
CREMONA GROUP WORKSHOP

YURI PROKHOROV

This text reproduces a series of lectures given at University of Ed-
inburgh on March 23-26, 2010. It was adapted from Thomas Köppe’s
lecture notes.

Throughout these sessions we work over an algebraically closed field
k of characteristic zero.

Definition. The Cremona group of rank n is

Crn(k) := Autk k(x1, . . . , xn) = Bir Pn
k ,

the group of birational self-maps of projective space.

Example. Cr1(k) = Autk(x) = Aut P1
k ' PGL(2; k), the group of

Möbius transformations

x 7−→ ax + b

cx + d
.

All birational maps of P1
k are biregular.

For n ≥ 2, we are interested in finite subgroups G ⊂ Crn(k).

1. Examples of subgroups of the Cremona group

1.1. GL(n; k) ⊂ Crn(k), PGL(n + 1; k) ⊂ Crn(k).

1.2. The Cremona involution

τn : (x0 : x1 : · · · : xn) 7−→ (x−1
0 : · · · : x−1

n ).

For n = 2, this is the standard quadratic Cremona involution

τ2 : (x0 : x1 : x2) 7−→ (x1x2 : x0x2 : x0x1),

and the map is undefined at [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1].

Theorem (Max Noether). Cr2(k) = 〈τ2, PGL(3; k)〉.
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1.3. Monomial Cremona transformations: Consider a matrix(
a c
b d

)
∈ GL(2; Z)

and the map

χ : k(x, y) → k(x, y), χ(x, y) = (xayc, xbyd).

This defines an embedding GL(2; Z) ⊂ Cr2(k).

1.4. Affine transformations: We have Aut An ⊂ Crn(k).

Theorem (Jung). The group Aut A2 is generated by affine and triangle
automorphisms

(x, y) 7−→ (ax + f(y), by).

This is no longer true for n ≥ 3. For example, the Nagata automor-
phism A3 → A3 given by

x1 7−→ x1 − 2x2(x1x3 + x2
2) − x3(x1x3 + x2

2)
2

x2 7−→ x2 + x3(x1x3 + x2
2)

x3 7−→ x3

is not a triangle morphism. We denote by T ⊂ Aut A3 the subgroup of
tame automorphisms, which can be decomposed into affine and triangle
morphisms. Shestakov and Umirbaev proved that the Nagata map is
not tame.

1.5. The Nagata group: Consider a sufficiently general pencil P ⊂
|OP2(3)|, P ' P1 (a one-dimensional linear system) of plane cubic
curves. The base locus of P is nine points P1, . . . , P9 ∈ P2 in general
position. Blowing up these points gives us X → P2, and π : X → P1 is
an elliptic fibration.

Let F1, . . . , F9 ⊂ X be the exceptional divisors. A general fibre
E := Xξ, ξ ∈ P1 is an elliptic curve. Fixing F1 as a base point, we have
a group law on (E, E ∩ F1) ' Pic0(E) and the divisors E ∩ (Fj − F1)
are independent in Pic0(E). The translations E −→ E given by

x 7−→ x + (Fj − F1)|E
define birational maps X 99K X. These extend to biregular maps
X −→ X, and since X is rational, we have Z8 ⊂ Aut(X) ⊂ Cr2(k).

1.6. De Jonquière’s transformations. See below.
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2. Outline of the proof of Noether’s theorem.

Suppose χ : P2 99K P2 is a birational map. To distinguish the source
and target, we write χ : X 99K X ′, with X ' X ′ ' P2. Resolve
indeterminacies of χ by

X̃
g

##H
HH

HH
HH

HH
H

f

{{wwwwwwwww

P2 ' X
χ //_______ X ′ ' P2

so that χ ◦ f = g.
Let H ′ := |OX′(1)| be a base point free linear system on X ′, H̃ :=

g∗H ′ its pullback on X̃ and H its birational transform on X. If
the map χ is not linear, then the base locus of H is non-empty and
H ⊂ |OP2(d)|, for some d ≥ 2. Let

f : X̃ = Xn
fn−→ Xn−1

fn−1−→ · · · f2−→ X1
f1−→ X0 = X

be a factorization into a sequence of blowups of points, let Ei ⊂ Xi

be the exceptional divisor of fi, and let E∗
i := (fi+1 ◦ · · · fn)∗(Ei). If

f is a blowup of distinct points p1, . . . , pn ∈ X, these E∗
i ’s are just

components of the exceptional divisor of f . Let Hi be the birational
(proper) transform of H on Xi. On each step we have

Hi = f∗
i Hi−1 − miEi,

where mi ≥ 0 is the multiplicity of Hi−1 at the point fi(Ei). Then by
induction we get

H̃ = f ∗H −
∑

i

miE
∗
i .

Comparing canonical divisors we also get

KX̃ = f ∗KX +
∑

i

E∗
i .

It is easy to see

H̃ 2 = H ′2 = 1, and (KX̃ + H̃ ) · H̃ = 2pa(H̃ ) − 2 = −2,

so KX̃ · H̃ = −3. We now have two equalities∑
i

m2
i = d2 − 1 and

∑
i

mi = 3(d − 1),

from which we obtain the Noether-Fano inequality

∃i, j, k such that mi + mj + mk > d.
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We have the corresponding exceptional divisors E∗
i , E∗

j , E∗
k , contracting

to points pi, pj, pk. Denote by τ the standard Cremona involution with
indeterminacy set (pi, pj, pk), and let

χ̂ := χ ◦ τ : X̂ −→ X ′

be the composite birational map, where τ : X̂ → X and Ĥ ' P2. This
determines another linear system Ĥ as the birational transform of H ′′

under χ̂, and Ĥ ⊂ |OX̂(d̂)|. For a general line L ⊂ X ′,

Ĥ · (τ−1χ−1(L)) = 2d − m1 − m2 − m3 < d.

This process is called “untwisting of birational maps”. Note that
τ−1χ−1(L) is a conic passing through pi, pj, pk. By induction we keep
lowering the degree until we get d = 1 and the composite is biregular.
So we only need biregular maps and the Cremona involution.

Remark. The above arguments do not give a complete proof of the
Noether theorem because we assumed that pi, pj, pk are distinct “hon-
est” points on P2 in general position. In general, we cannot assume
this: for example, the set pi, pj, pk can contain infinitely near points.
So, our arguments work only for Cremona maps whose indeterminacy
locus is in “general position”.

3. De Jonquière’s transformations.

As before, consider a birational map χ : X 99K X ′, where X ' P2 '
X ′, and let

X̃
g

  A
AA

AA
AA

A
f

��~~
~~

~~
~

X
χ //_______ X ′

be the resolution of its indeterminacies, i.e. χ ◦ f = g. We also let
H ′ := |OX(1)|, H̃ := g∗H ′ and H is the birational transform of H ′

to X. Then
H̃ = f∗H −

∑
i

miE
∗
i

and
KX̃ = f ∗KX +

∑
i

E∗
i .

Definition. We call the birational map χ de Jonquière if m0 = d − 1.

Remark. We have the following equalities:

1 = H̃ 2 = d2 −
∑

i

m2
i ,
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3 = −KX̃ · H̃ = 3d −
∑

i

mi,∑
i 6=0

mi = 2d − 2 =
∑
i6=0

m2
i .

Therefore, m1 = · · · = m2d−2 = 1.

Proposition. The birational map χ is de Jonquière if and only if there
exists a pencil of lines L′

t on X ′, t ∈ P1, such that Lt := χ−1(L′
t) is

also a pencil of lines on X.

Proof. Let L̃t := g∗L′
t. Then

L̃t = f ∗Lt −
∑

i

kiE
∗
i

and
1 = H̃ · L̃t = dn −

∑
miki,

where n = deg Lt.
If χ is de Jonquière, then this equality becomes

1 = dn − (d − 1)k0 −
∑
i 6=0

ki,

so n = 1 and Lt is indeed of degree one.
For the converse, let n = 1. Then we have

1 = d −
∑

i

miki,

where ki is either 0 or 1, since Lt is a pencil of lines. Thus m0 =
d − 1. �
3.1. Equations. Suppose χ is de Jonquière and H is as above. Let
p0 be the point for which multp0(H ) = d − 1. Let L be a line passing
through p0. There exists a divisor C + L ∈ H , so that multp0(C) =
d − 2. The curve C is given as

C = {b(x0, x1, x2) = 0}, where p0 = [0 : 0 : 1].

Let S ∈ H be given as

S = {a(x0, x1, x2) = 0},
where

a = ad(x1, x2) + x0ad−1(x1, x2) and

b = bd−1(x1, x2) + x0bd−2(x1, x2).

This means that χ is given by

χ : [x0 : x1 : x2] 7−→ [a(x0, x1, x2) : b(x0, x1, x2)x1b(x0, x1, x2)x2].
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Going to affine coordinates by dividing out by x2 and setting x = x0/x2,
y = x1/x2, we can write

χ : (x, y) 7−→
(

x,
α(x)y + β(x)

γ(x)y + δ(x)

)
, where det

(
α β
γ δ

)
6= 0.

De Jonquière’s involutions are de Jonquière maps which satisfy x2 =
id. This implies α + δ = 0 and α2 + βγ = 1. We get

χ(x, y) =

(
x,

P (x)

y

)
.

Moreover, we may assume that P is a polynomial of degree 2g + 1,
g ≥ 0 without multiple roots. (We may have to change coordinates
y 7→ ζy + η, for regular functions ζ, η.) Then the fixed-point set of χ is

Fix(χ) = {(x, y) | y2 = P (x)},
which is a hyperelliptic curve of genus g if g ≥ 2.

Corollary. For g ≥ 2, we have a family of involutions parametrised by
hyperelliptic curves, which are all non-conjugate in Cr2(k).

Proof. Since the fixed-point set of χ is not rational, it cannot be con-
tracted by rational maps, so all birational transformations must pre-
serve the fixed-point locus. �

4. Finite subgroups of the Cremona group

Suppose that G ⊂ Cr2(k) is a finite subgroup and that G acts on
X. We may assume that X is a projective surface, by virtue of the
following reasoning. G acts regularly on a Zariski-open subset U ⊂ P2.
Consider the quotient Ū/G of the closure of U by G. By taking the
normalisation of Ū/G in k(U), we obtain a projective surface, so we
may as well assume that G acts on a projective surface X.

Now we run the G-equivariant minimal model programme, removing
G-orbits that are disjoint unions of (−1)-curves. In the output, which
we now call X, only three different cases can occur:

(1) X is a minimal model if and only if KX is nef if and only if
there are no orbits of disjoint (−1)-curves. This is impossible,
as X is rational.

(2) there is a G-equivariant fibration f : X → Z such that Z is a
smooth curve, |−KX | is f -ample and ρ(X/Z)G = rk Pic(X/Z)G =
1.

(3) | − KX | is ample and ρ(X)G = 1.

Proposition. In the conic bundle case we have a G-minimal G-conic
bundle. In the del Pezzo case X is a del Pezzo surface.
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We treat the two cases at length in the following two subsections.

4.1. The conic bundle case. If −KX is ample over Z, then there
is an embedding X ↪→ P(E ), where E → Z is a vector bundle of rank
3, such that Xη ⊂ P2 = P (Eη) is a reduced conic for all η ∈ Z. Note
that the conic Xη must be reduced. Indeed, otherwise Xη = 2C, where
C ' P1 and by the genus formula

2pa(C)−2 = (KX +C).C = KX .C =
1

2
KX .Xη =

1

2
(2pa(Xη)−2) = −1,

a contradiction. Hence a general fibre of f is a smooth conic (' P1)
and special fibres are bouquets of two P1’s.

Remark. X is rational if and only if Z ' P1. Indeed, if X is ra-
tional, so Z is by Lüroth’s theorem. Conversely, if Z ' P1, then the
transcendence degree of k(Z) = k(P1) equals to one, and since k is al-
gebraically closed, k is a c1-field (a c1-field is a field such that any form
φ(x1, . . . , xn) with deg φ < n represents 0.) Therefore, k(X) ' k(Z)(t).

If the morphism f is smooth (i.e. f has no degenerate fibres), then
we have the following.

Example (rational ruled (Hirzebruch) surfaces). Fn, n 6= 0. We can
contract the (−n)-curve to get a birational map Fn → P(1, 1, n). Then

Aut(Fn) ' kn+1 o GL(2; k)/µn

where kn+1 is regarded as the space Mn ' kn+1 of binary forms of
degree n with natural action of GL(2; k).

For n = 0 we have F0 ' P1 × P1 and there is a split-exact short
sequence

1 −→ PGL(2; k) × PGL(2; k) −→ Aut(F0) −→ {1, τ} −→ 1.

In general f factors through a Hirzebruch surface:

f : X
σ−→ Fn −→ Z,

where σ is a birational (non-G-equivariant) morphism.

Example (Exceptional conic bundles). Let g ≥ 1. By definition an
exceptional conic bundle is a conic bundle f : X → Z with 2g − 2
degenerate fibres and two disjointed sections Fi, i = 1, 2 such that
F 2

1 = F 2
2 = −(g + 1).

Construction 1. Consider P1 × P1. Fix a ruling P1 × P1 → P1 and
fix two different sections Li, i = 1, 2. We have L2

1 = L2
2 = L1.L2 = 0.

Take g + 1 points P1, . . . , Pg+1 in L1 and g + 1 points Q1, . . . , Qg+1 in
L2, and blow up all 2g + 2 points: X → P1 × P1 → Z.
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Construction 2. Let

Y ⊂ P(1, 1, g + 1, g + 1)

is given by

t2t3 = F2g+2(t0, t1),

and let X → Y be the minimal resolution. Then the projection

(t0, t1, t2, t3) 99K (t0, t1)

induces a structure an exceptional conic bundle on X.

Now assume that X is G-minimal and let Σ be the set of singular
fibres, whose size we denote by s. Then ρ(X) = 2+s, and by Noether’s
formula we have K2

X = 8−s. If s = 0, we are in the above case X ' Fn.
Note that X is not G-minimal if and only if X is a del Pezzo surface
with ρ(X)G = 2.

For s = 1, 2, 3, 5, X is a not G-minimal:

• The case s = 1 is trivial: f : X → P1 has a unique section
C with negative self-intersection number, so f cannot be G-
minimal because C meets only one component of degenerate
fibre.

• For s = 2 we have K2
X = 6 and the linear system | − 2KX − F |

(here F is the fibre) defines an equivariant contraction X →
X ′ = P1 × P1, K2

X′ = 8 of two (−1)-curves.
• For s = 3 we have K2

X = 5, and we use | − KX − F | to blow
down X → P2.

• For s = 5, K2
X = 3 and X is a cubic surface with a G-invariant

line. This line can be contracted and we get a del Pezzo surface
X ′ of degree 4.

Lemma. Suppose f : X → Z has two sections C1, C2 ⊂ X with C2
i =

−n. Let s′ be the number of components of Σ that meet both C1 and
C2. Then

2C1.C2 + 2n = s − s′.

In particular, s ≥ 2n + s′ ≥ 2n.

We can use this lemma directly to show that the cases s ≤ 3 cannot
occur as G-minimal models. Our G-minimal surface X has Picard
group Pic(X) ' Zs+2. The group G acts on the Picard group with
kernel

1 −→ G0 −→ G −→ Aut(Pic(X))

From now on we assume that s ≥ 4. We distinguish two cases.
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Case G0 6= {1}. Then G0 fixes (−1)-curves and so G0 fixes s ≥ 4
singular fibres. So the image of G0 → Aut(Z) ' PGL(2; k) is trivial.
Further, G0 also fixes negative sections of f , and since it acts trivially
on the base, it fixes these sections pointwise. On the other hand, G0

acts faithfully on a general fibre F ' P1, so G0 ⊂ PGL(2, k). Since
the intersection of F and a negative section is a fixed point, the group
G0 must be cyclic. Since general fibre is a P1 and G0 acts cyclically,
G0 has exactly two fixed points in general fibre, and thus f has two
G-invariant sections C1, C2. So Fix(G0) ⊃ C1 ∪ C2 =: C. The curve
C must be smooth, i.e. the disjoint union of two smooth, irreducible
curves (namely the two sections C1, C2). This means that f : X → Z
is an exceptional conic bundle.

Case G0 = {1}. Then and G ↪→ Aut(Pic X). We have a short exact
sequence

1 −→ GF −→ G −→ GB −→ 1,

where GB ⊂ Aut(Z). We claim that the map GF → (µ2)
s into the

group of permutations of the components of Σ is an injection. Indeed,
otherwise some element 1 6= τ ∈ GF acts trivially on the components
of Σ. Since Pic(X) is generated by −KX and the classes of these
components, τ trivially acts on Pic(X), a contradiction.

Further, the general fibre is F ' P1, so we also must have an embed-
ding GF ↪→ PGL(2; k). There are only two such possibilities: GF = µ2

and GF = µ2 × µ2.

Case GF = µ2. The fixed-point locus of GF is a curve C and some
points. Then C → Z is 2 : 1, and C is smooth. In fact C is irreducible,
since it cannot have two disjoint components: Doing so would force
GF to fix the components of the singular fibres, but that in turn would
force GF to act trivially on the Picard group (which is generated by the
components of singular fibres and a section), which we assumed not to
happen.

So C is a (generalized) hyperelliptic curve. Let P be a fixed point of
GF and P ∈ F , where F is a fiber. Consider three possibilities.

a) If P ∈ F is a smooth point, then we have

0 −→ TP F −→ TP X −→ Tf(p)Z −→ 0.

Since GF = µ2 acts on TP X as diag(1,−1), P ∈ C is not a ramification
point of f .

b) If P ∈ F is singular and GF = µ2 does not switch the components
of F and thus acts as diag(−1,−1), then P is an isolated fixed point
and P /∈ C.
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c) If GF does switch the components of F , then P = C ∩ F is a
ramification point.

In conclusion, we have a subset of fibres Σ′ ⊂ Σ, and GB fixes the
sets Σ, Σ′.

Case GF = µ2×µ2. We have three non-trivial elements δ1, δ2, δ3 ∈ GF .
We argue as before to get three bisections C1 6= C2 6= C3 6= C1 of δi-
points. For each singular fibre F there are exactly two elements δi,
δj ∈ GF interchanging components of F . Indeed, let F = F ′ ∪ F ′′ and
let {P} = F ′ ∩ F ′′. Then GF .P = P . At least one of the δi must
exchange the components (for otherwise GF would be cyclic). We get
a partition of Σ into three subsets Σ = Σ1 ∪ Σ2 ∪ Σ3 so that Ci → Z
is ramified exactly over Σj ∪ Σk, where {i, j, k} = {1, 2, 3}. Again, GB

fixes the partition Σi. One can show that in this case the quotient
X/GF is smooth and X/GF

In both cases, we have a morphism X/GF → Z.

5. The del Pezzo case

Let X be a G-minimal G-del Pezzo surface. In this case, −KX is
ample and ρ(X)G = 1. We use the classification of del Pezzo surfaces.
There are two well-known constructions.

I. Del Pezzo surfaces are rational. Hence either X = P1 ×P2 or X can
be obtained as a blow-up X → P2 is in 9−d points in general position,
where K2

X = d. Here the morphism X → P2 is not unique and is not
G-equivariant.

Generalization. Embed P3 ⊂ P9, and blow up 0 ≤ n ≤ 7 points in
general position, P̃3 → P3. Then P̃3 is a so-called del Pezzo threefold
of degree 8 − n.

II. Let d := K2
X . Then d = dim | − KX |.

• If d = 1, then |−KX | is an elliptic pencil with one base point P .
Then we can realise X as a degree-6 hypersurface in P(1, 1, 2, 3).
The Galois involution of the projection X → P(1, 1, 2) (which
is is 2 : 1), called the Bertini involution.

• If d = 2, then | − KX | also has one base point P , and we can
realise X as a degree-4 hypersurface in P(1, 1, 1, 2). There is a
2 : 1-map X → P2 whose Galois involution is called the Geiser
involution.

If d ≥ 3, | −KX | is very ample and X is a degree d subvariety of Pd:

• For d = 3, X is a cubic hypersurface in P3.
• For d = 4, X = X2·2 ⊂ P4 (intersection of two quadrics).
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• For d = 5, X = Gr(2, 5) ∩ P5 ⊂ P9.
• For d = 6, X ⊂ P1 × P1 × P1 is a divisor of tridegree (1, 1, 1).
• For d = 7, X = X7 ⊂ P7.
• For d = 8, X = F1 or P1 × P1.
• For d = 9, X = P2.

Generally, we have Pic(X) = Z10−d. The group G acts on Pic(X) so
that Pic(X)G = Z. The action preserves the intersection pairing and
the class of −KX . Let

N := (KX)⊥, ∆ := {α ∈ N | α2 = −2}.

Then ∆ is a root system in N ⊗ R depending on d:

d 1 2 3 4 5 6

∆ E8 E7 E6 D5 A4 A1 × A2

6. Involutions of Cr2(k)

Theorem. Let τ ∈ Cr2(k) be an involution. Then τ is conjugate to
one of the following:

(1) A linear involution on P2.
(2) A de Jonquière’s involution.
(3) A Geiser involution.
(4) A Bertini involution.

The proof of this theorem is quite standard. We may assume that
G = 〈τ〉 acts on a G-minimal rational surface X. Then we consider
two cases: where X has a conic bundle structure f : X → Z and where
X is a del Pezzo surface with ρ(X)G = 1.

The conic bundle case. Assume that X has a structure of a min-
imal (G-equivariant) conic bundle f : X → Z. If f is a P1-fibration,
then X ' Fn for some n. By applying elementary transformations with
centers at fixed points we get n = 1, i.e. X ' F1. Then contracting the
negative section we get a linear involution on P2. If f has degenerate
fibers and G trivially acts on Pic(X) (i.e. G = G0), then f is an excep-
tional conic bundle. In this case f is not G-minimal, a contradiction.
Finally, we assume that f has degenerate fibers, G 6= G0, and GF = G
(i.e. G trivially acts on the base). Then τ switches components of all
degenerate fibers. Hence the set of τ -fixed points is a smooth curve
C. The induced map C → Z = P1. Clearly, there is a birational map
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X 99K F1 preserving a general fibre. This induces a fiberwise bira-
tional action of τ on F1. Contracting the negative section we get a de
Jonquière’s involution on P2. Thus τ can be written as

τ : (x, y) 7−→
(

x,
P (x)

y

)
,

where P is a polynomial of degree 2g+1, g ≥ 0 without multiple roots.
If g = 0, then τ is conjugate to a linear involution.

The del Pezzo case Thus we assume that X is a del Pezzo surface
with ρ(X)G = 1. We have

−τ ∗ : Pic(X) −→ Pic(X), KX −→ −KX .

Then −τ ∗(x) = x + λKX for some λ ∈ Q. We compute:

−x.KX = x.KX + λK2
Xλ, so λ = −2x.KX

K2
X

Taking x to be a (−1)-curve, we have

−τ ∗(x) = x − 2x.KX

K2
X

KX ,

and so K2
X = 1 or 2. If τ ′ is a Bertini or Geiser involution, then τ ◦ τ ′

acts trivially on Pic(X). But then τ ◦ τ ′ preserves 7 or 8 points, and
we have τ ◦ τ ′ = id, so τ = τ ′.

Here is a geometric explanation of the involution. For d = 2, X → P2

is the blow-up in 7 points. Fix one more point P . We have a pencil of
elliptic curves through those eight points, and this pencil has one base
point, P ′. The involution exchanges P and P ′. For d = 1, X → P2 is
the blow-up in 8 points. Fixing one more point P , there is a unique
elliptic curve through those nine points, and letting P be the base point
for the group law on that curve, the involution is the group inverse map.

Thus we may assume that X contains no (−1)-curves. Then there
are two possibilities.

• For d = 9, X = P2, and τ is a linear involution.
• For d = 8, X = P1 × P1, and τ exchanges the two factors.

In suitable non-homogeneous coordinates (x, y) on P1 × P1 the
involution has the form τ(x, y) 7→ (y, x). Thus it is conjugate
to linear one.

7. Finite subgroups, continued

Suppose G ⊂ Cr2(k) is a finite subgroup.
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7.1. Simple groups. We begin by considering the case where G is
simple. If G = A5, then there are a lot of embeddings G ↪→ Cr2(k)
induced by G ↪→ PGL(2; k) ' Cr1(k). Furthermore, G ↪→ PGL(3; k),
which already acts biregularly. So assume G 6' A5.

If G acts on a conic bundle f : X → Z then G fits to an exact
sequence

1 −→ GF −→ G
f∗−→ GZ −→ 1.

Since G is simple, there is an embedding of G into Aut(Z) or Aut(F ),
where F is a general fibre. On the other hand, G is not embeddable to
PGL(2, k), a contradiction.

Assume thus that X is a del Pezzo surface. We consider the various
cases according to d = K2

X .

• The case d = 1 cannot occur, as | −KX | has one base point P ,
and G has to act on TP,X effectively. Hence G ⊂ GL(TP,X) '
GL(2; k). This contradicts the classification of finite subgroups
in GL(2; k).

• For d = 2, the anti-canonical map X → P2 is a double cover
whose branch divisor B ⊂ P2 is a smooth quartic. The action
of G in X descends to P2 so that B is G-stable. Therefore,
G ⊂ Aut(B). According to the Hurwitz bound |G| ≤ 168.
Then we have G ' PSL(2; F7), with |G| = 168.

• For d = 3, X is a cubic in P3. We have Pic(X) = Z7 and G ⊂
W (E6)∩SL(6, R). Hence the order of G divides 25920 = 26 ·3·5.
On the other hand, G faithfully acts on H0(X;−KX) ' k4.
Combining these we get a contradiction.

• For d = 4, X = X2·2 = Q1∩Q2 ⊂ P4. Then G acts on the pencil
of quadrics 〈Q1, Q2〉 ' P1. Since G 6' A5, this action is trivial.
Hence, there is a G-stable degenerate quadric Q′ ∈ 〈Q1, Q2〉.
This Q′ must be a cone over P1 × P1. Thus G acts effectively
on P1 × P1. Since G is simple, G ⊂ Aut(P1), a contradiction.

• For d = 5, consider the (faithful) action of G on Pic(X). Pic(X)
contains a root system of type A4, so G ↪→ W (A4) ' S5 and
G ' A5, a contradiction.

• For 6 ≤ d ≤ 8, we have 2 ≤ ρ(X) ≤ 4. Since the action of
Pic(X) ' Zρ(X) is non-trivial, we have a contradiction.

• For d = 9, X = P2. So G ⊂ PGL(3; k), and by the classification
of finite subgroups in PGL(2; k) the group G is either A6 or
PSL(2; F7).

Thus we have proved the following.
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Theorem. Let G ⊂ Cr2(k) be a finite simple group. Then either G '
A5, or G is conjugate to one of the following actions:

(1) G ' PSL(2; F7) is the Klein group acting on P2,
(2) G ' PSL(2; F7) is the Klein group acting on some special del

Pezzo surface of degree 2,
(3) G ' A6 is the Valentiner group acting on P2,

7.2. p-elementary abelian groups. We say that G is p-elementary
abelian group if G ' (µp)

r for some r and in this case r is called the
rank of G.

Theorem. Let G ⊂ Cr2(k) be a p-elementary abelian subgroup and let
r = rk(G) be its rank.

(1) If p ≥ 5, then r ≤ 2, and if r = 2 then G is conjugate to a
subgroup of PGL(3; k).

(2) If p = 3, then r ≤ 3, and if r = 3 then G is conjugate to a
group acting on the Fermat cubic{∑

i

x3
i = 0

}
⊂ P3.

(3) If p = 2, then r ≤ 4, and if r = 4, then either G acts on{∑
i

x2
i =

∑
i

λx2
i = 0

}
⊂ P4,

or X is some special conic bundle.

If G acts on a conic bundle f : X → Z ' P1 then, as above, G fits
to an exact sequence

1 −→ GF −→ G
f∗−→ GZ −→ 1.

where GF , GZ ⊂ P1. We have rk(GF ), rk(GZ) ≤ 1 + δ2,p. Hence
rk(G) ≤ 2 + 2δ2,p in this case.

Assume that G acts on a del Pezzo surface X with ρ(X)G = 1.
As above, we consider the various cases according to d = K2

X .

• If d = 1, then G faithfully acts on TP X ' k2 and so rk(G) ≤ 2.
• If d = 2 and p 6= 2, then G acts on H0(X;−KX) ' k3.
• If d = 3, then G acts on H0(X;−KX) ' k4, and r ≤ 3.
• For d = 4, X = X2·2 = Q1∩Q2 ⊂ P4. Then G acts on the pencil

of quadrics 〈Q1, Q2〉 ' P1. Since G 6' A5, this action is trivial.
Hence, there is a G-stable degenerate quadric Q′ ∈ 〈Q1, Q2〉.
This Q′ must be a cone over P1 × P1. Thus G acts effectively
on P1 × P1. Since G is simple, G ⊂ Aut(P1), a contradiction.
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• For d = 5, consider the (faithful) action of G on Pic(X). Then
G ↪→ W (A4) ' S5 and rk(G) ≤ 2.

• For 6 ≤ d ≤ 8, we have 2 ≤ ρ(X) ≤ 4. Since the action of
Pic(X) ' Zρ(X) is non-trivial, we have a contradiction.

• For d = 9, X = P2. So G ⊂ PGL(3; k), and by the classification
of finite subgroups in PGL(2; k) rk(G) ≤.
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