CREMONA GROUP WORKSHOP

YURI PROKHOROV

This text reproduces a series of lectures given at University of Edinburgh on March 23-26, 2010. It was adapted from Thomas Köppe's lecture notes.

Throughout these sessions we work over an algebraically closed field \mathbb{k} of characteristic zero.

Definition. The Cremona group of rank n is

$$
\operatorname{Cr}_{n}(\mathbb{k}):=\operatorname{Aut}_{\mathbb{k}} \mathbb{k}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Bir} \mathbb{P}_{\mathfrak{k}}^{n},
$$

the group of birational self-maps of projective space.
Example. $\operatorname{Cr}_{1}(\mathbb{k})=\operatorname{Aut}_{\mathbb{k}}(x)=\operatorname{Aut} \mathbb{P}_{\mathbb{k}}^{1} \simeq \operatorname{PGL}(2 ; \mathbb{k})$, the group of Möbius transformations

$$
x \longmapsto \frac{a x+b}{c x+d} .
$$

All birational maps of $\mathbb{P}_{\mathrm{k}}^{1}$ are biregular.
For $n \geq 2$, we are interested in finite subgroups $G \subset \operatorname{Cr}_{n}(\mathbb{k})$.

1. Examples of subgroups of the Cremona group

1.1. $\mathrm{GL}(n ; \mathbb{k}) \subset \mathrm{Cr}_{n}(\mathbb{k}), \operatorname{PGL}(n+1 ; \mathbb{k}) \subset \mathrm{Cr}_{n}(\mathbb{k})$.
1.2. The Cremona involution

$$
\tau_{n}:\left(x_{0}: x_{1}: \cdots: x_{n}\right) \longmapsto\left(x_{0}^{-1}: \cdots: x_{n}^{-1}\right) .
$$

For $n=2$, this is the standard quadratic Cremona involution

$$
\tau_{2}:\left(x_{0}: x_{1}: x_{2}\right) \longmapsto\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right),
$$

and the map is undefined at $[1: 0: 0],[0: 1: 0]$ and $[0: 0: 1]$.
Theorem (Max Noether). $\mathrm{Cr}_{2}(\mathbb{k})=\left\langle\tau_{2}, \operatorname{PGL}(3 ; \mathbb{k})\right\rangle$.
1.3. Monomial Cremona transformations: Consider a matrix

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \in \mathrm{GL}(2 ; \mathbb{Z})
$$

and the map

$$
\chi: \mathbb{k}(x, y) \rightarrow \mathbb{k}(x, y), \quad \chi(x, y)=\left(x^{a} y^{c}, x^{b} y^{d}\right) .
$$

This defines an embedding $\mathrm{GL}(2 ; \mathbb{Z}) \subset \mathrm{Cr}_{2}(\mathbb{k})$.
1.4. Affine transformations: We have Aut $\mathbb{A}^{n} \subset \operatorname{Cr}_{n}(\mathbb{k})$.

Theorem (Jung). The group Aut \mathbb{A}^{2} is generated by affine and triangle automorphisms

$$
(x, y) \longmapsto(a x+f(y), b y) .
$$

This is no longer true for $n \geq 3$. For example, the Nagata automor$\operatorname{phism} \mathbb{A}^{3} \rightarrow \mathbb{A}^{3}$ given by

$$
\begin{aligned}
x_{1} & \longmapsto x_{1}-2 x_{2}\left(x_{1} x_{3}+x_{2}^{2}\right)-x_{3}\left(x_{1} x_{3}+x_{2}^{2}\right)^{2} \\
x_{2} & \longmapsto x_{2}+x_{3}\left(x_{1} x_{3}+x_{2}^{2}\right) \\
x_{3} & \longmapsto x_{3}
\end{aligned}
$$

is not a triangle morphism. We denote by $T \subset$ Aut \mathbb{A}^{3} the subgroup of tame automorphisms, which can be decomposed into affine and triangle morphisms. Shestakov and Umirbaev proved that the Nagata map is not tame.
1.5. The Nagata group: Consider a sufficiently general pencil $\mathcal{P} \subset$ $\left|\mathscr{O}_{\mathbb{P}_{2}(3)}\right|, \mathcal{P} \simeq \mathbb{P}^{1}$ (a one-dimensional linear system) of plane cubic curves. The base locus of \mathcal{P} is nine points $P_{1}, \ldots, P_{9} \in \mathbb{P}^{2}$ in general position. Blowing up these points gives us $X \rightarrow \mathbb{P}^{2}$, and $\pi: X \rightarrow \mathbb{P}^{1}$ is an elliptic fibration.

Let $F_{1}, \ldots, F_{9} \subset X$ be the exceptional divisors. A general fibre $E:=X_{\xi}, \xi \in \mathbb{P}^{1}$ is an elliptic curve. Fixing F_{1} as a base point, we have a group law on $\left(E, E \cap F_{1}\right) \simeq \operatorname{Pic}^{0}(E)$ and the divisors $E \cap\left(F_{j}-F_{1}\right)$ are independent in $\operatorname{Pic}^{0}(E)$. The translations $E \longrightarrow E$ given by

$$
x \longmapsto x+\left.\left(F_{j}-F_{1}\right)\right|_{E}
$$

define birational maps $X \rightarrow X$. These extend to biregular maps $X \longrightarrow X$, and since X is rational, we have $\mathbb{Z}^{8} \subset \operatorname{Aut}(X) \subset \operatorname{Cr}_{2}(\mathbb{k})$.
1.6. De Jonquière's transformations. See below.

2. Outline of the proof of Noether's theorem.

Suppose $\chi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is a birational map. To distinguish the source and target, we write $\chi: X \rightarrow X^{\prime}$, with $X \simeq X^{\prime} \simeq \mathbb{P}^{2}$. Resolve indeterminacies of χ by

so that $\chi \circ f=g$.
Let $\mathscr{H}^{\prime}:=\left|\mathscr{O}_{X^{\prime}}(1)\right|$ be a base point free linear system on $X^{\prime}, \tilde{\mathscr{H}}:=$ $g^{*} \mathscr{H}^{\prime}$ its pullback on \tilde{X} and \mathscr{H} its birational transform on X. If the map χ is not linear, then the base locus of \mathscr{H} is non-empty and $\mathscr{H} \subset\left|\mathscr{O}_{\mathbb{P}^{2}}(d)\right|$, for some $d \geq 2$. Let

$$
f: \tilde{X}=X_{n} \xrightarrow{f_{n}} X_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_{2}} X_{1} \xrightarrow{f_{1}} X_{0}=X
$$

be a factorization into a sequence of blowups of points, let $E_{i} \subset X_{i}$ be the exceptional divisor of f_{i}, and let $E_{i}^{*}:=\left(f_{i+1} \circ \cdots f_{n}\right)^{*}\left(E_{i}\right)$. If f is a blowup of distinct points $p_{1}, \ldots, p_{n} \in X$, these E_{i}^{*} 's are just components of the exceptional divisor of f. Let \mathscr{H}_{i} be the birational (proper) transform of \mathscr{H} on X_{i}. On each step we have

$$
\mathscr{H}_{i}=f_{i}^{*} \mathscr{H}_{i-1}-m_{i} E_{i},
$$

where $m_{i} \geq 0$ is the multiplicity of \mathscr{H}_{i-1} at the point $f_{i}\left(E_{i}\right)$. Then by induction we get

$$
\tilde{\mathscr{H}}=f^{*} \mathscr{H}-\sum_{i} m_{i} E_{i}^{*} .
$$

Comparing canonical divisors we also get

$$
K_{\tilde{X}}=f^{*} K_{X}+\sum_{i} E_{i}^{*} .
$$

It is easy to see

$$
\tilde{\mathscr{H}}^{2}=\mathscr{H}^{\prime 2}=1, \quad \text { and } \quad\left(K_{\tilde{X}}+\tilde{\mathscr{H}}\right) \cdot \tilde{\mathscr{H}}=2 p_{a}(\tilde{\mathscr{H}})-2=-2,
$$

so $K_{\tilde{X}} \cdot \tilde{\mathscr{H}}=-3$. We now have two equalities

$$
\sum_{i} m_{i}^{2}=d^{2}-1 \quad \text { and } \quad \sum_{i} m_{i}=3(d-1),
$$

from which we obtain the Noether-Fano inequality

$$
\exists i, j, k \quad \text { such that } m_{3} m_{i}+m_{j}+m_{k}>d .
$$

We have the corresponding exceptional divisors $E_{i}^{*}, E_{j}^{*}, E_{k}^{*}$, contracting to points p_{i}, p_{j}, p_{k}. Denote by τ the standard Cremona involution with indeterminacy set (p_{i}, p_{j}, p_{k}), and let

$$
\hat{\chi}:=\chi \circ \tau: \hat{X} \longrightarrow X^{\prime}
$$

be the composite birational map, where $\tau: \hat{X} \rightarrow X$ and $\hat{H} \simeq \mathbb{P}^{2}$. This determines another linear system $\hat{\mathscr{H}}$ as the birational transform of $\mathscr{H}^{\prime \prime}$ under $\hat{\chi}$, and $\hat{\mathscr{H}} \subset\left|\mathscr{O}_{\hat{X}}(\hat{d})\right|$. For a general line $L \subset X^{\prime}$,

$$
\hat{\mathscr{H}} \cdot\left(\tau^{-1} \chi^{-1}(L)\right)=2 d-m_{1}-m_{2}-m_{3}<d .
$$

This process is called "untwisting of birational maps". Note that $\tau^{-1} \chi^{-1}(L)$ is a conic passing through p_{i}, p_{j}, p_{k}. By induction we keep lowering the degree until we get $d=1$ and the composite is biregular. So we only need biregular maps and the Cremona involution.

Remark. The above arguments do not give a complete proof of the Noether theorem because we assumed that p_{i}, p_{j}, p_{k} are distinct "honest" points on \mathbb{P}^{2} in general position. In general, we cannot assume this: for example, the set p_{i}, p_{j}, p_{k} can contain infinitely near points. So, our arguments work only for Cremona maps whose indeterminacy locus is in "general position".

3. De Jonquière's transformations.

As before, consider a birational map $\chi: X \rightarrow X^{\prime}$, where $X \simeq \mathbb{P}^{2} \simeq$ X^{\prime}, and let

be the resolution of its indeterminacies, i.e. $\chi \circ f=g$. We also let $\mathscr{H}^{\prime}:=\left|\mathscr{O}_{X}(1)\right|, \tilde{\mathscr{H}}:=g^{*} \mathscr{H}^{\prime}$ and \mathscr{H} is the birational transform of \mathscr{H}^{\prime} to X. Then

$$
\tilde{\mathscr{H}}=f^{*} \mathscr{H}-\sum_{i} m_{i} E_{i}^{*}
$$

and

$$
K_{\tilde{X}}=f^{*} K_{X}+\sum_{i} E_{i}^{*} .
$$

Definition. We call the birational map χ de Jonquière if $m_{0}=d-1$.
Remark. We have the following equalities:

$$
1=\tilde{\mathscr{H}}^{2}=d^{2}-\sum_{i} m_{i}^{2}
$$

$$
\begin{gathered}
3=-K_{\tilde{X}} \cdot \tilde{\mathscr{H}}=3 d-\sum_{i} m_{i}, \\
\sum_{i \neq 0} m_{i}=2 d-2=\sum_{i \neq 0} m_{i}^{2} .
\end{gathered}
$$

Therefore, $m_{1}=\cdots=m_{2 d-2}=1$.
Proposition. The birational map χ is de Jonquière if and only if there exists a pencil of lines L_{t}^{\prime} on $X^{\prime}, t \in \mathbb{P}^{1}$, such that $L_{t}:=\chi^{-1}\left(L_{t}^{\prime}\right)$ is also a pencil of lines on X.
Proof. Let $\tilde{L}_{t}:=g^{*} L_{t}^{\prime}$. Then

$$
\tilde{L}_{t}=f^{*} L_{t}-\sum_{i} k_{i} E_{i}^{*}
$$

and

$$
1=\tilde{\mathscr{H}} \cdot \tilde{L}_{t}=d n-\sum m_{i} k_{i}
$$

where $n=\operatorname{deg} L_{t}$.
If χ is de Jonquière, then this equality becomes

$$
1=d n-(d-1) k_{0}-\sum_{i \neq 0} k_{i},
$$

so $n=1$ and L_{t} is indeed of degree one.
For the converse, let $n=1$. Then we have

$$
1=d-\sum_{i} m_{i} k_{i}
$$

where k_{i} is either 0 or 1 , since L_{t} is a pencil of lines. Thus $m_{0}=$ $d-1$.
3.1. Equations. Suppose χ is de Jonquière and \mathscr{H} is as above. Let p_{0} be the point for which $\operatorname{mult}_{p_{0}}(\mathscr{H})=d-1$. Let L be a line passing through p_{0}. There exists a divisor $C+L \in \mathscr{H}$, so that mult $p_{p_{0}}(C)=$ $d-2$. The curve C is given as

$$
C=\left\{b\left(x_{0}, x_{1}, x_{2}\right)=0\right\}, \quad \text { where } \quad p_{0}=[0: 0: 1] .
$$

Let $S \in \mathscr{H}$ be given as

$$
S=\left\{a\left(x_{0}, x_{1}, x_{2}\right)=0\right\}
$$

where

$$
\begin{aligned}
a & =a_{d}\left(x_{1}, x_{2}\right)+x_{0} a_{d-1}\left(x_{1}, x_{2}\right) \quad \text { and } \\
b & =b_{d-1}\left(x_{1}, x_{2}\right)+x_{0} b_{d-2}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

This means that χ is given by

$$
\chi:\left[x_{0}: x_{1}: x_{2}\right] \longmapsto\left[a\left(x_{0}, x_{1}, x_{2}\right): b\left(x_{0}, x_{1}, x_{2}\right) x_{1} b\left(x_{0}, x_{1}, x_{2}\right) x_{2}\right] .
$$

Going to affine coordinates by dividing out by x_{2} and setting $x=x_{0} / x_{2}$, $y=x_{1} / x_{2}$, we can write

$$
\chi:(x, y) \longmapsto\left(x, \frac{\alpha(x) y+\beta(x)}{\gamma(x) y+\delta(x)}\right), \quad \text { where } \quad \operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \neq 0 .
$$

De Jonquière's involutions are de Jonquière maps which satisfy $x^{2}=$ id. This implies $\alpha+\delta=0$ and $\alpha^{2}+\beta \gamma=1$. We get

$$
\chi(x, y)=\left(x, \frac{P(x)}{y}\right)
$$

Moreover, we may assume that P is a polynomial of degree $2 g+1$, $g \geq 0$ without multiple roots. (We may have to change coordinates $y \mapsto \zeta y+\eta$, for regular functions ζ, η.) Then the fixed-point set of χ is

$$
\operatorname{Fix}(\chi)=\left\{(x, y) \mid y^{2}=P(x)\right\}
$$

which is a hyperelliptic curve of genus g if $g \geq 2$.
Corollary. For $g \geq 2$, we have a family of involutions parametrised by hyperelliptic curves, which are all non-conjugate in $\mathrm{Cr}_{2}(\mathbb{k})$.

Proof. Since the fixed-point set of χ is not rational, it cannot be contracted by rational maps, so all birational transformations must preserve the fixed-point locus.

4. Finite subgroups of the Cremona group

Suppose that $G \subset \operatorname{Cr}_{2}(\mathbb{k})$ is a finite subgroup and that G acts on X. We may assume that X is a projective surface, by virtue of the following reasoning. G acts regularly on a Zariski-open subset $U \subset \mathbb{P}^{2}$. Consider the quotient \bar{U} / G of the closure of U by G. By taking the normalisation of \bar{U} / G in $\mathbb{k}(U)$, we obtain a projective surface, so we may as well assume that G acts on a projective surface X.

Now we run the G-equivariant minimal model programme, removing G-orbits that are disjoint unions of (-1)-curves. In the output, which we now call X, only three different cases can occur:
(1) X is a minimal model if and only if K_{X} is nef if and only if there are no orbits of disjoint (-1)-curves. This is impossible, as X is rational.
(2) there is a G-equivariant fibration $f: X \rightarrow Z$ such that Z is a smooth curve, $\left|-K_{X}\right|$ is f-ample and $\rho(X / Z)^{G}=\operatorname{rkPic}(X / Z)^{G}=$ 1.
(3) $\left|-K_{X}\right|$ is ample and $\rho(X)^{G}=1$.

Proposition. In the conic bundle case we have a G-minimal G-conic bundle. In the del Pezzo case X is a del Pezzo surface.

We treat the two cases at length in the following two subsections.
4.1. The conic bundle case. If $-K_{X}$ is ample over Z, then there is an embedding $X \hookrightarrow \mathbb{P}(\mathscr{E})$, where $\mathscr{E} \rightarrow Z$ is a vector bundle of rank 3, such that $X_{\eta} \subset \mathbb{P}^{2}=P\left(\mathscr{E}_{\eta}\right)$ is a reduced conic for all $\eta \in Z$. Note that the conic X_{η} must be reduced. Indeed, otherwise $X_{\eta}=2 C$, where $C \simeq \mathbb{P}^{1}$ and by the genus formula
$2 p_{a}(C)-2=\left(K_{X}+C\right) \cdot C=K_{X} \cdot C=\frac{1}{2} K_{X} \cdot X_{\eta}=\frac{1}{2}\left(2 p_{a}\left(X_{\eta}\right)-2\right)=-1$, a contradiction. Hence a general fibre of f is a smooth conic $\left(\simeq \mathbb{P}^{1}\right)$ and special fibres are bouquets of two \mathbb{P}^{1} 's.

Remark. X is rational if and only if $Z \simeq \mathbb{P}^{1}$. Indeed, if X is rational, so Z is by Lüroth's theorem. Conversely, if $Z \simeq \mathbb{P}^{1}$, then the transcendence degree of $\mathbb{k}(Z)=\mathbb{k}\left(\mathbb{P}^{1}\right)$ equals to one, and since \mathbb{k} is algebraically closed, \mathbb{k} is a c_{1}-field (a c_{1}-field is a field such that any form $\phi\left(x_{1}, \ldots, x_{n}\right)$ with $\operatorname{deg} \phi<n$ represents 0 .) Therefore, $\mathbb{k}(X) \simeq \mathbb{k}(Z)(t)$.

If the morphism f is smooth (i.e. f has no degenerate fibres), then we have the following.

Example (rational ruled (Hirzebruch) surfaces). $\mathbb{F}_{n}, n \neq 0$. We can contract the $(-n)$-curve to get a birational map $\mathbb{F}_{n} \rightarrow \mathbb{P}(1,1, n)$. Then

$$
\operatorname{Aut}\left(\mathbb{F}_{n}\right) \simeq \mathbb{k}^{n+1} \rtimes \mathrm{GL}(2 ; \mathbb{k}) / \boldsymbol{\mu}_{n}
$$

where \mathbb{k}^{n+1} is regarded as the space $M_{n} \simeq \mathbb{k}^{n+1}$ of binary forms of degree n with natural action of $\operatorname{GL}(2 ; \mathbb{k})$.

For $n=0$ we have $\mathbb{F}_{0} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ and there is a split-exact short sequence

$$
1 \longrightarrow \operatorname{PGL}(2 ; \mathbb{k}) \times \operatorname{PGL}(2 ; \mathbb{k}) \longrightarrow \operatorname{Aut}\left(\mathbb{F}_{0}\right) \longrightarrow\{1, \tau\} \longrightarrow 1 .
$$

In general f factors through a Hirzebruch surface:

$$
f: X \xrightarrow{\sigma} \mathbb{F}_{n} \longrightarrow Z,
$$

where σ is a birational (non- G-equivariant) morphism.
Example (Exceptional conic bundles). Let $g \geq 1$. By definition an exceptional conic bundle is a conic bundle $f: X \rightarrow Z$ with $2 g-2$ degenerate fibres and two disjointed sections $F_{i}, i=1,2$ such that $F_{1}^{2}=F_{2}^{2}=-(g+1)$.

Construction 1. Consider $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Fix a ruling $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ and fix two different sections $L_{i}, i=1,2$. We have $L_{1}^{2}=L_{2}^{2}=L_{1} \cdot L_{2}=0$. Take $g+1$ points P_{1}, \ldots, P_{g+1} in L_{1} and $g+1$ points Q_{1}, \ldots, Q_{g+1} in L_{2}, and blow up all $2 g+2$ points: $X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow Z$.

Construction 2. Let

$$
Y \subset \mathbb{P}(1,1, g+1, g+1)
$$

is given by

$$
t_{2} t_{3}=F_{2 g+2}\left(t_{0}, t_{1}\right),
$$

and let $X \rightarrow Y$ be the minimal resolution. Then the projection

$$
\left(t_{0}, t_{1}, t_{2}, t_{3}\right) \rightarrow\left(t_{0}, t_{1}\right)
$$

induces a structure an exceptional conic bundle on X.
Now assume that X is G-minimal and let Σ be the set of singular fibres, whose size we denote by s. Then $\rho(X)=2+s$, and by Noether's formula we have $K_{X}^{2}=8-s$. If $s=0$, we are in the above case $X \simeq \mathbb{F}_{n}$. Note that X is not G-minimal if and only if X is a del Pezzo surface with $\rho(X)^{G}=2$.

For $s=1,2,3,5, X$ is a not G-minimal:

- The case $s=1$ is trivial: $f: X \rightarrow \mathbb{P}^{1}$ has a unique section C with negative self-intersection number, so f cannot be G minimal because C meets only one component of degenerate fibre.
- For $s=2$ we have $K_{X}^{2}=6$ and the linear system $\left|-2 K_{X}-F\right|$ (here F is the fibre) defines an equivariant contraction $X \rightarrow$ $X^{\prime}=\mathbb{P}^{1} \times \mathbb{P}^{1}, K_{X^{\prime}}^{2}=8$ of two (-1)-curves.
- For $s=3$ we have $K_{X}^{2}=5$, and we use $\left|-K_{X}-F\right|$ to blow down $X \rightarrow \mathbb{P}^{2}$.
- For $s=5, K_{X}^{2}=3$ and X is a cubic surface with a G-invariant line. This line can be contracted and we get a del Pezzo surface X^{\prime} of degree 4.

Lemma. Suppose $f: X \rightarrow Z$ has two sections $C_{1}, C_{2} \subset X$ with $C_{i}^{2}=$ $-n$. Let s^{\prime} be the number of components of Σ that meet both C_{1} and C_{2}. Then

$$
2 C_{1} \cdot C_{2}+2 n=s-s^{\prime} .
$$

In particular, $s \geq 2 n+s^{\prime} \geq 2 n$.
We can use this lemma directly to show that the cases $s \leq 3$ cannot occur as G-minimal models. Our G-minimal surface X has Picard $\operatorname{group} \operatorname{Pic}(X) \simeq \mathbb{Z}^{s+2}$. The group G acts on the Picard group with kernel

$$
1 \longrightarrow G_{0} \longrightarrow G \longrightarrow \operatorname{Aut}(\operatorname{Pic}(X))
$$

From now on we assume that $s \geq 4$. We distinguish two cases.

Case $G_{0} \neq\{1\}$. Then G_{0} fixes (-1)-curves and so G_{0} fixes $s \geq 4$ singular fibres. So the image of $G_{0} \rightarrow \operatorname{Aut}(Z) \simeq \operatorname{PGL}(2 ; \mathbb{k})$ is trivial. Further, G_{0} also fixes negative sections of f, and since it acts trivially on the base, it fixes these sections pointwise. On the other hand, G_{0} acts faithfully on a general fibre $F \simeq \mathbb{P}^{1}$, so $G_{0} \subset \operatorname{PGL}(2, \mathbb{k})$. Since the intersection of F and a negative section is a fixed point, the group G_{0} must be cyclic. Since general fibre is a \mathbb{P}^{1} and G_{0} acts cyclically, G_{0} has exactly two fixed points in general fibre, and thus f has two G-invariant sections C_{1}, C_{2}. So $\operatorname{Fix}\left(G_{0}\right) \supset C_{1} \cup C_{2}=: C$. The curve C must be smooth, i.e. the disjoint union of two smooth, irreducible curves (namely the two sections C_{1}, C_{2}). This means that $f: X \rightarrow Z$ is an exceptional conic bundle.

Case $G_{0}=\{1\}$. Then and $G \hookrightarrow \operatorname{Aut}(\operatorname{Pic} X)$. We have a short exact sequence

$$
1 \longrightarrow G_{F} \longrightarrow G \longrightarrow G_{B} \longrightarrow 1,
$$

where $G_{B} \subset \operatorname{Aut}(Z)$. We claim that the map $G_{F} \rightarrow\left(\boldsymbol{\mu}_{2}\right)^{s}$ into the group of permutations of the components of Σ is an injection. Indeed, otherwise some element $1 \neq \tau \in G_{F}$ acts trivially on the components of Σ. Since $\operatorname{Pic}(X)$ is generated by $-K_{X}$ and the classes of these components, τ trivially acts on $\operatorname{Pic}(X)$, a contradiction.

Further, the general fibre is $F \simeq \mathbb{P}^{1}$, so we also must have an embed$\operatorname{ding} G_{F} \hookrightarrow \mathrm{PGL}(2 ; \mathbb{k})$. There are only two such possibilities: $G_{F}=\boldsymbol{\mu}_{2}$ and $G_{F}=\mu_{2} \times \mu_{2}$.

Case $G_{F}=\mu_{2}$. The fixed-point locus of G_{F} is a curve C and some points. Then $C \rightarrow Z$ is $2: 1$, and C is smooth. In fact C is irreducible, since it cannot have two disjoint components: Doing so would force G_{F} to fix the components of the singular fibres, but that in turn would force G_{F} to act trivially on the Picard group (which is generated by the components of singular fibres and a section), which we assumed not to happen.

So C is a (generalized) hyperelliptic curve. Let P be a fixed point of G_{F} and $P \in F$, where F is a fiber. Consider three possibilities.
a) If $P \in F$ is a smooth point, then we have

$$
0 \longrightarrow T_{P} F \longrightarrow T_{P} X \longrightarrow T_{f(p)} Z \longrightarrow 0
$$

Since $G_{F}=\boldsymbol{\mu}_{2}$ acts on $T_{P} X$ as $\operatorname{diag}(1,-1), P \in C$ is not a ramification point of f.
b) If $P \in F$ is singular and $G_{F}=\boldsymbol{\mu}_{2}$ does not switch the components of F and thus acts as diag $(-1,-1)$, then P is an isolated fixed point and $P \notin C$.
c) If G_{F} does switch the components of F, then $P=C \cap F$ is a ramification point.
In conclusion, we have a subset of fibres $\Sigma^{\prime} \subset \Sigma$, and G_{B} fixes the sets Σ, Σ^{\prime}.

Case $G_{F}=\boldsymbol{\mu}_{2} \times \boldsymbol{\mu}_{2}$. We have three non-trivial elements $\delta_{1}, \delta_{2}, \delta_{3} \in G_{F}$. We argue as before to get three bisections $C_{1} \neq C_{2} \neq C_{3} \neq C_{1}$ of $\delta_{i^{-}}$ points. For each singular fibre F there are exactly two elements δ_{i}, $\delta_{j} \in G_{F}$ interchanging components of F. Indeed, let $F=F^{\prime} \cup F^{\prime \prime}$ and let $\{P\}=F^{\prime} \cap F^{\prime \prime}$. Then $G_{F} . P=P$. At least one of the δ_{i} must exchange the components (for otherwise G_{F} would be cyclic). We get a partition of Σ into three subsets $\Sigma=\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}$ so that $C_{i} \rightarrow Z$ is ramified exactly over $\Sigma_{j} \cup \Sigma_{k}$, where $\{i, j, k\}=\{1,2,3\}$. Again, G_{B} fixes the partition Σ_{i}. One can show that in this case the quotient X / G_{F} is smooth and X / G_{F}

In both cases, we have a morphism $X / G_{F} \rightarrow Z$.

5. The del Pezzo case

Let X be a G-minimal G-del Pezzo surface. In this case, $-K_{X}$ is ample and $\rho(X)^{G}=1$. We use the classification of del Pezzo surfaces. There are two well-known constructions.
I. Del Pezzo surfaces are rational. Hence either $X=\mathbb{P}^{1} \times \mathbb{P}^{2}$ or X can be obtained as a blow-up $X \rightarrow \mathbb{P}^{2}$ is in $9-d$ points in general position, where $K_{X}^{2}=d$. Here the morphism $X \rightarrow \mathbb{P}^{2}$ is not unique and is not G-equivariant.

Generalization. Embed $\mathbb{P}^{3} \subset \mathbb{P}^{9}$, and blow up $0 \leq n \leq 7$ points in general position, $\tilde{\mathbb{P}}^{3} \rightarrow \mathbb{P}^{3}$. Then $\tilde{\mathbb{P}}^{3}$ is a so-called del Pezzo threefold of degree $8-n$.
II. Let $d:=K_{X}^{2}$. Then $d=\operatorname{dim}\left|-K_{X}\right|$.

- If $d=1$, then $\left|-K_{X}\right|$ is an elliptic pencil with one base point P. Then we can realise X as a degree- 6 hypersurface in $\mathbb{P}(1,1,2,3)$. The Galois involution of the projection $X \rightarrow \mathbb{P}(1,1,2)$ (which is is $2: 1$), called the Bertini involution.
- If $d=2$, then $\left|-K_{X}\right|$ also has one base point P, and we can realise X as a degree- 4 hypersurface in $\mathbb{P}(1,1,1,2)$. There is a 2: 1-map $X \rightarrow \mathbb{P}^{2}$ whose Galois involution is called the Geiser involution.
If $d \geq 3,\left|-K_{X}\right|$ is very ample and X is a degree d subvariety of \mathbb{P}^{d} :
- For $d=3, X$ is a cubic hypersurface in \mathbb{P}^{3}.
- For $d=4, X=X_{2 \cdot 2} \subset \mathbb{P}^{4}$ (intersection of two quadrics).
- For $d=5, X=\operatorname{Gr}(2,5) \cap \mathbb{P}^{5} \subset \mathbb{P}^{9}$.
- For $d=6, X \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is a divisor of tridegree $(1,1,1)$.
- For $d=7, X=X_{7} \subset \mathbb{P}^{7}$.
- For $d=8, X=\mathbb{F}_{1}$ or $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
- For $d=9, X=\mathbb{P}^{2}$.

Generally, we have $\operatorname{Pic}(X)=\mathbb{Z}^{10-d}$. The group G acts on $\operatorname{Pic}(X)$ so that $\operatorname{Pic}(X)^{G}=\mathbb{Z}$. The action preserves the intersection pairing and the class of $-K_{X}$. Let

$$
N:=\left(K_{X}\right)^{\perp}, \quad \Delta:=\left\{\alpha \in N \mid \alpha^{2}=-2\right\} .
$$

Then Δ is a root system in $N \otimes \mathbb{R}$ depending on d :

d	1	2	3	4	5	6
Δ	E_{8}	E_{7}	E_{6}	D_{5}	A_{4}	$A_{1} \times A_{2}$

6. Involutions of $\mathrm{Cr}_{2}(\mathbb{k})$

Theorem. Let $\tau \in \mathrm{Cr}_{2}(\mathbb{k})$ be an involution. Then τ is conjugate to one of the following:
(1) A linear involution on \mathbb{P}^{2}.
(2) A de Jonquière's involution.
(3) A Geiser involution.
(4) A Bertini involution.

The proof of this theorem is quite standard. We may assume that $G=\langle\tau\rangle$ acts on a G-minimal rational surface X. Then we consider two cases: where X has a conic bundle structure $f: X \rightarrow Z$ and where X is a del Pezzo surface with $\rho(X)^{G}=1$.

The conic bundle case. Assume that X has a structure of a minimal (G-equivariant) conic bundle $f: X \rightarrow Z$. If f is a \mathbb{P}^{1}-fibration, then $X \simeq \mathbb{F}_{n}$ for some n. By applying elementary transformations with centers at fixed points we get $n=1$, i.e. $X \simeq \mathbb{F}_{1}$. Then contracting the negative section we get a linear involution on \mathbb{P}^{2}. If f has degenerate fibers and G trivially acts on $\operatorname{Pic}(X)$ (i.e. $G=G_{0}$), then f is an exceptional conic bundle. In this case f is not G-minimal, a contradiction. Finally, we assume that f has degenerate fibers, $G \neq G_{0}$, and $G_{F}=G$ (i.e. G trivially acts on the base). Then τ switches components of all degenerate fibers. Hence the set of τ-fixed points is a smooth curve C. The induced map $C \rightarrow Z=\mathbb{P}^{1}$. Clearly, there is a birational map
$X \rightarrow \mathbb{F}_{1}$ preserving a general fibre. This induces a fiberwise birational action of τ on \mathbb{F}_{1}. Contracting the negative section we get a de Jonquière's involution on \mathbb{P}^{2}. Thus τ can be written as

$$
\tau:(x, y) \longmapsto\left(x, \frac{P(x)}{y}\right)
$$

where P is a polynomial of degree $2 g+1, g \geq 0$ without multiple roots. If $g=0$, then τ is conjugate to a linear involution.

The del Pezzo case Thus we assume that X is a del Pezzo surface with $\rho(X)^{G}=1$. We have

$$
-\tau^{*}: \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(X), \quad K_{X} \longrightarrow-K_{X} .
$$

Then $-\tau^{*}(x)=x+\lambda K_{X}$ for some $\lambda \in \mathbb{Q}$. We compute:

$$
-x \cdot K_{X}=x \cdot K_{X}+\lambda K_{X}^{2} \lambda, \quad \text { so } \quad \lambda=-\frac{2 x \cdot K_{X}}{K_{X}^{2}}
$$

Taking x to be a (-1)-curve, we have

$$
-\tau^{*}(x)=x-\frac{2 x \cdot K_{X}}{K_{X}^{2}} K_{X},
$$

and so $K_{X}^{2}=1$ or 2 . If τ^{\prime} is a Bertini or Geiser involution, then $\tau \circ \tau^{\prime}$ acts trivially on $\operatorname{Pic}(X)$. But then $\tau \circ \tau^{\prime}$ preserves 7 or 8 points, and we have $\tau \circ \tau^{\prime}=\mathrm{id}$, so $\tau=\tau^{\prime}$.

Here is a geometric explanation of the involution. For $d=2, X \rightarrow \mathbb{P}^{2}$ is the blow-up in 7 points. Fix one more point P. We have a pencil of elliptic curves through those eight points, and this pencil has one base point, P^{\prime}. The involution exchanges P and P^{\prime}. For $d=1, X \rightarrow \mathbb{P}^{2}$ is the blow-up in 8 points. Fixing one more point P, there is a unique elliptic curve through those nine points, and letting P be the base point for the group law on that curve, the involution is the group inverse map.

Thus we may assume that X contains no (-1)-curves. Then there are two possibilities.

- For $d=9, X=\mathbb{P}^{2}$, and τ is a linear involution.
- For $d=8, X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, and τ exchanges the two factors. In suitable non-homogeneous coordinates (x, y) on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ the involution has the form $\tau(x, y) \mapsto(y, x)$. Thus it is conjugate to linear one.

7. Finite subgroups, continued

Suppose $G \subset \mathrm{Cr}_{2}(\mathbb{k})$ is a finite subgroup.
7.1. Simple groups. We begin by considering the case where G is simple. If $G=\mathfrak{A}_{5}$, then there are a lot of embeddings $G \hookrightarrow \operatorname{Cr}_{2}(\mathbb{k})$ induced by $G \hookrightarrow \operatorname{PGL}(2 ; \mathbb{k}) \simeq \mathrm{Cr}_{1}(\mathbb{k})$. Furthermore, $G \hookrightarrow \mathrm{PGL}(3 ; \mathbb{k})$, which already acts biregularly. So assume $G \nsucceq \mathfrak{A}_{5}$.

If G acts on a conic bundle $f: X \rightarrow Z$ then G fits to an exact sequence

$$
1 \longrightarrow G_{F} \longrightarrow G \xrightarrow{f_{*}} G_{Z} \longrightarrow 1
$$

Since G is simple, there is an embedding of G into $\operatorname{Aut}(Z)$ or $\operatorname{Aut}(F)$, where F is a general fibre. On the other hand, G is not embeddable to $\operatorname{PGL}(2, \mathbb{k})$, a contradiction.

Assume thus that X is a del Pezzo surface. We consider the various cases according to $d=K_{X}^{2}$.

- The case $d=1$ cannot occur, as $\left|-K_{X}\right|$ has one base point P, and G has to act on $T_{P, X}$ effectively. Hence $G \subset \mathrm{GL}\left(T_{P, X}\right) \simeq$ $\mathrm{GL}(2 ; \mathbb{k})$. This contradicts the classification of finite subgroups in $\mathrm{GL}(2 ; \mathbb{k})$.
- For $d=2$, the anti-canonical map $X \rightarrow \mathbb{P}^{2}$ is a double cover whose branch divisor $B \subset \mathbb{P}^{2}$ is a smooth quartic. The action of G in X descends to \mathbb{P}^{2} so that B is G-stable. Therefore, $G \subset \operatorname{Aut}(B)$. According to the Hurwitz bound $|G| \leq 168$. Then we have $G \simeq \operatorname{PSL}\left(2 ; \mathbb{F}_{7}\right)$, with $|G|=168$.
- For $d=3, X$ is a cubic in \mathbb{P}^{3}. We have $\operatorname{Pic}(X)=\mathbb{Z}^{7}$ and $G \subset$ $W\left(E_{6}\right) \cap \operatorname{SL}(6, \mathbb{R})$. Hence the order of G divides $25920=2^{6} \cdot 3 \cdot 5$. On the other hand, G faithfully acts on $H^{0}\left(X ;-K_{X}\right) \simeq \mathbb{k}^{4}$. Combining these we get a contradiction.
- For $d=4, X=X_{2 \cdot 2}=Q_{1} \cap Q_{2} \subset \mathbb{P}^{4}$. Then G acts on the pencil of quadrics $\left\langle Q_{1}, Q_{2}\right\rangle \simeq \mathbb{P}^{1}$. Since $G \not \approx \mathfrak{A}_{5}$, this action is trivial. Hence, there is a G-stable degenerate quadric $Q^{\prime} \in\left\langle Q_{1}, Q_{2}\right\rangle$. This Q^{\prime} must be a cone over $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Thus G acts effectively on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Since G is simple, $G \subset \operatorname{Aut}\left(\mathbb{P}^{1}\right)$, a contradiction.
- For $d=5$, consider the (faithful) action of G on $\operatorname{Pic}(X) . \operatorname{Pic}(X)$ contains a root system of type A_{4}, so $G \hookrightarrow W\left(A_{4}\right) \simeq \mathfrak{S}_{5}$ and $G \simeq \mathfrak{A}_{5}$, a contradiction.
- For $6 \leq d \leq 8$, we have $2 \leq \rho(X) \leq 4$. Since the action of $\operatorname{Pic}(X) \simeq \mathbb{Z}^{\rho(X)}$ is non-trivial, we have a contradiction.
- For $d=9, X=\mathbb{P}^{2}$. So $G \subset \operatorname{PGL}(3 ; \mathbb{k})$, and by the classification of finite subgroups in $\operatorname{PGL}(2 ; \mathbb{k})$ the group G is either \mathfrak{A}_{6} or $\operatorname{PSL}\left(2 ; \mathbb{F}_{7}\right)$.

Thus we have proved the following.

Theorem. Let $G \subset \mathrm{Cr}_{2}(\mathbb{k})$ be a finite simple group. Then either $G \simeq$ \mathfrak{A}_{5}, or G is conjugate to one of the following actions:
(1) $G \simeq \operatorname{PSL}\left(2 ; \mathbb{F}_{7}\right)$ is the Klein group acting on \mathbb{P}^{2},
(2) $G \simeq \operatorname{PSL}\left(2 ; \mathbb{F}_{7}\right)$ is the Klein group acting on some special del Pezzo surface of degree 2,
(3) $G \simeq \mathfrak{A}_{6}$ is the Valentiner group acting on \mathbb{P}^{2},
7.2. p-elementary abelian groups. We say that G is p-elementary abelian group if $G \simeq\left(\boldsymbol{\mu}_{p}\right)^{r}$ for some r and in this case r is called the rank of G.

Theorem. Let $G \subset \operatorname{Cr}_{2}(\mathbb{k})$ be a p-elementary abelian subgroup and let $r=\operatorname{rk}(G)$ be its rank.
(1) If $p \geq 5$, then $r \leq 2$, and if $r=2$ then G is conjugate to a subgroup of PGL $(3 ; \mathbb{k})$.
(2) If $p=3$, then $r \leq 3$, and if $r=3$ then G is conjugate to a group acting on the Fermat cubic

$$
\left\{\sum_{i} x_{i}^{3}=0\right\} \subset \mathbb{P}^{3} .
$$

(3) If $p=2$, then $r \leq 4$, and if $r=4$, then either G acts on

$$
\left\{\sum_{i} x_{i}^{2}=\sum_{i} \lambda x_{i}^{2}=0\right\} \subset \mathbb{P}^{4}
$$

or X is some special conic bundle.
If G acts on a conic bundle $f: X \rightarrow Z \simeq \mathbb{P}^{1}$ then, as above, G fits to an exact sequence

$$
1 \longrightarrow G_{F} \longrightarrow G \xrightarrow{f_{*}} G_{Z} \longrightarrow 1
$$

where $G_{F}, G_{Z} \subset \mathbb{P}^{1}$. We have $\operatorname{rk}\left(G_{F}\right), \operatorname{rk}\left(G_{Z}\right) \leq 1+\delta_{2, p}$. Hence $\operatorname{rk}(G) \leq 2+2 \delta_{2, p}$ in this case.

Assume that G acts on a del Pezzo surface X with $\rho(X)^{G}=1$.
As above, we consider the various cases according to $d=K_{X}^{2}$.

- If $d=1$, then G faithfully acts on $T_{P} X \simeq \mathbb{k}^{2}$ and so $\operatorname{rk}(G) \leq 2$.
- If $d=2$ and $p \neq 2$, then G acts on $H^{0}\left(X ;-K_{X}\right) \simeq \mathbb{k}^{3}$.
- If $d=3$, then G acts on $H^{0}\left(X ;-K_{X}\right) \simeq \mathbb{k}^{4}$, and $r \leq 3$.
- For $d=4, X=X_{2 \cdot 2}=Q_{1} \cap Q_{2} \subset \mathbb{P}^{4}$. Then G acts on the pencil of quadrics $\left\langle Q_{1}, Q_{2}\right\rangle \simeq \mathbb{P}^{1}$. Since $G \not \not \not \mathfrak{A}_{5}$, this action is trivial. Hence, there is a G-stable degenerate quadric $Q^{\prime} \in\left\langle Q_{1}, Q_{2}\right\rangle$. This Q^{\prime} must be a cone over $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Thus G acts effectively on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Since G is simple, $G \subset \operatorname{Aut}\left(\mathbb{P}^{1}\right)$, a contradiction.
- For $d=5$, consider the (faithful) action of G on $\operatorname{Pic}(X)$. Then $G \hookrightarrow W\left(A_{4}\right) \simeq \mathfrak{S}_{5}$ and $\operatorname{rk}(G) \leq 2$.
- For $6 \leq d \leq 8$, we have $2 \leq \rho(X) \leq 4$. Since the action of $\operatorname{Pic}(X) \simeq \mathbb{Z}^{\rho(X)}$ is non-trivial, we have a contradiction.
- For $d=9, X=\mathbb{P}^{2}$. So $G \subset \operatorname{PGL}(3 ; \mathbb{k})$, and by the classification of finite subgroups in $\operatorname{PGL}(2 ; \mathbb{k}) \operatorname{rk}(G) \leq$.

