
mediately by means of the principle of correspondence; for the hexahedra are
the sets of a linear series g; of sets of solids of the developable, and the plane
of intersection of two faces of the same hexahedron is a secant plane of J;
hence the locus R§ of secant planes of ¢ is generated by the intersections of
pairs of solids which correspond to one another in a symmetrical (5, 5) cor-
respondence between the solids of the developable of class ». Since the develop-
able is rational the number of self-corresponding solids is 10; hence

|

(57 4+ 5m — 10) = 15,

]

n=4.

The faces of the hexahedra which are inscribed in 3 generate a developable of class
4. The hexahedra can therefore be obtained as the sets of a g3 among the

osculating solids of a rational normal quartic curve.

20. Having shown that the developable generated by the faces of the
hexahedra is of class 4 it is interesting to prove, from the four-dimensional
figure, that the sides of the hexagrams which are inscribed in any plane quintic
which is in birational correspondence with & all touch the same conic. These

lines envelop a curve whose class is the number of sides of hexagrams passing
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through an arbitrary point of the plane; this point represents a quadric ¢ be-
longing to the net in [4], and the five points of the quintic which lie on a side
of a hexagram through the point correspond to five points of % which are
vertices of a simplex whose faces all belong to the same hexahedron and which
is a self-conjugate simplex in regard to . The faces of such a simplex are
common to two developables; namely the developable generated by the faces of
the hexahedra and the developable generated by the polar solids of the points
of ¢ in regard to . Conversely: suppose P, is a point of 9 such that the po-
lar solid of P, in regard to () is a face of one of the hexahedra inscribed in %;
this solid meets ¢ in the six points of the secant plane conjugate to P, and in
four further points P,, Py, P,, P; which are the vertices of the remaining four
cones that belong to the pencil determined by (P,) and . Then the respective
polar solids of P,, Py, P,, P, in regard to ¢ ave P, P, P, P,, P, P, P, P,,
P, P P, P,, P, Py P, P,; and these are four of the faces of the hexahedron to
which P, P; P, P, belongs. Thus the five points p,, ps, ps, s, ps on the plane
quintic are its intersections with a side of a hexagram, and the line on which
they lie passes through the point that represents ¢. Wherefore the class of the
envelope of the sides of the hexagrams is one-fifth of the number of solids com-
mon to the two developables. Now the solids of both these developables pass
through the generating planes of the locus R}, so that the number of solids
common to them can be calculated at once by the formula dual to that which
gives the number of intersections of two curves on a ruled surface.! The de-
velopable generated by the faces of the hexahedra is of class 4; each solid of
this developable contains five planes of Ri’ and each plane of Ry lies in two
solids of the developable. The developable generated by the polar solids of the
points of 3 in regard to @ is of class 10; each solid of this developable con-
tains one plane of R}® while each plane of R}’ lies in one solid of the develop-
able. Hence, by the formula referred to, the number of solids common to the
two developables is

4'5-1+10-1-2—15-2-1=I0.

Hence the sides of the hexagrams envelop a curve of class 2.

! If we have, on a ruled surface of order n, a curve of order m meeting each generator-in
k points and such that s generators pass through each point of the curve, and also a curve of
order m’ meeting each generator in %’ points and such that s’ generators pass through each point
of the curve, then the number of intersections of the two curves is msk’ +wm's'k—nkk'
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21. When the quadrics of the net IT are represented by the points of a
plane the quintic curve whose points represent the cones of the net is circum-
scribed to the hexagram formed by the six lines a;x + b;y + ¢;2=0. The ne-
cessary and sufficient condition that these lines should touch a conic is

2

aj a; as a; as as
2 2
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a; by @y by as by a, b, asb;  agb,

Thus when the coefficients in the canonical form IT satisfy the relation #=o0
there is an infinity of canonical forms II for the same net of quadrics, and the

coefficients in any one of these canonical forms satisfy the relation amalogous
to 4 =o.

22. Suppose now that a net of quadrics can be reduced to the canonical
form II, and that the coefficients satisfy the relation #==0. Then the equa-
tions of the quadrics can be expressed in terms of either of two (among an in-
finite number of) sets of six squares; the first quadric, for example, in this way
gives rise to an identity

aXi+aXi+ta,Xs+a, Xi+ X5+ a; Xo =

=ad Y+ s Yit+as Yi4aiYi+ as YE+ aé Ye.
This identity involves the squares of twelve linear forms. Suppose we take any
gquadric which touches % of the twelve solids obtained by eguating these linear
forms to zero, and then substitute differential operators for the coordinates in
the prime equation of this quadric. If we then operate on the identity with
the differential operator so constructed, the squares of the % linear forms cor-
responding to the solids touched by the quadric are annihilated. Suppose, in
particular, that =9, and that the quadric touches all the twelve solids except
the three X, = o0, X, =0, X;= 0; the application of the operator corresponding
to such a quadric gives

Aia, + dyay + Aga; =0,

where 4, 4,, A; are constants depending on the quadric. Also we obtain, by

means of the same differential operator, relations
36—35150. Acta mathematica. 66. Imprimé le 25 octobro 1935.
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Aiby 4+ A8y + A3b, =0,
Aiey + Ayey + Ages =0,

arising from identities associated with other quadrics of the net. But the coef-
ficients in II do not satisfy any relation other than ./ = o0, so that the three
linear equations just obtained for A, 4,, 4; can only be satisfied by taking

Thus, whatever quadric we choose to touch the nine solids, the differential oper-
ator constructed from its prime equation annihilates not only the nine squares
corresponding to these solids, but also the other three squares as well; hence
all quadrics which touch the nine solids touch all the twelve solids, and the
twelve solids are touched by ® quadrics. The conclusion is, in general, that
the twelve solids all osculate the same rational normal quartic curve.!
Conversely: if twelve solids osculate a rational normal quartic curve there
are three linearly independent identities connecting their squares; for the equa-

tion of any one of the solids may be taken as
Pi=uzy + 2, 0; + 2,0} + 2,0} + 2,6; = o,

and so the twelve squares P; are linearly dependent from nine quadratic func-
tions of the coordinates xy, x;, #s, 23, «,. If then the twelve solids are divided
into two sets of six there are three linearly independent quadrics whose equa-
tions are expressible in terms of either set of six squares. We can indeed give

the explicit form of the equations. For suppose we take the six primes
xo+x10,-+x20?+x30?+x40$=o, (i:I)2’3a4)576)

which osculate the quartic curve at the points whose parameters are 6, 0,, 0,,
04’ 0?

a2

8, and also the six primes
T + 2 @i+ Tyl + Tyl Fa gl =0,  ((=1,2,3,4,5,6)

which osculate the quartic curve at the points whose parameters are ¢,, @, @,,

Qs 5. Ps. 1f we write

! See, for a corresponding argument in [3], A. C. Dixon, Proc. London Math. Soc. (2), 7
(1909), 153.
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=
l

(t_‘ 0 )(t_ez)(t_as)(t_"e4)(t— 65)(t‘—06)7
g(t)=(t— ‘]’1) (t— 972) (t— @3) (t— P4 (t— @s) (t— @q),

it can be verified that, for all values of the constants e, 3, 7,

Z“(a + 80+ y0) (@ + @ O + 26 + @00 + 2,6

= S (6:)g(6)
N é(a + B+ i) w0+ @ gt 2y 9f + 2l + gl
Floig (@)
We thus obtain the three quadrics
0, = 26‘ (g + 2,0; + ?20? + 2,0 + x40§)25
=2 716)40)
_26 (2o + @ @i + 2y i + 2y} + 2y i) R

flod ¢ (@)

= 0 (g + o, 0; + 2,6; +x20 +x404)
@ ; F6596)
= 26 Pi 2 H‘+w1971+x2971+$%(p,—|—x4q)1) —05
= Slp) g (@) ’
o 0F (g + @, 0 + 2,07 + 2,0} + 2,607 _
= é x0+x1¢z+x2¢z+xqq)1+x4¢l) .

Slpd g (@)

23. Let us now consider some of the loci associated with the Jacobian
curve & that is circumscribed to an infinity of hexahedra. The o' trisecants of
& are the edges of the hexahedra, and are associated in conjugate pairs, two
trisecants being conjugate when they are opposite edges of the same hexahedron;
the polar solids of any point on a trisecant of & in regard to the guadrics of
the net all pass through the conjugate trisecant. Each point P of 3 is the
vertex of one and only one hexahedron; the four faces of the hexahedron which
intersect in this vertex intersect by threes in the four edges of the hexahedron
passing through that vertex; & is a quadruple curve on the scroll of dts trisecants.
We can determine the order v of this scroll, for since its generators are all
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trisecants of < any cubic primal containing ¢ meets the scroll in %, counted
four times, and 3» — 40 generators. Suppose, in particular, that the cubic pri-
mal containing < is the primal JT which is the locus of lines conjugate, in re-
gard to the net of quadries, to the points of a plane =; there are v trisecants
of 9 which meet =, and the » trisecants which are conjugate to these lie on IT.
Conversely: if a trisecant of & lies on I1, and is conjugate to a point of 7, its
conjugate trisecant must be one of the » trisecants which meet . Moreover
no trisecant of & can lie on IT unless it is conjugate to some point of z. For
suppose ¢ is any trisecant of 4 which lies on IT; through an arbitrary point 0’
on #, as through any point on II, there passes a line j conjugate to some point
O of m; the line which is conjugate to O therefore passes through 0. But
since 0" is on ¢ its conjugate line must be the trisecant conjugate to ¢; hence
the line conjugate to O is ¢, and j coincides with ¢. It follows that II contains
» trisecants of », and no more; hence

3¥ — 40 =1,

Yy = 20.

The tresecants of & gemerate a scroll R of order 2o, on which 9 is a quadruple
curve,

Any trisecant of & is joined to its conjugate trisecant by a solid I, so
that the solids I are determined as the joins of pairs of generators of RY which
correspond to one another in a symmetrical (1, 1) correspondence. Since no ge-
nerator of R} can intersect its corresponding generator the solids 3 generate a
developable D of class 20.

24. It is known (G. N. Q. § 28) that any two canonical sets on J form
the complete intersection of ¥ with a quadric. Now a particular canonical set,
as was seen in § 8 above, consists of any point P of %, counted twice, and the
eight other points in which the four trisecants through P meet ¢; any quadric
which contains this canonical set contains the four trisecants of & through P
and therefore, since these four trisecants do not lie in a solid, this quadric is
a cone with vertex P. In particular: the quadric which contains the two cano-
nical sets which arise in this way from two different points P, and P, of &4 is
a line-cone whose vertex is P; P,; thus the projection of 9 from any one of its
chords is a plane octavic eight of whose fifteen nodes are on a conic. When
the two points P; and P, coincide with the same point P of 3 we have the re-
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sult that the tangent of & at any point P is the vertex of a line-cone {P}
which touches & at each of the eight points in which & is met by the four tri-
secants through P.

25. The tangent planes of a ruled surface at the different points of a ge-
nerator all lie in the same solid; thus if any curve, in space of dimension grea-
ter than or equal to 4, has an infinity of trisecants, the three tangents of the
curve at the points where it is met by any one of its trisecants lie in a solid,
this solid being the tangent solid, along this particular trisecant, of the scroll
generated by the trisecants. In particular the three tangents of 9 at its inter-
sections with any trisecant are cospatial’; if < is projected on to a plane from
one of its tangents, the tangent being supposed not to meet 9 except at its
point of contact, it becomes a plane octavic with four tacnodes; since the oc-
tavic is of genus 6 it will have seven ordinary nodes in" addition to its tac-
nodes.

Any solid which contains a trisecant of & touches R;’ at some point of
this trisecant; consider then the section of R;° by a solid which is a face of a
hexabedron inscribed in . The other five faces of the hexahedron meet this
face in five planes, and the ten lines of intersection of pairs of these planes are
all trisecants of % and so form part of the curve of section; there are three of
these ten lines passing through each of the ten intersections of % with the solid.
Thus the curve v, of order ten, which is the remaining part of the curve of
section, must pass through the ten intersections of ¢ with the solid, as these
are to be quadruple points of the curve of section. Each of the ten lines is
therefore met by % in three points; it is also met by v in that point of the
line at which the solid touches R)°. The complete curve of section thus con-
sists of the ten edges of a pentahedron and a curve v, of order ten, passing
through the ten vertices of the pentahedron and meeting each edge in one point
other than the three vertices which lie on that edge. The edges of the pentahedron
are quadrisecants of . It follows that a secant plane of & does not meet R)°
except in the four trisecants of & which lie in the plane; for the curve ¥ which

lies in either of the two faces of the hexahedron which contain the secant plane

! This follows immediately also from the existence of the line-cones {F}. The tangents
of ¢ at its three intersections with a trisecant are cospatial because, if P is any one of the inter-
sections of the trisecant with &, they lie in the solid which touches {P} along the plane joining
the trisecant to the tangent of & at P. The four tacnodes of the plane projection of 9 are on a
conic which touches the four tacnodal tangents.
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is such that all its ten intersections with the plane are on these four trisecants.
There are o' curves ¢ on R)’, and they are all in birational correspondence

with each other.

26. Since there are three secant planes of % passing through each of its
trisecants the scroll R;° is a triple surface on the locus R;® generated by the
secant planes; thus the double surface of R;°, which is, in general, of order 83,
now consists of R’ counted three times and of a surface F2’ of order 25. This
surface meets each secant plane of & in a quintic curve passing through the six
points of & which lie in that plane (cf. § 13); there are thus ! plane quintics
on F}®; they are all in birational correspondence with each other and with &,
and any two of them intersect in the point which is common to their planes.
Through an arbitrary point of F)* there pass two of the plane quintics, but if
the point lies on & there are six quintic curves passing through it. To find the
multiplicity of & on the surface F.° we consider the section of R;* by a plane
meeting & in a point P; this is a curve of order 15 and genus 6 and having
therefore the equivalent of 85 double points. It has a sextuple point at P; also,
since P is a quadruple point of R)’, the plane meets R}’ in sixteen further
points, and these are triple points of the curve of section; it follows that the
curve must have 22 further double points, and these are the intersections, apart
from P, of the plane with F°. Hence & s a triple curve on F;'. The scroll
which is the section of R;° by an arbitrary prime has a triple curve of order 20
meeting each generator in four points and a double curve of order 25 meeting
each generator in five points; both these multiple curves pass through the ten
intersections of the prime with -3, these being sextuple points of the seroll, quad-
ruple points of the triple curve and triple points of the double curve.

The section of F;’ by a face of a hexahedron inscribed in 9 consists of
five plane quintics. The section of R;® by a face of a hexahedron inscribed in
& consists of five planes and a scroll & of order ten; the five plane quintics in
which the solid meets F}® are all on ¥ but are not multiple curves. The curve
¥ in which the solid meets R}’ is a triple curve on ¥, and the generators of ¥
are all quadrisecants of .

27. Suppose now that the rational quartic curve y* which is osculated by
the faces of the hexahedra inscribed in & is given by the the equations®

! We shall assume as known the properties of the rational quartic curve and of loci asso-
ciated with it; for example the loci generated by its tangents, by its chords and by its osculating
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Ko Ty Xy Ty Xy =0 —46%:66%: —460:1,
so that the equation of the osculating solid at the point whose parameter is 6; is
Ty + 2,0 + 2, 0F + 2,0] + 2,0} =o.

Suppose also that the gi on y* which determines the hexahedra is given by the
pencil of sextics which includes
a0 + a,6° + a,0* + a,6° + a,0° + ;0 + a; =0

and
boO° + 0,65 + by 0* + b, 0° + b, 0° + b0 + by=o0.

Then, if any point on & is taken, the four points of y* at which the osculating
solids pass through this point must all belong to the same member of the pen-
cil of sextics; hence, given any point (z,, z,, @4, 5, z,) on & it must be possible

to find constants 4, i, @, 8, ¥ so that

MMayt® + a,0° + a,0* + a,6° + a,60° + a;0 + a;) +
+ (b6 + b,0° + b, 0" + 5,0 + 5,0% + b0 + b)) =
=(zy + 2,0 + 2,0° + 2,0° + 2,04 (« + 80 + y 6.

Equating the different powers of 6 on the two sides of this identity, and elimi-
nating 4, u, @, 8, y from the resulting seven equations, we see that the coordina-
tes of any point on 9 satisfy the equations

‘ Qg a; Gy ag a4y as ag
]bo b by by b, by b
) Wy, X3 Xy X X, © O ||=o0.

0O X, X3 Xy T Xy O

0O O xy X5 Xy X Xy |
These equations are those of a curve of the tenth order.!

28. If we take a point on R)’ then there are four osculating solids of y*
passing through it, and three of the four points of contact must belong to the

planes. Many of these properties can be obtained very simply either from the projective method
of generating the curve or from its parametric representation (equivalent to the above) first given
by Clifford.

! For the order of a locus given by the vanishing of the determinants of a matrix see Sal-
mon: Higher Algebra (Dublin, 1885), Lesson 19.
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same member of the pencil of sextics. Hence, given any point (z,, 2y, @, 3, )
on R’ there must exist constants A, u, ¢, 0, @, B, 7, J, such that

{4(ao6° + a,60° + a,0* + a,0° + a,6° + a,60 + ag) +
+ u (B0 + b,0° + by0° + by 0° + b0 + b0 + b)) (00 + o) =
=(xy + 2,0 + 2, 0° + 2,0 + 2,0") (« + 80 + y6* + 0 6%);

and, conversely, if the constants can be determined so that this identity holds,
the point (x,, 2, %, %3, 2,) lies on R’. We can eliminate at once the eight
* quantities 19, uo, Ao, no, a, 3, 7, d from the eight equations obtained by equating
the coefficients of the different powers of 8 on the two sides of the identity;
we thus obtain the equation

Gy Gy Gy Gy @y a5 a; O
by by by by b, by b O
0 a @ ay ay a, ay ag
o by b by by b, by b

Ly Ty Xy Xy Xy O O O

O O Ty Ty Ly X X O

0 0 0 X Ty Ty Ty %

This is the equation of a primal of the fourth order; hence R;° les on a quartic
primal @. Also if (z,, x,, x,, #;, x,) satisfies the equations of %, every first minor
of this eight-rowed determinant vanishes; hence & #s a double curve on @. Since
the surface of intersection of two quartic primals is only of order sixteen, and
since any quartic primal on which 9 is a double curve must contain all the
trisecants of &, which generate a surface of order twenty, there is no quartic
primal other than @ which has & as a double curve. Also, since R}’ is a triple
surface on R;’, the complete intersection of R’ with @ consists of R’ counted
three times.

The polars of any three points of [4] in regard to @ are cubic primals all
containing the curve &; their residual curve of intersection is of order 17 and
has 30 intersections® with 3. But there are exactly 30 tangents of ¢ which

! If three primals in [4] of orders m,, n,, n, pass through a curve of order & and rank &,
their residual curve of intersection meets this curve in &, (n, +ny+ny;—3)—e, points. See Vero-
nese: Math. Annalen 19 (1882), 205.
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meet the plane of the three points, so that these account for all the points com-
mon to J and the residual curve of intersection of the three cubic primals;
thus @ cannot have any bispatial points on J. It follows that the class of @
is 4-17—2- 30=8.

The lines which pass through any point P of the double curve 9 of the
primal @ all have two intersections with @ at P, and those which have three
intersections with @ at P generate a quadric line-cone whose vertex is the tangent
of 3 at P. Now these lines include the four trisecants of 4 which pass through
P, so that the four planes which join the tangent of 3 at P to these trisecants
are generating planes of this line-cone, as they are of the cone {P}.

It can in fact be shown that {P} is actually the tangent cone of @ at P.
The section of @ by any solid which contains a trisecant of + is a quartic sur-
face with three collinear nodes P, @, R; and it can easily be shown that any
such quartic surface has the same tangent plane at every point of the line PQR
and, furthermore, that this plane is also a tangent plane of each of the three
nodal cones,! touching them all along P @ R. It follows that @ must have the
same tangent solid at all points of a trisecant P @ R of #, and that this solid
touches the tangent line-cones of @ at each of the points P, @, B. This solid
must therefore contain the tangents of -3 at the points P, @, B; and it has been
seen that this solid is a tangent solid of the line-cone {P}. Thus the tangent
line-cone of @ at P and the line-cone {P} not only have four common generating
planes, but they touch each other at any point of any one of these four planes;
the two cones must therefore be the same.

If a chord P ¢ of 9 lies on @ then it must lie on the tangent comes of
@ at P and . Now the cone {P} has no intersections with 9 other than P
itself and those points of 9 which lie on the trisecants through P; it follows
that there can be no chords of %, other than the four trisecants, which pass
through P and lie on @; every chord of 3 which lies on @ <s a trisecant of 9.

! The equation of a quartic surface with three collinear nodes can be written
(@, ) +2 (o0, Yl + 10 (2, v +2° (0, )y + 200 (@, 4)s +00° (0, )y + 200 (2 —w) (@ + by)=o.

Then ax+by=o0 is the tangent plane of this surface at any point of the line x=y=o0, and also
touches along this line the three nodal cones

(@, )+ wlax+by)=o0, (z,y)i—z(ax+by)=o,
(o, Y)y + (2, )y + (@, ¥)s +(z—w) (ax+by)=o0.

A similar statement holds for a surface of order #n with »—1 collinear nodes.

37—351560. Acta mathematica. 66. Imprimé le 25 octobre 1935.
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The chords of & generate a locus M;’ on which R}’ is a triple surface; the com-
plete intersection of @ with M}° must consist of the scroll R2® counted six

times.
29. Write now

a0 + a,60° + a,0* + a,0° + a,0° + a;0 + a;=
= (0 — 60,)(0 — 0,) (0 — 05) (0 — 0,)(6 — 6;) (6 — 6,) = a,.1(6);

bt + b 605 + b, 0" + b, 0° + b,0° + b0 + b, =
:bo(e_9)1)(9_‘P2)(6’_‘P3)(9“‘P4)(0—'975)(0— ®e) = by g (6);

and multiply the eight-rowed determinant occurring in the equation of @ by the

eight-rowed determinant whose ¢ row consists of the six elements
38— 8 —7 3—i 81 8—7 8—7z .
01 l’ 02 17 03 l’ 64 l’ 05 17 0(5 t ’

the remaining elements, in the seventh and eighth columns, being arbitrary. Then

the matrix of the first six rows of the product determinant is

O (@] (0] (o] O (o]
0,90, 0,9(0,) 0,96, 6,9 (0) 659065 6,9(0,)
(o] (o] (@] O O (o]

g0) g g6) g6) g@) g6)
#p, &P, &P, 6P, 6P, 6P,
&p, &P, &P, 6P, 6P, 6P,
o,p, 0,P, 6,P, 6,P, 6,P, 6,P,
P, P, P, P, P, P,

where, as before, P;=ux, + x,0; + x,0; + 2,0} + x,0;. Hence the equation of

@ may be written

0,9(0,) 6,9(0.) 0O59(0,) 6,90, 659(6;) 6590,
g@) g0 9@  g0) g@;) g6,
6; P, o; P, 0; P, 0P, 0 P, 6; P,
g: P, 0; P, G r, G P, 6 P, 0; P,
0, P, 0, P, 0, P, 0, P, 6, P; 0; P,

P, P, P, P, Py Py
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This form of the equation shows immediately that @ passes through the
twenty edges of the hexahedron whose faces are the six primes P; = 0, and that
the fifteen vertices of this hexahedron are double points of @. The expansion
of the determinant, by Laplace’'s rule, by means of the two top rows, gives the

equation

2 f 2) (,(%;’( )PkPlePn—o

where the summation extends to the fifteen pairs of indices (¢7), and %,1,m, n
are the four numbers, other than ¢ and 7, of the set 123456. If we write
P;= X, f (6), so that the linear identity between the six forms X; is

X+ X+ X, + X, + X, + Xy=o0,
the equation of @ is

> {f,—fgi)—_j%}?g(@)g(aj) X X Xp X —o.

Similarly, if Yi¢ (@) =z, + 2, @i + 2 @i + 239} + z, !, we obtain an equation
for @ in the form

2{ ¥ } flg) Yo Y1 Yo Yo =o;

and we can similarly obtain an equation for @ involving the six primes which
are the faces of any one of the hexahedra insecribed in 9.

30. We obtained the equation of the primal @ originally by equating to
zero a determinant of eight rows and columns; we have now obtained another
form of the equation in which a determinant of six rows and columns is equated
to zero. We can proceed a step further in this direction and, by multiplying
the determinant of six rows and columns by another determinant suitably chosen,
reduce the number of rows and columns to four.

Take then the six-rowed determinant which occurs in the equation for @
and maultiply it by a six-rowed determinant the last four constituents of whose
7™ row are

e o 0; 1 )
g @) f 6) ¢@)f ) g@)f©6) ¢@)f 6)
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the composition of the first two columns of this new determinant is immaterial
save for restrictions that prevent the determinant from vanishing. Then, in vir-
tue of the identity

6 n

S ="

i=1 f (01)

which holds when # =o0, 1, 2, 3, 4, the last four constituents in each of the two
top rows of the product determinant are zero. We thus obtain the equation of
@ in the form

6, 0, 0, 0,
o, 0, 6, 6

6= 4 3 2 —o,
6, 6, 6, O

where

The determinant @ is symmetrical, so that the quartic primal @ 7s a sym-
metroid. The section of @ by an arbitrary solid is thus the well-.known quartic
symmetroid of Cayley, and incidentally we have the result that ¢f the Jacobian
curve of a met of quadrics in (4] has a seroll of trisecants the ten points in which
it 25 met by any solid are the nodes of a quartic symmetrowd.

It can be verified that the ten first minors of the symmetrical determinant
@ all vanish at any point of the curve J, thus showing again that 4 is a double
curve on @. If we refer to the equations of the quadrics of the net as given
in § 22 we see at once that the equations of the Jacobian curve ¢ are

6, 6, 6, 0, 0,
0, 0, 0, 0, Ol =o,
6, 6, 6, 6, 6

every three-rowed determinant of this matrix of five rows and three columns
vanishing at any point on . There are ten three-rowed determinants belonging
to this matrix; when equated to zero they represent ten cubic primals passing
through 4. Also there are ten distinct first minors of the determinant ©, and
it is at once seen that seven of these ten occur also among the ten three-rowed

determinants of the matrix; these seven minors therefore vanish on the curve 9.
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The remaining three minors of the determinant, although not occurring expli-
citly as determinants in the matrix, are easily expressed linearly in terms of the

actual determinants that do occur in the matrix; for example

0; O, 0, O O; 06, 0; 6, 06,
o, o, 0,]=|e, 0, 0,|+|06, 0, 0,]
0, 06, @0 @4 O, @o 6, 06, @1I

Here the determinant on the left is a first minor of @ which does not occur as
a determinant of the matrix; the two determinants on the right do both occur
in the matrix. Similarly each of the other two first minors of ® which do not
occur in the matrix can be expressed as the sum of two determinants which do.

It then follows that all the first minors of ® vanish on the curve 9.

31. When the equation of a primal is given by equating to zero a symme-
trical determinant we can immediately write down, by bordering the determinant,
the equation of a family of contact primals, i.e. of primals which have two in-
tersections with the given primal wherever they meet it. A point common to
the two primals is in general an ordinary point on both of them, the two pri-
mals having the same tangent prime there; but the point may also count for
two among the points common to the two primals by being a node on one
of them.

The identity

Oy O; O, 6; «o 6; O, O, 6; B|—|60; O; O, O «
O; 0, 0; 6, o 6, 0, 0; 6, B 6, 0, 6; 0, o
0, 0, 6, 6O aqa 6, 0, 6, 6 8, 6, 0 O, O o
6, 6, 6, 6, a 6, 6, 0, 6, 8, 6, 60, 6, 6 a
¢ o a3 o O B B B By O By B B By O

6, 0; 6, 6; o B|6O

6O, 0, 6, 6, o B

_ 6, 6, 0, O o p ‘ ( A)

6, 0, 6, 6 o 5

¢ o o o O O

B B B3 B O ©
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shows at once that, whatever the values of the constants ¢, a3, a5, a,, the

cubic primal

0, 6; 0, G ¢
6, 6, 6, 6@, q
6, 6, 0, O of=0o0
6, 6, 6, 6, ¢
¢, @y, € @, O

is a contact primal of @; we thus obtain a triply-infinite family of contact cubic
primals. Bach of these primals touches @ along a sextic surface containing -9
and, as follows at once from (A), the two sextic surfaces in which @ is touched
by any two contact primals of the family together form the complete inter-
section of @ with a cubic primal.

32. The o? contact cubic primals of @ all contain the curve -, and we
know that any one of the «° planes of [4] gives rise to a cubic primal IT also
passing through &; IT can be defined either as the locus of the polar lines of
the plane in regard to the quadrics of the met or as the locus of the lines which
are conjugate to the points of the plane (cf. G. N. Q. § 4). The question may
then be asked whether any of the primals IT can be contact primals of @.

[f the equations of a plane = are

Ay Ty + @ 2y + Ay Xy + @y + a, 2, = 0O,

boxy + by 2y + by xy + byas + by, =0,

then the equation of the associated primal IT is

ay, ay ay a; a
by b, by b, b,
e, 6, 0, 0, 0,]=o0,
6, 6, 6, 0, 6,
6, 6, 60, 0, O,

and we therefore have to enquire whether it is possible to choose constants
@, b, a so that there is an identity
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a, ay Gy a5 Q4 6, 6, 6, 6O, o
by b by by b, O, 0, 0, 6O, o
6, 6 6, 0, 6,|=|6, 6 6, 6
60, 6, 6, 6, 6 G, 60, 6, 6, «
6O, 6, 6O, 6O 6 ¢, @ @3 o O

When we attempt to determine the constants so that this identity is satisfied
(it is not necessary to give the details of the algebra) we find that the identity
must be of the form

at a® ¢® o« 1 GO, O; 6, O, 1

4¢® 30 2¢ 1 O 0, 6, 6, 60, «

6, 6, 6, 60, 0,|=(6, 60, 6, 6, |, (B)
60, 6, 06, 6, 6 6, 6, 6, 6,

6, 6, 06, 6, 06 1« o o

where ¢ is arbitrary. The cubiec primal IT must therefore arise from a plane =

whose equations are of the form

otxy, + oaPax; + oz, +oaxy + 2, =0,

4z, + 3, + 20y + 2,  =oO.

This is an osculating plane of the quartic curve y*, and hence we have the re-
sult that the cubic primal IT associated with o plone s is a contact primal of @
when and only when 7 is an osculating plane of y*. Such a cubic primal will be
denoted by the symbol II,, the suffix signalising the fact that the primal is
associated not with a general plane of [4] but with an osculating plane of y*;
there is then a singly-infinite set of cubic primals IT,, and they are contact
primals of @.

It may be remarked in passing that the two determinants appearing in the

identity (B) are also identically equal to the determinant

?0,— 200, + 6, *Q;—2¢0,+6; "Oj—2¢0;+ 0O,
O, —2a¢0@,+ 0, O, —2e¢0,+ 0, O, —2a0, + O,.
O, —2e0,+ 0, O;—20¢0,+ 6, *60,—2a¢60; + 6,

It follows that the quartic curve ¢ whose equations are
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0,—2a0, +*0, O, —20¢0,+*0,
@, —2a0,+a"'0; O,—206,+ 0O,

0, =206, + 0, 0y —200, + o’ 0O,
O;—20¢0,+ a0, O,—200;+ a0,

is a double curve on II,. Any point whose coordinates satisfy these equations
is on the primal @, so that ¢ lies on the surface along which IT,, touches @.

The sextic surface ¢f along which II, touches @ can be identified. The
identity (B) is true for all values of «; we deduce from it, by differentiation,
the identity

at A LR I | 60, 6, 6, O, o
6a® 30 1 0 O O, O, 6, 6, 1

o . O, 0 =|60. O 6, O, 2«
6, 6, 6, 0, 6 0, 6, 6, 6, 3
6, 06, 60, 6, 6 1 e & o o

When either of these two determinants is equated to zero we obtain the equa-
tion of a cubic primal II'. This is not a contact primal of @, but the form
of the determinant on the right shows, when we refer to the identity (A), that
II' meets @ in two sextic surfaces one of which is ¢f, the surface of contact
of II, and @. On the other hand the form of the determinant on the left
shows that IT' is the locus of the poles of a plane =’ in regard to the quadrics
of the net, and that =’ lies in the solid

atxy + dPxy + alay + axy + x,=o0.

But this is the osculating solid of y* at the point where s is the osculating
plane; hence = and 7’ both lie in this solid. Now when two planes # and 7’
lie in the same solid the cubic primals associated with them have in common
a cubic scroll and a sextic surface, the sextic surface being the locus of the
poles of the solid in regard to the quadrics of the net (G. N. Q. § 15). Hence
the cubic primal Il, which s associated with the osculating plane at a point P of
y* touches @ along the sextic surface @3 which is the locus of the poles of the oscu-
lating solid of y* at P in regard to the quadrics of the met. Since the osculating
solid of y* at P is one of the six faces of a hexahedron inscribed in 9 the
surface @) contains the ten edges of the simplex & formed by the remaining
five faces of this hexahedron (cf. § 15 above).
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33. The equation of the contact primal II, contains the parameter o to
the sixth degree, so that through any point O of [4] there pass siz of the pri-
mals II,. This can also be seen otherwise; for in order that the cubic primal
IT, associated with an osculating plane = of y* should pass through O it is
necessary and sufficient that the line conjugate to O should meet 7z. Tt is known'*
however that the osculating planes of y* generate a sextic locus Fj§, so that any
line meets sixz osculating planes of y*. Suppose now that the point O lies on
@. Then when the coordinates of O are substituted in the left-hand side of
the equation of a contact primal IT, the resulting sextic polynomial in ¢ is the
square of a cubic polynomial; this is clear on referring to the identity (A),
remembering that the coordinates of O now satisfy ® = o. Hence through an
arbitrary point of @ there pass three of the primals II,. Incidentally the sur-
faces ¢} along which the primals II, touch @ form a singly-infinite family of
surfaces of index three. It follows too that if O is any point of @ the line
which is conjugate to O must be such that its six intersections with F§ coincide
in pairs, or that the line must be a tritangent of F'5. This is so: for the line
which is conjugate to any point of the sextic surface which is the locus of the
poles of a solid S; must lie in §;; hence, since there are three of the surfaces
¢s passing through O, the line conjugate to O is common to three osculating
solids of y*. But if n is the osculating plane of y* at a point P the osculating
solid of y* at P is the tangent solid of F§ at every point of =, so that any
line which lies in the osculating solid touches F'§ at the point where it meets
s; the line of infersection of three osculating solids of y* is therefore a tri-
tangent of F7j.

34. It has been remarked in § 28 that if three cubic primals pass through
2 their residual curve of intersection meets @ in eight points not on &. Sup-
pose now that the three primals are all contact primals of @; then any point
which is common to @ and the three primals and which does not lie on 4 is
such that @ and the three primals all have the same tangent solid there; it
therefore counts for eight among the points common to the four primals, and
is therefore their only common intersection apart from the curve J. It is thus
also the only point, apart from the curve &, which is common to the three
sextic surfaces along which the primals touch @. In particular, when the three

contact primals are all members of the singly-infinite family of primals I,, we

! See, for example, Veronese, lo¢. cit., 202.

38—35150. Acta mathematica. 66. Imprimé le 25 octobre 1935.
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see that any three of the surfaces ¢j have in common, apart from the curve 9,
one and only one point. Thus the line common to any three osculating solids
of y* is conjugate to a point of @. It has already been seen, conversely, that
the line conjugate to any point of @ is common to three osculating solids of
y*; there is thus a (1, 1) correspondence between the points of @ and the tri-
tangents of F73, and thus also between the points of @ and the trisecant pla-
nes of y*.

Take now two contact primals of @; their surface of intersection meets
@ in 9 and a residual curve. Now any point on this residual curve is such
that @ and the two contact primals all have the same tangent solid there, so
that this residual curve must be counted four times as part of the curve com-
mon to @ and the two primals. Since the complete curve of intersection is of
order 36, and since < is a double curve on @ and a simple curve on the two
contact primals and therefore counts twice as part of the curve of intersection,
the residual curve must be a quartic. This quartic curve has a certain number
of intersections with &, and this number can be found at once from the fact
that a third contact primal through 9 must have a single contact with the
quartic; of the twelve intersections of this third contact primal with the quartic
ten must therefore lie on &, so that the gquartic meets ¢ in ten points. It
follows also that the sextic surfaces along which any two of the «® contact
primals touch @ have in common the curve ¢ and a quartic curve meeting ¢ in
ten points. Suppose, in particular, that the two contact primals are both pri-
mals II,; the surfaces along which they touch @ are then two of the surfaces
@:2; one of these two surfaces is the locus of the poles of an osculating solid
2, of y'in regard to the quadrics of the net, the other arising similarly from
a second osculating solid £, of y*. Take now any point O on the quartic curve
¢;2 which is common to these two surfaces @3; the line which is conjugate to O
lies in £, and also in £,, and hence in the plane of intersection w,, of 2, and
Q,. But since O is a point of @ the line conjugate to O must also lie in a
third osculating solid of #*; it is therefore one of the lines in which w,, is met
by the osculating solids of y*. These lines, as is well-known, are the tangents
of a conic ¢,; this is in accordance too with the fact (cf. G. N. Q. § 16) that
the order of the scroll generated by the lines conjugate to the points of a
quartic curve having ten intersections with & is 3 - 4—10 = 2. Now the solid £, is
a face of a hexahedron inscribed in &; the remaining five faces of this hexa-
hedron form a simplex &, whose ten edges lie on the surface ¢j associated with
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Q, and whose five vertices lie on . The secant plane of 9 which is conjugate
to any one of these five vertices lies in 2, and meets w;, in a tangent of ¢,,;
hence the five vertices of &, are all on the quartic curve ¢,,. Similarly Q, be-
longs to a hexahedron whose five remaining faces form a simplex &, whose five
vertices are on ¢,,. Hence the quartic curve g, is circumscribed to both the
simplexes &, and &,. The vertices of these two simplexes account for the ten
intersections of ¢,, and 9. We have assumed that £, and £, are not two faces
of the same hexahedron; in that case the curve g,, would degenerate into four
concurrent trisecants of 9.

Consider now the limiting case in which 2, and £, both coincide with
the osculating solid 2 of y* at a point P; the plane w,, then becomes the
osculating plane.ot‘ y* at P, and the conic ¢, becomes the conic ¢, the envelope
of the lines in which = is met by the osculating solids of y*. This comnic ¢ is
‘also the locus of points in which = is met by the osculating planes of »*; it
passes through P, and its tangent at P is also the tangent of y* at P. The
primal I1, which is generated by the lines conjugate to the points of = touches
@ along the surface @i which is the locus of the poles of © in regard to the
quadrics of the net; @3 contains & and also ten trisecants of ¢ which are the
edges of a simplex &. This surface ¢3 is met by the surface which is the locus
of the poles of any other osculating solid Q' of y* in a quartic curve through
the vertices of &, this quartic curve also meeting 4 in the vertices of a second
simplex & associated with £’ in the same way that & is with Q. There is
thus on ¢f a singly-infinite family of quartic curves through the vertices of &;
these include a characteristic curve ¢ which touches &9 at the five vertices of &,
the lines conjugate to the points of ¢ being the tangeunts of ¢. Since there are
two tangents of ¢ passing through any point of 7z the line conjugate to this
point is a chord of ¢; conversely any chord of ¢ is conjugate to a point of s,
for the lines which are conjugate to its two intersections with ¢ are tangents
of ¢, so that the chord of ¢ is the line conjugate to the point of intersection
of these two tangents. Thus the primal II, is the cubic primal generated by
the chords of ¢, and ¢ is the double curve on I1, that was noticed previously.
If we take a point on ¢ the line which is conjugate to it is a tangent of ¢;
not only are the tangents of ¢ conjugate to the points of g but the tangents
of ¢ are conjugate to the points of ¢.
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35. Through any point O of [4] there pass four osculating solids of y*
any three of these meet in a tritangent of F3, so that there are four tritangents
of F% passing through 0. These are the four tritangents of F} that are con-
jugate to the four points in which the line conjugate to O meets @. Suppose
now that O lies on F'§ and so in an osculating plane 7 of y*. Then of the four
osculating solids of y* which pass through O two coincide with that osculating
solid £ of y* which contains =; the plane of intersection of the remaining two
meets 2 in a line which is a tritangent of I7§, this being the only tritangent
whose point of contact is O. Correspondingly, of the four intersections of the
line conjugate to O with @ two coincide with the point to which this tritangent
is conjugate; the two remaining intersections of the line with @ lie, as has been
seen, on the double curve ¢ of the cubic primal IT, associated with =, being
those points of ¢ to which the two tangents of ¢ which pass through O are
conjugate.

The position of O may be particularised further. Suppose O lies on the
tangent ¢ of y* at a point P, the osculating plane of y* at P being = and the
osculating solid ; then of the four osculating solids of y* that pass through
O three coincide with £, and the remaining one meets s« in that tangent =,
other than ¢, of ¢ which passes through O. Of the four intersections of @ with
the line conjugate to O three now coincide with the point to which z is con-
jugate, the remaining one being that point, G' say, to which ¢ is conjugate; both
these points are on the quartic curve g. Each generator of the cubic cone which
projects ¢ from G is conjugate to a point of ¢ and has three-point contact with
@ at its other intersection with ¢. In particular the tangent of ¢ at G has
four-point contact with @ at ; this tangent is the line conjugate to P, so that
the lines conjugate to the points of y* are all flecnodal tangents of @.

Consider lastly the case when O is on the conic ¢ in the plane z; O is
then the intersection of two osculating planes, 7 and z’, of y* and so lies not
only on ¢ but also on the conic ¢’ in the plane n’. The line conjugate to O
is therefore a tangent of two characteristic curves ¢ and ¢’. The particular
circumstance of Q and ', the osculating solids of y* which contain = and =,
being two faces of the same hexahedron inscribed in ¢ may be remarked; the
curves g and ¢’ then touch ¢ at that vertex 7 of the hexahedron which is the
point of intersection of its remaining four faces; the common tangent of ¢ and
¢ is now the tangent of 9 at ¥V, meeting @ in four points at 7. The secant

plane conjugate to ¥ is the plane of the tangents of ¢ and ¢’ at their inter-
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section, this being the plane of intersection of Q and 2'. Again: when we
choose the point O on ¢ to be at P, the point where m osculates y* ¢’ coincides
with ¢ and ¢ with ¢; we have again the tangent of ¢ at G having four-point
contact with @.

36. The characteristic curves ¢ generate a surface y whose order we can
obtain; x is the envelope of the singly-infinite set of surfaces ¢f. It has been
seen that the lines conjugate to the points of a tangent ¢ of y* generate a
cubic cone, and it is clear that the complete intersection of this cubic cone
with @ consists of the curve ¢ counted three times. If then we take the
primal which is generated by the lines conjugate to all the points of all the
tangents of y* its complete surface of intersection with @ must be the sur-
face % counted three times. Now the tangents of y* generate a sextic sur-
face; hence (G.N.@. § 16) the primal which is generated by the lines con-
jugate to the points of this surface is of order eighteen and has % as a
sextuple curve. The surface of intersection of such a primal with @ is of order
72 and has ¢ as a curve of multiplicity 12; hence y #s of order 24 and has %
as a quadruple curve. Or we may argue as follows. The line which is conjugate
to the point of intersection of any two osculating planes of y* is, as has been
seen, a bitangent of @, both its points of contact being on the surface 5. Now
the points common to two osculating planes of y* form, as is well.’known, a
quartic surface ¥Vi— the double surface of F§. The primal generated by the
lines which are conjugate to the points of V; therefore meets @ in the surface
z counted twice. But the lines conjugate to the points of ¥V} generate a primal
of order twelve on which & is a quadruple curve, and the surface of intersection
of such a primal with @ is of total order 48 and has J as a curve of multi-
plicity eight. We have again therefore the result that y is of order 24 and has
J as a quadruple curve. It may be noted, as a partial verification, that the
primal which is generated by the lines conjugate to the points of a surface of
order 24 on which & is a quadruple curve is of order 3-24—4- 15=12. Now any
point of y lies on a characteristic curve ¢, and the line conjugate to the point
is therefore a tangent of a comic ¢ on V3, and so lies in an osculating plane of
y*. All the tangents of the %! conics ¢ arise in this way and, since through
any point of an osculating plane of y* there pass two tangents of a conic ¢,
the primal generated by the lines conjugate to the points of y is F%, counted

twice. Thus it is of order twelve, as it ought to be.



302 W. L. Edge.

37. We have obtained on each of the characteristic curves ¢ a point G such
that the tangent of ¢ at G has four-point contact with @; the locus of these points
G is a curve g lying on the surface y. Now the line which is conjugate to any point
of y* has fourpoint contact with @, the point of contact being on ¢; hence the scroll

4

of lines which are conjugate to the points of y* meets @ in the curve g counted

four times. Since this scroll is of order 12, the curve g is of order 12.

38. It has been seen that through any point of @ there pass three of the
surfaces ¢f; the primal @ may therefore be defined as the locus of the poles of
the osculating solids of y* in regard to the quadrics of the net, and properties of
@ can be deduced directly from this definition. Each point of @ is the pole
of three different osculating solids of #* in regard to quadrics of the net; but
for a point of y two of the three solids coincide, while for a point of g all three
solids coincide. ‘

On the curve & there is a linear series gi, any set of this series being a
set of vertices of five cones belonging to a pencil. Of these sets of five points

ool

are sets of five vertices of simplexes © whose faces all osculate the quartic
curve y*; and we have seen that the vertices of any two of the simplexes & lie
on a guartic curve ¢,; there is thus a doubly-infinite system of curves ¢y, in-
cluding a singly-infinite system of characteristic curves ¢. This system of curves
¢,» was obtained as the system of curves in which pairs of surfaces ¢ intersect,
but it can also be obtained in other ways. In the first place there is a pencil
of quadrics, belonging to the net, in regard to which any given simplex @ is
self-conjugate; the locus of the poles of any solid in regard to the quadrics of
this pencil is a quartic curve pa.ssing through the five vertices of &. If now
we suppose that the solid is an osculating solid 2 of y* we determine thereby
a hexahedron of which £ is one face; the five remaining faces of this hexa-
hedron form a second simplex ©@. The quartic curve passes also through the
vertices of this second simplex, for the secant plane conjugate to any one of these
vertices lies in £, so that 2 is the polar of this vertex in regard to all the quadrics
belonging to a pencil — which pencil has a quadric in common with the pencil
we are considering. Thus the quartic curve, since it circumscribes two of the
simplexes &, must be one of the quartics ¢, and all the quartics ¢, are ob-
tainable in this way. A characteristic curve ¢ is obtained when we take the
locus of the poles of an osculating solid £ of y* in regard to that pencil, of
guadrics of the net, for which the simplex formed by the five remaining faces
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of the hexahedron determined by 2 is a self-conjugate simplex. In the second
place the poles of the osculating solids of y* in regard to any quadric @ of the
net lie on a quartic curve. This quartic curve meets & in the points which are
such that their polar solids in regard to @ osculate y*; we have seen, however,
in § 20, that there are ten such points on ¢, and that they consist of the
vertices of two of the simplexes &; the quartic curve we have obtained is again
therefore one of the quartics ¢,,. Moreover ¢ is the quadric which is common
to the two pencils of quadrics for which the two simplexes © are respectively
self-conjugate, so that every curve ¢, can be gbtained in this way. We may
thus look upon the curves ¢, as polar reciprocals of y*in regard to the quadrics
of the net.

The equation of the polar solid of the point (1,. 5, 7,, 5;, 7,) in regard to
the quadric 4@, + u @, + v@, = o, the notation being as in § 22, is

é(oco-Fx, O;+x, 0 + 2,0 +2,0) (g +9,0:+9,0; +9,00 +9,60) (4+ 10 +26;)

J 0)g16:)

=

-

It follows that the pole of the solid =, + x, 0 + 2,0° + 2,60 + 2,0* = 0, which -
is an osculating solid of #* lies, for all values of #, on the quartic curve

A0y + 6, +v0, 10, +p6,+v0, 20, +pO,+v0O, 16, +p6, +v0,
MO + p@,+v@; A0, + u@,+v0, AQ,+ ub,+v0; 1O, +u0; +v06,

We have in this way, as the ratios A:u:» vary, the doubly-infinite system of
curves ¢y,. A characteristic curve ¢ is obtained when u®= 4%, as is seen by
comparing these equations with those of a characteristic curve given in § 32.

39. The locus @ is rational and can be mapped on a space 3, by the
usual method of mapping rational determinantal loei', so that its prime sections
are mapped by quartic surfaces passing through a base curve y of order ten
and genus eleven. The properties of @ can be obtained zia this representation,
but we content ourselves by indicating in a table the main features of the
mapping; the trisecants of & are mapped by the poinis of 1 and the points of
3, each of which lies on four trisecants, are mapped by quadrisecant lines of .

These quadrisecants generate a scroll of order ten on which ¥ is a triple curve.

! See, for example, Room: Proc. London Math. Soc. (2) 36, 1934, 12—TI5.
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o 3,

Trisecant of J. Point of .
Point of J. Quadrisecant of .

Prime section. Quartic surface through 1.

Surface along which @ is touched by
a contact cubic primal. Plane.

Surface ¢3. Plane of a certain cubic developable V.
Curve ¢,5. Axis of V.
Surface y Quartic surface of generating lines of V.
Curve g. Cuspidal edge of V.

The quartic symmetroid @ is a particular case of one considered by L.
Roth'; Roth’s symmetroid has also a double curve of order ten with an iﬁﬁnity
of trisecants generating a scroll of order twenty, but this curve is not necessarily
the Jacobian curve of a net of quadrics.

Any secant plane of % contains four trisecants of &, any two of which
intersect in a point of #; correspondingly we have a set of four points of v
the join of any two of which is a quadrisecant of y; in other words we have
a tetrahedron whose vertices are on 3 and whose edges are quadrisecants of .
Any osculating solid 2 of y* contains five secant planes of ¢, any two of which
have a trisecant of & as their line of intersection; correspondingly we have five
tetrahedra whose vertices are all on ¢, any two of which have three common faces;
thus we have a pentahedron whose vertices are all on @ and whose ten edges
are quadrisecants of . Proceeding a step further we find that, associated with
any one of the hexahedra whose fifteen vertices lie on & and whose twenty edges
are trisecants of <, we have in Z; a hexahedron whose fifteen edges are quadri-
secants of ¢ and whose twenty vertices lie on v; thus the curve ¢ s circum-
sertbed to a enfinety of hexahedra. A face of any one of these hexahedra is
met by the other five faces in the five sides of a pentagram; these are quadri-
secants of Y and are associated with the vertices of a simplex & on J; it follows
that the plane in 3, is associated with the sextic surface @5 which contains the
ten edges of &, and therefore is a plane of the developable /. The faces of
the inseribed hexahedra of i therefore all belong to V, and we see that y may
be generated very simply as the locus of the vertices of the hexahedra formed

Y Proc. London Math. Soc. (2), 30, 1930, 305.
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by the sets of an involution of sets of six planes of the cubic developable V.
We can thus, if we wish, obtain the whole of the geometry by starting from a
twisted cubie curve; we take a g; on the curve and consider the hexahedron
formed by the planes which osculate the curve at the six points of a set of
the g;. As the set varies the vertices of the hexahedron trace out a curve vy,

and the system of oo* quartic surfaces through 1 represents a symmetroid @
in [4].

40. The lines of [4] which are cut in involution by the quadrics of the
net are the lines of a cubic complex .Z; hence, since the trisecants of & gene-
rate a scroll of order 20, there must be sixty trisecants of & belonging to 4.

Suppose that the trisecant PQR of J belongs to .£; since the involution
which is cut out on PQR by the quadrics of the net has two, and only two,
double points, the line must be a generator of one of the three cones (P), (@),
(R); suppose! that it is a generator of (P). Then ¢ and R are conjugate points
in regard to every quadric of the net; hence, if UV W is that trisecant of
which is conjugate to PQR, the secant plane conjugate to @ is UV WR and
the secant plane conjugate to B is UV W Q. Let X, ¥ be the remaining two
intersections of the plane UV W ¢ with §, and Z, T the remaining two infer-
sections of the plane UV WR with 9. .

There is, associated with any point K of &, a solid w; w joins K to its
conjugate secant plane and all the quadries of the net which pass through K
touch @ at K. Thus the solids wo and wg associated with ¢ and R both coin-
cide with the solid UV WPQR, which we will denote by Z*. The cone (P)
touches @y at @ and @z at R; hence 3* is the tangent solid of (P) along its
generator PQRE. Also the solid w associated with the point K of J meets &
in K, in the six points which lie in the secant plane conjugate to K, and in
three other points; these three points are the vertices of those cones of the net,
other than (K) itself, which pass through K. Hence the cones (X) and (Y) pass
through @ while the cones (Z) and (7)) pass through R.

Every secant plane of J meets & in the six vertices of a quadrilateral, and
the line joining any two points of 9 which lie in the same secant plane is a
trisecant of $. Hence QX, QY, RZ, R1T, are trisecants of 4; moreover they

! We need not consider the possibility of the trisecant being a generator of more than one
of the three cones. The only chords of & which are generators of two cones are the 120 lines
which are chords hoth of 9 and of the base curve of the net, and none of these is a trisecant of 9.

39—35150. Acte mathematica. 66. Imprimé le 25 octobre 1935.
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are generators of (X), (Y), (Z), (T) respectively, so that we have four further
trisecants of 9 which belong to 4. The third intersection of each of these four
trisecants with 9 must be one of U, V, W, since there are four trisecants and
only three points U, ¥V, W at least one of U, V, W must be common to two
of the four trisecants; suppose that this point is V|, and that QX V and RZV
are trisecants of . Then QX VZR is a secant plane of J, and ZX passes
through P; since this plane eontains the trisecant P@FE the point of < to which
it is conjugate must be either U or W, suppose it is W; then the trigecant
conjugate to QX7 must be B W, which we may suppose to pass through T,
and the trisecant conjugate to RZV is @ W, which now passes through Y.
Then PYT, UXY, UZT are trisecants of %; the figure now consists of a
tetrahedron QR V W and of a plane meeting its six edges QR, VW, QV, R W,
QW, RV in the points P, U, X, T, Y, Z respectively. Also, since V and W
are conjugate points in regard to every quadric of the net, the trisecant UV W
belongs to 4. We have thus shown that those trisecants of & which belong to
A are distributed in cospatial sets of six, each such set consisting of the six
edges of a tetrahedron. Each pair of opposite edges of the tetrahedron is a
pair of conjugate trisecants of ¥, and each face of the tetrahedron is the secant
plane conjugate to the opposite vertex. There are ten tetrahedra of this kind,
lying in ten solids =*. A solid 3% meets the quadrics of the net in a net of
quadric surfaces all having QR V W as a self-conjugate tetrahedron; moreover,
since 3* is a tangent solid of each of the comes (P), (U), (X), (Y), (Z), (7) the
net of quadric surfaces contain six plane-pairs. Kach plane-pair has an edge of
the common self-conjugate tetrahedron as its double line, and the Jacobian curve
of the net of quadric surfaces consists of the six edges of the tetrahedron.

Since each solid =* is the join of thiree pairs of conjugate trisecants, namely
the three pairs of opposite edges of the tetrahedron, these ten solids are
triple solids of the developable D generated by the solids Z. Also each solid
3* joins four points of 4 to their conjugate secant planes, so that the ten solids
are quadruple solids of the developable generated by the solids w.

41. Any solid which contains two secant planes passing through the same
trisecant of & is a face of a hexahedron inscribed in %; in particular I* is a
face of such a hexahedron. Of the six faces of this hexahedron three pass
through the trisecant PQR and the remaining three through the conjugate trise-
cant UV W,; thus one of the first three faces must coincide with 3%, as also
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must one of the remaining three; hence #fwo of the six faces of the hexahedron
corncede with Z*. That there are ten hexahedra, inscribed in %, two of whose
faces coinecide is in accordance with the fact that, of the sets of a g; among the
osculating primes of a rational curve, there are ten sets two of whose members
coincide. The four faces, other than 3%, of this hexahedron intersect in that
point O* of & to which the secant plane PX Y ZT U is conjugate; the lines
0% Q, O*R, O*V, O*W are the four trisecants of ¢ which pass through O* and
these are the tangents of & at @, R, V, W respectively. Of the trisecants of %
there are forty which touch the cuwrve, and these consist of tem concurrent sets of four.
It has been shown elsewhere' that, for a Jacobian curve of a general net of
quadrics in [4], there are 120 secant planes touching the curve; here, for this
special Jacobian curve, these 120 secant planes consist of 60 bitangent planes,
each counted twice; each of the ten points O* is joined to the six edges of the
corresponding tetrahedron QEV W by six secant planes which are also bitangent
planes of 9.

Since =* passes through the secant plane PXYZTU and meets 9 further
in the four points @, R, V, W, the four comes (@), (R), (V). (W) belong to a
pencil, the fifth cone of this pencil being (0%).

42. The locus of the poles of 3% in regard to the quadrics of the net is
a sextic surface @* lying on @ and containing the ten edges of the simplex
O*QRVW; on ¢* there is a quartic curve touching ¢ at the points O*, @, R,
V, W; this curve consists however of the four lines 0% ¢, O* R, O* V, O*W. These
four lines therefore constitute the characteristic curve on ¢*, and so lie on the
surface x; we have thus obtained forty lines lying on x, namely those trisecants
of 4 two of whose intersections with % coincide. These forty lines, together
with &, make up the complete intersection of the two surfaces y and R}’. For
we have seen that y can be obtained as the surface of contact of @ and a primal
of order twelve on which J is a quadruple curve; the complete intersection of
such a primal with R}, which is a curve of total order 240, consists of J counted
sixteen times (¢ being quadruple on both surfaces) and a curve of order eighty
which, since the primal is a contact primal of @ and so touches K}’ wherever
it meets it, must consist of a curve of order forty counted twice.

A trisecant which touches & corresponds in 3, to a point of 9 such that
two of the three quadrisecants which pass through it coincide; since there are

1 GLN.Q. § 16.
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four such trisecants passing through the point O* of & we have coirespondingly
four such points lying on a quadrisecant s* of i; there are thus ten of these
quadrisecants s*; this result also follows from the fact that 1 can be generated
by means of an involution of sets of six planes of the developable V. Now the
line of =, which represents the characteristic curve consisting of the four lines
0%Q, O*R, 0%V, O* W must pass through the four points of 1y which correspond
to these tangent trisecants of #; it is therefore the quadrisecant s*. But, since
the line represents a characteristic curve, it must be a generating line of V;
hence the ten guadrisecants s* are generating lines of V.

43. We now obtain some relations between loci connected with the two
curves ¢ and y*. On y* there is an involution g¢i, the osculating solids of y* at
the six points of any set of g; forming a hexahedron whose vertices are on 9.
There are ten sets of g; which have double points; the ten points of y* which
are double points of sets of g; form the Jacobian set J of g;. The solids which
osculate y* at the points of J are the ten solids 2*; the osculating plane of y*
at a point of J is to be regarded as the plane of intersection of the two coin-
cident solids 3* belonging to a hexahedron inseribed in %, and we thus have
ten planes «® which are secant planes of & and osculating planes of »*; the
plane PX Y ZT U found above is one of these.

Let us consider the intersections of the curve y* with the locus RY. Bach
generating plane of Ry’ is the plane of intersection of two osculating solids of
y*, the points of contact of these two solids with #* belonging to the same set
of ¢gi. But an osculating solid of y* cannot meet y* except at its point of oscul-
ation; hence a point j of R;’ which lies on y* must be such that the two oscul-
ating solids of »* which contain the generating plane of Rj® through j both
coincide with the osculating solid of y* at j. Thus j must be one of the ten
points of o, and the generating plane of RJ® which passes through j is the oscul

¥, There can be no other

ating plane of y* at j, and one of the ten planes o
points common to Ri° and y* apart from the ten points of J; hence, since y*
and R must have sixty intersections in all, RY has siz-point contact with y* at
each point of J.

Suppose we take any locus R, generated by a singly-infinite family of planes
in [4], and consider the section of R, by an arbitrary solid S passing through

one of its generating planes p: S meets the other generating planes in lines,
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and these lines generate a ruled surface of which one generator ¢ lies in p. Then
S touches R, at every point of g.

Apply this now to Ry, p being one of the planes «* and S the corresponding
solid 3*. In the first place let P be any point of »*, ¢ the tangent there, =~ the
osculating plane and S the osculating solid. The remaining osculating solids of
y* meet S in planes which osculate a twisted cubic y*; y® passes through P, hav-
ing t as its tangent and = as its osculating plane. A ¢; on »* gives correspond-
ingly a g¢g; on y°. The planes of intersection of pairs of osculating solids of y*
whose points of osculation belong to the same set of gi generate a locus R, of
which five generating planes lie in §; the lines of intersection of pairs of osecu-
lating planes of y* whose points of osculation belong to the same set of the
corresponding ¢; generate a ruled surface R;’. The five generating planes of RY
which lie in S, taken together with R}’ make up the complete intersection of
S with Ry. There is a generator of R} in each generating plane of R{. Now
let P be one of the ten points j belonging to J, so that = is a plane «% and
S a solid 3*. Then «* is a generating plane of R}® and contains a generator
of RY. But, since j is a double point of the gi on y* it must also be a double
point of the g; on #®; thus «* osculates y® at a double point of the g;, and
therefore the tangent of y® at j, which is also the tangent of y* at j, is a gene-
rator of R It follows that 3* touches R;’ at every point of the tangent of
y* at j. Hence we have the result that any one of the ten solids 3% is the tangent
solid of Ry at all the points of the tangent to y* at the point where it is osculated by 3*.

* of y* at any one of the ten points of Jisa

Since the osculating plane «
secant plane of &, having six intersections with J, all the sixty intersections of
< with the sextic locus F§ generated by the osculating planes of y* are accounted

for in this way.

44. Consider now the curve of intersection of R} and the sextic surface
F{ generated by the tangents of y*. This curve includes the tangents of y* at
the ten points of J. Now the generating plane of RY at a point j of J is the
osculating plane e*, which touches F§ at every point of the tangent to »* at j,
and the tangent solid of R{ at every point of this tangent is 3% the oscu-
lating solid of y* at j. Consider then the section of this figure by an arbitrary
solid 8. The section of Fj is a curve f and that of R} a ruled surface 7;
the point in which the tangent to y* at j meets S is common to f and r, the
tangent of f being a generator of » and the osculating plane of f, which is the



310 W. L. Edge.

plane in which S meets 3% being the tangent plane of r. It follows that this
point counts for three among the intersections of f and r, and hence that the
tangents of y* at the ten points of J are to be reckoned three times as part of
the curve of intersection of Ry’ and I73.

The curve of intersection of R3’ and F3 will include, apart from these ten
tangents of y* a curve I Through an arbitrary point there pass four osculating
solids of y*; if however the point lies on a tangent of y* the solid which oscu-
lates y* at its point of contact with this tangent counts for three among these
four, and so there is only one other osculating solid of y* passing through the
point. Now any point of Ry is common to the osculating solids of y* at two
points which belong to the same set of gi; if then a tangent of y* meets R},

4

and its point of contact with y* is not one of the ten points of J, its intersec-

tion with R} can only be one of its five intersections with those solids which

osculate »*

at the remaining five points of that set of g; which contains the
point of contact of the tangent with y*. Hence a tangent of y* meets RY not
in fifteen points but only in five distinet points; it will be an inflectional tangent
of R}° at each of these five points. Again: an arbitrary plane meets six tangents
of 7% but if the plane lies in an osculating solid of y* the tangent of y* at the
point of osculation of this solid counts for three among the six tangents which
meet the plane. But a plane of R}® is common to two osculating solids of y*,
and therefore the only tangents of y* which it can meet are the two which touch
y* at the points where these two solids osculate it. It follows that the curve I
meets each generating plane of Ry’ in two points and each tangent of »*in five
points, and that I' is to be included three times as part of the curve of inter-
section of Ry and F7. Since the complete curve of intersection of these two
loci is of order 9o, and since it includes ten tangents of y*, each of which is to
be counted three times, the curve I' is of order 2o.

45. Consider now the curve of intersection of the scroll RY, generated by
the trisecants of %, and the locus Fi, generated by the osculating planes of y*
The generating planes of F§ include the ten planes ¢* and each of these, being
a secant plane of &, contains four generators of R3’; we have thus forty gene-
rators of R® lying on Fj. The complete intersection of R3® and F§ will also
include, apart from these forty lines, a curve A.
20

Any generator of R2 is the intersection of three osculating solids of #*,

and therefore meets the three osculating planes of y* which lie in these respec-
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tive solids; moreover any osculating solid of y* is the tangent solid of Fj at
every point of the corresponding osculating plane, so that the generators of RY
are tritangents of F§. The intersections of a generator of RZ’ with the sextic
locus F§ are thus all accounted for. Again: take a generating plane = of F3,
other than the ten planes e¢*. The point of contact of « and y* determines a
set of gi; the osculating solids of y* at the remaining five points of this set
meet « in five lines, and the ten vertices of the pentagram formed by these
lines are on R}. Conversely: let P be an intersection of 7 and R3. Then
through P there pass three osculating solids of y* whose points of osculation all
belong to the same set of ¢g;. But there are only two osculating solids of y*
passing through P, apart from the osculating solid which contains x; hence,
since 7 is not one of the planes «*, these other two solids must osculate y* in
points which belong to that set of gs determined by the point of contact of =
and y*. Thus P is one of the ten vertices of the pentagram just found, and
the intersections of 7 and R’ consist of the ten vertices of this pentagram,
counted twice. The curve A therefore meets each generator of R} in three
points and each generating plane of F§ in ten points; R’ and F7§ intersect in the
forty lines already noticed and in the curve /A counted twice. Since the com-

plete intersection is of order 120, A must be of order 4o.

46. Let us now consider the configuration of points on the plane quintic
{ corresponding to the intersections of % with Z*. Since Z* meets the six cones
(P), (X), (Y), (Z2), (T), (U) in plane-pairs the contact quartic of { whose points re-
present quadrics touching 3* has nodes at the six points p, z, ¥, 2, {, u of {;
hence this contact quartic, having six nodes, must consist of four lines whose
intersections are these six points. The remaining intersections of the quartic
with { consist of four contacts at ¢, r, v, w; since the cones (P), (X), (¥) all pass
through @ the three points p, x, y of  lie on the tangent of [ at ¢; similarly
ptz touches { at », wzax touches { at v and wyt touches { at w; the contact
quartic associated with Z* 43 an in-and-ciréumscribed quadirilateral, and § has ten
such in-and-circumscribed quadrilaterals. Since the cones (@), (R), (V), (W), (0%)
all belong to a pencil the four points of contact of the sides of the in-and-cir-
cumseribed quadrilateral with { are collinear, and the line on which they lie
meets { again in o*.

The vertices of the quadrilateral formed by the four lines pxy, pte, uewx,
uyt correspond to the six intersections of J with a secant plane; hence this
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quadrilateral is part of one of the inscribed hexagrams of {; the other two sides
of this hexagram both coincide with grvwo®. Now through any point of { there
pass two sides of an inscribed hexagram, these being the two tangents which
can be drawn from the point to the conic y which is the envelope of the sides
of the hexagrams; for the point o* however these two sides coincide, so that o*
must be on y. This again shows that there are ten points o*, since y meets ¢
in ten points.

Those quadrics of the net in (4] which touch any one of the solids 3 are
represented in the plane of { by the points of a contact quartic which breaks
up into two tritangent conics of §; of the system of oo* contact quartics there
are therefore o! which break up in this way, and these include ten special
quartics which break up further into in-and-circumscribed quadrilaterals. Since
the developable D is of class twenty there are forty solids = touching an arbi-
trary quadric; hence through an arbitrary point in the plane of { there pass
forty of the composite contact quartics.

47. The quadrics of the net which are represented by the points of the.
conic y have as their envelope a quartic primal 5* on which the base curve C
of the net of quadrics is a double curve (G.N.Q. § 31). The forty intersections
of B* with J correspond to the forty points of { which are the points of con-
tact with { of the forty common tangents of { and y; in other words they cor-
respond to the points where § is touched by the sides of its inscribed hexagrams.
These forty points are the ten sets of four points such as ¢, r, v, w; hence the
Jorty points of contact of F with those of its trisecants which touch ot lie on a
quartic primal 5* having C as a double curve. Now if K is any intersection of
<3 with a quartic primal on which C is a double curve the tangent solid of this
primal at K is the solid @ associated with K; hence, since 3* is the solid &
associated with each vertex of the tetrahedron QR V W, each of the ten solids
3* is a quadritangent solid of 5* and so meets E* in a quartic surface with
twelve nodes. Through any point of 9 there pass four chords of C, these all
lying in the solid w associated with the point; in particular the four chords of
C which pass through any one of the points @, R, V, W all lie in 3*. Where-
fore the eight base points of the net of gquadric surfaces in which 3* meets the
quadrics of the mnet in [4] can be regarded as two tetrahedra in perspective from
any one of the points ¢, R, V, W; hence these eight base points form, when
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taken with @, B, V, W, a set of three desmic tetrahedra. The section of 5* by
3* is thus a desmzc quartic surface.

48. We can obtain a form for the equations of the quadrics if we take
as simplex of reference the simplex formed by a solid 3* and the four other
faces of the hexahedron of which 3% is two coincident faces. Take the equa-
tions of the four solids O*RV W, O*VW¢Q, O*WQR, O*QRV to be X, =0,
X,=o0, X;=0, X,=o0 respectively, and let the solid Q RV W have the equa-
tion X;==0. Since any guadric of the net is met by 3* in a surface with re-
gard to which QRVW is a self-polar tetrahedron its equation must be of the

form

ale + d2X§ + a3X§ + aiXi + X5 (ale -+ ang + 0!3X3 -+ a4X4 + 415X5) =0,
The polar solid of O* in regard to this quadric is
o X, F e, Xo + e Xy + 0, X, + ¢, Xy =0,

and this must meet X;=o0 in the secant plane conjugate to O*; we can sup-
pose that this secant plane is given by

X+ X+X,+X,=X,=o0,
and therefore that the equation of the quadric is
aXi+a,Xi+a, Xi+ o, Xi+ta; Xi=2eX;(X,+ X, + Xo+ X, + X))

Hence, if a net of quadrics can be reduced to the canonical form II, with the
coefficients satisfying /=0, it can be reduced, and that in ten ways, to the
more special canonical form

a, Xi+a, Xi + ay Xi+ a, Xi + a; Xi + 20X, X =0,
by X1+ b0, Xo+ b, X3+ 0, X3+ b, X5+ 28X, Xg=0,p- -+ v
'C1X§+ Co Xo+ g X5+ ¢, X5+ ¢, Xi + 2y Xy, Xy =0,
where
X+ X+ X+ X, + X+ Xg=o.
If we write
Si=wxar+ ybi+ 26, —n=wxa+ys+ 2y,

the discriminant of a general quadric of the net IV is
40—35150. Acta mathematica. 66, Imprimé le 26 octobre 1935



314 W. L. Edge.
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& §2§3§4(§5 + 27/) _ "72(§2§3 Eo+ 58,8 + 8865+ §& §3)

The Jacobian curve of the net is thus in birational correspondence with the

plane quintic
55,556 + 27]) = 772 (&, Eabu+ 55,8 + 5,86 & + &6 &).

This quintic curve is circumscribed to the quadrilateral formed by the four lines
§i=o0, &=o0, §=0, §=0.

Also each of these four lines touches the quintic, the four points of contact all

lying on n=o.

49. We can write down the equation of the primal 5* when the quadrics
of the net are given by IV. Calling the three equations of IV

QOZO, leoy QZZO
respectively, the equation of F* is

AG+BQ+CQE+2FQQ+26GQ0 +2HQQ—o,

where
AP+ Bm® + Cn® 4+ 2Fmn + 2Gnl + 2HIm=o0

is the tangential equation of y. But y is determined from the fact that it touches
the five lines § =o, § =0, §4=0, §, =0, =0, and we have the equation of
E* in the form
&G ¢ @ Qe Al Qo
ai b 4 be  ca  ab
ay by i byey  Cyay  agby
a; by byey,  cgas  agh,
2 2

ai by 6 be,  e,ay aub,

o« By By ye  af




Some Special Nets of Quadrics in Four-Dimensional Space. 315

When X, is put identically equal to zero in this equation there results the equa-
tion of the desmic surface which is the section of 5* by Z*.

It has been seen that the quadrics of the net reciprocate the curve y* into
the curves ¢y, lying on the primal @: the primal 5* is the envelope of those
quadrics of the net which reciprocate y* into the characteristic curves g.

The Net of Polar Quadrics of Points of a Plane in regard to a Segre
Cubic Primal.

so. The equation to a Ségre cubic primal is
X+ X3+ X0+ X1+ X2+ Xi=o,

where the six forms X, which are linear homogeneous functions of five coordi-

nates, satisfy the identity
X+ X+ X+ X, + X+ Xy=o.
The ten points for which
Xi=Xi=Xi=Xi=Xi= X,

i. e. those points for which three of the six coordinates have the value + 1 and
the remaining three the value — 1, are nodes of the primal; and the fifteen

planes whose equations are
Xi+ X=X+ X1 =Xp + Xn=0,

where (ijklmn) is a permutation of (123456), all lie on the primal. Each plane
contains four nodes and each node lies in six planes. Call the primal 2.

The hexahedron % bounded by the six solids X = o has important relations’
with 2, and 2 is uniquely determined when §j is given. The fifteen vertices of
b can be divided in fifteen ways into sets of three such that no two vertices of
the same set lie on the same edge of §); the fifteen planes determined by these
sets of three vertices are the fifteen planes on 2. The three vertices of b be-
longing to any one of the sets are the diagonal points of the quadrangle formed
by the four nodes of 2 which lie in the plane of the set; e.g. the plane

! Concerning the Segre primal and its associated hexahedron see Castelnuovo: At Ist.

Veneto (6), 6 (1888), 547—565.
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X+ X=X, + X, =X, + Xy=o0
contains the four nodes

(1, —1, 1, —1, 1, —1); (—1,1,1,—1,1, —1); (I, —1, —1, 1,1, —1);

and the three points
(I7 —I1,0,0,0, O)a (O, 0,1, —1,0, O)) (O> 0, 0,0, I’—I)'

The last three points are vertices of ) and are the diagonal points of the guna-
drangle formed by the preceding four; no two of them lie on the same edge of §.
The Hessian of £ is the quintic primal Y whose equation is

X+ X+ X0+ X0+ X+ X =0

this also contains the fifteen planes which lie on £, these planes forming the
complete intersection of £ and Y. The polar quadric of the point x, whose

coordinates are (x;, =y, %3, 24, Tys, ), in regard to 2 is
wy Xi 4+ 2 Xb 4 23 X2+ 2, X5 + a5 XE + 25 X5 = 0.

If this quadric is a cone then z lies on Y; also the vertex z of the cone lies
on Y, and the vertex of the polar cone of 2’ is . The primal Y, as well as
containing the fifteen planes of £, also contains the fifteen planes of intersection
of the pairs of faces of b; the twenty edges of §) are double lines on Y and the
fifteen vertices of 1§ are triple points of Y; this follows immediately from the
form of the equation of Y. The polar cones of the points in a plane of §) all
have the opposite vertex of §y for their common vertex. The polar cones of the
points of an edge of fj are line-cones with the opposite edge of §) for vertex;
the polar cone of a vertex of § is a pair of solids passing through the opposite
plane of § and harmonically conjugate in regard to the two faces of ) which
intersect in that plane. All this follows at once if the appropriate values for
the coordinates x are substituted in the equation of the polar quadrie. It also
follows easily that the polar cone of any point in one of the fifteen planes of Q2
has its vertex in that same plane; e.g. the polar cone of the point (x, —z, o/,
—a’, 2, —x"'), which lies in the plane

X+ X=X+ X,=X; + Xy=0,

is
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2(Xi— X))+ 2 (X — X)) + 2" (X — X)) = o,

and the vertex of this cone is (z™', —a ™, 2, —a', 2", —a"7).

51. Consider now the net of polar quadrics of the points of a plane = in
regard to £. The cones of the net are the polars of the points of the section
£ of Y by m; { is a quintic curve circumsecribed to the hexagram formed by the
lines in which the faces of § meet s, and { is in birational correspondence with '
the curve 3, lying on Y, which is the locus of the vertices of the cones. Since
each plane of §) meets s in a vertex of the hexagram J passes through each
vertex of ), and the vertices of §) correspond, in the birational correspondence
between ¢ and {, to the vertices of the hexagram in z. Also each plane on Q
meets z, so that 9 meets each plane of £ in one point other than the three
vertices of ) which lie on that plane. Since all the polar quadrics pass through
all the nodes of Q the fifteen planes on Q are quadrisecant planes both of the
Jacobian curve % and of the base curve C of the net of quadrics. The Jacobian
curve is circumscribed to § and is such that any plane which contains three ver-
tices, no two of which lie on the same edge of §, meets the curve in a fourth point.
This property of the Jacobian curve of the net of polar quadrics of the points
of a plane in regard to Segre cubic primal does not hold for the more general
net of quadrics 1I whose Jacobian curve is circumscribed to a hexahedron. It

can easily be shown that if the plane
Xl + Xg——:Xg"‘ X4:X5+ X6:O,

which contains three vertices of ) no two of which lie on the same edge, meets
the Jacobian curve of the net Il in a fourth point, then the coefficients in IT
must satisfy the condition
ay+ay, ag+a;  az -t oag
|12, 34, 56| =| b, + b, b, + b, bs + by |=o0.

¢, + ¢y eyt ey eyt ocg

Moreover, when this determinant vanishes the conics in which the plane is met
by the quadrics of the net all belong to the same pencil, so that the plane is a
quadrisecant plane not only of the Jacobian curve but also of the base-curve of
the net. »

This condition, together with the fourteen similar conditions, is certainly

satisfied for the net of polar quadrics; for the quadric
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a, Xi+a, Xi+a, X5+ a,Xi+a; X2 + g, Xe=0
is the polar quadric of a point in regard to & if and only if
a, +a; +as +a, + as + ag=o0.

Similar conditions for the coefficients & and ¢ ensure that the fifteen determi-

nants |4j, kI, mn| all vanish.

52. It follows, exactly as in § 14, that & is in birational correspondence
with the plane quintic

T+ ETH G EHE N El=0;

but now we have the additional information that one of the linear identities

satisfied by the six forms £ is
E+6E+&E+E+E+ =0
Now this identity shows that three lines such as
§itg=o0, L+&=o0, Ent+th=o,

are concurrent, and it will be remembered that these lines are tangents of the
plane quintic { at vertices of its inscribed hexagram. Moreover the equation of
{ is satisfied when the equations of these three lines are simultaneously satisfied.
Hence the Jacobian curve of the net of polar quadiics is in birational correspon-
dence with a plane quintic which s circumscribed to a hexagram, and which s
such that <f any three vertices of the hexagram are taken such that no two of them
lie on the same stde, the tangents of the quintic at these three vertices are concurrent
in a point of the curve. The quadrilateral formed by any four sides of the hexa-
gram is such that the tangents of the quintic at any pair of opposite vertices
intersect on the curve; the three points of the quintic so obtained from the three
pairs of opposite vertices are collinear, and the line on which they lie is the
tangent of the quintic at the intersection of the remaining two sides of the
hexagram.

The plane which contains any set of three vertices of § no two of which
lie on the same edge of §) meets 3 in a fourth point; since the plane is a qua-
drisecant plane of the base curve of the net of quadrics, and since this fourth

point of ¥ is nof a diagonal point of the quadrangle formed by the four points
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of U, the cone whose vertex is at this fourth point must contain the plane en-
tirely. Thus the point of the plane quintic { which corresponds to this fourth
point of & must lie on the three tangents of { at the points which correspond
to the three vertices of ). We thus obtain again the fifteen concurrent triads
of tangents of {; the points of contact are vertices of the inscribed hexagram
and the points of concurrence are on {.

The linear identity between the six forms & shows that the two lines

E+ g+ & =o0oand §+ 5, +E=0

coincide: the tangents of { at the three vertices of a triangle whose sides belong
to the inseribed hexagram meet the opposite sides of the triangle in three col-
linear points; the lines so obtained from two triangles whose sides together con-
stitute the whole hexagram coincide for the special quintic curve we are now
considering.

If PQR is a trisecant of -3 the corresponding points p, ¢, 7 are the vertices
of a triangle whose sides belong to the hexagram inscribed in {; the tangents
of { at the vertices of this triangle meet the opposite sides in three collinear
points, and it has been shown (G.N.Q. § 26) that the points of the line on
which these three points lie represent the quadrics of a pencil in [4], the pencil
being defined by the fact that the Hessian points of the triad PQR are a pair
of conjugate points in regard to all the quadrics belonging to it. If then the
net of quadrics in [4] counsists of the polar quadrics of the points of a plane in
regard to a Segre primal, and if PQR and UV W are a pair of opposite edges
of ) and so of conjugate trisecants of &, every quadric of the net which is such
that the Hessian points of either triad, PR or UV W, are conjugate in regard
to it is also such that the Hessian points of the other triad are conjugate in

regard to it.

53. It has been shown that any plane quintic which is in birational cor-
respondence with the Jacobian curve of a net of polar quadries has an inscribed
hexagram with certain properties; it may now be shown, conversely, that such a
plane quintic can always be put into birational correspondence with a Jacobian
curve of a net of polar quadrics.

The plane quintic { is circumscribed to a hexagram; it may therefore be
supposed that, absorbing certain constants into the linear forms & if necessary,

its equation is
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MBI+ =0,

The tangent of [ at the intersection of the two lines & =0 and & =o0 is
& + & =o0. Take now any quadrilateral formed by four of the six sides of the
hexagram, say by §=o0, &=o0, & =o0, & =o0; then the two tangents of {
at any pair of opposite vertices of this quadrilateral intersect on the line
E+ &+ &+ &=0. But { is to be such that this line is the tangent at the
intersection of the two remaining sides of the hexagram; in other words it must
be the same line as &, + &, = 0. Hence there is an identity

Eit+ &+ &+ &+ olEn+ En)=o,

where ¢ is a constant. Similarly there is another identity

il

E+E+&+Ent o &t E)=o.

From these two identities it follows that
& + 9(§m + gn)z Em + 9/(§n + El),

and therefore, since the three lines & =o0, &, =0, £ = 0 are not concurrent,

we must have 9 = ¢ = 1. Wherefore the six linear forms & satisfy the identity
E+&+&E+E+E+ =0

Now the quintie curve {, having an inscribed hexagram, can, as has been seen,
be put into birational correspondence with the Jacobian curve of the net of

quadrics 1I, the six linear forms X being such that
X+ X+ X+ Xy + X5+ Xg=o.

But now the identity which is satisfied by the six forms & shows that all the
quadrics of the net IT are, in the present instance, polar quadrics of points in
regard to the primal

X+ X+ X2+ X+ X+ Xi=0,

and this is, in virtue of the identity satisfied by the six forms X, a Segre

primal.

54. In order that the net of guadrics II should be the net of polar quadrics

of points of a plane in regard to a Segre primal it is necessary and sufficient
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that the conditions
Eai:Ebi::Eci:o

should be satistied; when these relations are satisfied the fifteen determinants
|ij, kI, mn] all vanish. It is therefore natural to enquire whether the net IT
can be specialised in such a way that some, but not all, of these fifteen deter-
minants vanish. Associated with each vanishing determinant there is a quadrise-

cant plane of ¢. Also when |2j, kI, mn| =0 we have a set of three concurrent
tangents of £, namely

&+ &=0, G +&=0, Entii=o0;

and conversely. In a general net II there is no such concurrent triad: for the
net of polar quadrics there are fifteen such concurrent triads: we wish to con-
sider whether there are any intermediate cases. It must always be borne in
mind that none of the twenty determinants such as

a; a;  ai
2,7, kl=[b: & B
¢ ¢ C

vanishes; for the vanishing of such a determinant means that a quadric of the
net II can be found whose equation is obtained by equating to zero the sum
of only three squares X7, X5, X;; such a quadric is a line-cone, and it is
always supposed that no member of the net of quadrics can be a line-cone. The
gix linear forms £ satisfy three linear i.dentities; in the intermediate cases that
we mnow wish to consider it must not be possible to deduce from these three
the identity £& = 0, nor must it be possible to obtain, by combining the three
identities in any way, an identity involving only three of the six forms &.
If one of the identities satisfied by the six forms forms & is

oG+ +ta+ & +rlnt+E)=o0,

where ¢, o, T are unequal numerical constants, then a single determinant
|47, k1, mn| vanishes, and we have one concurrent triad of tangents of {. Also
there is one plane which contains three vertices of §j, no two of which lie on
the same edge of 5j, and which meets & in a fourth point other than these
three vertices; the equations of this plane are

X1+X]=Xk+Xl=Xm+Xn=O.

41—385150. Acia mathematica. 66. Imprimé le 26 octobre 1935.
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Suppose now that the six forms & satisfy the identity
oG+ & +& T+t hi=o,
where ¢ is a constant different from unity; then
|27, kL, mn|=|zj, km, nl|=|ij, kn,Im|= o,

three of the fifteen determinants vanishing. The plane quintic { now has an
inscribed hexagram with three concurrent triads of tangents. The tangent
& + £ =0 belongs to each of these three triads; it meets { in three points
other than its point of contact, and through each of these three points there
pass two other tangents of { whose points of contact are a pair of opposite
vertices of the quadrilateral formed by the four sides of the hexagram other
than & =0 and §=o0.
The net of quadrics IT with coefficients satisfying the three relations

24, k1, mn|=\|2J, km, nl)|=\ij, kn, Im|=o0
has a Jacobian curve ¢ of which the three planes

X + X] X]c + Xm — }Sn + Xl - O

are all quadrisecant planes; these three planes all lie in the solid X; + X;=o0
and intersect where X; = X;= X,, = X, = o.
It may be pointed out that if two of the three determinants

Vg, k1, mn], 1ij, km, nl], |24, kn, Im|
vanish then the other one must vanish also. For suppose, for example, that
|27, km, nl|=|2j, kn, Im|=o.

Then there exist two identities

l[!

(gl + §]) +ta (gk + §m) +a (én + gl)
(& + §;) + o (& + &) + 7 (& + &)

If either 0=17 or ¢ =<7 then the third determinant |<j, k7, mn| will cer-
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tainly vanish. If neither 6 = nor ¢’ =7 we deduce from these two identities
the third identity.

(o—0d —r+d) &+ E + (o —d0)E+E+E+E)=0.

If the coefficients here vanish we must have ¢ =¢" and 7= 7'; the two previous
identities then give ¢=0¢ =7=+, and we are suppbsing this not to be so.
If the coefficients in the last identity do mnot vanish, then we deduce
|27, k1, mn|=o.

55. The Jacobian curve ¢ of the net of polar quadrics of the points of
a plane z in regard to a Segre cubic primal is circumscribed to a hexahedron
h and, in general, § is the only hexahedron inscribed in &; but =z can be
chosen so that & is circumscribed to an infinity of hexahedra. For suppose, the
cubic primal £ and the associated hexahedron }) being given, & is chosen so
that the six lines in which it is met by the faces of §) are tangents to the

% satisfying this condition,

same coniec; of the o°® planes of [4] there are
those planes which fulfil the condition and lie in an arbitrary solid being the
tangent planes of the surface reciprocal to a Weddle surface. The plane =
meets the Hessian Y in a quintic curve [, and a hexagram is inscribed in
and circumscribed to a conic; hence { has an infinity of inscribed hexagrams
whose sides all touch this same conic (cf. § 16). Now the polar cones, in
regard to €2, of the points of { lie on a curve J, and those points of = whose
polar quadrics, in regard to £, touch an arbitrary solid lie on a contact quartic
of {. But if the arbitrary solid is chosen to be one of the six faces of §) the
ten points of contact of the quartic curve with [ are the ten vertices of the
pentagram formed by the lines in which the five remaining faces of h meet 7.
It follows that the system of contact quartics of { associated with the solids of
[4] must be the same system as that which is determined, as in § 18, by the
pentagrams which belong to the inscribed hexagrams of {. Hence, just as in
§ 18, 9 has an infinity of inscribed hexahedra.

56. Of the inscribed hexagrams of { there is one such that the tangents
at its fifteen vertices are a set of fifteen lines which are concurrent in threes in
fifteen points. The equation of a plane quintic with these properties can easily
be obtained. For suppose the sides of the hexagrams all touch the conic
xz=y* and that { is circumscribed to the hexagram formed by the six lines
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x——zyﬁi-l-zafzo- . (i:132>374’576)'
Let us write

SO)=({t—0)(t—0,)(t—0,)(t —8,)(t— ;) (t —6,),
z— zyai + 20} = &1 (0);

)

then the three linear identities connecting the six forms & are
3L=o0, 30;5,=0, Z60/f =0,

Since the quintic circumscribes the hexagram formed by the six lines §& =0 we
may suppose that it has an equation of the form

A BT+ A5+ Ag871 + AETH + A5 + AT =0,

the tangent at the point §; = § = o then being 47§ + 477§ =o0. The fifteen
tangents at the vertices of the hexagram will then certainly form fifteen con-
current triads if we choose

A7t =9 + 00; + 20},

the constants ¢, o, = being the same for all six values of <. Hence, given the
conic and the hexagram, any quintic curve of the doubly-infinite family given

by the equation
6

Zf,(ai)(g +06; + 10w — 290, + 26;) 1 =0

=1

fulfils the required conditions.

The Freedoms of the Different Kinds of Jacobian Curves.

57. The word »freedom» is here used in the sense of the German Kon-
stantenzahl;, when we say that a curve, with certain specified properties and
assumed to lie in a definite space (], is of freedom f we mean that the mani-
fold of curves in [n] with these specified properties is of dimension f; or, other-
wise, that a curve with these specified properties can be regarded as belonging
to a set of a finite number of such curves if we assign the values of f para-
meters on which the curve depends. For example: elliptic plane cubics are of
freedom ¢, rational plane cubics of freedom 8; plane cubics with a node at a
fixed point of freedom 6, and so on.
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The freedom of spaces [£] in [n] is (k + 1)(n — k); we shall appeal to this
result occasionally in the particular case £ = 2, using the fact that the freedom

of planes in [#] is 3% — 6.

58. The Jacobian curve of a net of quadrics in [4] is of order 10 and
genus 6, and is a particular case of the deferminantal curve whose equations are
obtained by equating to zero all the three-rowed determinants of a matrix of
three rows and five columns whose elements are all linear functions of the
coordinates. Such a determinantal curve is generated by the intersections of
sets of corresponding solids of five projectively related doubly-infinite systems;
it is not, however, even for the most general of these projective generations,
the most general curve of order 10 and genus 6 in [4]. It follows from a result
obtained by Brill and Nother' that the freedom of the most general curve of
order 10 and genus 6 in [4] is 45, while it is found by Room? that the freedom
of the determinantal curve is 42. The freedom of the Jacobian curve can be
calculated quite easily. The quadrics in [4] are of freedom 14, this being one
less than the number of terms in a homogeneous quadratic polynominal in five
variables; moreover they form a linear system, and so can be regarded as points
in [14]. The freedom of nets of quadrics in (4] is therefore the same as that of
planes in [14], which is 36. Since each net of quadrics determines a Jacobian
curve, and conversely, we have our first result: the Jacobian cwrve of a general
net of quadrics in [4] is of freedom 36. Incidentally it follows that in order to
be a Jacobian curve a general curve of order 10 and genus 6 in [4] must be
subjected to nine conditions while a. determinantal curve must be subjected to

six conditions.

59. The freedom of the general Jacobian curve can also be obtained by
an appeal to the canonical form I. A given net of quadrics can be reduced to
the canonical form I in a finite number of ways, and the net can be identified
in two stages; first by identifying the seven linear forms whose squares occur
in I and secondly by identifying the coefficients. Now of the seven linear forms
Z is completely determined when X, X,, X,, Y|, Y,, Y, are given, and these
last six forms can represent any six solids in the space. Since the identities

X, + X, + X, =Z=Y,+ ¥, + ¥,

v Math. Annalen 7 (1874), 308.
* Proc. London Math. Soc. (2), 36 (1933), 25—26.
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must be satisfied the seven linear forms are, except for a constant multiplier
the same for all, completely identified when the six solids have once been
chosen. Then the quadrics whose equations are obtained by equating to zero a
sum of maultiples of squares of these seven forms constitute a linear system of
dimension 6 and so can be regarded as points in [6]; the freedom of the nets I
when the six solids are chosen is therefore the same as the freedom of planes
in [6], which is 12. But six arbitrary solids in {4] make up a configuration
whose freedom is 6.4 = 24; hence the freedom of the general net of quadrics
Iis 24 + 12 = 36, as before.

If now we wish to calculate the freedom of the Jacobian curve which has
two pairs of concurrent trisecants we may again appeal to the canonical form I.
As before we have a configuration of six arbitrary solids with freedom 24, but

we cannot now choose every net of quadrics I, only those for which a determinant

a, ¢ b
a, ¢ b
arlr c;/ b/ll

vanishes being eligible; in other words, when we regard the quadrics as points
of [6], the six solids in [4] having been previously chosen, we cannot take every
plane of [6] and so obtain a net of quadrics; if we wish to obtain a Jacobian
curve with two pairs of concurrent trisecants we may only choose those planes
one of whose coordinates vanishes. The freedom of the planes that may be
chosen is therefore not 12 but 11, and the Jacobian curve now has freedom 35.

Similarly if two or three of the determinants

a ¢ b a, ¢ by as ¢ by
’ ’ r ’ ’ ' 13 r
a, ¢ b, a, ¢ b,], a, ¢ b,
iz 17 " " 1V I " 17 r”
a, ¢ b, a, ¢ b, a, ¢ b,

vanish the Jacobian curve has freedom 34 or 33 respectively.

60. We pass now to the calculation of the freedom of the Jacobian curve
with four concurrent trisecants.

We can choose any point O of [4] to be the point through which the four
trisecants pass, thus imposing four conditions on the complete configuration. We
then choose any four solids throngh O; when O has been fixed such a set of
four solids has freedom 12, the same as the freedom of tetrahedra in [3]; the
lines of intersection of sets of three of these four solids can be taken to be the
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four trisecants through O. We then may choose the secant plane & conjugate
to O to be any general plane of [4]; thus when O and the four trisecants through
it are given the choice of « depends on 6 constants, this being the number of
constants on which a plane in [4| depends. We now have to choose the net of
quadrics so that each of its members has the following property: every point of
the line of intersection of ¢ with any one of the four solids through O is con-
jugate, in regard to the quadric, to every point of the line of intersection of
the remaining three solids through O. We saw in § 11 that, when ¢ and the
four trisecants through O are given, such quadrics form a linear system of
freedom 6: hence the nets consisting of such quadrics are of freedom 12, this
being the freedom of planes in [6]. Wherefore the freedom of a Jacobian curve

with four concurrent trisecants is

4+ 12+6+ 12=34.

A Jacobian curve must therefore be subjected to two conditions if it is to have

four concurrent trisecants.

61. A net of gquadriecs whose Jacobian curve has an inscribed hexabedron
can be reduced to the canonical form II, and in only one way. If then we
choose six arbitrary solids to be the faces of the hexahedron the six linear
forms X, which are to satisfy the identity

X+ X+ X3+ X, + X, + Xyg=o0,

are completely determined except for a constant multiplier the same for all.
Every quadric of the net must then belong to the linear system of quadrics
determined by the squares of these six forms X, and this linear system is of
dimension 5; hence, when the six solids are given, the net of quadries has the
same freedom as a plane in (5], and this is 9. Hence, since a configuration of
six arbitrary solids in [4) has freedom 24, the net of quadrics has total freedom
33. This then is the freedom of the Jacobian curve whose twenty trisecants
are the edges of a hexahedron. If however, as in § 54, we restrict the coeffi-
cients in II so that they satisfy the relation |7, kI, mn|= o0 the resulting
Jacobian curve has only freedom 32, while if the coefficients are to be such that

|27, k1, mn|=|2j, km, nl| =<7, kn, lm| = o,

a set of conditions which we saw to be the equivalent of two conditions only,

the Jacobian curve has freedom 3I.
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62. When a Jacobian curve has an infinity of inscribed hexahedra its
freedom can be determined quickly from the fact that it is the locus of inter-
sections of sets of four osculating solids of a quartic curve when their four
points of osculation are all members of the same set of a g;. It is known, and
can be established, for example, by appealing to the general result of Brill and
Nother already quoted, that the freedom of a rational quartic curve in [4] is 21,
while the freedom of a gi on any rational curve is 10; hence the freedom of a
Jacobian curve with a scroll of trisecants is 31.

63. Consider now the Jacobian curve of the net of polar quadries of the
points of a plane in regard to a Segre primal. The primal determines a hexa-
hedron 0 and, conversely, is determined when §j is given; hence a Segre primal
in [4] has freedom 24. Moreover a plane in [4] has freedom 6; hence the
freedom of the Jacobian curve in this case is 30. This statement assumes
tacitly that the same Jacobian curve cannot arise for two Segre primals or two
planes, but if the same curve arose for two different primals it would have to
be circumscribed to both the corresponding hexahedra, whereas the Jacobian
curve has, it is supposed, only one inscribed hexahedron. Thus there can only
be one Segre primal associated with any Jacobian curve, and hence, clearly,
only one plane also. In the particular case when the Jacobian curve of the
net of polar quadrics has an infinity of inscribed hexahedra we can again, in
order to obtain such a net of quadrics, choose an arbitrary Segre primal, but

5

we are then restricted to ©° of the ¢ planes of [4], and so this particular net

of quadrics has only freedom 29.

64. The Jacobian curve of a net of quadrics in [4] can always be put
into birational correspondence with a plane quintic and, conversely, a plane
quintic can always be put into birational correspondence with the Jacobian curve
of a net of quadrics in [4]. The Jacobian curve of a general net of quadrics
in [4] is, as we have seen, of freedom 36, while the freedom of a general quintic
curve in a plane is zo. If then we take a specialised net of quadrics whose
Jacobian curve has freedom 36— it is to be expected that the specialised
plane quintic with which it is in birational correspondence will he of freedom
20 —x. We can verify this statement by calculating directly the freedoms of
the various special types of plane quintic curves that we have obtained.

Suppose then that we calculate the freedom of a plane quintic which has,

as in § 3, an associated configuration of a line-pair and two conics; the quintic
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passes through the intersections of the two conies and through all the intersec-
tions of the line-pair with the conics; moreover the two remaining intersections
of the quintic with either conic are to coincide in a single contact, and the
quintic is also to pass through the intersection of the two lines. Since the free-
dom of a conic in a plane is 5 and the freedom of a line is 2, the freedom of
the configuration which consists of two conies and a line-pair is 14. Now, when
such a configuration is given, we have to impose 15 conditions on the quintic
curve, namely 4 to pass through the intersections of the conics, 8 to pass through
the intersections of the line-pair and the conics, 2z to touch the conics and 1 to
pass through the intersection of the line-pair. Hence, when the configuration of
the two conics and the line-pair is given, the freedom of a quintic curve with
which this particular configuration is associated is 20—15 = 5. Hence the ag-
gregate of plane quintics with which such configurations are associated is
i4 + 3 =19. Like the net of quadries in [4] with whose Jacobian curve it is
in birational correspondence, the quintic is subjected to one condition.

The freedom of this curve can also be obtained from its equation; the

equation of a general plane quintic being of the form
Er A+ B o gt o SO ot ) (BT S B o,

where the seven letters &, &, &, 5, 0, 173, and { denote linear forms in three
homogeneous coordinates; the quintic becomes one of the special kind that we
are now considering if we assume that { is linearly dependent on & and 7,.
The equation of the general plane quintic contains 21 arbitrary coefficients (three
for each of the seven linear forms), so that the general curve is of freedom 20;
when, however, the line { = o0 is supposed to pass through the intersection of
£, =0 and 7, =0 the number of arbitrary coefficients which enter into the
_equation is one less than in the general case, so that the freedom is one less
also; thus the special quintic curve that we are considering is of freedom 19.

Similarly, if we suppose that [ =o0 joins the intersection of & = o and
7, =0 to that of § = o0 and 5, = o0 the quintic curve so arising is of freedom
18; while the still more specialised curve for which { == o0 is the axis of per-
spective of two triangles, one triangle being formed by the three lines £=o0
and the other by the three lines 7 =o0, is of freedom 17.

65. Suppose now that a plane quintic passes through the six vertices of

a quadrilateral, that its eight remaining intersections with the sides of this

quadrilateral are on a conic and that its two remaining intersections with this
42--35150. Acte mathematica. 66. Imprimé le 28 octobre 1935.
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conic coincide in a single contact. 'The plane configuration of four lines and a
conic is of freedom 4.2 + §5=13. When such a configuration is given a plane
quintic associated with it is subjected to 15 conditions, namely six to pass
through the vertices of the quadrilateral, eight to pass through the intersections
of the sides of the quadrilateral with the conic and one to touch the conic.
Hence the freedom of quintic curves associated with a particular configuration
is 20 — 15 = 5. Wherefore the freedom of a plane quintic associated with an
arbitrary configuration is 5 + 13 = 18. Like the Jacobian curve with four con-
current trisecants, with which it is in birational correspondence, such a plane

quintic is subjected to two conditions.

66. We mnext suppose that the plane quintic has an inseribed hexagram;
this is in birational correspondence with the Jacobian curve whose trisecants
are the edges of a hexahedron, and we have seen that this Jacobian curve is of
freedom 33. We therefore expect that the plane quintic has freedom 17. This
is immediately verified; for the freedom of a hexagram in a plane is 6.2 = 12,
and in order that a quintic curve should pass through the vertices of the hexa-
gram it must be subjected to 15 conditions; hence, given a definite hexagram,
the freedom of the quintic curves which pass through its vertices is 20 — 15 =73,
Wherefore the freedom of quintic curves circumscribed to an arbitrary hexagram
is § + 12 =17. This result also follows immediately from the equation to the

quintic which, when it has an inseribed hexagram, must be of the form
— —1 t—1 E—1 4 g—1 —1 __
§11+§2 +;o +b-t _5_&. +§u = 0,

and so contains eighteen arbitrary coefficients.

When a plane quintic has an inscribed hexagram we have seen that it can
be specialised in certain ways so as to have triads of tangents that are con-
current in points of the curve; the point of contact of each of the tangents of
the triad is an intersection of two sides of the hexagram, and the three tangents
of the triad give all the six sides of the hexagram in this way. The existence
of one concurrent triad of tangents is secured, as we have seen, by imposing
one condition on the coefficients; the corresponding quintic curve is thevefore of

freedom 16. Also, if one of the identities between the six forms is
e+t &+ &+ E+Emth=o

there are three concurrent triads of tangents; we have seen that this can be
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secured by imposing two conditions on the coefficients, so that the corresponding
quintic curve is of freedom 15. Further; if the six forms £ are such that

G+t +HE+ETEG=0

the plane quintic has fifteen concurrent triads of tangents. Here we may choose
any five of the six forms £ to be arbitrary, but the sixth is then completely
determined; hence there are now only fifteen arbitrary coefficients entering into
the equation of the quintic curve, which is therefore now of freedom 14. Like
the Jacobian curve of the net of polar quadrics of the points of a plane in
regard to a Segre primal, with which it is in birational correspondence, such a

plane quintic is subjected to six conditions.

67. There remain those quintic curves which are circumseribed to an in-
finity of hexagrams, the sides of these hexagrams all touching the same conic.
The most general quintic of this type, which is in birational correspondence
with a Jacobian curve having a scroll of trisecants, is obtained by taking a
conic and a gi thereon; the locus of the vertices of those hexagrams which con-
sist of the tangents of the conic at the points forming the sets of the g¢; is the
quintic curve that we are to cousider. Since the freedom of a conic in a plane
is 5, and the freedom of a ¢gi on a conic is 10, the freedom of quintic curves
of this kind is 5 + 10=15. 'The quintic curve can, however, be specialised so
that its tangents at the fifteen vertices of one of the hexagrams fall into fifteen
concurrent triads; we have seen in § 56 that when a conic and a hexagram,
consisting of tangents of this conic, are given, there is a doubly-infinite family
of such quintic curves. Hence the freedom of quintic curves of this type is
5+6+2=13.

Table Showing the Various Nets of Quadrics in [4].

68. In conclusion we exhibit in tabular form the different kinds of nets
of quadrics that have been encountered; the table shows the peculiarity of the
Jacobian curve that characterises the net, the freedom of the net and its
canonical form. In each case any plane quintic in birational corrrespondence
with the Jacobian curve has a corresponding peculiarity, and the freedom of the

plane quintic is always less by 16 than that of the corresponding Jacobian curve.



