CREMONA GROUP WORKSHOP

YURI PROKHOROV

This text reproduces a series of lectures given at University of Ed-
inburgh on March 23-26, 2010. It was adapted from Thomas Koppe’s
lecture notes.

Throughout these sessions we work over an algebraically closed field
k of characteristic zero.

Definition. The Cremona group of rank n is
Crp(k) := Auty k(xq, ..., z,) = Bir P,
the group of birational self-maps of projective space.
Example. Cr;(k) = Autg(x) = AutP. ~ PGL(2;k), the group of
Mobius transformations

ar +b
cr+d

xr —

All birational maps of PL are biregular.

For n > 2, we are interested in finite subgroups G C Cr, (k).

1. EXAMPLES OF SUBGROUPS OF THE CREMONA GROUP

1.1. GL(n;k) C Cr,(k), PGL(n + 1; k) C Cr,(k).

1.2. The Cremona involution
T (o :my it wy) — (xgt oo ah).

For n = 2, this is the standard quadratic Cremona involution
Tyt (o 1 @1t T2) — (L1221 ToTo : ToT1),

and the map is undefined at [1:0:0],[0:1:0] and [0:0: 1].

Theorem (Max Noether). Cry(k) = (12, PGL(3;k)).
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1.3. Monomial Cremona transformations: Consider a matrix

(Z 2) € GL(2;Z)

and the map

X k(z,y) = k(z,y),  x(@,y) = (@Y, 2"y?).
This defines an embedding GL(2;Z) C Cry(k).

1.4. Affine transformations: We have Aut A™ C Cr,, (k).

Theorem (Jung). The group Aut A? is generated by affine and triangle
automorphisms

(z, y) — (ax + f(y), by).

This is no longer true for n > 3. For example, the Nagata automor-
phism A3 — A? given by

vy —— 11 — 2%o(T103 + 73) — w3(T173 + 72)?
Ty +—— To+ z3(T103 + 13)
r3 FH—— I3

is not a triangle morphism. We denote by T' C Aut A® the subgroup of
tame automorphisms, which can be decomposed into affine and triangle
morphisms. Shestakov and Umirbaev proved that the Nagata map is
not tame.

1.5. The Nagata group: Consider a sufficiently general pencil P C
|Op,(3)], P ~ P' (a one-dimensional linear system) of plane cubic
curves. The base locus of P is nine points Pi,..., Py € P? in general
position. Blowing up these points gives us X — P2, and 7 : X — P! is
an elliptic fibration.

Let Fi,...,Fy C X be the exceptional divisors. A general fibre
E = X¢, £ € P! is an elliptic curve. Fixing F} as a base point, we have
a group law on (E, E N F}) ~ Pic’(E) and the divisors £ N (F; — F)
are independent in Pic’(E). The translations £ — E given by

r—z+ (F; — F)|g

define birational maps X --+ X. These extend to biregular maps
X — X, and since X is rational, we have Z® C Aut(X) C Cry(k).

1.6. De Jonquiére’s transformations. See below.



2. OUTLINE OF THE PROOF OF NOETHER’'S THEOREM.

Suppose x : P? --s P2 is a birational map. To distinguish the source
and target, we write y : X --» X', with X ~ X’ ~ P2 Resolve
indeterminacies of y by

so that xo f = g.

Let 7 := |Ox/(1)| be a base point free linear system on X', # :=
g* A" its pullback on X and 2 its birational transform on X. If
the map y is not linear, then the base locus of .7 is non-empty and
A C |Op2(d)], for some d > 2. Let

foX=x, I x, I R oy =X

be a factorization into a sequence of blowups of points, let E; C X;
be the exceptional divisor of f;, and let Ef := (fiy1 0+ fn)"(E;). If
f is a blowup of distinct points pi,...,p, € X, these E!’s are just
components of the exceptional divisor of f. Let . be the birational
(proper) transform of % on X;. On each step we have

I = fi*c%pi—l —m; b

where m; > 0 is the multiplicity of J#_; at the point f;(E;). Then by
induction we get

H = [*H = miE].
Comparing canonical divisors we also get
Kg=f"Kx+)» E.
It is easy to see
AP =" =1, and (Kgz+ H) H =2p,(H) —2= -2,

so K - = —3. We now have two equalities
Zm? =d*-1 and Zmz =3(d—1),

from which we obtain the Noether-Fano inequality

di,j,k such that m; +m; +my > d.
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We have the corresponding exceptional divisors £, EY, Ey, contracting
to points p;, p;, pr. Denote by 7 the standard Cremona involution with
indeterminacy set (p;, pj, px), and let

Yi=xor: X — X'
be the composite birational map, where 7 : X — X and H ~ P2 This

determines another linear system 7 as the birational transform of 2"
under x, and J¢ C |0 (d)|. For a general line L C X',

A (r7 L)) =2d — my —my —ms < d.

This process is called “untwisting of birational maps”. Note that
771x"}(L) is a conic passing through p;, p;, px. By induction we keep
lowering the degree until we get d = 1 and the composite is biregular.
So we only need biregular maps and the Cremona involution.

Remark. The above arguments do not give a complete proof of the
Noether theorem because we assumed that p;, p;, pi are distinct “hon-
est” points on P? in general position. In general, we cannot assume
this: for example, the set p;, p;, pr can contain infinitely near points.
So, our arguments work only for Cremona maps whose indeterminacy
locus is in “general position”.

3. DE JONQUIERE’S TRANSFORMATIONS.

As before, consider a birational map y : X --+ X’, where X ~ P? ~

X', and let
X
A
X___ic__>X/

be the resolution of its indeterminacies, i.e. x o f = g. We also let
H' = |0x(1)|, A = g*#" and S is the birational transform of 7’
to X. Then )

H = [H = miE]

and

Kg=["Kx+> E.

Definition. We call the birational map y de Jonquiere if my =d — 1.
Remark. We have the following equalities:
V= A=Y
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3=—Kg - =3d-> m,

i#0 i#0
Therefore, m; = - -+ = Mmog_s = 1.
Proposition. The birational map x is de Jonquiére if and only if there
exists a pencil of lines L, on X', t € P!, such that L, :== x~*(L}) is
also a pencil of lines on X.

Proof. Let L; := g*L}. Then

and o
1:%”Lt:dn—2mzk‘z,
where n = deg L;.
If x is de Jonquiere, then this equality becomes
L=dn—(d—1)ko— Y ki,
i#0
son =1 and L; is indeed of degree one.
For the converse, let n = 1. Then we have

where k; is either 0 or 1, since L; is a pencil of lines. Thus mg =
d—1. O

3.1. Equations. Suppose y is de Jonquiere and 57 is as above. Let
po be the point for which mult,, (%) = d — 1. Let L be a line passing
through py. There exists a divisor C'+ L € 5, so that mult, (C) =
d — 2. The curve C'is given as

C = {b(xg,x1,22) =0}, where py=1[0:0:1].
Let S € S be given as
S = {a(xg, 1, x2) = 0},
where
a = agq(r1, ) + xoag_1(T1,22) and
b = bg_1(x1,22) + zoba—2(1, 2).
This means that y is given by

X : [xo @1 xo) > [a(x, 21, x2) @ b(xg, 21, T2)T1b(T0, 1, T2)Xa).
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Going to affine coordinates by dividing out by x5 and setting x = (/z,
y = x1/x2, we can write

a(z)y + ﬁ(x)) (a )
(x,y) — (2, —————— |, where det 0.
N o= v §)7
De Jonquiere’s involutions are de Jonquiere maps which satisfy 22 =
id. This implies o+ = 0 and o? + By = 1. We get

o) = (2.

Moreover, we may assume that P is a polynomial of degree 2g + 1,
g > 0 without multiple roots. (We may have to change coordinates
y — Cy+n, for regular functions ¢, 1.) Then the fixed-point set of x is

Fix(x) = {(z,9) | y* = P(2)},
which is a hyperelliptic curve of genus g if g > 2.

Corollary. For g > 2, we have a family of involutions parametrised by
hyperelliptic curves, which are all non-conjugate in Cra(k).

Proof. Since the fixed-point set of x is not rational, it cannot be con-
tracted by rational maps, so all birational transformations must pre-
serve the fixed-point locus. 0

4. FINITE SUBGROUPS OF THE CREMONA GROUP

Suppose that G C Cry(k) is a finite subgroup and that G acts on
X. We may assume that X is a projective surface, by virtue of the
following reasoning. G acts regularly on a Zariski-open subset U C P2
Consider the quotient U/G of the closure of U by G. By taking the
normalisation of U/G in k(U), we obtain a projective surface, so we
may as well assume that GG acts on a projective surface X.

Now we run the G-equivariant minimal model programme, removing
G-orbits that are disjoint unions of (—1)-curves. In the output, which
we now call X, only three different cases can occur:

(1) X is a minimal model if and only if Kx is nef if and only if
there are no orbits of disjoint (—1)-curves. This is impossible,
as X is rational.

(2) there is a G-equivariant fibration f : X — Z such that Z is a
smooth curve, |— K x| is f-ample and p(X/Z)¢ = rk Pic(X/Z)% =
1.

(3) | — Kx| is ample and p(X)¢ = 1.

Proposition. In the conic bundle case we have a G-minimal G-conic

bundle. In the del Pezzo case X is a del Pezzo surface.
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We treat the two cases at length in the following two subsections.

4.1. The conic bundle case. If —Kx is ample over Z, then there
is an embedding X — P(&), where & — Z is a vector bundle of rank
3, such that X, C P? = P(&,) is a reduced conic for all n € Z. Note
that the conic X, must be reduced. Indeed, otherwise X, = 2C, where
C ~ P! and by the genus formula

1 1
204(C) =2 = (Kx+C).C = Kx.C = SKx.X, = 5(2pa(X,) =2) = —L,

a contradiction. Hence a general fibre of f is a smooth conic (~ P')
and special fibres are bouquets of two P!’s.

Remark. X is rational if and only if Z ~ P!. Indeed, if X is ra-
tional, so Z is by Liiroth’s theorem. Conversely, if Z ~ P!, then the
transcendence degree of k(Z) = k(P') equals to one, and since k is al-
gebraically closed, k is a ¢i-field (a ¢i-field is a field such that any form
(1, ..., x,) with deg ¢ < n represents 0.) Therefore, k(X) ~ k(Z)(t).

If the morphism f is smooth (i.e. f has no degenerate fibres), then
we have the following.

Example (rational ruled (Hirzebruch) surfaces). F,,, n # 0. We can
contract the (—n)-curve to get a birational map F,, — P(1,1,n). Then

Aut(F,) ~ k"™ x GL(2;k)/u,,

where k™" is regarded as the space M, ~ k"' of binary forms of
degree n with natural action of GL(2;k).

For n = 0 we have Fy ~ P! x P! and there is a split-exact short
sequence

1 — PGL(2;k) x PGL(2;k) — Aut(Fy) — {1,7} — 1.
In general f factors through a Hirzebruch surface:
f:X-5LF, — Z,
where o is a birational (non-G-equivariant) morphism.

Example (Exceptional conic bundles). Let ¢ > 1. By definition an
exceptional conic bundle is a conic bundle f : X — Z with 2g — 2
degenerate fibres and two disjointed sections F;, ¢ = 1, 2 such that
FP=F!=—(g+1).

Construction 1. Consider P! x P!, Fix a ruling P! x P! — P! and
fix two different sections L;, i = 1, 2. We have L? = L3 = L,.L, = 0.
Take g + 1 points Py, ..., Pyyq in Ly and g+ 1 points Q1, ..., Q441 in
L, and blow up all 2g + 2 points: X — P! x P! — Z.
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Construction 2. Let
Y CcP(1,1,g+1,9+1)
is given by
tots = Fogya(to, t1),

and let X — Y be the minimal resolution. Then the projection

(t()a tla t27 t3) -3 (toa tl)
induces a structure an exceptional conic bundle on X.

Now assume that X is G-minimal and let > be the set of singular
fibres, whose size we denote by s. Then p(X) = 2+ s, and by Noether’s
formula we have K% = 8—s. If s = 0, we are in the above case X ~ F,,.
Note that X is not G-minimal if and only if X is a del Pezzo surface
with p(X)¢ = 2.

For s =1, 2, 3, 5, X is a not G-minimal:

e The case s = 1 is trivial: f : X — P! has a unique section
C with negative self-intersection number, so f cannot be G-
minimal because C' meets only one component of degenerate
fibre.

e For s =2 we have K% = 6 and the linear system | — 2K x — F|
(here F' is the fibre) defines an equivariant contraction X —
X' =P x P!, K%, =8 of two (—1)-curves.

e For s = 3 we have K% = 5, and we use | — Kx — F| to blow
down X — P2

e For s =5, K% = 3 and X is a cubic surface with a G-invariant
line. This line can be contracted and we get a del Pezzo surface
X' of degree 4.

Lemma. Suppose f: X — Z has two sections Cy,Cy C X with C? =
—n. Let s' be the number of components of ¥ that meet both C; and
Cy. Then

20,.Cy +2n=s5—¢5".
In particular, s > 2n + s > 2n.

We can use this lemma directly to show that the cases s < 3 cannot
occur as G-minimal models. Our G-minimal surface X has Picard
group Pic(X) ~ Z**2. The group G acts on the Picard group with
kernel

1 — Gy — G — Aut(Pic(X))

From now on we assume that s > 4. We distinguish two cases.
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Case Gy # {1}. Then Gy fixes (—1)-curves and so Gy fixes s > 4
singular fibres. So the image of Gy — Aut(Z) ~ PGL(2;k) is trivial.
Further, Gy also fixes negative sections of f, and since it acts trivially
on the base, it fixes these sections pointwise. On the other hand, Gy
acts faithfully on a general fibre F' ~ P!, so Gy C PGL(2,k). Since
the intersection of F' and a negative section is a fixed point, the group
G must be cyclic. Since general fibre is a P! and Gy acts cyclically,
Gy has exactly two fixed points in general fibre, and thus f has two
G-invariant sections C, Cy. So Fix(Gy) D €1 U Cy =: C. The curve
C must be smooth, i.e. the disjoint union of two smooth, irreducible
curves (namely the two sections Cy, Cy). This means that f: X — Z
is an exceptional conic bundle.

Case Gy = {1}. Then and G — Aut(Pic X'). We have a short exact
sequence

1—Gr —G— G —1,

where G C Aut(Z). We claim that the map Gp — (u,)® into the
group of permutations of the components of ¥ is an injection. Indeed,
otherwise some element 1 # 7 € G acts trivially on the components
of 3. Since Pic(X) is generated by —Kx and the classes of these
components, 7 trivially acts on Pic(X), a contradiction.

Further, the general fibre is F' ~ P!, so we also must have an embed-
ding G — PGL(2;k). There are only two such possibilities: Gp = p,
and Gp = gy X s

Case Gp = p,. The fixed-point locus of G is a curve C' and some
points. Then C' — Zis 2 : 1, and C is smooth. In fact C'is irreducible,
since it cannot have two disjoint components: Doing so would force
G'r to fix the components of the singular fibres, but that in turn would
force G to act trivially on the Picard group (which is generated by the
components of singular fibres and a section), which we assumed not to
happen.

So C'is a (generalized) hyperelliptic curve. Let P be a fixed point of
Gr and P € F, where F' is a fiber. Consider three possibilities.

a) If P € F' is a smooth point, then we have

0— TpF — TPX — Tf(p)Z — 0.

Since Gr = py acts on TpX as diag(1l, —1), P € C is not a ramification
point of f.

b) If P € F is singular and G = u, does not switch the components
of F' and thus acts as diag(—1,—1), then P is an isolated fixed point

and P ¢ C.
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c) If G does switch the components of F', then P = C N F is a
ramification point.

In conclusion, we have a subset of fibres ¥ C ¥, and Gp fixes the
sets 3, X,

Case Gy = o X p,. We have three non-trivial elements 01, 02, 03 € G.
We argue as before to get three bisections Cy # Cy # C3 # C} of §;-
points. For each singular fibre F' there are exactly two elements ;,
d; € Gp interchanging components of F. Indeed, let F' = F' U F" and
let {P} = F'NF". Then Gp.P = P. At least one of the ¢; must
exchange the components (for otherwise G would be cyclic). We get
a partition of ¥ into three subsets ¥ = ¥; U ¥y U X3 so that C; — Z
is ramified exactly over ¥; U Xy, where {7, j, k} = {1,2,3}. Again, Gp
fixes the partition >;. One can show that in this case the quotient
X/GF is smooth and X/GFp
In both cases, we have a morphism X/Gr — Z.

5. THE DEL PEZZO CASE

Let X be a G-minimal G-del Pezzo surface. In this case, —Kx is
ample and p(X)% = 1. We use the classification of del Pezzo surfaces.
There are two well-known constructions.

I. Del Pezzo surfaces are rational. Hence either X = P! x P2 or X can
be obtained as a blow-up X — P? is in 9 — d points in general position,
where K% = d. Here the morphism X — P? is not unique and is not
G-equivariant.

Generalization. Embed P? ¢ PY, and blow up 0 < n < 7 points in
general position, P?> — P?. Then P? is a so-called del Pezzo threefold
of degree 8 — n.

IT. Let d := K%. Then d = dim | — Kx]|.

e If d =1, then | — Kx/| is an elliptic pencil with one base point P.
Then we can realise X as a degree-6 hypersurface in P(1, 1,2, 3).
The Galois involution of the projection X — P(1,1,2) (which
is is 2 : 1), called the Bertini involution.

e If d = 2, then | — Kx| also has one base point P, and we can
realise X as a degree-4 hypersurface in P(1,1,1,2). There is a
2 : I-map X — P? whose Galois involution is called the Geiser
involution.

If d > 3, | — Kx| is very ample and X is a degree d subvariety of P%:

e For d = 3, X is a cubic hypersurface in P3.
e For d =4, X = X5 C P (intersection of two quadrics).
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e Ford=5, X = Gr(2,5) NP> C P?.

e For d =6, X C P! x P! x P! is a divisor of tridegree (1,1, 1).

efFord=7 X=X, CP’.

e Ford =8, X =TF, or P! x P!

o Ford=9, X =P
Generally, we have Pic(X) = Z'°7¢. The group G acts on Pic(X) so
that Pic(X)® = Z. The action preserves the intersection pairing and
the class of —Kx. Let

N = (Kx)*, A:={aeN|a®=-2}.
Then A is a root system in N ® R depending on d:

d 1 2 3 4 5 6

A Eg E7 E6 D5 A4 A1XA2

6. INVOLUTIONS OF Cry(k)

Theorem. Let 7 € Cra(k) be an involution. Then T is conjugate to
one of the following:

(1) A linear involution on P2.
(2) A de Jonquiére’s involution.
(3) A Geiser involution.

(4) A Bertini involution.

The proof of this theorem is quite standard. We may assume that
G = (7) acts on a G-minimal rational surface X. Then we consider
two cases: where X has a conic bundle structure f : X — Z and where
X is a del Pezzo surface with p(X)¢ = 1.

The conic bundle case. Assume that X has a structure of a min-
imal (G-equivariant) conic bundle f : X — Z. If f is a P!-fibration,
then X ~ IF,, for some n. By applying elementary transformations with
centers at fixed points we get n = 1, i.e. X ~ [F;. Then contracting the
negative section we get a linear involution on P2. If f has degenerate
fibers and G trivially acts on Pic(X) (i.e. G = Gy), then f is an excep-
tional conic bundle. In this case f is not G-minimal, a contradiction.
Finally, we assume that f has degenerate fibers, G # Gg, and Gp = G
(i.e. G trivially acts on the base). Then 7 switches components of all
degenerate fibers. Hence the set of 7-fixed points is a smooth curve

C. The induced map C' — Z = P!. Clearly, there is a birational map
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X --» F; preserving a general fibre. This induces a fiberwise bira-
tional action of 7 on [F;. Contracting the negative section we get a de
Jonquiere’s involution on P2. Thus 7 can be written as

o (72)

where P is a polynomial of degree 2g+1, g > 0 without multiple roots.
If g =0, then 7 is conjugate to a linear involution.

The del Pezzo case Thus we assume that X is a del Pezzo surface
with p(X)¢ = 1. We have

—7": Pic(X) — Pic(X), Ky — —Ky.

Then —7*(z) = x + AKx for some A € Q. We compute:

2. K
—r. Ky =2.Kx + K%\, so A= — < 2X
Ky
Taking z to be a (—1)-curve, we have
2z. K
(@) = = S K

and so K% =1 or 2. If 7/ is a Bertini or Geiser involution, then 7o 7/
acts trivially on Pic(X). But then 7o 7" preserves 7 or 8 points, and
we have 707 =1id, so 7 = 7.

Here is a geometric explanation of the involution. For d = 2, X — P2
is the blow-up in 7 points. Fix one more point P. We have a pencil of
elliptic curves through those eight points, and this pencil has one base
point, P’. The involution exchanges P and P'. For d = 1, X — P2 is
the blow-up in 8 points. Fixing one more point P, there is a unique
elliptic curve through those nine points, and letting P be the base point
for the group law on that curve, the involution is the group inverse map.

Thus we may assume that X contains no (—1)-curves. Then there
are two possibilities.

e For d =9, X = P2, and 7 is a linear involution.

e For d =8, X = P! x P!, and 7 exchanges the two factors.
In suitable non-homogeneous coordinates (z,y) on P! x P! the
involution has the form 7(z,y) — (y,2). Thus it is conjugate
to linear one.

7. FINITE SUBGROUPS, CONTINUED

Suppose G C Cry(k) is a finite subgroup.
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7.1. Simple groups. We begin by considering the case where G is
simple. If G = 2, then there are a lot of embeddings G — Cry(k)
induced by G — PGL(2;k) ~ Cr; (k). Furthermore, G — PGL(3;k),
which already acts biregularly. So assume G 2 .

If G acts on a conic bundle f : X — Z then G fits to an exact
sequence

1—>GF—>GL>GZ—>1.

Since G is simple, there is an embedding of G into Aut(Z) or Aut(F),
where F' is a general fibre. On the other hand, GG is not embeddable to
PGL(2,k), a contradiction.

Assume thus that X is a del Pezzo surface. We consider the various
cases according to d = K%.

e The case d = 1 cannot occur, as | — Kx| has one base point P,
and G has to act on Tp x effectively. Hence G C GL(Tpx) =~
GL(2;k). This contradicts the classification of finite subgroups
in GL(2; k).

e For d = 2, the anti-canonical map X — P? is a double cover
whose branch divisor B C P? is a smooth quartic. The action
of G in X descends to P? so that B is G-stable. Therefore,
G C Aut(B). According to the Hurwitz bound |G| < 168.
Then we have G ~ PSL(2;F;), with |G| = 168.

e For d = 3, X is a cubic in P2. We have Pic(X) = Z" and G C
W (Eg)NSL(6,R). Hence the order of G divides 25920 = 2¢-3-5.
On the other hand, G faithfully acts on H°(X;—Ky) ~ k*.
Combining these we get a contradiction.

o Ford=4,X = X95 = Q1NQy C P* Then G acts on the pencil
of quadrics (Q1,Q2) ~ PL. Since G % s, this action is trivial.
Hence, there is a G-stable degenerate quadric @' € (Q1,Qs).
This @' must be a cone over P! x P!, Thus G acts effectively
on P! x P!. Since G is simple, G C Aut(P'), a contradiction.

e For d = 5, consider the (faithful) action of G on Pic(X). Pic(X)
contains a root system of type A4, so G — W(A,) ~ &5 and
G ~ 25, a contradiction.

e For 6 < d < 8, we have 2 < p(X) < 4. Since the action of
Pic(X) ~ Z™X) is non-trivial, we have a contradiction.

e Ford =9, X = P2 So G C PGL(3;k), and by the classification
of finite subgroups in PGL(2;k) the group G is either 24 or
PSL(2; Fy).

Thus we have proved the following.
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Theorem. Let G C Cra(k) be a finite simple group. Then either G ~
s, or G is conjugate to one of the following actions:
(1) G ~ PSL(2;F7) is the Klein group acting on P2,
(2) G ~ PSL(2;F7) is the Klein group acting on some special del
Pezzo surface of degree 2,
(3) G =~ s is the Valentiner group acting on P?,

7.2. p-elementary abelian groups. We say that G is p-elementary
abelian group if G ~ (u,)" for some 7 and in this case r is called the

rank of G.

Theorem. Let G C Cry(k) be a p-elementary abelian subgroup and let
r =rk(G) be its rank.
(1) If p > 5, then r < 2, and if r = 2 then G is conjugale to a
subgroup of PGL(3;k).
(2) If p = 3, then r < 3, and if r = 3 then G is conjugale to a
group acting on the Fermat cubic

{Zﬁ = o} c P5.

(3) If p=2, thenr <4, and if r = 4, then either G acts on

{Zx?:Z)\x?:O} c P4,

or X is some special conic bundle.

If G acts on a conic bundle f : X — Z ~ P! then, as above, G fits
to an exact sequence

1—>GF—>GL>GZ—>1.

where Gp, Gz C P. We have 1k(Gr), 1k(Gz) < 1+ d5,. Hence
tk(G) < 24 205, in this case.

Assume that G acts on a del Pezzo surface X with p(X)¢ = 1.

As above, we consider the various cases according to d = K%.

e If d =1, then G faithfully acts on TpX ~ k? and so rk(G) < 2.

o If d =2 and p # 2, then G acts on H*(X; —Ky) ~ k>.

e If d = 3, then G acts on HY(X; —Kx) ~k* and r < 3.

o Ford=4,X = X95 = (Q1NQy C P* Then G acts on the pencil
of quadrics (Q1,Q2) ~ PL. Since G # s, this action is trivial.
Hence, there is a G-stable degenerate quadric @' € (Q1,Qs).
This @' must be a cone over P! x P!. Thus G acts effectively

on P! x P!. Since G is simple, G C Aut(P'), a contradiction.
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e For d = 5, consider the (faithful) action of G on Pic(X). Then
G — W(Ay) ~ S5 and 1k(G) < 2.

e For 6 < d < 8, we have 2 < p(X) < 4. Since the action of
Pic(X) ~ Zf™X) is non-trivial, we have a contradiction.

e Ford =9, X = P2 So G C PGL(3;k), and by the classification
of finite subgroups in PGL(2; k) rk(G) <.
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