CREMONA GROUP WORKSHOP

YURI PROKHOROV

This text reproduces a series of lectures given at University of Edinburgh on March 23-26, 2010. It was adapted from Thomas Köppe's lecture notes.

Throughout these sessions we work over an algebraically closed field \mathbbm{k} of characteristic zero.

Definition. The Cremona group of rank n is

$$\operatorname{Cr}_n(\mathbb{k}) := \operatorname{Aut}_{\mathbb{k}} \mathbb{k}(x_1, \dots, x_n) = \operatorname{Bir} \mathbb{P}^n_{\mathbb{k}},$$

the group of birational self-maps of projective space.

Example. $\operatorname{Cr}_1(\Bbbk) = \operatorname{Aut}_{\Bbbk}(x) = \operatorname{Aut} \mathbb{P}^1_{\Bbbk} \simeq \operatorname{PGL}(2; \Bbbk)$, the group of Möbius transformations

$$x \longmapsto \frac{ax+b}{cx+d}$$
.

All birational maps of $\mathbb{P}^1_{\mathbb{k}}$ are biregular.

For $n \geq 2$, we are interested in finite subgroups $G \subset \operatorname{Cr}_n(\mathbb{k})$.

- 1. Examples of subgroups of the Cremona group
- **1.1.** $GL(n; \mathbb{k}) \subset Cr_n(\mathbb{k}), PGL(n+1; \mathbb{k}) \subset Cr_n(\mathbb{k}).$
- **1.2.** The Cremona involution

$$\tau_n: (x_0: x_1: \dots : x_n) \longmapsto (x_0^{-1}: \dots : x_n^{-1}).$$

For n = 2, this is the standard quadratic Cremona involution

$$\tau_2:(x_0:x_1:x_2)\longmapsto (x_1x_2:x_0x_2:x_0x_1),$$

and the map is undefined at [1:0:0], [0:1:0] and [0:0:1].

Theorem (Max Noether). $Cr_2(\mathbb{k}) = \langle \tau_2, PGL(3; \mathbb{k}) \rangle$.

1.3. Monomial Cremona transformations: Consider a matrix

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \in GL(2; \mathbb{Z})$$

and the map

$$\chi: \mathbb{k}(x,y) \to \mathbb{k}(x,y), \qquad \chi(x,y) = (x^a y^c, x^b y^d).$$

This defines an embedding $GL(2; \mathbb{Z}) \subset Cr_2(\mathbb{k})$.

1.4. Affine transformations: We have Aut $\mathbb{A}^n \subset \operatorname{Cr}_n(\mathbb{k})$.

Theorem (Jung). The group Aut \mathbb{A}^2 is generated by affine and triangle automorphisms

$$(x, y) \longmapsto (ax + f(y), by).$$

This is no longer true for $n \geq 3$. For example, the Nagata automorphism $\mathbb{A}^3 \to \mathbb{A}^3$ given by

is not a triangle morphism. We denote by $T \subset \operatorname{Aut} \mathbb{A}^3$ the subgroup of tame automorphisms, which can be decomposed into affine and triangle morphisms. Shestakov and Umirbaev proved that the Nagata map is not tame.

1.5. The Nagata group: Consider a sufficiently general pencil $\mathcal{P} \subset |\mathcal{O}_{\mathbb{P}_2(3)}|$, $\mathcal{P} \simeq \mathbb{P}^1$ (a one-dimensional linear system) of plane cubic curves. The base locus of \mathcal{P} is nine points $P_1, \ldots, P_9 \in \mathbb{P}^2$ in general position. Blowing up these points gives us $X \to \mathbb{P}^2$, and $\pi : X \to \mathbb{P}^1$ is an elliptic fibration.

Let $F_1, \ldots, F_9 \subset X$ be the exceptional divisors. A general fibre $E := X_{\xi}, \xi \in \mathbb{P}^1$ is an elliptic curve. Fixing F_1 as a base point, we have a group law on $(E, E \cap F_1) \simeq \operatorname{Pic}^0(E)$ and the divisors $E \cap (F_j - F_1)$ are independent in $\operatorname{Pic}^0(E)$. The translations $E \longrightarrow E$ given by

$$x \longmapsto x + (F_j - F_1)|_E$$

define birational maps $X \dashrightarrow X$. These extend to biregular maps $X \longrightarrow X$, and since X is rational, we have $\mathbb{Z}^8 \subset \operatorname{Aut}(X) \subset \operatorname{Cr}_2(\Bbbk)$.

1.6. De Jonquière's transformations. See below.

2. Outline of the proof of Noether's theorem.

Suppose $\chi: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is a birational map. To distinguish the source and target, we write $\chi: X \dashrightarrow X'$, with $X \simeq X' \simeq \mathbb{P}^2$. Resolve indeterminacies of χ by

$$\mathbb{P}^2 \simeq X - - - \frac{\chi}{-} - - \gg X' \simeq \mathbb{P}^2$$

so that $\chi \circ f = g$.

Let $\mathscr{H}' := |\mathscr{O}_{X'}(1)|$ be a base point free linear system on X', $\widetilde{\mathscr{H}} := g^*\mathscr{H}'$ its pullback on \widetilde{X} and \mathscr{H} its birational transform on X. If the map χ is not linear, then the base locus of \mathscr{H} is non-empty and $\mathscr{H} \subset |\mathscr{O}_{\mathbb{P}^2}(d)|$, for some $d \geq 2$. Let

$$f: \tilde{X} = X_n \xrightarrow{f_n} X_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_2} X_1 \xrightarrow{f_1} X_0 = X$$

be a factorization into a sequence of blowups of points, let $E_i \subset X_i$ be the exceptional divisor of f_i , and let $E_i^* := (f_{i+1} \circ \cdots \circ f_n)^*(E_i)$. If f is a blowup of distinct points $p_1, \ldots, p_n \in X$, these E_i^* 's are just components of the exceptional divisor of f. Let \mathscr{H}_i be the birational (proper) transform of \mathscr{H} on X_i . On each step we have

$$\mathscr{H}_i = f_i^* \mathscr{H}_{i-1} - m_i E_i,$$

where $m_i \geq 0$ is the multiplicity of \mathcal{H}_{i-1} at the point $f_i(E_i)$. Then by induction we get

$$\tilde{\mathscr{H}} = f^* \mathscr{H} - \sum_i m_i E_i^*.$$

Comparing canonical divisors we also get

$$K_{\tilde{X}} = f^* K_X + \sum_i E_i^*.$$

It is easy to see

$$\tilde{\mathscr{H}}^2 = \mathscr{H}'^2 = 1$$
, and $(K_{\tilde{X}} + \tilde{\mathscr{H}}) \cdot \tilde{\mathscr{H}} = 2p_a(\tilde{\mathscr{H}}) - 2 = -2$,

so $K_{\tilde{X}} \cdot \tilde{\mathscr{H}} = -3$. We now have two equalities

$$\sum_{i} m_i^2 = d^2 - 1$$
 and $\sum_{i} m_i = 3(d - 1),$

from which we obtain the Noether-Fano inequality

$$\exists i, j, k \text{ such that } m_i + m_j + m_k > d.$$

We have the corresponding exceptional divisors E_i^* , E_j^* , E_k^* , contracting to points p_i , p_j , p_k . Denote by τ the standard Cremona involution with indeterminacy set (p_i, p_j, p_k) , and let

$$\hat{\chi} := \chi \circ \tau : \hat{X} \longrightarrow X'$$

be the composite birational map, where $\tau: \hat{X} \to X$ and $\hat{H} \simeq \mathbb{P}^2$. This determines another linear system $\hat{\mathscr{H}}$ as the birational transform of \mathscr{H}'' under $\hat{\chi}$, and $\hat{\mathscr{H}} \subset |\mathscr{O}_{\hat{\chi}}(\hat{d})|$. For a general line $L \subset X'$,

$$\hat{\mathcal{H}} \cdot (\tau^{-1}\chi^{-1}(L)) = 2d - m_1 - m_2 - m_3 < d.$$

This process is called "untwisting of birational maps". Note that $\tau^{-1}\chi^{-1}(L)$ is a conic passing through p_i , p_j , p_k . By induction we keep lowering the degree until we get d=1 and the composite is biregular. So we only need biregular maps and the Cremona involution.

Remark. The above arguments do not give a complete proof of the Noether theorem because we assumed that p_i , p_j , p_k are distinct "honest" points on \mathbb{P}^2 in general position. In general, we cannot assume this: for example, the set p_i , p_j , p_k can contain infinitely near points. So, our arguments work only for Cremona maps whose indeterminacy locus is in "general position".

3. DE JONQUIÈRE'S TRANSFORMATIONS.

As before, consider a birational map $\chi: X \dashrightarrow X'$, where $X \simeq \mathbb{P}^2 \simeq X'$, and let

$$X \xrightarrow{f} X$$

$$X \xrightarrow{g} X'$$

be the resolution of its indeterminacies, i.e. $\chi \circ f = g$. We also let $\mathscr{H}' := |\mathscr{O}_X(1)|$, $\tilde{\mathscr{H}} := g^*\mathscr{H}'$ and \mathscr{H} is the birational transform of \mathscr{H}' to X. Then

$$\tilde{\mathcal{H}} = f^* \mathcal{H} - \sum_i m_i E_i^*$$

and

$$K_{\tilde{X}} = f^* K_X + \sum_i E_i^*.$$

Definition. We call the birational map χ de Jonquière if $m_0 = d - 1$.

Remark. We have the following equalities:

$$1 = \tilde{\mathcal{H}}^2 = d^2 - \sum_i m_i^2,$$

$$3 = -K_{\tilde{X}} \cdot \tilde{\mathcal{H}} = 3d - \sum_{i} m_i,$$
$$\sum_{i \neq 0} m_i = 2d - 2 = \sum_{i \neq 0} m_i^2.$$

Therefore, $m_1 = \cdots = m_{2d-2} = 1$.

Proposition. The birational map χ is de Jonquière if and only if there exists a pencil of lines L'_t on X', $t \in \mathbb{P}^1$, such that $L_t := \chi^{-1}(L'_t)$ is also a pencil of lines on X.

Proof. Let $\tilde{L}_t := g^* L'_t$. Then

$$\tilde{L}_t = f^* L_t - \sum_i k_i E_i^*$$

and

$$1 = \mathcal{\tilde{H}} \cdot \tilde{L}_t = dn - \sum m_i k_i,$$

where $n = \deg L_t$.

If χ is de Jonquière, then this equality becomes

$$1 = dn - (d-1)k_0 - \sum_{i \neq 0} k_i,$$

so n = 1 and L_t is indeed of degree one.

For the converse, let n = 1. Then we have

$$1 = d - \sum_{i} m_i k_i,$$

where k_i is either 0 or 1, since L_t is a pencil of lines. Thus $m_0 = d - 1$.

3.1. Equations. Suppose χ is de Jonquière and \mathscr{H} is as above. Let p_0 be the point for which $\operatorname{mult}_{p_0}(\mathscr{H}) = d - 1$. Let L be a line passing through p_0 . There exists a divisor $C + L \in \mathscr{H}$, so that $\operatorname{mult}_{p_0}(C) = d - 2$. The curve C is given as

$$C = \{b(x_0, x_1, x_2) = 0\}, \text{ where } p_0 = [0:0:1].$$

Let $S \in \mathcal{H}$ be given as

$$S = \{a(x_0, x_1, x_2) = 0\},\$$

where

$$a = a_d(x_1, x_2) + x_0 a_{d-1}(x_1, x_2)$$
 and

$$b = b_{d-1}(x_1, x_2) + x_0 b_{d-2}(x_1, x_2).$$

This means that χ is given by

$$\chi: [x_0: x_1: x_2] \longmapsto [a(x_0, x_1, x_2): b(x_0, x_1, x_2)x_1b(x_0, x_1, x_2)x_2].$$

Going to affine coordinates by dividing out by x_2 and setting $x = x_0/x_2$, $y = x_1/x_2$, we can write

$$\chi: (x,y) \longmapsto \left(x, \frac{\alpha(x)y + \beta(x)}{\gamma(x)y + \delta(x)}\right), \quad \text{where} \quad \det \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \neq 0.$$

De Jonquière's involutions are de Jonquière maps which satisfy $x^2 =$ id. This implies $\alpha + \delta = 0$ and $\alpha^2 + \beta \gamma = 1$. We get

$$\chi(x,y) = \left(x, \frac{P(x)}{y}\right).$$

Moreover, we may assume that P is a polynomial of degree 2g + 1, $g \ge 0$ without multiple roots. (We may have to change coordinates $y \mapsto \zeta y + \eta$, for regular functions ζ , η .) Then the fixed-point set of χ is

$$Fix(\chi) = \{(x, y) \mid y^2 = P(x)\},\$$

which is a hyperelliptic curve of genus g if $g \geq 2$.

Corollary. For $g \geq 2$, we have a family of involutions parametrised by hyperelliptic curves, which are all non-conjugate in $Cr_2(\mathbb{k})$.

Proof. Since the fixed-point set of χ is not rational, it cannot be contracted by rational maps, so all birational transformations must preserve the fixed-point locus.

4. Finite subgroups of the Cremona group

Suppose that $G \subset \operatorname{Cr}_2(\mathbb{k})$ is a finite subgroup and that G acts on X. We may assume that X is a projective surface, by virtue of the following reasoning. G acts regularly on a Zariski-open subset $U \subset \mathbb{P}^2$. Consider the quotient \bar{U}/G of the closure of U by G. By taking the normalisation of \bar{U}/G in $\mathbb{k}(U)$, we obtain a projective surface, so we may as well assume that G acts on a projective surface X.

Now we run the G-equivariant minimal model programme, removing G-orbits that are disjoint unions of (-1)-curves. In the output, which we now call X, only three different cases can occur:

- (1) X is a minimal model if and only if K_X is nef if and only if there are no orbits of disjoint (-1)-curves. This is impossible, as X is rational.
- (2) there is a G-equivariant fibration $f: X \to Z$ such that Z is a smooth curve, $|-K_X|$ is f-ample and $\rho(X/Z)^G = \operatorname{rk}\operatorname{Pic}(X/Z)^G = 1$.
- (3) $|-K_X|$ is ample and $\rho(X)^G = 1$.

Proposition. In the conic bundle case we have a G-minimal G-conic bundle. In the del Pezzo case X is a del Pezzo surface.

We treat the two cases at length in the following two subsections.

4.1. The conic bundle case. If $-K_X$ is ample over Z, then there is an embedding $X \hookrightarrow \mathbb{P}(\mathscr{E})$, where $\mathscr{E} \to Z$ is a vector bundle of rank 3, such that $X_{\eta} \subset \mathbb{P}^2 = P(\mathscr{E}_{\eta})$ is a reduced conic for all $\eta \in Z$. Note that the conic X_{η} must be reduced. Indeed, otherwise $X_{\eta} = 2C$, where $C \simeq \mathbb{P}^1$ and by the genus formula

$$2p_a(C) - 2 = (K_X + C) \cdot C = K_X \cdot C = \frac{1}{2}K_X \cdot X_\eta = \frac{1}{2}(2p_a(X_\eta) - 2) = -1,$$

a contradiction. Hence a general fibre of f is a smooth conic ($\simeq \mathbb{P}^1$) and special fibres are bouquets of two \mathbb{P}^1 's.

Remark. X is rational if and only if $Z \simeq \mathbb{P}^1$. Indeed, if X is rational, so Z is by Lüroth's theorem. Conversely, if $Z \simeq \mathbb{P}^1$, then the transcendence degree of $\mathbb{k}(Z) = \mathbb{k}(\mathbb{P}^1)$ equals to one, and since \mathbb{k} is algebraically closed, \mathbb{k} is a c_1 -field (a c_1 -field is a field such that any form $\phi(x_1, \ldots, x_n)$ with deg $\phi < n$ represents 0.) Therefore, $\mathbb{k}(X) \simeq \mathbb{k}(Z)(t)$.

If the morphism f is smooth (i.e. f has no degenerate fibres), then we have the following.

Example (rational ruled (Hirzebruch) surfaces). \mathbb{F}_n , $n \neq 0$. We can contract the (-n)-curve to get a birational map $\mathbb{F}_n \to \mathbb{P}(1,1,n)$. Then

$$\operatorname{Aut}(\mathbb{F}_n) \simeq \mathbb{k}^{n+1} \rtimes \operatorname{GL}(2; \mathbb{k}) / \boldsymbol{\mu}_n$$

where \mathbb{k}^{n+1} is regarded as the space $M_n \simeq \mathbb{k}^{n+1}$ of binary forms of degree n with natural action of $\mathrm{GL}(2;\mathbb{k})$.

For n=0 we have $\mathbb{F}_0\simeq \mathbb{P}^1\times \mathbb{P}^1$ and there is a split-exact short sequence

$$1 \longrightarrow \operatorname{PGL}(2; \Bbbk) \times \operatorname{PGL}(2; \Bbbk) \longrightarrow \operatorname{Aut}(\mathbb{F}_0) \longrightarrow \{1, \tau\} \longrightarrow 1.$$

In general f factors through a Hirzebruch surface:

$$f: X \xrightarrow{\sigma} \mathbb{F}_n \longrightarrow Z,$$

where σ is a birational (non-G-equivariant) morphism.

Example (Exceptional conic bundles). Let $g \ge 1$. By definition an exceptional conic bundle is a conic bundle $f: X \to Z$ with 2g - 2 degenerate fibres and two disjointed sections F_i , i = 1, 2 such that $F_1^2 = F_2^2 = -(g+1)$.

Construction 1. Consider $\mathbb{P}^1 \times \mathbb{P}^1$. Fix a ruling $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$ and fix two different sections L_i , i=1,2. We have $L_1^2 = L_2^2 = L_1.L_2 = 0$. Take g+1 points P_1, \ldots, P_{g+1} in L_1 and g+1 points Q_1, \ldots, Q_{g+1} in L_2 , and blow up all 2g+2 points: $X \to \mathbb{P}^1 \times \mathbb{P}^1 \to Z$.

Construction 2. Let

$$Y \subset \mathbb{P}(1,1,q+1,q+1)$$

is given by

$$t_2 t_3 = F_{2g+2}(t_0, t_1),$$

and let $X \to Y$ be the minimal resolution. Then the projection

$$(t_0, t_1, t_2, t_3) \dashrightarrow (t_0, t_1)$$

induces a structure an exceptional conic bundle on X.

Now assume that X is G-minimal and let Σ be the set of singular fibres, whose size we denote by s. Then $\rho(X) = 2 + s$, and by Noether's formula we have $K_X^2 = 8 - s$. If s = 0, we are in the above case $X \simeq \mathbb{F}_n$. Note that X is not G-minimal if and only if X is a del Pezzo surface with $\rho(X)^G = 2$.

For s = 1, 2, 3, 5, X is a not G-minimal:

- The case s=1 is trivial: $f:X\to\mathbb{P}^1$ has a unique section C with negative self-intersection number, so f cannot be Gminimal because C meets only one component of degenerate
- For s=2 we have $K_X^2=6$ and the linear system $|-2K_X-F|$ (here F is the fibre) defines an equivariant contraction $X \rightarrow$
- $X' = \mathbb{P}^1 \times \mathbb{P}^1$, $K_{X'}^2 = 8$ of two (-1)-curves. For s = 3 we have $K_X^2 = 5$, and we use $|-K_X F|$ to blow
- For s = 5, $K_X^2 = 3$ and X is a cubic surface with a G-invariant line. This line can be contracted and we get a del Pezzo surface X' of degree 4.

Lemma. Suppose $f: X \to Z$ has two sections $C_1, C_2 \subset X$ with $C_i^2 =$ -n. Let s' be the number of components of Σ that meet both C_1 and C_2 . Then

$$2C_1.C_2 + 2n = s - s'.$$

In particular, $s \ge 2n + s' \ge 2n$.

We can use this lemma directly to show that the cases $s \leq 3$ cannot occur as G-minimal models. Our G-minimal surface X has Picard group $\operatorname{Pic}(X) \simeq \mathbb{Z}^{s+2}$. The group G acts on the Picard group with kernel

$$1 \longrightarrow G_0 \longrightarrow G \longrightarrow \operatorname{Aut}(\operatorname{Pic}(X))$$

From now on we assume that $s \geq 4$. We distinguish two cases.

Case $G_0 \neq \{1\}$. Then G_0 fixes (-1)-curves and so G_0 fixes $s \geq 4$ singular fibres. So the image of $G_0 \to \operatorname{Aut}(Z) \simeq \operatorname{PGL}(2; \mathbb{k})$ is trivial. Further, G_0 also fixes negative sections of f, and since it acts trivially on the base, it fixes these sections pointwise. On the other hand, G_0 acts faithfully on a general fibre $F \simeq \mathbb{P}^1$, so $G_0 \subset \operatorname{PGL}(2, \mathbb{k})$. Since the intersection of F and a negative section is a fixed point, the group G_0 must be cyclic. Since general fibre is a \mathbb{P}^1 and G_0 acts cyclically, G_0 has exactly two fixed points in general fibre, and thus f has two G-invariant sections G_1 , G_2 . So $\operatorname{Fix}(G_0) \supset G_1 \cup G_2 =: G$. The curve G must be smooth, i.e. the disjoint union of two smooth, irreducible curves (namely the two sections G_1 , G_2). This means that $f: X \to Z$ is an exceptional conic bundle.

Case $G_0 = \{1\}$. Then and $G \hookrightarrow \operatorname{Aut}(\operatorname{Pic} X)$. We have a short exact sequence

$$1 \longrightarrow G_F \longrightarrow G \longrightarrow G_B \longrightarrow 1$$
,

where $G_B \subset \operatorname{Aut}(Z)$. We claim that the map $G_F \to (\mu_2)^s$ into the group of permutations of the components of Σ is an injection. Indeed, otherwise some element $1 \neq \tau \in G_F$ acts trivially on the components of Σ . Since $\operatorname{Pic}(X)$ is generated by $-K_X$ and the classes of these components, τ trivially acts on $\operatorname{Pic}(X)$, a contradiction.

Further, the general fibre is $F \simeq \mathbb{P}^1$, so we also must have an embedding $G_F \hookrightarrow \mathrm{PGL}(2; \mathbb{k})$. There are only two such possibilities: $G_F = \mu_2$ and $G_F = \mu_2 \times \mu_2$.

Case $G_F = \mu_2$. The fixed-point locus of G_F is a curve C and some points. Then $C \to Z$ is 2:1, and C is smooth. In fact C is irreducible, since it cannot have two disjoint components: Doing so would force G_F to fix the components of the singular fibres, but that in turn would force G_F to act trivially on the Picard group (which is generated by the components of singular fibres and a section), which we assumed not to happen.

So C is a (generalized) hyperelliptic curve. Let P be a fixed point of G_F and $P \in F$, where F is a fiber. Consider three possibilities.

a) If $P \in F$ is a smooth point, then we have

$$0 \longrightarrow T_P F \longrightarrow T_P X \longrightarrow T_{f(p)} Z \longrightarrow 0.$$

Since $G_F = \mu_2$ acts on $T_P X$ as diag(1, -1), $P \in C$ is not a ramification point of f.

b) If $P \in F$ is singular and $G_F = \mu_2$ does not switch the components of F and thus acts as $\operatorname{diag}(-1, -1)$, then P is an isolated fixed point and $P \notin C$.

c) If G_F does switch the components of F, then $P = C \cap F$ is a ramification point.

In conclusion, we have a subset of fibres $\Sigma' \subset \Sigma$, and G_B fixes the sets Σ, Σ' .

Case $G_F = \mu_2 \times \mu_2$. We have three non-trivial elements $\delta_1, \delta_2, \delta_3 \in G_F$. We argue as before to get three bisections $C_1 \neq C_2 \neq C_3 \neq C_1$ of δ_i -points. For each singular fibre F there are exactly two elements δ_i , $\delta_j \in G_F$ interchanging components of F. Indeed, let $F = F' \cup F''$ and let $\{P\} = F' \cap F''$. Then $G_F.P = P$. At least one of the δ_i must exchange the components (for otherwise G_F would be cyclic). We get a partition of Σ into three subsets $\Sigma = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ so that $C_i \to Z$ is ramified exactly over $\Sigma_j \cup \Sigma_k$, where $\{i, j, k\} = \{1, 2, 3\}$. Again, G_B fixes the partition Σ_i . One can show that in this case the quotient X/G_F is smooth and X/G_F

In both cases, we have a morphism $X/G_F \to Z$.

5. The del Pezzo case

Let X be a G-minimal G-del Pezzo surface. In this case, $-K_X$ is ample and $\rho(X)^G = 1$. We use the classification of del Pezzo surfaces. There are two well-known constructions.

I. Del Pezzo surfaces are rational. Hence either $X = \mathbb{P}^1 \times \mathbb{P}^2$ or X can be obtained as a blow-up $X \to \mathbb{P}^2$ is in 9-d points in general position, where $K_X^2 = d$. Here the morphism $X \to \mathbb{P}^2$ is not unique and is not G-equivariant.

Generalization. Embed $\mathbb{P}^3 \subset \mathbb{P}^9$, and blow up $0 \le n \le 7$ points in general position, $\tilde{\mathbb{P}}^3 \to \mathbb{P}^3$. Then $\tilde{\mathbb{P}}^3$ is a so-called del Pezzo threefold of degree 8-n.

- II. Let $d := K_X^2$. Then $d = \dim |-K_X|$.
 - If d = 1, then $|-K_X|$ is an elliptic pencil with one base point P. Then we can realise X as a degree-6 hypersurface in $\mathbb{P}(1,1,2,3)$. The Galois involution of the projection $X \to \mathbb{P}(1,1,2)$ (which is is 2:1), called the *Bertini involution*.
 - If d = 2, then $|-K_X|$ also has one base point P, and we can realise X as a degree-4 hypersurface in $\mathbb{P}(1,1,1,2)$. There is a 2:1-map $X \to \mathbb{P}^2$ whose Galois involution is called the *Geiser involution*.

If $d \geq 3$, $|-K_X|$ is very ample and X is a degree d subvariety of \mathbb{P}^d :

- For d = 3, X is a cubic hypersurface in \mathbb{P}^3 .
- For $d=4, X=X_{2\cdot 2}\subset \mathbb{P}^4$ (intersection of two quadrics).

- For d = 5, $X = Gr(2,5) \cap \mathbb{P}^5 \subset \mathbb{P}^9$.
- For d = 6, $X \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is a divisor of tridegree (1, 1, 1).
- For d = 7, $X = X_7 \subset \mathbb{P}^7$. For d = 8, $X = \mathbb{F}_1$ or $\mathbb{P}^1 \times \mathbb{P}^1$. For d = 9, $X = \mathbb{P}^2$.

Generally, we have $Pic(X) = \mathbb{Z}^{10-d}$. The group G acts on Pic(X) so that $Pic(X)^G = \mathbb{Z}$. The action preserves the intersection pairing and the class of $-K_X$. Let

$$N := (K_X)^{\perp}, \qquad \Delta := \{ \alpha \in N \mid \alpha^2 = -2 \}.$$

Then Δ is a root system in $N \otimes \mathbb{R}$ depending on d:

6. Involutions of $Cr_2(\mathbb{k})$

Theorem. Let $\tau \in \operatorname{Cr}_2(\mathbb{k})$ be an involution. Then τ is conjugate to one of the following:

- (1) A linear involution on \mathbb{P}^2 .
- (2) A de Jonquière's involution.
- (3) A Geiser involution.
- (4) A Bertini involution.

The proof of this theorem is guite standard. We may assume that $G = \langle \tau \rangle$ acts on a G-minimal rational surface X. Then we consider two cases: where X has a conic bundle structure $f: X \to Z$ and where X is a del Pezzo surface with $\rho(X)^G = 1$.

The conic bundle case. Assume that X has a structure of a minimal (G-equivariant) conic bundle $f: X \to Z$. If f is a \mathbb{P}^1 -fibration, then $X \simeq \mathbb{F}_n$ for some n. By applying elementary transformations with centers at fixed points we get n=1, i.e. $X \simeq \mathbb{F}_1$. Then contracting the negative section we get a linear involution on \mathbb{P}^2 . If f has degenerate fibers and G trivially acts on Pic(X) (i.e. $G = G_0$), then f is an exceptional conic bundle. In this case f is not G-minimal, a contradiction. Finally, we assume that f has degenerate fibers, $G \neq G_0$, and $G_F = G$ (i.e. G trivially acts on the base). Then τ switches components of all degenerate fibers. Hence the set of τ -fixed points is a smooth curve C. The induced map $C \to Z = \mathbb{P}^1$. Clearly, there is a birational map $X \dashrightarrow \mathbb{F}_1$ preserving a general fibre. This induces a fiberwise birational action of τ on \mathbb{F}_1 . Contracting the negative section we get a de Jonquière's involution on \mathbb{P}^2 . Thus τ can be written as

$$\tau: (x,y) \longmapsto \left(x, \frac{P(x)}{y}\right),$$

where P is a polynomial of degree 2g+1, $g \ge 0$ without multiple roots. If g = 0, then τ is conjugate to a linear involution.

The del Pezzo case Thus we assume that X is a del Pezzo surface with $\rho(X)^G = 1$. We have

$$-\tau^* : \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(X), \qquad K_X \longrightarrow -K_X.$$

Then $-\tau^*(x) = x + \lambda K_X$ for some $\lambda \in \mathbb{Q}$. We compute:

$$-x.K_X = x.K_X + \lambda K_X^2 \lambda$$
, so $\lambda = -\frac{2x.K_X}{K_X^2}$

Taking x to be a (-1)-curve, we have

$$-\tau^*(x) = x - \frac{2x \cdot K_X}{K_X^2} K_X,$$

and so $K_X^2 = 1$ or 2. If τ' is a Bertini or Geiser involution, then $\tau \circ \tau'$ acts trivially on Pic(X). But then $\tau \circ \tau'$ preserves 7 or 8 points, and we have $\tau \circ \tau' = \text{id}$, so $\tau = \tau'$.

Here is a geometric explanation of the involution. For $d=2, X\to \mathbb{P}^2$ is the blow-up in 7 points. Fix one more point P. We have a pencil of elliptic curves through those eight points, and this pencil has one base point, P'. The involution exchanges P and P'. For $d=1, X\to \mathbb{P}^2$ is the blow-up in 8 points. Fixing one more point P, there is a unique elliptic curve through those nine points, and letting P be the base point for the group law on that curve, the involution is the group inverse map.

Thus we may assume that X contains no (-1)-curves. Then there are two possibilities.

- For d = 9, $X = \mathbb{P}^2$, and τ is a linear involution.
- For $d=8,\ X=\mathbb{P}^1\times\mathbb{P}^1$, and τ exchanges the two factors. In suitable non-homogeneous coordinates (x,y) on $\mathbb{P}^1\times\mathbb{P}^1$ the involution has the form $\tau(x,y)\mapsto (y,x)$. Thus it is conjugate to linear one.

7. Finite subgroups, continued

Suppose $G \subset \operatorname{Cr}_2(\mathbb{k})$ is a finite subgroup.

7.1. Simple groups. We begin by considering the case where G is simple. If $G = \mathfrak{A}_5$, then there are a lot of embeddings $G \hookrightarrow \operatorname{Cr}_2(\Bbbk)$ induced by $G \hookrightarrow \operatorname{PGL}(2; \Bbbk) \simeq \operatorname{Cr}_1(\Bbbk)$. Furthermore, $G \hookrightarrow \operatorname{PGL}(3; \Bbbk)$, which already acts biregularly. So assume $G \not\simeq \mathfrak{A}_5$.

If G acts on a conic bundle $f:X\to Z$ then G fits to an exact sequence

$$1 \longrightarrow G_F \longrightarrow G \xrightarrow{f_*} G_Z \longrightarrow 1.$$

Since G is simple, there is an embedding of G into $\operatorname{Aut}(Z)$ or $\operatorname{Aut}(F)$, where F is a general fibre. On the other hand, G is not embeddable to $\operatorname{PGL}(2, \mathbb{k})$, a contradiction.

Assume thus that X is a del Pezzo surface. We consider the various cases according to $d = K_X^2$.

- The case d=1 cannot occur, as $|-K_X|$ has one base point P, and G has to act on $T_{P,X}$ effectively. Hence $G \subset \mathrm{GL}(T_{P,X}) \simeq \mathrm{GL}(2;\mathbb{k})$. This contradicts the classification of finite subgroups in $\mathrm{GL}(2;\mathbb{k})$.
- For d=2, the anti-canonical map $X \to \mathbb{P}^2$ is a double cover whose branch divisor $B \subset \mathbb{P}^2$ is a smooth quartic. The action of G in X descends to \mathbb{P}^2 so that B is G-stable. Therefore, $G \subset \operatorname{Aut}(B)$. According to the Hurwitz bound $|G| \leq 168$. Then we have $G \simeq \operatorname{PSL}(2; \mathbb{F}_7)$, with |G| = 168.
- For d=3, X is a cubic in \mathbb{P}^3 . We have $\mathrm{Pic}(X)=\mathbb{Z}^7$ and $G\subset W(E_6)\cap \mathrm{SL}(6,\mathbb{R})$. Hence the order of G divides $25920=2^6\cdot 3\cdot 5$. On the other hand, G faithfully acts on $H^0(X;-K_X)\simeq \mathbb{k}^4$. Combining these we get a contradiction.
- For $d=4, X=X_{2\cdot 2}=Q_1\cap Q_2\subset \mathbb{P}^4$. Then G acts on the pencil of quadrics $\langle Q_1,Q_2\rangle\simeq \mathbb{P}^1$. Since $G\not\simeq \mathfrak{A}_5$, this action is trivial. Hence, there is a G-stable degenerate quadric $Q'\in \langle Q_1,Q_2\rangle$. This Q' must be a cone over $\mathbb{P}^1\times \mathbb{P}^1$. Thus G acts effectively on $\mathbb{P}^1\times \mathbb{P}^1$. Since G is simple, $G\subset \operatorname{Aut}(\mathbb{P}^1)$, a contradiction.
- For d = 5, consider the (faithful) action of G on Pic(X). Pic(X) contains a root system of type A_4 , so $G \hookrightarrow W(A_4) \simeq \mathfrak{S}_5$ and $G \simeq \mathfrak{A}_5$, a contradiction.
- For $6 \le d \le 8$, we have $2 \le \rho(X) \le 4$. Since the action of $\operatorname{Pic}(X) \simeq \mathbb{Z}^{\rho(X)}$ is non-trivial, we have a contradiction.
- For d = 9, $X = \mathbb{P}^2$. So $G \subset \operatorname{PGL}(3; \mathbb{k})$, and by the classification of finite subgroups in $\operatorname{PGL}(2; \mathbb{k})$ the group G is either \mathfrak{A}_6 or $\operatorname{PSL}(2; \mathbb{F}_7)$.

Thus we have proved the following.

Theorem. Let $G \subset \operatorname{Cr}_2(\mathbb{k})$ be a finite simple group. Then either $G \simeq \mathfrak{A}_5$, or G is conjugate to one of the following actions:

- (1) $G \simeq \mathrm{PSL}(2; \mathbb{F}_7)$ is the Klein group acting on \mathbb{P}^2 ,
- (2) $G \simeq PSL(2; \mathbb{F}_7)$ is the Klein group acting on some special del Pezzo surface of degree 2,
- (3) $G \simeq \mathfrak{A}_6$ is the Valentiner group acting on \mathbb{P}^2 ,

7.2. p-elementary abelian groups. We say that G is p-elementary abelian group if $G \simeq (\mu_p)^r$ for some r and in this case r is called the rank of G.

Theorem. Let $G \subset \operatorname{Cr}_2(\mathbb{k})$ be a p-elementary abelian subgroup and let $r = \operatorname{rk}(G)$ be its rank.

- (1) If $p \geq 5$, then $r \leq 2$, and if r = 2 then G is conjugate to a subgroup of $PGL(3; \mathbb{k})$.
- (2) If p = 3, then $r \leq 3$, and if r = 3 then G is conjugate to a group acting on the Fermat cubic

$$\left\{ \sum_{i} x_i^3 = 0 \right\} \subset \mathbb{P}^3.$$

(3) If p = 2, then $r \le 4$, and if r = 4, then either G acts on

$$\left\{ \sum_{i} x_{i}^{2} = \sum_{i} \lambda x_{i}^{2} = 0 \right\} \subset \mathbb{P}^{4},$$

 $or\ X$ is some special conic bundle.

If G acts on a conic bundle $f:X\to Z\simeq \mathbb{P}^1$ then, as above, G fits to an exact sequence

$$1 \longrightarrow G_F \longrightarrow G \xrightarrow{f_*} G_Z \longrightarrow 1.$$

where G_F , $G_Z \subset \mathbb{P}^1$. We have $\operatorname{rk}(G_F)$, $\operatorname{rk}(G_Z) \leq 1 + \delta_{2,p}$. Hence $\operatorname{rk}(G) \leq 2 + 2\delta_{2,p}$ in this case.

Assume that G acts on a del Pezzo surface X with $\rho(X)^G = 1$. As above, we consider the various cases according to $d = K_X^2$.

- If d=1, then G faithfully acts on $T_PX \simeq \mathbb{k}^2$ and so $\mathrm{rk}(G) \leq 2$.
- If d=2 and $p\neq 2$, then G acts on $H^0(X;-K_X)\simeq \mathbb{k}^3$.
- If d=3, then G acts on $H^0(X; -K_X) \simeq \mathbb{k}^4$, and $r \leq 3$.
- For d=4, $X=X_{2\cdot 2}=Q_1\cap Q_2\subset \mathbb{P}^4$. Then G acts on the pencil of quadrics $\langle Q_1,Q_2\rangle\simeq \mathbb{P}^1$. Since $G\not\simeq \mathfrak{A}_5$, this action is trivial. Hence, there is a G-stable degenerate quadric $Q'\in \langle Q_1,Q_2\rangle$. This Q' must be a cone over $\mathbb{P}^1\times \mathbb{P}^1$. Thus G acts effectively on $\mathbb{P}^1\times \mathbb{P}^1$. Since G is simple, $G\subset \operatorname{Aut}(\mathbb{P}^1)$, a contradiction.

- For d = 5, consider the (faithful) action of G on Pic(X). Then $G \hookrightarrow W(A_4) \simeq \mathfrak{S}_5$ and $\operatorname{rk}(G) \leq 2$.
- For 6 ≤ d ≤ 8, we have 2 ≤ ρ(X) ≤ 4. Since the action of Pic(X) ≃ Z^{ρ(X)} is non-trivial, we have a contradiction.
 For d = 9, X = P². So G ⊂ PGL(3; k), and by the classification
- of finite subgroups in $PGL(2; \mathbb{k}) \operatorname{rk}(G) \leq$.