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Abstract: We introduce and study the notion of essential dimension for linear al-
gebraic groups de�ned over an algebraically closed �elds of characteristic zero. The
essential dimension is a numerical invariant of the group; it is often equal to the min-
imal number of independent parameters required to describe all algebraic objects of
a certain type. For example, if our group G is Sn, these objects are �eld extensions,
if G = On, they are quadratic forms, if G = PGLn, they are division algebras (all
of degree n), if G = G2, they are octonion algebras, if G = F4, they are exceptional
Jordan algebras. We develop a general theory, then compute or estimate the essential
dimension for a number of speci�c groups, including all of the above-mentioned exam-
ples. In the last section we give an exposition of results, communicated to us by J.-P.
Serre, relating essential dimension to Galois cohomology.
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1 Introduction

The purpose of this paper is to introduce and study the notion of essential dimension for
linear algebraic groups. All algebraic groups we shall consider, along with all varieties,
�elds, etc., and all morphism between them will be de�ned over a �xed algebraically
closed base �eld k of characteristic zero. The essential dimension ed(G) of an algebraic
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group G is the smallest integer d such that every principal G-bundle X �! B can be
obtained (up to birational isomorphism) by pull-back from a diagram

X ' B �C Y �! Y

# #
B �! C

where Y �! C is a principal G-bundle, B �! C is a dominant map, and dim(C) � d;
cf. De�nition 3.5 and Remark 2.17. The essential dimension naturally comes up in
many interesting situations; several examples are given below.

(a) The essential dimension of the symmetric group Sn is the minimal number of
parameters required to write down the general polynomial of degree n in one variable.
(Here we allow Tschirnhaus transformations which do not involve radicals.) Equiva-
lently, ed(Sn) is the smallest integer d with the following property: every �eld extension
K � L of degree n can be de�ned by (a degree n) polynomial with at most d alge-
braically independent coe�cients (over k). The question of computing ed(Sn) is related
to the algebraic form of Hilbert's 13th problem. For more on this we refer the reader
to [BR1] and [BR2]; a discussion of essential dimensions of other �nite groups can be
found in [BR1].

(b) Groups of essential dimension zero are precisely the \special groups" introduced
by Serre [Se1] and classi�ed by Grothendieck [G] in the 1950s; see Section 5.

(c) Let D be a division algebra with center K. We say that D is de�ned over a
sub�eld F ofK if D ' E
FK for some division algebra E with center F . The essential
dimension of the projective linear group PGLn is the smallest integer d such that every
division algebra D of degree n is de�ned over some �eld F with trdegk(F ) � d. This
number is of interest in the theory of division algebras; see [Pr1, Thm. 2.1] and [Row].
We will discuss essential dimensions of projective linear groups in Section 9.

(d) The essential dimension of the orthogonal groupOn (resp. the special orthogonal
group SOn) is the smallest integer d such that every quadratic form (resp. every
quadratic form of determinant 1) over every �eld F is equivalent to one with � d
algebraically independent coe�cients (over k). We will determine these integers in
Section 10.

(e) The essential dimensions of the exceptional group G2 (resp. F4) is the smallest
integer d such that every octonion algebra (resp. every 27-dimensional exceptional
simple Jordan algebra) can be de�ned over a �eld of transcendence degree � d. These
numbers are discussed in Section 11.

The methods we use for computing, or at least estimating, the essential dimension
of a given algebraic group G can be roughly divided into three categories: geometric,
algebraic and cohomological. The geometric approach, based on (birational) invari-
ant theory, is discussed in Sections 2-4. The algebraic approach, based on descent of
"structured spaces" is developed in Sections 6-8; some applications are given in Sec-
tions 9-11. The cohomological approach is discussed in Sections 5 and 12; Section 5 is
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mostly concerned with the vanishing of H1 and Section 12 deals with the relationship
between the essential dimension of G and its cohomological invariants.

In order to illustrate the interplay among the geometric, algebraic, and cohomolog-
ical methods, we will often prove the same result in several di�erent ways, sometimes
in di�erent parts of the paper. For the convenience of the reader, we summarize most
of what we now know about essential dimensions of speci�c groups in the table below
and indicate where the proof of each result can be found.

Group EssentialDimension Proof
(Z=n)r r [BR1; 6:1]

Sn

(
� [n=2]
� n � 3

[BR1; 6:5(b)]; [BR2; 1:1] ; Ex: 12:8
[BR1; 6:5(c)]

(k�)n = 0 Thm: 5:4 ; Ex: 3:9(a)
GLn = 0 Thm: 5:4 ; Ex: 3:9(b)
SLn = 0 Thm: 5:4 ; Ex: 3:9(c); 8:9(a)
Sp2n = 0 Thm: 5:4 ; Ex: 8:9(b)

PGLn

8>>>>><
>>>>>:

� n2 � 2n

� n+ (n�1)(n�2)
2 ; n odd

� 2r if n = nr0
= 2 if n = 2; 3; 6
other results

Thm: 4:5
Thm: 9:6
Thm: 9:3

Lemma 9:4(c)
Prop: 9:8; Rem: 9:9

On

8><
>:

= n

� n
� n

Thm: 10:3
Ex: 3:10(a) ; 4:2

Ex: 12:6

SOn ; n � 3

8><
>:

= n� 1
� n� 1
� n� 1

Thm: 10:4
Ex: 3:10(b) ; 4:2

Ex: 12:7

G2

8><
>:

= 3
� 3
� 3

Thm: 11:2
Rem: 11:4

Rem: 11:3 ;Ex: 12:9; Thm: 12:12

F4 � 5 Thm: 11:5 ; Ex: 12:10

E6 (simply conn:)

(
� 3
� ed(F4) + 1

Prop: 11:6; Thm: 12:12
Prop: 11:7

E7 (simply conn:) � 3 Prop: 12:11(a); Thm: 12:12
E8 � 3 Prop: 12:11(b);Thm: 12:12

For further results see the table in the appendix at the end of this paper.
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2 Preliminaries

The purpose of this section is to introduce notation, terminology and a number of
known results from birational invariant theory. Our emphasis will be on stating these
results in a form suitable for subsequent use, not on developing the theory in a coherent
and self-contained manner. For an excellent introduction to birational invariant theory
we refer the reader to [PV, Sect 2]; see also [Po].

Our basic object of study will be primitive rather than irreducible G-varieties (see
De�nition 2.1); this (slightly) greater degree of generality will be needed the sequel.

2.1 Notation and terminology

The following notational conventions will be used throughout the paper.

k algebraically closed base �eld of characteristic 0
F usually a �eld extension of k
G algebraic group de�ned over k
X usually a G-variety
Gx orbit of x under the action of G
Stab(x) stabilizer of x
ed(X) essential dimension X ; see De�nition 3.1
ed(G) essential dimension of G; see De�nition 3.5
(W;�) structured space over F ; see De�nition 6.1
(V; �) structured space over k
Autk(V; �) automorphism group of (V; �), usually denoted by G
�(W;�) see De�nition 8.7
Z(A) center of the central simple algebra A
UD(m;n) universal division algebra of m n� n-matrices
<< a1; : : : ; an >> n-fold P�ster form; see Section 10.1
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Throughout this paper we shall work over a �xed base �eld k, which we assume to
be algebraically closed and of characteristic 0. All algebraic objects we will consider
(e.g., rings, �elds, algebraic groups, algebraic varieties) and all maps between them will
be de�ned over k.

If X is an algebraic variety, we shall denote the algebra of regular (resp. rational)
functions on X by k[X ] (resp. k(X)). If X is irreducible then k(X) is a �eld; in general,
k(X) = k(X1)� : : :�k(Xn) is a direct sum of �elds; here X1; : : : ; Xn are the irreducible
components of X . We shall say that a certain property holds for x in general position
in X if it holds for all x 2 U , where U is a dense open subset of X (i.e., an open subset
which non-trivially intersects every irreducible component of X).

As usual, a rational map X �! Y is an equivalence class of regular maps U �! Y ,
where U is a dense open subset of X ; f1 : U1 �! Y and f2 : U2 �! Y are considered
equivalent if they agree on U1 \ U2. The domain of a rational map f : X �! Y is the
union of all dense open subsets U where f is de�ned, and the range f(X) is the union
of f(U). We will say that f is dominant if f(X) is dense in Y .

We shall call an algebraic variety X a G-variety if X is equipped with a regular
action of G (i.e., an action given by a regular morphism G � X �! X). If X and
Y are G-varieties then by a regular map X �! Y of G-varieties we mean a regular
G-equivariant map. The same applies to rational maps of G-varieties, biregular and
birational isomorphisms of G-varieties, etc.

2.2 Primitive G-varieties

De�nition 2.1 We shall call a G-variety X primitive if G transitively permutes the
components of X .

Note that if G is connected then X is a primitive G-variety if and only if X is
irreducible.

Lemma 2.2 Let X be a G-variety. Then

(a) X is birationally isomorphic to a disjoint union of primitive G-varieties.

(b) X is primitive if and only if k(X)G is a �eld.

Proof. (a) Write X = X1 [ : : :[Xn, where each Xi is a union of components of X
transitively permuted by G. Then each Xi is primitive and the natural projection from
the disjoint union qm

i=1Xi to X is a G-equivariant birational isomorphism.
(b) Suppose k(X)G is not a �eld. Then k(X)G has a zero-divisor f 6= 0. Let X0 be

the union of those irreducible components ofX where f = 0 and X1 be the union of the
remaining irreducible components. Then X0 and X1 are G-invariant and non-empty.
Since G cannot map a component in X0 to a component in X1, we conclude that X
is not primitive. Conversely, suppose X is not primitive. By part (a) we may assume
that X is a disjoint union of m � 2 primitive G-varieties X1; : : : ; Xm. Let f 2 k(X)G

be given by fjX1
= 1 and fjXi = 0 for all i = 2; : : : ; m. Then f is a zero divisor in

k(X)G and thus k(X)G is not a �eld. 2
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2.3 Rational quotients

Theorem 2.3 (Rosenlicht [Ros1], [Ros2]) Let X be a G-variety. Suppose k(W ) =
k(X)G and � : X �! W is rational map induced by the inclusion k(X)G ,! k(X).
Then there exists an open dense subset U of X such that �jU : U �! W is a regular
map and for any x; y 2 U , �(x) = �(y) i� Gx = Gy. 2

We shall denote W by X=G; this variety is uniquely de�ned up to birational equiv-
alence. By Lemma 2.2(b), X is primitive if and only if X=G is irreducible. We will
refer to the map � : X �! X=G as the rational quotient map or simply the quotient
map, since no other kind of quotient map will be considered in this paper.

Remark 2.4 The identity k(X=G) = k(X)G, which we used to de�ne X=G, can be
restated as a universal property of X=G as follows. Any rational map f : X �! Y of
G-varieties gives rise to a rational map f : X=G �! Y=G such that the diagram

X
f�! Y

j j
�X j j �Y

# #
X=G

f�! Y=G

(1)

commutes. Here �X and �Y are the rational quotient maps.

Remark 2.5 The rational quotient map � : X �! X=G is unique in the following
sense.

Let X be a primitive G-variety. Suppose f : X �! X0 is a dominant rational
map such that f�1(f(x)) = Gx for x0 2 X in general position. Then there exists a

birational isomorphism f : X=G
'�! X0 such that f = f � �.

The map f is given by diagram (1) with Y = X0, where X0 is viewed as a G-
variety with trivial G-action. Here �X = �, Y=G = X0 and �Y : Y �! Y=G is the
identity map. Since X is primitive, both X0 and X=G are irreducible. Moreover, by

our assumption on f , the map f : X=G �! X0 is dominant and f
�1
(x0) is a single

point for x0 in general position in X0. Thus f is a birational isomorphism; see, e.g.,
[H, 4.6]. 2

Remark 2.6 Suppose X is a G-variety and N is a closed normal subgroup of G. Then
G=N has a naturally de�ned rational action on X=N ; see [PV, Proposition 2.6]. In
general, this action will not be regular; however, by a theorem of Rosenlicht (see [Ros1,
Theorem 1], [PV, Corollary 1.1]) there exists a model for X=N such that the induced
G=N -action on it is regular, i.e., X=N is a G=N -variety. Moreover, this G-variety is
uniquely de�ned up to birational isomorphism.
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2.4 Generically free varieties

De�nition 2.7 A G-variety X is said to be generically free if G acts freely (i.e., with
trivial stabilizers) on a dense open subset of X .

Lemma 2.8 Suppose a rational map f : X �! Y of generically free G-varieties in-
duces a birational isomorphism f : X=G �! Y=G. Then f is a birational isomorphism.

Proof. We may assume without loss of generality that X=G and Y=G are irreducible,
i.e., X and Y are primitive G-varieties. In particular, every irreducible component of
X has dimension dim(X) and every irreducible component of Y has dimension dim(Y ).
Moreover,

dim(X) = dim(X=G) + dim(G) = dim(Y=G) + dim(G) = dim(Y ) :

Replacing X=G and Y=G by su�ciently small open subsets we may assume that all
four maps in diagram (1) are regular, G acts freely on X and Y , and �X separates the
G-orbits in X . Then f(X) is G-invariant subset of Y which intersects every G-orbit in
Y ; hence, f(X) = Y . On the other hand, f(x1) = f(x2) means that �X(x1) = �X(x2),
i.e., x2 = g(x1) for some g 2 G. Consequently, gf(x1) = f(x2) = f(x1). Since G acts
freely on Y , we conclude that x1 = x2.

We have therefore proved that f is bijective. Let X = X1[: : :[Xn be an irreducible
decomposition of X . Let Yi be the closure of f(Xi) in Y . Since dim(Yi) = dim(Xi) =
dim(X) = dim(Y ), Y1; : : : ; Yn are the irreducible components of Y . Moreover the
injectivity of f implies that Yi 6= Yj if i 6= j. For every i = 1; : : : ; n, the map fjXi :
Xi �! Yi is dominant and injective. Hence, each fjXi is a birational isomorphism (see,
e.g., [H, 4.6]) and therefore, so is f . 2

2.5 (G;H)-sections

De�nition 2.9 (cf. [Ka1, Sect. 1], [Po, 1.7.6], [Do, Sect. 3].) Let G be an algebraic
group, X be a G-variety, and H be a closed subgroup of G. An irreducible subvariety
S � X is called a (G;H)-section if

(a) GS is dense in X and

(b) there is a dense open subvariety S0 � S such that for any s 2 S0 we have gs 2 S if
and only if g 2 H.

Example 2.10 LetX be a primitive G-variety and let X1 be an irreducible component
of X . Then X1 is a (G;G1)-section, where G1 = fg 2 G j g(X1) = X1g.

Lemma 2.11 Let X be a G-variety and S be a (G;H)-section of X. Then k(S)H =
k(X)G.
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Proof. Let � : X �! X=G be the rational quotient map. Then the restriction
�jS : S �! X=G is well-de�ned and separates H-orbits in S0. By Remark 2.5 �jS is

the quotient map for the H-action on S. Equivalently, k(S)H = k(X=G), as claimed.
2

De�nition 2.12 Let G be an algebraic group, H be a closed subgroup of G, and W
be an H-variety. Then G�W is a G�H-variety via

(g; h) : (g0; w) 7! (gg0h�1; hw) ; (2)

for any g; g0 2 G, h 2 H , and w 2 W . By Remark 2.6 a model Y for (G�W )=H can be
chosen so that the G-action on Y is regular and thus the quotient map �:G�W �! Y

is a rational map of G-varieties. (Here we are identifying H with a normal subgroup
N = f1Gg �H of G �H and G with (G � H)=N).) We shall denote Y by G �H W ;
this G-variety is well-de�ned up to birational isomorphism.

Remark 2.13 (a) IfW is a generically free H-variety then it is easy to see thatG�HW
is a generically free G-variety.

(b) W ,! G �H W given by w 7! (1; w) is an H-equivariant embedding of H-
varieties, whose image is a (G;H)-section of G �HW . The following lemma shows that
every (G;H)-section is of this form.

Lemma 2.14 (cf. [Po, 1.7.5]) Let X be a G-variety and S be a (G;H)-section of X.
Then G �H S and X are birationally isomorphic G-varieties.

Proof. Consider the map � : G�S �! X given by (g; s) 7! gs. Then � is a morphism
of G � H varieties, where G � H acts via (2) on G � S and H acts trivially on X .
Moreover, this map is dominant and ��1(x) is a single H-orbit for x in general position
in X . Thus by Remark 2.5, � is the rational quotient map for the H-action on G� S.
In other words, we have the following commutative diagram:

G� S
� j & �

#
G �H S

'�! X

To complete the proof, note that since the G-action on G� S commutes with the H-
action, every map in this diagram is G-equivariant. 2

2.6 Compressions and �ber products

De�nition 2.15 Let X be a generically free G-variety. A G-compression of X is a
dominant G-equivariant rational map X �! Y , where Y is another generically free
G-variety.
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Let Y be a primitive G-variety, � : Y �! Y=G be the rational quotient map, and
� : X0 �! Y=G be a dominant rational map. Recall that the �ber product Y �Y=GX0

is de�ned as the closure of
f(y; x0) j �(y) = �(x0)g

in Y �X0. This variety inherits a G-action from Y . Clearly Y �Y=GX0 is a generically
free G-variety if an only if so is Y .

Lemma 2.16 (a) Suppose Y and � : X0 �! Y=G are as above. Denote the �ber
product Y �Y=G X0 by X. Then the natural projection pr : X = Y �Y=G X0 �! X0 is
the rational quotient map for the G-action on X.

(b) Conversely, suppose X is a generically free G-variety, X0 = X=G, � : X �! X0

is the rational quotient map and f : X0 �! Y=G is the dominant rational map induced
by a G-compression f : X �! Y . Then

 
def
= f � (f � �) : X '�! Y �Y=G X0

is a birational isomorphism of G-varieties.

Proof. (a) It is easy to see that pr�1(x0) = Gx0 for x0 in general position in X0.
Part (a) now follows from Remark 2.5.

(b) By part (a), the map  : X=G
'�! X0 = (Y �Y=G X0)=G is a birational

isomorphism. The desired conclusion now follows from from Lemma 2.8. 2

Remark 2.17 Suppose X is a generically free G-variety. One can show that the
rational quotient map �:X �! X=G is a principal G-bundle over a dense open subset
U � X=G. This means that there exists an etale cover U 0 �! U such that U 0�U �

�1(U)
is isomorphic to U 0 � G, as a G-variety. If X is primitive, this is equivalent to the
following: there exists a �nite rational cover X0 �! X=G of irreducible varieties such
that X0 �X=G X is birationally isomorphic to X0 � G (as a G-variety). The latter
assertion follows from the existence of a rational quasisection for X ; see [Po, 1.1.2].
Since we shall not use this result, except to motivate De�nition 3.1, we omit the details
of the argument.

2.7 The \no-name" lemma

Let Y be a G-variety and let � : E �! Y be a G-vector bundle of rank d. This means
that � is an algebraic vector bundle of rank d, G acts on both E and Y so that � is
a surjective morphism of G-varieties, and g : ��1(y) 7! ��1(g(y)) is a linear map for
each y 2 Y and g 2 G; see, e.g., [BK, Section 1].
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Lemma 2.18 Let Y be a generically free G-variety and let E be a G-vector bundle on
Y . Then there exists a birational isomorphism � so that the diagram

E=G
��! Y=G� kd

j
� j .

#
Y=G

(3)

commutes. Here kd is the d-dimensional a�ne space and Y=G�kd �! Y=G is projec-
tion to the �rst factor.

Proof. We may assume without loss of generality that Y is a primitive G-variety.
Moreover, in view of Example 2.10 and Lemma 2.11, we may assume Y is irreducible
(otherwise we can replace Y by an irreducible component Y1, G by the stabilizer G1 of
Y1, and E by ��1(Y1)).

If Y is irreducible then Lemma 2.18 is the usual form of the so-called \no-name
lemma"; see [BK, Lemma 1.2], [Ka2, p. 104], or [Do, p. 6]. 2

In the sequel we will need the following variant of the no-name lemma.

Lemma 2.19 Let Y be a generically free G-variety and let � : E �! Y be a G-vector
bundle of dimension d. Then E is birationally isomorphic to Y � kd (as a G-variety),
where kd is the a�ne d-space with trivial G-action.

Proof. By Lemma 2.16, E is birationally isomorphic to Y �Y=G (E=G). Let � be as
in (3). Then we have the following birational isomorphisms of G-varieties:

E ' Y �Y=G E=G
1��' Y �Y=G (Y=G� kd) ' Y � kd. 2

Corollary 2.20 Let Y be a primitive generically free G-variety and let V be a d-
dimensional linear representation of G. Then there exists a G-equivariant dominant
rational map f : Y � kd �! V . Here G acts on Y � kd via g(y; a) = (gy; a), as in the
previous lemma.

Proof. Let E = Y � V and let � : Y � kd '�! Y � V be the birational isomorphism
of Lemma 2.19. Now set f = pr ��, where pr : Y �V �! V is projection to the second
component. 2

3 De�nition of essential dimension

3.1 The essential dimension of a G-variety

Recall that that, up to birational isomorphism, a generically free G-variety X can
be viewed as a principal G-bundle over the base X=G; see Remark 2.17. Moreover,
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Lemma 2.16(b) says that if X �! Y is a compression then X is obtained from Y by a
(dominant) base extensionX=G �! Y=G. Informally speaking, theG-bundle structure
of X �! X=G is completely determined by the G-bundle structure of Y �! Y=G; the
base extension X=G �! Y=G simply \spreads" this structure over a larger base. Thus
given a generically free G-variety X one can ask for a "minimal possible" base space
B = Y=G over which it is de�ned. Of course, such a base space cannot be expected to
be unique, so we will limit ourselves to studying its dimension.

De�nition 3.1 The essential dimension of a primitive generically free G-variety X
is the smallest possible value of dim(Y=G), where X �! Y is a compression; see
De�nitions 2.1 and 2.15. We shall denote this number by ed(X;G) or simply ed(X) if
the reference to G is clear from the context.

Remark 3.2 If X is primitive and X �! Y is a G-compression then Y is primitive
as well. Indeed, k(Y )G is contained in k(X)G, which is a �eld; see Lemma 2.2(b).

Note also that dim(Y=G) = dim(Y ) � dim(G), where dim(Y ) is the dimension of
any irreducible component of Y . Thus we could have de�ned ed(X;G) as the minimal
value of dim(Y ) rather than of dim(Y=G) = dim(Y )� dim(G). Subtracting dim(G) is
simply a matter of convention; we will later �nd it useful.

We now record several simple observations for future reference.

Lemma 3.3 Let X and Y be primitive generically free G-varieties. Then

(a) ed(X;G)� dim(X)� dim(G).

(b) Suppose there exists a G-compression X �! Y . Then ed(X;G) � ed(Y;G).

(c) Let Y0 be the union of �(X), as � ranges over all G-equivariant rational maps
� : X �! Y . (As usual, �(X) is de�ned as �(U), where U is the domain of �.)
Suppose Y0 is dense in Y . Then ed(X;G)� ed(Y;G).

(d) Let S be a G-variety with trivial G-action. Then ed(X � S;G) = ed(X;G).

(e) If G = f1g then ed(X;G) = 0 for any X.

Proof. Parts (a) and (b) are immediate consequences of the de�nition.
(c) Let f : Y �! Z be a G-compression with dim(Z=G) = ed(Y;G). Suppose G

acts freely on a dense G-invariant open subset V of Z. Let U = ��1(V ) � Y . By our
assumption Y0 \ U 6= ;. In other words, there exists a rational G-equivariant map � :
X �! Y such that �(X)\U 6= ;. Then f �� : X �! Z is a well-de�ned G-equivariant
rational map. Denote the closure of the image of this map in Z by Z0. By our choice
of U , Z0 is a generically free G-variety. Thus f � � can be viewed as a compression
X �! Z0. Consequently, ed(X;G) � dim(Z0=G) � dim(Z=G) = ed(Y;G), as claimed.

(d) Since the natural projection X � S �! X is a G-compression, part (b) says
that ed(X � S;G) � ed(X;G). On the other hand, given s 2 S, let �s : X �! X � S

be the (regular) G-equivariant map given by �s(x) = (x; s). Since the images of �s
cover X � S, as s ranges over S, part (c) implies ed(X;G) � ed(X � S;G).

(e) If G = f1g then we can (G-equivariantly) compress X to a point. 2
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3.2 The essential dimension of a group

Theorem 3.4 Let G be an algebraic group, X be a generically free primitive G-variety,
E �! X be a G-vector bundle over X and V , V 0 be two generically free linear repre-
sentations of G. Then

(a) ed(E;G) = ed(X;G),

(b) ed(V;G) = ed(V 0; G) and

(c) ed(X;G) � ed(V;G).

Proof. (a) By Lemma 2.19, E is birationally equivalent to X � kd, as a G-variety.
Thus ed(E;G) = ed(X � kd; G) = ed(X;G); see Lemma 3.3(d).

(b) Let E = V � V 0. Applying part (a) to the vector bundle E �! V given by
projection to the �rst factor, we obtain the equality ed(E;G) = ed(V;G). Similarly,
ed(E;G) = ed(V 0; G), and thus ed(V;G) = ed(V 0; G).

(c) By Corollary 2.20 there exists a G-compression X � kd �! V , where d =
dim(V ). Now combining parts (b) and (d) of Lemma 3.3, we obtain

ed(X;G) = ed(X � kd; G) � ed(V;G) ;

as claimed. For an alternative proof, see Remark 7.2. 2

Note that every linear algebraic group can be embedded in some GLn and thus has
a generically free linear representation. Thus we can now give the following de�nition.

De�nition 3.5 The essential dimension of an algebraic group G is de�ned to be the
essential dimension of a generically free linear G-representation. By Theorem 3.4(b)
this number is is independent of the choice of the representation; we shall denote it by
ed(G). Note that ed(G) = maxfed(X;G)g, as X ranges over all primitive generically
free G-varieties; see Theorem 3.4(c).

Remark 3.6 In an earlier version of this paper the inequality ed(G;X) � ed(G) was
only established for reductive groups G. Theorem 3.4(c) in its current form was �rst
pointed out to us by V. E. Kordonsky, who proved it by reducing the general case to
one where G is reductive and then appealing to our earlier result. His argument also
yields the following theorem [Ko1, Theorem 1]:

If G is an algebraic group and L is the Levi subgroup of G then ed(G) = ed(L). 2

3.3 First properties

Lemma 3.7 Suppose an algebraic subgroup G is an (algebraic) semidirect product of
its subgroups N and H, with N / G. Then ed(G) � ed(H).

13



Proof. Let V be a generically free linear representation of G and let � : V �! Y

be a G-compression with dim(Y=G) = ed(G). Then we can choose a regular model for
Y=N which is a generically free H-variety; see Remark 2.6 We can thus view V as a
generically free linear representation of H and the composite map V �! Y=N below
as an H-compression:

V �! Y
j
#

Y=N
j
#

Y=G

Thus ed(G) = dim(Y )� dim(G) = dim(Y=N)� dim(H) � ed(H). 2

Lemma 3.8 ed(G1�G2) � ed(G1)+ ed(G2) for any two algebraic groups G1 and G2.

Proof. For i = 1; 2 let Vi be a generically free linear representation of Gi and let
�i : Vi �! Yi be a Gi-compression such that ed(Gi) = dim(Yi) � dim(Gi). Then
V1 � V2 is a generically free linear representation of G1 � G2 and

�1 � �2 : V1 � V2 �! Y1 � Y2
is a G1�G2-compression. Thus ed(G) � dim(Y1�Y2)�dim(G) = dim(Y1)+dim(Y2)�
dim(G1)� dim(G2) = ed(G1) + ed(G2), as claimed. 2

3.4 Examples

Example 3.9 (a) Let Td = (k�)d be a d-dimensional torus. Then ed(Td) = 0 for any
d � 1.

(b) ed(GLn) = 0,

(c) ed(SLn) = 0.

Proof. (a) The natural representation of Td on V = kd is generically free. Hence by
Lemma 3.3(a), ed(Td) = ed(V; Td) � dim(V )� dim(Td) = 0.

(b) Consider the linear representation of GLn on V = Mn(k) given by left multipli-
cation. By Lemma 3.3(a), ed(GLn) � dim(V )� dim(GLn) = 0.

(c) Let SLn act on V = Mn(k) by left multiplication, as above. Let Y � V be the
set of matrices of determinant 1 and let f : V �! Y be given by

f(A) = (
1

det(A)
v1; v2; : : : ; vn) ;

where A = (v1; : : : ; vn) is the matrix whose columns are v1; : : : ; vn. It is easy to see
that f is a SLn-compression; thus ed(SLn) � dim(Y )� dim(SLn) = 0. 2
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Example 3.10 (a) ed(On) � n, (b) ed(SOn) � n� 1.

Proof. Let W = kn, q :W �W �! k be a non-degenerate symmetric bilinear form,
and On be the group of q-preserving linear transformations W �! W . If v 2 W and
0 6= v1; : : : ; vr 2 W , we de�ne P (v; v1; : : : ; vr) by

P (v; v1; : : : ; vr) = v �
rX
i=1

q(vi; v)

q(vi; vi)
vi (4)

Note that if v1; : : :vi are mutually orthogonal then P (v; v1; : : : ; vi) is just the component
of v orthogonal to v1; : : : ; vr.

For d = 1; : : : ; n let Yd � W d be the set of elements (w0
1; : : : ; w

0
d) such that

q(w0
i; w

0
j) = 0 and q(w0

i; w
0
i) 6= 0 for any 1 � i < j � d. Note that Yd is a locally

closed On-invariant subvariety of W d. An easy induction argument, using the projec-
tion Yd+1 �! Yd to the �rst d components, shows that Yd is an irreducible variety of
dimension n+ (n� 1) + : : :+ (n� d+ 1) = d(2n� d+ 1)=2.

(a) Consider the linear representation of On on V = Wn. Both Wn and Yn are
generically free On-varieties. We now observe that the usual diagonalization process
gives rise to a compression f : Wn �! Yn. That is, we de�ne f(w1; : : : ; wn) =
(w0

1; : : : ; w
0
n), where w

0
1 = w1 and

w0
i = P (wi;w

0
1; : : : ; w

0
i�1) (5)

for i = 2; : : : ; n. Thus ed(On) � dim(Yn=On) = dim(Yn) � dim(On) = n(n + 1)=2 �
n(n� 2)=2 = n, as claimed.

(b) Note thatWn�1 is a generically free linear representation of SOn (but not ofOn)
and Yn�1 is a generically free SOn-variety ofWn�1. Moreover, the mapWn�1 �! Yn�1
given by (w1; : : : ; wn�1) 7! (w0

1; : : : ; w
0
n�1), with w0

1; : : : ; w
0
n�1 as in (5), is an SOn-

compression. Thus
ed(SOn) � dim(Yn�1)� dim(SOn) = (n� 1)(n+ 2)=2� n(n � 1)=2 = n� 1. 2

4 (G�H)-sections and essential dimension

4.1 The essential dimension of a section

Lemma 4.1 Let X be a generically free G-variety and let S � X be a (G;H)-section;
see De�nition 2.9. Then ed(X;G) � ed(S;H).

Proof. Recall that X ' G �H S; see De�nition 2.12 and Lemma 2.14.
Choose a generically free H-variety Y and an H-compression � : S �! Y such that

dim(Y=H) = ed(S;H). Then G�HY is a generically free G-variety; see Remark 2.13(a).
It is easy to see that � lifts to a G-compression � : X ' G �H S �! G �H Y given
by � : (g; s) 7! (g; �(s)). Thus ed(X;G) = ed(G �H S;G) � dim(G �H Y )� dim(G) =
dim(Y )� dim(H) = ed(S;H). 2
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Example 4.2 To illustrate Lemma 4.1 we will give an alternative proof of the inequal-
ities ed(On) � n and ed(SOn) � n� 1 of Example 3.10.

Let W = kn, q be a non-degenerate symmetric bilinear form of W , e1; : : : ; en be
an orthonormal basis with respect to q, and V = Wn be a generically free linear On-
variety as in Example 3.10. Set Vi = Span(e1; : : : ; ei). Then S = V1 � : : :� Vn is a
(On; (Z=2)

n)-section of V = Wn. Thus by Lemma 4.1

ed(On) = ed(V;On) � ed(S; (Z=2)n) = ed((Z=2)n) � n :

Note that ed(S; (Z=2)n) = ed((Z=2)n) because S is a linear space with a generically free
(Z=2)n-action. The last inequality follows from the fact that the group (Z=2)n has a
generically free n-dimensional representation. (We remark that, in fact, ed((Z=2)n) = n
by [BR1, Theorem 6.1]; however, all we need here is the inequality ed((Z=2)n) � n,
which is immediate from the de�nition of essential dimension.)

Note that S can also be viewed as a (SOn; (Z=2)n�1)-section for the SOn-action
on V . Applying Lemma 4.1 to this section yields the inequality ed(SOn) � n � 1 of
Example 3.10(b). 2

Another application of Lemma 4.1 can be found in the proof of Proposition 11.7.

Proposition 4.3 Let G be a connected semisimple group whose center is trivial. Let
N be the normalizer of a maximal torus in G. Then ed(G) � ed(N).

Proof. Let T be a maximal torus of G and let Lie(G) and Lie(T ) be the Lie algebras
of G and T respectively. Then the linear representation of G on

V = Lie(G)� Lie(G)

given by the adjoint action in each component is generically free and

S = Lie(T )� Lie(G)

is a (G;N)-section for this action; see [Po, 1.7.17]. Thus ed(N) = ed(S;N); see De�-
nition 3.5. By Lemma 4.1 we have ed(G) = ed(V;G)� ed(S;N) = ed(N), as claimed.

2

Remark 4.4 Note that ed(G) can be strictly less than ed(N). Indeed, let G = SLn.
Then ed(G) = 0; see Example 3.9. On the other hand, ed(N) > 0, since N is not
connected; see Theorem 5.4.

We also remark that the group N cannot be replaced by the Weyl group W of G in
the statement of Proposition 4.3. In other words, the inequality ed(G) � ed(W ) is false
in general. For example, if G = PGL4 then W = S4 and thus ed(W ) = 2; see [BR1,
Thm. 6.5]. On the other hand, ed(PGL4) � 4; see Theorem 9.3. 2
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4.2 An application

Theorem 4.5 ed(PGLn) � n2 � 2n for every n � 4.

Proof. Let T be a maximal torus in PGLn and let N be the normalizer of T . By
Proposition 4.3 it is su�cient to show that ed(N) � n2�2n. We therefore take a closer
look at N . The maximal torus T can be thought of as (k�)n=�, where � ' k� is the
diagonal subgroup of (k�)n. Then N can be written as a semidirect product T �� Sn,
where � : Sn �! Aut(T ) is given by permuting the n factors of k�.

We will now construct a linear representation V of N . Let V be the k-vector space
freely spanned by the n(n � 1) basis vectors eij , where i; j = 1; : : : ; n and i 6= j. We
shall denote

P
xijeij by (xij). The action of N on V is de�ned as follows. Write an

element of N as (t; �), where t = (t1; : : : ; tn) (modulo �) and � 2 Sn. Then

(t; �) : eij 7! t�(i)t
�1
�(j)e�(i)�(j) :

One can check that this action is generically free and thus

ed(N) = ed(V;N)� dim(V=N) = dim(V )� dim(N) = n2 � 2n+ 1 :

We shall, instead, derive the slightly better bound of Theorem 4.5 by considering the
N -action on the projective space P (V ).

Lemma 4.6 The action of N on P (V ) is generically free.

Proof. Let a; a0; b; b are four distinct integers between 1 and n. De�ne a rational
function z(a;a0)(b;b0) on P (V ) by

z(a;a0)(b;b0) =
xabxa0b0

xab0xa0b
:

Note that z(a;a0)(b;b0) = z(c;c0)(d;d0) implies fa; a0g = fc; c0g and fb; b0g = fd; d0g. Let U
be the dense N -invariant open subset of V consisting of those p 2 P (V ) satisfying
(i) xij(p) 6= 0 for every distinct i; j = 1; : : : ; n, and
(ii) z(a;a0)(b;b0)(p) 6= z(c;c0)(d;d0)(p) whenever fa; a0g 6= fc; c0g or fb; b0g 6= fd; d0g.

We claim that N acts freely on U . Indeed, let p 2 U and suppose (t; �)p = p for
some (t; �) 2 N . Note that the functions z(a;a0)(b;b0) are T -invariant and

(t; �)z(a;a0)(b;b0) = z(�(a);�(a0))(�(b)�(b0)) :

Thus if p 2 U , then f�(a); �(a0)g = fa; a0g and f�(b); �(b0)g = fb; b0g for every 4-tuple
a; a0; b; b0 of distinct integers between 1 and n. If n � 4 then the only � 2 Sn with this
property is the identity element.

We have thus proved that if p 2 U and (t; �)p = p then � = 1 in Sn. We now
want to show that t = 1 in T . Indeed, since every coordinate xij of p is assumed to be
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non-zero, (t; 1)p = p implies tat
�1
b = tct

�1
d for every 1 � a; b; c; d � n with a 6= b and

c 6= d. Letting b = d = 1, we see that t2 = t3 = : : : = tn. Similarly for b = d = 2 we
obtain t1 = t3 = : : : = tn. Thus t1 = : : : = tn, i.e., t = 1 in T . This completes the
proof of the lemma. 2

To �nish the proof of the theorem, consider the natural (N -equivariant) projec-
tion map V �! P (V ). By Lemma 4.6 this map is an N -compression. Thus by
Lemma 3.3(a-b) ed(N) � dim(P (V ))� dim(N) = (n2� n� 1)� (n� 1) = n2 � 2n, as
claimed. 2

Remark 4.7 In Section 9 we will strengthen the upper bound of Theorem 4.5 for every
n which is not a power of 2; see Theorem 9.6 and Remark 9.9.

5 Groups of low essential dimension

The results of this section have been suggested to us by V. L. Popov.

5.1 Rational sections

Let X be a primitive G-variety (see De�nition 2.1) and let � : X �! X=G be the
rational quotient map for the G-action on X . A subvariety S � X is said to be a
rational section if �jS : S �! X=G is a birational isomorphism.

Remark 5.1 S is a rational section of X if and only if S is a (G;H)-section with
H = f1Gg. Indeed, if S is a (G; f1g)-section then �jS : S �! X=G is a birational
isomorphism by Lemma 2.11. The opposite implication follows from Theorem 2.3.

2

Lemma 5.2 Let X be a primitive generically free G-variety. Then ed(X;G) = 0 if
and only if X has a rational section.

Proof. Suppose ed(X;G) = 0. Then there exists a G-compression f : X �! Y ,
where Y=G is a point. In other words, there is a point y 2 Y such that Gy is dense
in Y and Stab(y) = f1Gg. It is now easy to see that S = f�1(y) is a (G; f1g)-section,
and, hence, a rational section; see Remark 5.1.

Conversely, suppose S � X is a rational section. Then S is a (G; f1g)-section;
hence, by Lemmas 4.1 and 3.3(e), ed(X;G)� ed(S; f1g) = 0. 2

5.2 Special groups

Let G be an algebraic group de�ned over k. Recall that G is called special ifH1(K;G) =
f1g for every �eld K containing k. Special groups were introduced by Serre [Se1] and
classi�ed by Grothendieck [G].
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Proposition 5.3 The following conditions are equivalent:

(a) G is a special group,

(b) ed(X;G) = 0 for every primitive generically free G-variety X,

(c) ed(G) = 0.

Proof. By Lemma 5.2 condition (b) is equivalent to

(b0) every primitive generically free G-variety has a rational section

and (c) is equivalent to

(c0) every generically free linear representation of G has a rational section.

It is well known that conditions (a), (b') and (c') are equivalent; see e.g., [Po, 1.4], [PV,
Section 2.6], or [Do, Sect. 7]. Hence, so are (a), (b), and (c). 2

Combining Proposition 5.3 with Grothendieck's classi�cation, of special groups
(see [G, Section 5] or [PV, Theorem 2.8]), we obtain the following result.

Theorem 5.4 Let G be an algebraic group de�ned over k. Then ed(G) = 0 if and only
if G is connected and its maximal connected semisimple subgroup is a direct product
G1 � : : :� Gr, where each Gi is of type SL or Sp. 2

5.3 n-special groups

De�nition 5.5 We will say that an algebraic group G de�ned over k is n-special if
H1(K;G) = f1g for any extension K=k of transcendence degree � n.

Note that a special group is n-special for every n.

Proposition 5.6 Let G be an n-special algebraic group and let X be a generically free
primitive G-variety. Then

(a) either ed(X;G) = 0 or ed(X;G) � n+ 1 and

(b) either ed(G) = 0 or ed(G) � n + 1.

Proof. (a) Assume the contrary: ed(X;G) = i, where 1 � i � n. Then there
exists a compression � : X �! Y such that trdegk k(Y )

G = dim(Y=G) = i. Recall
that the generically free action of G on Y determines an element of H1(k(Y=G); G);
following Popov [Po, 1.3], we shall denote this class by cl(G : Y ). By our assumption
H1(k(Y=G); G) = f1g and thus cl(G; Y ) = 1. Consequently, Y has a rational section;
see [Po, 1.4.1]. By Lemma 5.2, this implies that ed(Y;G) = 0. Thus ed(X;G) �
ed(Y;G) = 0 (see Lemma 3.3(b)), contradicting our assumption.

Part (b) is an immediate consequence of (a) and De�nition 3.5. 2
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Corollary 5.7 Let G be a connected algebraic group. Then

(a) ed(X;G) 6= 1 for any irreducible G-variety X.

(b) ed(G) 6= 1.

Proof. By a theorem of Steinberg [St, Thm. 1.9] every connected group is 1-special.
2

Remark 5.8 Note that Corollary 5.7 fails if G is not assumed to be connected. For
example, ed(G) = 1 if G is a (�nite) cyclic or odd dihedral group; see [BR1, 6.2].

Remark 5.9 A conjecture of Serre [Se3, III.3.1] (often referred to as \Conjecture II")
says that every simply connected semisimple group G is 2-special. This conjecture has
been veri�ed for all simple groups other than E8; see [Se3, Sect 5], [Se4, III.3], [BP],
[Ko2], and [Gi].

6 Structured spaces I

6.1 De�nition and examples

De�nition 6.1 Let F be a �eld.
(a) A structured space over F is a pair (W;�), where W is a �nite-dimensional F -

vector space and � is a tensor onW , i.e., � 2 T (W )
T (W �). If F 0=F is a �eld extension
then (W;�)
F F

0 is de�ned to be the structured space (W 0; �0), where W 0 = W 
F F
0

and �0 = � 
 1 2 T (W )
 T (W �)
 F 0 = T (W 0)
 T (W 0�).
(b) Two structured spaces (W;�) and (W 0; �0) over F are isomorphic if there exists

an isomorphism � : W �! W 0 of F -vector spaces such that ��(�) = �0, where �� is
the isomorphism T (W )
 T (W �) �! T (W 0)
 T (W 0�) induced by �.

(c) In the special case where A is a �nite-dimensional F -algebra,W is the underlying
F -vector space of A and the multiplicative structure is given by a tensor � 2 W � 

W �
W , we will write A = (W;�). Note that here the algebra A is not assumed to be
commutative or associative, or to have an identity element.

Remark 6.2 The above de�nition is essentially the same as the one in [Se2, X.2] or
[Se4, III.1.1]. The only di�erence is that we do not require � to be homogeneous, i.e.,
to lie in T p(W )
 T q(W �) for some p; q � 0; see Example 6.3(e) below.

We will always assume (as we do elsewhere in this paper) that F is a �eld extension
of k; if F = k we will usually denote our structured spaces by (V; �). In this case we

will be interested in the algebraic group Autk(V; �)
def
= fg 2 GL(V ) j g�(�) = �g. The

following examples will be of special interest to us in the sequel.

Example 6.3 (a) V = kn and � = 0. Then Autk(V; �) = GLn.
(b) V = kn and 0 6= � 2 �n(V �) is a volume form on V . Then Autk(V; �) = SLn.
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(c) V = k2n and � 2 �2(V �) is a symplectic (i.e., non-degenerate skew-symmetric
bilinear) form. Then Autk(V; �) = Sp2n.

(d) V = kn and � 2 S2(V �) is a non-degenerate symmetric bilinear form. Then
Autk(V; �) = On.

(e) V = kn and � = �1+�2, where �1 2 �n(W �) is a volume form and �2 2 S2(W �)
is a non-degenerate symmetric bilinear form. Then any element g 2 GL(V ) preserving
� has to preserve both �1 and �2. Thus Autk(V; �) = SLn \On = SOn.

(f) (V; �) is the algebra k� : : :�k (n times); see De�nition 6.1(c). Then Autk(V; �)
is the symmetric group Sn.

(g) (V; �) = Mn(k) is the algebra of n � n-matrices over k. Then Autk(V; �) =
PGLn.

(h) (V; �) = O, where O is the (split) octonion algebra over k; see Section 11.1.
Then Autk(O) is the exceptional group G2.

(i) (V; �) = A, where A is the (split) Albert algebra over k; see Section 11.3. Then
Autk(V; �) is the exceptional group F4.

(j) V = k27 is the underlying vector space of the Albert algebra A and � 2 V � 

V � 
 V � be the trilinear form associated to the cubic norm on A; see Sections 11.3
and 11.5. Then Aut(V; �) is the (simply connected) exceptional group E6.

6.2 First properties

Let (W;�) be a structured space de�ned over a �eld F containing k. Suppose B =
fb1; : : : ; bng is an F -basis ofW . Denote the dual basis ofW � byB� = f(b1)�; : : : ; (bn)�g.
Then the tensors bI = bi1 
 : : :
 bir form an F -basis of T (W ), as r ranges over the
positive integers, I = (i1; : : : ; ir), and each ij ranges over f1; : : : ; ng. Similarly, the
tensors (bJ)

� = (bj1)
� 
 : : :
 (bjs)

� form an F -basis of T �(W ). Thus we can write

� =
X
I;J

�JI (B) bI 
 b�J ; (6)

where each coe�cient �JI (B) lies in F . Note that only �nitely many of these coe�cients
are non-zero.

Let (V = kn; �) be a structured space and G = Autk(V; �). Note that the G-action
on V may not be generically free; however, the (diagonal) G-action on V n is always
free on the open subset (V n)0 consisting of n-tuples of linearly independent elements.
(We prefer the notation (V n)0 to GL(V ), since we view this set as a Zariski open subset
of V n and ignore the group structure.)

Let B 2 (V n)0 be a basis of V . Write � =
P

I;J �
J
I (B) bI 
 b�J , as in (6). Then each

�JI can be viewed as a function (V n)0 �! k, which takes B 2 (V n)0 to �JI (B). It is
easy to see that the functions �JI are regular on (V n)0 and thus rational on V n.
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Lemma 6.4 Let V = kn, � 2 T (V ) 
 T (V �), G = Autk(�) and (V n)0 � V n be as
above. Suppose B;B0 2 (V n)0. Then

(a) B0 = gB for some g 2 G if and only if �JI (B) = �JI (B
0) for every I and J.

(b) If Z is a G-invariant subvariety of V n such that Z \ (V n)0 6= ; then k(Z)G =
k(�JI jZ), where I ranges over f1; : : : ; ngr and J ranges over f1; : : : ; ngs.
Proof. (a) Write B0 = gB for some g 2 GL(V ) and observe that g 2 G = Autk(V; �)
if and only if �JI (B) = �JI (B

0) for every I and J .
(b) Each �JI de�nes a regular map (V n)0 �! k; together they de�ne a regular map

f : (V n)0 �! kN , where N is the number of non-zero �JI 's. Denote f(Z \ (V n)0) by
Z0. By part (a) f separates the G-orbits in (V n)0 and, hence, in Z \ (V n)0. Thus by
Remark 2.5, Z0 is birationally isomorphic to Z=G; hence, k(Z)G = k(Z=G) = k(Z0) =
k(�JI jZ), as claimed. 2

7 Spaces of rational maps

7.1 Equivariant maps into vector spaces

Proposition 7.1 Let G be an algebraic group and let V be a linear representation
of G. Then for every generically free G-variety X and every v 2 V , there exists a
G-equivariant rational map f : X �! V whose image contains v.

Proof. Suppose the action of G on V is given by the group homomorphism � : G �!
GLn, where n = dim(V ). We may assume without loss of generality that � is injective.
Indeed, otherwise we can replace V by V 0 = V � W , where W is a generically free
linear representation of G. If we can construct a G-equivariant rational map X �! V 0

whose image contains (v; 0), then the composition of this map with the projection
V 0 = V �W �! V will have the desired properties.

Note that we may also assume without loss of generality thatX is primitive. Indeed,
by Lemma 2.2 X is isomorphic to a disjoint union of primitive varieties. It is enough
to de�ne f on one of them; after that the others can be sent to 0.

Thus we can think of G as a subgroup of GLn = GL(V ); the G-action on V is
then given by left multiplication. Let X 0 = GLn �G X ; see De�nition 2.12. Recall
that X 0 is a generically free GLn-variety; see Remark 2.13. Since GLn is a special
group, Proposition 5.3 tells us that ed(X 0;GLn) = 0. This means that there exists a
GLn-compression � : X 0 �! O, where O is a single GLn-orbit with trivial stabilizer.
In other words, up to birational isomorphism of GLn-varieties, O ' V n ' Mn, where
GLn acts on Mn by left multiplication.

Note that the image of � contains every non-singular matrix in Mn (these matrices
form a single dense GLn-orbit). In particular, there exists an x0 = (g; x) 2 X 0 such
that �(x0) = In = n � n-identity matrix. Then �(1G; x) = g�1. Let v1; : : : ; vn be the
columns of g�1; since they are linearly independent, we can write

v = c1v1 + : : :+ cnvn
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for some c1; : : : ; cn 2 k. Let � : Mn �! V be the linear map given by

�(A) = A

0
B@
c1
...
cn

1
CA :

Note that � is GLn-equivariant and �(g
�1) = v. Now the desired map f : X �! V is

obtained as a composition

X ,! X 0 = GLn �G X ��! Mn
��! V ;

where the inclusion X ,! X 0 is given by x 7! (1G; x); see Remark 2.13. This in-
clusion is clearly G-equivariant; the maps � and � are GLn-equivariant (and, hence,
G-equivariant) by our construction. Hence, f is G-equivariant and f(x) = v, as de-
sired. 2

Remark 7.2 Let G be an algebraic group, X be a generically free primitive G-variety
and V be a generically free linear representation of G. Then combining Proposition 7.1

with Lemma 3.3(c), we obtain the inequality ed(X;G)� ed(V;G)
def
= ed(G). This gives

another proof of Theorem 3.4(c). 2

De�nition 7.3 Let G be an algebraic group, G �! GL(V ) be a linear representation
of G and X be a G-variety. We shall denote the k(X)G-vector space of G-equivariant
rational maps X �! V by RMapsG(X; V ).

Equivalently, RMapsG(X; V ) = (V 
k k(X))G.

Lemma 7.4 Let V = kn, let G �! GL(V ) be a linear representation of G, and let X
be a primitive G-variety. Then

(a) b1; : : : ; bm 2 RMapsG(X; V ) are linearly independent over k(X)G if and only if
b1(x); : : : ; bm(x) are linearly independent over k for x in general position in X.

(b) If X is generically free then dimk(X)G (RMapsG(X; V )) = n.

Proof. (a) Suppose b1(x); : : : ; bm(x) are linearly independent for x 2 X in general
position and

Pm
i=1 fibi = 0 for some f1; : : : ; fm 2 k(X)G. Then evaluating both sides

at x 2 X in general position, we conclude that f1 = : : : = fm = 0 in k(X)G and thus
b1; : : : ; bm are k(X)G-linearly independent.

Conversely, suppose b1(x); : : : ; bm(x) are k-linearly dependent for x 2 X in general
position. Then we may assume without loss of generality that b1(x); : : : ; bm�1(x) are lin-
early independent for x in general position; otherwise, we can simply replace b1; : : : ; bm
by b1; : : : ; bm�1. Thus for each x in general position in X , there exist uniquely de�ned
f1(x); : : : ; fm�1(x) 2 k such that

bm = f1b1 + : : :+ fm�1bm�1 : (7)
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It remains to prove that f1; : : : ; fm�1 2 k(X)G. By Cramer's rule f1; : : : ; fm�1 2 k(X).
To prove these functions are G-invariant, choose x 2 X and g 2 G, then substitute gx
into (7) and apply g�1 to both sides. Since each bi is a G-equivariant map X �! V ,
we have g�1bi(gx) = bi(x) and thus

bm(x) = f1(gx)b1(x) + : : :+ fm�1(gx)bm�1(x) :

By uniqueness of fi(x), we conclude that fi(gx) = fi(x), i.e., fi 2 k(X)G, as claimed.

(b) The inequality dimk(X)G RMaps(X; V ) � n is a direct consequence of part (a).
To prove the opposite inequality, let v1; : : : ; vn be a k-basis of V , v = (v1; : : : ; vn) 2 V n.
By Proposition 7.1 there exists a rational G-equivariant map b : X �! V n whose
image contains v. Write b = (b1; : : : ; bn), where each bi is a rational G-equivariant map
X �! V , i.e., and element of RMapsG(X; V ). In order to complete the proof of part
(b), it is enough to show that b1; : : : ; bn are k(X)G-linearly independent. Let S be the
set of x 2 X such that b1(x); : : : ; bn(x) are k-linearly independent. Clearly S is an open
G-invariant subset of X ; moreover, since the image of b contains v, S 6= ;. Thus S is
open and dense in X ; the desired conclusion now follows from part (a). 2

7.2 Structured spaces of rational maps

Let (V = kn; �) be a structured space, let G = Autk(V; �), and let H be an algebraic
subgroup of G, as above. In this setting RMapsH(X; V ) carries a naturally de�ned ten-
sor, which we shall denote by �XH . To de�ne �

X
H , choose a k(X)H-basis B = fb1; : : : ; bng

of RMapsH(X; V ). Then

�XH
def
=
X
I;J

(�XH)
J
I bI 
 (b�)J ;

where we de�ne (�XH)
J
I 2 k(X)H (as a rational function on X) by

(�XH)
J
I (x) = �JI (B(x)) : (8)

Here B(x) = fb1(x); : : : ; bn(x)g is a basis of V (for x in general position in X). Note
that since H is a subgroup of G = Autk(V; �), each function x 7! �JI (B(x)) is, indeed,
an element of k(X)H. Moreover, it is easy to see that our de�nition of �XH does not
depend on the choice of B.

Example 7.5 Suppose � 2 V � 
 V � 
 V de�nes the structure of an algebra A on V ,
i.e., (V; �) = A; see De�nition 6.1(c). Then the structured space (RMapsH(X; V ); �XH)
is the algebra of H-equivariant rational maps X �! V , with pointwise multiplication.

Lemma 7.6 Let (V = kn; �) be a structured space, H be an algebraic subgroup of
G = Autk(V; �), and X be a generically free primitive G-variety.
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(a) Suppose f : X �! Y is an H-compression. Then

(RMapsH(X; V ); �
X
H) ' (RMapsH(Y; V ); �

Y
H)
k(Y )H k(X)H ;

where the �eld extension k(X)H=k(Y )H is induced by f .
(b) Suppose S is an (H;H 0)-section of X. Then

(RMapsH(X; V ); �
X
H) ' (RMapsH 0(S; V ); �SH 0) :

(c) Suppose X = H �X0, where X0 is an irreducible variety and H acts on X by
h(h0; x0) = (hh0; x0). Then (RMapsH(X; V ); �XH) ' (V; �)
k k(X0).

Proof. (a) Let � : RMapsH(Y; V )
k(Y )Hk(X)H �! RMapsH(X; V ) be k(X)H-linear

map given by a
 1 �! a � f . If C = fc1; : : : ; cng is a k(Y )H-basis of RMapsH(Y; V )
then Lemma 7.4 shows that �(C) is a k(X)H-basis of RMapsH(Y; V ). This proves
that � is an isomorphism of k(X)H-vector spaces. Comparing the coe�cients of �XH
in the basis C to the coe�cients of �YH in the basis �(C), we conclude that � is an
isomorphism of structured spaces.

(b) Let B = fb1; : : : ; bng be a k(X)H-basis of RMapsH(X; V ). Recall that by
Lemma 2.11, the restriction a 7! ajS induces an isomorphism between the �elds k(X)H

and k(S)H
0

. We will therefore identify these �elds. Moreover, by Lemma 7.4, BjS =
f(b1)jS; : : : ; (bn)jSg is a basis of RMapsH 0(S; V ). Hence, � : a 7! ajS gives rise to an

isomomorphism � : RMapsH(X; V ) �! RMapsH 0(S; V ) of k(X)H-vector spaces. To
show that � induces the desired isomorphism of structured spaces, observe that if we
restrict the coe�cients of �XH in the basis B to S, we obtain the coe�cients of �SH 0 ; see
(8).

(c) Note that f1g � X0 is an (H; f1g)-section of X . Thus by part (b), we may
assume H = f1g and X = X0. Now apply part (a) to the f1g-compression X �! fptg,
where fptg is a single point. Since (RMapsf1g(fptg; V ); �fptgf1g ) = (V; �), this completes
the proof. 2

8 Structured spaces II

8.1 Structured spaces of type (V; �)

De�nition 8.1 Let F be a �eld containing k and let (V = kn; �) be a structured
space. We shall say that (W = Fn; �) is a structured space of type (V; �) if

(W;�)
F E ' (V; �)
k E (9)

for some �eld extension E=F .

Remark 8.2 A structured space (W = Fn; �) of type (V; �) is usually called \an F=k-
form of (V; �)"; see e.g., [Se4, III.1]. We will use the term \structured space" in order
to avoid linguistic confusion in those cases where � and � are themselves multilinear
forms, as in, e.g., Example 6.3(b), (c), (d), (j).
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Remark 8.3 If (W;�) is a structured space of type (V; �) then we can always choose
the �eld extension E=F in De�nition 8.1 to be �nitely generated. Indeed, if v1; : : : ; vn
is a k-basis of V , w1; : : : ; wn is an F -basis of W and the isomorphism (9) is given by
wi 7!

P
j aijvij with aij 2 E then we can replace E by F (aij).

Example 8.4 (a) Suppose V = kn and � is a volume (resp. non-degenerate symmetric
bilinear) form on V . Then (W;�) is of type (V; �) if and only if W = Fn and � is a a
volume (resp. non-degenerate symmetric bilinear) form on W .

(b) Let V = kn, let e1; : : : ; en be a k-basis of V , �1 = e�1 ^ : : : ^ e�n 2 �n(V ),
�2 = (e�1)

2 + : : :+ (e�n)
2 2 S2(V ), and � = �1 + �2. Recall that Autk(V; �) = SOn;

see Example 6.3(e). Now let F be a �eld extension of k and W = Fn. Then an
easy linear algebra argument shows that �2 7! (W;�1 
k F + �2) de�nes a bijection
between equivalence classes of bilinear forms of determinant 1 on W (modulo SL(W ))
and isomorphism classes of structured spaces (W;�) of type (V; �); cf. [KMRT, (29.29),
p. 407].

(c) Suppose (V; �) is the algebra k � : : :� k (n times), as in Example 6.3(f). Then
(W;�) is of type (V; �) if and only if � de�nes the structure of an n-dimensional etale
algebra over F , i.e., a direct sum of �eld extensions of F ; cf. [KMRT, (29.9), p. 395].

(d) Suppose (V = k27; �) = A, where A is the (split) Albert algebra; see Sec-
tion 11.3. Then (W;�) is structured spaces of type (V; �) if and only if W = F 27 and �
de�nes the structure of a central simple exceptional Jordan algebra on W ; see [J, Sect
V.7].

For other examples see Lemma 9.1 and Remark 11.4.

Lemma 8.5 Suppose (V = kn; �) is a structured space with automorphism group G =
Autk(V; �). Let H be an algebraic subgroup of G, and let X be a primitive generically
free H-variety. Then (RMapsH(X; V ); �XH) is a structured space of type (V; �).

Proof. We may assume without loss of generality that X is irreducible. Indeed,
otherwise an irreducible component X1 of X is an (H;H1)-section (see Example 2.10);
we can thus replace X by X1, H by H1 and then appeal to Lemma 7.6(b).

For irreducible X , consider the H-compression f : H � X �! X , where H acts
on H � X by h0(h; x) = (h0h; x) and f(h; x) = hx. Now apply Lemma 7.6(a) to this
compression; the desired conclusion then follows from Lemma 7.6(c). 2

Proposition 8.6 Let (V = kn; �) be a structured space with automorphism group
G = Autk(V; �), and let F be a �nitely generated �eld extension of k. Then

(a) a structured space (W = Fn; �) is of type (V; �) if and only if there exists a
generically free primitive G-variety X such that (W;�) ' (RMapsG(X; V ); �XG ).

(b) Suppose X and X 0 are generically free primitive G-varieties such that k(X)G =
k(X 0)G and (RMapsG(X; V ); �XG ) ' (RMapsG(X 0; V ); �X

0

G ) (as structured spaces).
Then X ' X 0 (as G-varieties).
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Proof. (a) The \if" assertion follows from Lemma 8.5. To prove the converse, assume
(W = Fn; �) is a structured space of type (V = kn; �). Choose E=F as in De�nition 8.1.
By Remark 8.3 we may assume that E is �nitely generated over F and, hence, over k.
Thus there exist irreducible varieties X0 and Y0 such that E = k(Y0), F = k(X0), and
the �eld extension E=F is induced by a dominant rational morphism � : Y0 �! X0.

Let B = fb1; : : : ; bng be an F -basis of W . Then B is also an E-basis of V 
k E;
see (9). Recall that (V; �) 
k E ' (RMapsG(Y; V ); �

Y
G), where Y = G � Y0; see

Lemma 7.6(c). Thus we can view b1; : : : ; bn as G-equivariant rational maps Y �! V ;
together they de�ne a G-equivariant rational map b : Y �! V n. Let Z be the closure
of b(Y ) in V n. Note that Z \ (V n)0 6= ; (see Lemma 7.4) and thus the rational map
b : Y0 �! Z0 = Z=G induced by b : Y �! Z is given by (�JI )jZ 7! �JI (B); see

Remark 2.4 and Lemma 6.4(b). Since every �JI (B) lies in F , b factors through X0 (via
�). Consequently b factors through X = X0 �Z0

Z. These maps are shown in the
following diagram.

b : Y = G� Y0 �! X = X0 �Z0
Z

c�! Z � V n

# # #
b : Y0

��! X0
c�! Z0 � (V n)=G

Here the vertical arrows represent quotient maps and c (resp. c) is the map X �!
Z � V n (resp. X0 �! Z0 � V n=G) induced by b (resp. b). Let c = (c1; : : : ; cn),
where each ci is a G-equivariant rational map X �! V and let C = fc1; : : : ; cng. Since
Z\ (V n)0 6= ;, C is an F -basis of RMapsG(X; V ); see Lemma 7.4. By our construction
(�XG )

J
I (C) = �JI (B) for every I and J . This means that the structured spaces (W;�)

and RMapsG(X; V ) are isomorphic via the linear map W �! RMapsG(X; V ) which
takes bi to ci.

(b) Denote the structured space (RMapsG(X; V ); �XG ) by (W;�). We want to show
that X can be uniquely recovered from (W;�). Let C = fc1; : : : ; cng be a basis of
W = RMapsG(X; V ), c = (c1; : : : ; cn) be the rational map X �! V n de�ned by C,
and Z be the closure of c(X) in V n. Then by Lemma 7.4, Z \(V n)0 6= ;; thus c induces
a rational map c : X0 �! Z0, where Z0 = �(Z) ' Z=G and � : V n �! V n=G is the
quotient map. The maps c and c are shown in the diagram below.

X
c�! Z � V n

# # �

X0
c�! Z0 � (V n)=G

Here the vertical maps are quotient maps and c is given by �JI 7! �JI (C). (Recall
that k(V n=G) = k(�JI ); see Lemma 6.4(b).) Now note that X ' X0 �Z0

Z (see
Lemma 2.16(b)) and Z = ��1(Z0).

This shows that X can be uniquely recovered from (W;�). More precisely, suppose

(RMapsG(X; V ); �
X
G )

def
= (W;�) ' (RMapsG(X

0; V ); �X
0

G )
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via a map which sends the basis C of (W;�) to a basis D of (RMapsG(X
0; V ); �X

0

G ).
Denote the G-equivariant rational morphism (d1; : : : ; dn) : X 0 �! V n by d. Then
the induced map d : X 0=G = X0 �! V n=G of quotient spaces is the same as c; thus
X 0 ' X0 �Z0

Z ' X , as claimed. 2

8.2 Structured spaces and essential dimension

De�nition 8.7 Let F be a �eld, (W = Fn; �) be a structured space and F0 be a
sub�eld of F .

(a) We say that (W;�) is de�ned over F0 if there exists an F -basis B ofW such that
every coe�cient �JI (B) of � with respect to this basis lies in F0. Equivalently, (W;�)
is de�ned over F0 if and only if it is isomorphic to (W0; �0)
F0 F for some structured
space (W0 = Fn

0 ; �0).

(b) �(W;�)
def
= minftrdegk(F0)g, where (W;�) is de�ned over F0. Equivalently,

�(W;�) = minftrdegkk(�JI (B) j I; J)g, as B ranges over all F -bases of W .

Theorem 8.8 Let (V; �) be a structured space and G = Autk(V; �).
(a) If X is a generically free primitive G-variety then

ed(X;G) = �(RMapsG(X; V ); �
X
G ).

(b) ed(G) = maxf�(W;�)g, where the maximum is taken over all structured spaces
(W;�) of type (V; �).

Proof. (a) Denote the structured space (RMapsG(X; V ); �
X
G ) by (W;�).

If X �! Y is a G-compression then by Lemma 7.6(a) the structured space (W;�)
is de�ned over k(Y )G. If we choose Y to be of minimal possible dimension, then
trdegkk(Y )

G = dim(Y=G) = ed(X;G). This proves that �(W;�) � ed(X;G).
To prove the opposite inequality, write (W;�) ' ( ~W; ~�) 
 ~F F , where (

~W; ~�) is a

structured space over ~F and trdegk( ~F ) = �(W;�). Note that since (W;�) is a structured
space of type (V; �), so is ( ~W; ~�). Thus by Proposition 8.6(a),

( ~W; ~�) ' (RMapsG( ~X); �
~X
G)

for some primitive generically free G-variety ~X with k( ~X)G = ~F . On the other hand,
the extension F= ~F is given by a rational morphismX=G �! ~X=G of algebraic varieties.
Using this morphism we can construct the �ber product Y = X=G � ~X=G

~X. By

Lemma 7.6(a),

(RMapsG(Y; V ); �
Y
G) ' (RMapsG( ~X; V ); �

~X
G )
 k(X)G '

( ~W; ~�)
 ~F F = (W;�) = (RMapsG(X; V ); �XG ) :

Hence, by Proposition 8.6(b), X is birationally isomorphic to Y = X=G� ~X=G
~X. Since

the natural projection Y �! ~X is a G-compression, we conclude that

ed(X;G) = ed(Y;G) � dim( ~X=G) = trdegk k( ~X=G) = trdegk ~F = �(W;�) ;
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as claimed.
(b) Recall that ed(G) = maxfed(X;G)g, as X ranges over all generically free prim-

itive G-varieties; see De�nition 3.5. The desired conclusion now follows from part (a)
and Proposition 8.6. 2

We conclude this section with two simple applications of Theorem 8.8. Other ap-
plications will be given in Sections 9-11.

Example 8.9 (a) Suppose V = kn and � be a volume form on V , so that Autk(V; �) =
SLn. Then every volume � form on W = Fn can be written as b1 ^ : : :^ bn for some
basis b1; : : : ; bn of W . Thus every structured space (W;�) of type (V; �) is isomorphic
to (V; �)
k F , and, consequently, �(W;�) = 0. Applying Theorem 8.8, we conclude
that ed(SLn) = 0; cf. Example 3.9(c) and Theorem 5.4.

(b) (cf. [Se4, III.1.2(a)]) Suppose V = k2n and � 2 �2(V �) is symplectic form on
V . Then every symplectic form � form on W = Fn can be written as

� = b�1 ^ b�2 + : : :+ b�2n�1 ^ b�2n
in some basis b1; : : : ; bn of W . This means that every structured space (W;�) of type
(V; �) is isomorphic to (V; �)
kF and thus �(W;�) = 0. By Theorem 8.8, we conclude
that ed(Sp2n) = 0; cf. Theorem 5.4.

9 Projective linear groups

9.1 Central simple algebras

Recall that PGLn = Autk(Mn), where we view the matrix algebra Mn = Mn(k) as a
structured space (kn

2

; �); see De�nition 6.1(c).

Lemma 9.1 (Wedderburn; see e.g., [Se2, X.5 Proposition 7] or [KMRT, 1.1]) Let F
be a �eld containing k and let W = Fn2 . Then (W;�) is a structured space of type Mn

if and only if � 2W � 
W �
W de�nes the structure of a central simple F -algebra on
W . 2

If A is a central simple algebra, we will denote the center of A by Z(A). Division
algebras will usually be denoted by D. Recall that UD(m;n) is the division algebra

generated by m generic n � n matrices X1 = (x
(1)
ij ); : : : ; Xm = (x

(m)
ij ). For a more

detailed discussion of these algebras we refer the reader to [Pr1, Part II] or [Pi, 20.8].

Lemma 9.2 (a) ed(PGLn) = maxf�(A)g, as A ranges over all central simple algebras
of degree n whose center contains k.

(b) ed(PGLn) = �(UD(m;n)) for any m � 2.

(c) ed(PGLn) = maxf�(D)g, as D ranges over all division algebras of degree n
whose center contains k.
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Proof. Part (a) follows from Lemma 9.1 and Theorem 8.8(b). To prove part (b),
consider the representation of PGLn on Vm = (Mn)

m given by

g(a1; : : : ; am) = (ga1g
�1; : : : ; gamg

�1) :

The structured space (RMapsPGLn(Vm; V1); �
Vm
PGLn

) is the algebra of rational PGLn-

equivariant maps Vm �! V1 = Mn; see Example 7.5. By a theorem of Procesi this
algebra is isomorphic to UD(m;n); see [Pr2, Thm. 2.1]. (The isomorphism identi-
�es Xi 2 UD(m;n) with the projection map �i : Vm = (Mn)

m �! Mn given by
�i(a1; : : : ; am) = ai). Now part (b) follows from Theorem 8.8(a). Part (c) is an imme-
diate consequence of (a) and (b). 2

Theorem 9.3 ed(PGLnr) � 2r for any n � 2 and r � 1.

Proof. [Re, Theorem 16.1(b)] shows that �(UD(2; nr)) � 2r. The desired conclusion
now follows from Lemma 9.2(b). 2

9.2 Cyclic algebras

Lemma 9.4 (a) If D is a division algebra of degree n � 2 then �(D) � 2.

(b) If D is a cyclic division algebra then �(D) = 2.

(c) ed(PGLn) = 2 if n = 2, 3, and 6.

Proof. (a) Assume the contrary: D = D0 
K0
K, where K is the center of D and

K0 is the center of D0 and trdegk(K0) � 1. Then D0 cannot be a division algebra by
Tsen's theorem (see e.g., [Pi, 19.4]), a contradiction. Another proof of part (a) can be
deduced from Corollary 5.7(a) (with G = PGLn).

(b) Since D is cyclic, there are elements x; y 2 D such that xn = u 2 K, yn = v 2 K,
xy = �yx where � is a primitive n-th root of unity. (Recall that we are assuming k
is algebraically closed and of characteristic 0; in particular, � 2 k.) Examining the
structure constants of D in the basis B = fxiyj j i; j = 0; : : : ; n� 1g, we see that D is
de�ned over the �eld k(u; v). Thus �(D) � trdegk(u; v) � 2. Part (b) follows from this
inequality and part (a).

(c) Follows from part (b) and Lemma 9.2(c), since every division algebra of degree
2, 3, or 6 is cyclic; see e.g., [Pi, 15.6]. 2

9.3 Algebras of odd degree

In this section we use a theorem of Rowen [Row] to give an upper bound on ed(PGLn)
for odd n.

Recall that by a theorem of Wedderburn every central simple algebra A with center
F is of the form A = Md(D), where D is a division algebra with center F . The algebra
D is unique up to isomorphism (of F -algebras); we shall refer to it as the underlying

30



division algebra of A. The degree of D is called the index of A and is denoted by
Ind(A). Two central simple algebras with center F are called Brauer equivalent if they
have F -isomorphic underlying division algebras. Brauer equivalence classes of central
simple algebras form an abelian group under tensor products; this group is called the
Brauer group of F and is denoted by Br(F ). For a more detailed discussion of the
structure theory of central simple algebras and the Brauer group we refer the reader
to [Pi].

Lemma 9.5 Let D1 and D2 be division algebras with center F . Suppose D1 and D2

generate the same cyclic subgroup of Br(F ). Then �(D1) = �(D2).

Proof. By symmetry it is enough to show

�(D1) � �(D2) (10)

Note that our assumption forces D1 and D2 to have the same degree, which we shall
denote by n; see [Pi, Proposition 13.4(viii)]. Write D1 = E1 
K F , where E1 is a
subalgebra of D1 of degree n, K is the center of E1 and trdegk(K) = �(D1). Suppose
D
 i

1 = Mni�1(D2), where i relatively prime to n. We claim that the central simple
algebra E
 i

1 has index n. Indeed, on the one hand, Ind(E
 i
1 ) � Ind(E1) = n and, on

the other hand, Ind(E
 i
1 ) � Ind(D
 i

1 ) = n. Thus we can write E
 i
1 = Mni�1(E2) for

some division algebra E2 of degree n, with center K. We now claim that

D2 = E2 
K F : (11)

Note that (11) immediately implies (10), since it says that D2 is de�ned over K. To
prove (11), observe that Mni�1(E2)
K F = E
 i

1 
K F = D
 i
1 = Mni�1(D2). Now (11)

follows from the uniqueness part of Wedderburn's theorem; see [Pi, Section 3.5]. 2

Theorem 9.6 Let n � 3 be an odd integer. Then ed(PGLn) � n+ (n�1)(n�2)
2 .

Proof. Let D1 = UD(2; n) and D2 be the underlying division algebra of D
 2
1 . By

a theorem of Rowen [Row], �(D2) � n + (n�1)(n�2)
2 . Combining Lemma 9.5 with

Lemma 9.2(b), we obtain ed(PGLn) = �(D1) = �(D2) � n + (n�1)(n�2)
2 , as claimed.

2

9.4 Algebras of composite degree

Lemma 9.7 Suppose n1 and n2 are relatively prime positive integers. For i = 1; 2 let
Di be a division algebra of degree ni with center F and let D = D1 
F D2. Then

(a) �(Di) � �(D) for i = 1; 2.

(b) �(D) � �(D1) + �(D2).
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Proof. (a) Let E be a division subalgebra of D of degree n1n2 such that trdegk Z(E)
is as small as possible, i.e., is equal to �(D). Then we can write E as E1
Z(E)E2, where
deg(Ei) = ni for i = 1; 2. Thus D = E 
Z(E) F = (E1 
Z(E) F ) 
Z(D) (E2 
Z(E) F ).
Since the decomposition D = D1 
Z(D) D2 is unique, we have D1 ' E1 
Z(E) F
and D2 ' E2 
Z(E) F . This means that D1 and D2 are both de�ned over Z(E);
consequently, �(Di) � �(D) for i = 1; 2.

(b) Suppose the algebra Di is de�ned over Fi � F with trdegk(Fi) = �(Di); here
i = 1, 2. In other words, Di has a subalgebra Ei of degree ni whose center is Fi.
Let E = E1E2 be the division subalgebra generated by E1 and E2 inside D. Then
D = E 
Z(E) F and therefore D is de�ned over Z(E). Note that Z(E) is the sub�eld
of F generated (over k) by F1 and F2. Hence, trdegk Z(E) � trdegk F1 + trdegk F2 �
�(D1) + �(D2) ; as claimed. 2

Proposition 9.8 Let n1; n2 � 2 be relatively prime integers. Then

(a) ed(PGLni) � ed(PGLn1n2) for i = 1; 2.

(b) ed(PGLn1n2) � ed(PGLn1) + ed(PGLn2).

Proof. (a) It is enough to show that ed(PGLn1) � ed(PGLn1n2). Let D1 =
UD(Z(D1)), D2 = Mn2(Z(D1)), and D = D1 
Z(D1) D2 = Mn2(D1). The desired
inequality now follows from Lemmas 9.2 and 9.7(a).

(b) The algebra D = UD(2; n1n2) can be written as D1
Z(D)D2, where D1 and D2

are subalgebras of D of degrees n1 and n2 respectively; see, e.g., [Pi, 14.4]. Applying
Lemmas 9.2 and 9.7(b), we obtain

ed(PGLn1n2) = �(D) � �(D1) + �(D2) � ed(PGLn1) + ed(PGLn2) ;

as claimed. 2

Remark 9.9 Proposition 9.8(b) can often be used to strengthen the upper bounds on
ed(PGLn) given by Theorem 4.5, Lemma 9.4(c) and Theorem 9.6. For example, since
ed(PGL5) � 11 (by Theorem 9.6) and ed(PGL6) = 2 (by Lemma 9.4(c)), we have

ed(PGL30) � ed(PGL6) + ed(PGL5) � 13 :

On the other hand, a direct application of Theorem 4.5 with n = 30 gives a much
weaker bound ed(PGL30) � 840.

More generally, Proposition 9.8, in combination with Theorem 9.6, allows us to
strengthen the bound given by Theorem 4.5 for every n which is not a power of 2.

10 Orthogonal groups

The main results of the next two sections (namely, Theorems 10.3, 10.4, 11.2, and 11.5)
were communicated to us by J.-P. Serre. The proofs we present here are based on Tsen-
Lang theory; they are somewhat di�erent from Serre's original proofs, which will be
given in Section 12.
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10.1 P�ster forms

Let F be a �eld. As usual, we shall denote the quadratic form
Pn

i=1 aix
2
i on Fn by

< a1; : : : ; an >; the n-fold P�ster form < 1; a1 > 
 : : :
 < 1; an > will be denoted by
<< a1; : : : ; an >>.

Lemma 10.1 (see, e.g., [Pf, Ch. 8, Ex. 1.2.6]) Suppose a1; : : : ; an are independent
indeterminates over k and F = k(a1; : : : ; an). Then the P�ster form << a1; : : : ; an >>

is anisotropic over F . 2

Remark 10.2 P�ster forms naturally arise in the following context. Suppose � is a
symmetric bilinear form on W . Recall that � gives rise to the symmetric bilinear �i(�)
on �i(W ) given by

�i(�)(w1 
 : : :
 wi; w
0
1 
 : : :
 w0

i) =
X
�2Sn

(�1)��(w1; w
0
�(1)) : : :�(wi; w

0
�(i)) : (12)

Then �(�)
def
= �1(�)� : : :� �n(�) is a symmetric bilinear form on �(W ) = �1(W )�

: : :� �n(W ). An easy direct computation shows that if �(x; x) =< a1; : : : ; an > then
< 1 > ��(�)(x; x) =<< a1; : : : ; an >>.

10.2 The essential dimension of On

Theorem 10.3 ed(On) = n for every n � 1.

Proof. We proved the inequality ed(On) � n in Example 3.10(a) (and then again in
Example 4.2); thus we only need to show ed(On) � n. Suppose � is a non-degenerate
symmetric bilinear form on V = kn, so that Autk(V; �) = On. A structured space
(W = Fm; �) is of type (V; �) if and only if � is a non-degenerate symmetric bilinear
form on W . Thus in view of Theorem 8.8 it su�ces to construct a �eld extension F=k
and a symmetric bilinear form � on W = Fn such that �(W;�) � n.

We now proceed to construct F and �. Let a1; : : : ; an be algebraically independent
indeterminates over k, F = k(a1; : : : ; an), W = Fn, e1; : : : ; en be a basis of W and
� = a1(e

�
1)

2 + : : : + an(e
�
n)

2 be a symmetric bilinear form on W . We claim that
�(W;�) � n (or, equivalently, = n, since trdegk(F ) = n). Indeed, extend � to a
symmetric bilinear form �(�) to �(V ). Recall that by Remark 10.2

< 1 > ��(�)(x; x) =<< a1; : : : ; an >> ;

hence, < 1 > ��(�)(x; x) is an anisotropic quadratic form over F ; see Lemma 10.1.
On the other hand, suppose � = �0 
F0 F where �0 is a symmetric bilinear form on
W0 = (F0)n and trdegk(F0) = n � 1. By the Tsen-Lang theorem the quadratic form
< 1 > ��(�0)(x; x) de�ned on the 2n-dimensional space F0 � �(W0) is isotropic; see
e.g., [Pf, Sect. 5.1]. Since, �(�) = �(�0)
F0 F , we conclude that the quadratic form
< 1 > ��(�)(x; x) is isotropic as well, a contradiction. 2
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10.3 The essential dimension of SOn

Theorem 10.4 ed(SOn) =

(
0 if n = 2
n� 1; if n 6= 2

Note that Theorem 10.4 says, in particular, that ed(SOn) 6= 1 for any n. This is
consistent with Corollary 5.7(b).

Proof. Recall that we proved the inequality

ed(SOn) � n � 1 (13)

for every n � 1 in Example 3.10(b) (and then again in Example 4.2). If n is odd
then On ' SOn �Z=2Zand thus ed(On) � ed(SOn) + ed(Z=2Z). Since ed(On) = n
(see Theorem 10.3) and ed(Z=2Z) = 1, this means n � 1 � ed(SOn). Combining this
inequality with (13), we conclude that ed(SOn) = n � 1 for every odd integer n � 1.

We now assume that n is even. If n = 2 then SO2 is isomorphic to the 1-dimensional
torus k� and thus ed(SO2) = 0; see Example 3.9(a).

It remains to show that ed(SOn) � n � 1 for n = 2m, where m � 2. Let V = kn,
let e1; : : : ; en be a k-basis of V , �1 = e�1 ^ : : : ^ e�n, �2 = (e�1)

2 + : : : + (e�n)
2, and

� = �1+�2, as in Example 8.4(b). Recall that Autk(V; �) = SOn; see Example 6.3(e).
By Theorem 8.8 it is enough to construct a structured space (W = Fn; �) of type (V; �)
such that �(W;�) � n� 1.

We now proceed to construct F , W , and �. Let F = k(a1; : : : ; an�1), where
a1; : : : ; an�1 are independent indeterminates over k, W = V 
k F and � = �1 + �2,
where �1 = e�1 ^ : : :^ e�n = �1 
k F 2 �n(W �) and

�2 = a1(e
�
1)

2 + : : :+ an�1(e
�
n�1)

2 + (a1 : : : an�1)
�1(e�n)

2 2 S2(W �) :

Since det(�2) = 1, (W;�) is a structured space of type (V; �); see Example 8.4(b).
It is enough to show that bilinear form �2 cannot be de�ned over a �eld F0 with

trdegk(F0) < n� 1. Indeed, this will immediately imply that � cannot be de�ned over
F0, thus proving �(W;�) � n� 1. Note that �2 is equivalent to the bilinear form


 = a1(e
�
1)

2 + : : :+ an�1(e
�
n�1)

2 + (a1 : : :an�1)(e
�
n)

2 2 S2(V �) ;

thus it is enough to show that 
 cannot be de�ned over any �eld F0 with trdegk(F0) <
n� 1.

We now argue as in the proof of Theorem 10.3. Let �i(
) be the symmetric bilinear
form on �i(W ) de�ned in Remark 10.2. An easy computation shows that

�i(
)(x; x) = �1�j1<:::<ji�n�1 < aj1 ; : : : ; aji >

�1�h1<:::<hn�1�i�n�1 < ah1 ; : : : ; ahn�1�i
> :

(14)

Consider the form �(
) = �1(
) � : : :�m�1(
) on �1(W ) � : : :�m�1(W ). (Recall
that we are assuming n = 2m and m � 2.) Adding up the forms (14), we see that
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< 1 > ��(
)(x; x) is equivalent to << a1; : : : ; an�1 >> and therefore, is anisotropic
over F ; see Lemma 10.1.

On the other hand, suppose 
 = � 
F0 F , where � is a symmetric bilinear form on
(F0)

n and trdegk(F0) < n � 1. Then �(
) = �(�)
F0 F , where

�(�) = �1(�)� : : :�m�1(�) :

The quadratic form < 1 > ��(�)(x; x) is then de�ned on F0 � �1(W0) � : : : �
�m�1(W0) ' F 2n�1

0 . Thus the Tsen-Lang theorem says that this form is isotropic
over F0; see [Pf, Sect. 5.1]. Hence, so is < 1 > ��(
)(x; x), a contradiction. This
completes the proof of the theorem. 2

11 Some exceptional groups

11.1 Octonion algebras

Let F be a �eld. Recall that for any 0 6= a; b; c 2 F , the octonion (or Cayley-Dickson)
algebra OF (a; b; c) is de�ned as follows. Let

Q = (a; b)2 = Ffi; jg=(i2 = a; j2 = b; ji= �ij)

be a 4-dimensional (associative) quaternion algebra over F . This algebra is equipped
with an involution x! x given by

x0 + x1i+ x2j + x3ij = x0 � x1i� x2j � x3ij : (15)

(Here x0; : : : ; x3 2 F .) Now OF (a; b; c)
def
= Q+ Ql is an 8-dimensional F -algebra with

(non-associative) multiplication given by (x+yl)(z+wl) = (xz+cwy)+(wx+yz)l. The
involution (15) extends fromQ toOF (a; b; c) via x+ yl = x�yl. The algebraOF (a; b; c)
is also equipped with F -valued trace and norm functions given by t(x) = x + x and
n(x) = xx = xx; moreover, x2 � tr(x)x+ n(x) = 0 for any x 2 OF (a; b; c). Using this
identity, it is easy to show that every automorphism of OF (a; b; c) preserves the trace
and the norm. For a more detailed description of octonion algebras we refer the reader
to [J, I.5], [Sc, III.4] or [SSSZ, 2.2].

If F = k, we shall write O for OF (1; 1; 1).

11.2 The essential dimension of G2

Recall that Autk(O) is the 14-dimensional exceptional group G2.

Lemma 11.1 Suppose F is a �eld containing k. Then for any 0 6= a; b; c 2 F , we have

OF (a; b; c)
F E = O
k E ;

where E = F (
p
a;
p
b;
p
c). In particular, OF (a; b; c) is an algebra of type O.
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Proof. The E-linear map OF (a; b; c)
k E �! O 
F E given by

i 7! p
a i

j 7! p
b j

l 7! p
c l

is an isomorphism of E-algebras. 2

Theorem 11.2 ed(G2) = 3.

Proof. We �rst prove that ed(G2) � 3. Let F = k(a1; a2; a3), where a1, a2 and
a3 are algebraically independent indeterminates over k. In view of Lemma 11.1 and
Theorem 8.8(b) it is su�cient to show that �(OF (a1; a2; a3)) � 3.

Expressing the trace form tr(x2) in the basis f(i�1j�2)l�3 j �1; �2; �3 = 0; 1g, we
see that this form is equivalent to the 3-fold P�ster form << a1; a2; a3 >> and thus
is anisotropic over F ; see Lemma 10.1. Thus by the Tsen-Lang theorem the form
tr(x2) (and, hence, the F -algebra OF (a1; a2; a3)) cannot be de�ned over a �eld F0 with
trdegk(F0) � 2. This proves that �(OF (a1; a2; a3)) and therefore ed(G2) � 3.

Our proof of the opposite inequality will rely on an argument analogous to the
one we used in Example 3.10. Let V = k8 be the underlying vector space of the
split octonion algebra O. Since O is generated by three elements, the natural linear
representation of G2 on V 3 = k24 is generically free. Let

Y = f(x1; x2; x3) j tr(xr) = tr(xrxs) = tr((x1x2)x3) = 0; tr(x2r) 6= 0; 1 � r < s � 3g :

Then Y is a (locally closed) G2-invariant subvariety of V 3. Moreover, Y irreducible
and dim(Y ) = 17; this can be proved by considering the projection Y �! V 2 to the
�rst two components. Since Y contains a triple of generators of O (e.g., (i; j; l)), the
action of G2 on Y is generically free.

Now let f : V �! Y be the G2-equivariant rational map given by f(x1; x2; x3) =
(y1; y2; y3), where

y1 = P (x1; 1)
y2 = P (x2; 1; y1)
y3 = P (x3; 1; y1; y2; y1y2) ;

here P (v; v1; : : : ; vm) is de�ned by equation (4) of Example 3.10 with q(x; y) = tr(xy).
Since fjY = idjY , f is a compression. Thus ed(G2) � dim(Y )�dim(G2) = 17� 14 = 3,
as claimed. 2

Remark 11.3 (a) By [Se3, Sect 8.2] G2 is 2-special; see De�nition 5.5. In view of
Proposition 5.6(b) this gives an alternative proof of the inequality ed(G2) � 3. More-
over, by Proposition 5.6(a), ed(X;G2) = 0 or 3 for every primitive (or, equivalently,
irreducible) generically free G2-variety X .
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Remark 11.4 The converse of Lemma 11.1 is also true, namely

(W = F 8; �) is structured space of type O if and only if (W;�) = OF (a; b; c) for
some a; b; c 2 F . This gives an alternative proof of the inequality ed(G2) � 3.

The �rst assertion is a consequence of a theorem of Zorn [Sc, III.3.17] (see also [SSSZ,
7.3] for a more general result of Kleinfeld). To prove the second assertion, note that
OF (a; b; c) is de�ned over the �eld k(a; b; c), which has transcendence degree � 3 over
k. Thus �(OF (a; b; c))� 3 for every F and every a; b; c 2 F �. By Theorem 8.8(b) this
implies ed(G2) � 3. 2

11.3 The Albert algebra

Recall that the (split) Albert algebra A = H3(O) is the Jordan algebra of 3 � 3
hermitian matrices over the octonion algebra O. Elements of A are of the form

X =

0
B@ a x y

x b z
y z c

1
CA ; (16)

where a; b; c 2 k and x; y; z 2 O, and multiplication is given by X �Y = 1=2(XY +Y X),
where XY is the usual matrix product of X and Y . Every element of X of A satis�es
a \Cayley-Hamilton identity" of the form

X3 � tr(X)X2+
tr(X)2� tr(X2)

2
X � n(X) = 0 ;

where tr(X) = a+ b+ c 2 k is the trace of X and n(X) is the cubic norm of X ; see [J,
p. 233]. Both the trace and the norm are preserved under automorphisms of A.

Let e�� be the (�; �) matrix unit in M3(k). We shall denote the element xe��+xe��
by [x]��. Then the 27 elements e11, e22, e33 and [(i

�1j�2)l�3 ]�� form a k-basis of A; here
�1, �2, �3 = 0; 1 and 1 � � < � � 3.

11.4 The essential dimension of F4

Recall that Autk(A) is the exceptional group F4.

Theorem 11.5 ed(F4) � 5.

Proof. By Theorem 8.8 it is su�cient to construct a �eld F containing k and an
F -algebra B of type A with �(B) � 5. We now proceed to construct such an algebra.
Let s1; s2; s3; t1; t2 be �ve independent variables over k,

t3
def
= t�11 t�12 ; (17)
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S� = s2� and T� = t2� for � = 1; 2; 3. Let E and F be the �elds given by F =
k(S1; S2; S3; T1; T2) and E = k(s1; s2; s3; t1; t2), and let B be the F -subspace of A
kE
spanned by the 27 elements

e11; e22; e33; and b�1;�2;�3� = t�s1
�1s2

�2s3
�3 [(i�1j�2)l�3 ]�
 ; (18)

where �1; �2; �3 = 0; 1, f�; �; 
g = f1; 2; 3g and � < 
. We claim that B is an F -
subalgebra of of A 
k E. Since the elements (18) form an E-basis of A 
k E, it is
su�cient to check that all structure constants of A
k E in this basis lie in F . Indeed,

e�� � e�� = e��
e�� � e�� = 0
e�� � b�1;�2;�3� = 0
e�� � b�1;�2;�3� = 1

2b
�1;�2;�3
�

b�1;�2;�3� � b�1;�2;�3� =

(
�T�S�11 S�22 S�33 (e�� + e

) if (�1; �2; �3) = (�1; �2; �3)
0 otherwise :

b�1;�2;�3� � b�1;�2;�3� = �T�1
 S�1�11 S�2�22 S�3�33 b�1+�1;�2+�2;�3+�3
 :

(cf. [Sc, p. 105]). Here we always assume that f�; �; 
g= f1; 2; 3g; in the last formula
the subscripts �n and �n are added and multiplied modulo 2. All structure constants
appearing in this table are, indeed, elements of F . We have therefore veri�ed that B
is a 27-dimensional F -algebra. Since the elements (18) form an E-basis of A
k E, we
have B 
F E ' A
k E. Thus B is an algebra of type A.

It remains to prove that �(B) � 5 (or, equivalently, = 5, since trdegk(F ) = 5). We
shall do so by examining the trace form of B and showing that it cannot be de�ned
over a �eld F0 with trdegk(F0) � 4 (and, consequently, B cannot be de�ned over such
a �eld).

Our multiplicaton table shows that the 27 basis elements (18) are mutually orthog-
onal with respect to the trace form. Moreover, taking the trace of the square of each
element and remembering that (i)

p
2;
p�1 2 k � F by our assumption on k and (ii)

T3 = T�11 T�12 by (17), we obtain

tr(x2) ' < 1; 1 > � � ; (19)

where

� =< 1 > �T1 << S1; S2; S3 >> �T2 << S1; S2; S3 >> �T1T2 << S1; S2; S3 >> :

Note that

� � < S1; S2; S3; S1S2; S1S3; S2S3; S1S2S3 > ' << S1; S2; S3; T1; T2 >> : (20)

Since the P�ster form << S1; S2; S3; T1; T2 >> is anisotropic over F (see Lemma 10.1),
so is �. Thus (19) gives the Witt decomposition of the quadratic form tr(x2) over
F = k(S1; S2; S3; T1; T2); the anisotropic part of this form equals � and has dimension
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25. On the other hand, if B were de�ned over a �eld F0 with trdegk(F0) � 4 then
tr(x2) would also be de�ned over F0 and, consequently, by the Tsen-Lang theorem,
its anisotropic part would have dimension � 24 = 16. This contradiction proves that
�(B) � 5 and thus ed(F4) � 5, as claimed. 2

11.5 The essential dimension of E6

Recall that the simply connected exceptional group E6 is isomorphic to Autk(V; �),
where V = k27 is the underlying vector space of the Albert algebra A and � 2 S3(V �)
is the symmetric trilinear form associated to the cubic norm in A.

Proposition 11.6 ed(E6) � 3.

Proof. Let F = k(a; b; c). By a theorem of Albert there exists an exceptional Jordan
division F -algebra B; see [J, IX.12 Thm. 21]. Let W = F 27 be the underlying vector
space of B and let � 2 S3(V �) be the symmetric trilinear form associated to the cubic
norm in B. Since B is an algebra of type A, (W;�) is a structured space of type (V; �).
(Here V = k27 and � 2 S3(V �) are as above.)

By Theorem 8.8 it su�ces to show that �(W;�) � 3. Assume the contrary: (W;�)
is de�ned over a �eld F0 with trdegk(F0) � 2. Then the cubic norm nB(x) = �(x; x; x)
on B can also be de�ned over F0. Note that nB is a cubic form in 27 variables; thus
by the Tsen-Lang theorem nB is isotropic, i.e. nB(x) = 0 for some 0 6= x 2 B. This
contradicts our assumption that B is a division algebra; see [J, VI.3 Cor. 3]. We
therefore conclude that �(W;�) � 3, as claimed. 2

Proposition 11.7 ed(E6) � ed(F4) + 1.

Proof. E6 is by de�nition a subgroup of GL27 = GL(A); thus its linear representation
on V = A27 is generically free. (Using [J, VI.7 Thm. 7], one can prove that the action
of E6 on An is generically free for every n � 4; however, we will not need this fact
here.)

Let S = f(x1; : : : ; x27) j x1 2 k1Ag � V . Then the proof of [I, Thm. 1] shows that S
is an (E6; H)-section of V (see De�nition 2.9), where H ' F4�Z3 is the subgroup of E6

generated by F4 and multiplication by cube roots of 1. Note that S is a linear generically
free H-variety. Thus by Lemma 4.1, ed(E6) = ed(V;E6) � ed(S;H) = ed(H) and by
Lemma 3.8, ed(H) = ed(F4 �Z3) � ed(F4) + ed(Z3) = ed(F4) + 1, as claimed. 2

12 Cohomological invariants

In this section we discuss the relationship between the essential dimension of an alge-
braic group G and cohomological invariants associated to G. This material is based
entirely on results communicated to us by J.-P. Serre.
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12.1 Preliminaries

We begin by recalling several de�nitions and results related to Galois cohomology and
cohomological invariants. For details we refer the reader to [Se4], [KMRT] and [B].

Let H i(F ) = H i(�F ;Z=2Z), where �F = Gal(F=F ), F is the algebraic closure of
F , and Z=2Zis viewed as a trivial �F -module.

By Kummer theory the �rst cohomology group H1(F ) is canonically isomorphic to
F �=(F �)2; as usual, we will denote the class of a 2 F � modulo (F �)2 by (a).

Lemma 12.1 (see e.g., [BR2, Lemma 8.2]) Let a1; : : : ; an be independent variables
over k and let F = k(a1; : : : ; an). Then the cup product (a1) : : :(an) is non-zero in
Hn(F ). 2

Suppose F is a �eld, 0 6= a1; : : : ; an 2 F and � =< a1; : : : ; an > is a quadratic form.
Then r-th Stiefel-Whitney class wr(�) 2 Hr(F ) is given by

wr(�) =
X

1�i1<:::<ir�n

(ai1)(ai2) : : :(air) : (21)

By a theorem of Delzant wr(�) depends only on the equivalence class of � and not on
the speci�c presentation of � as a sum of squares; see [De].

We shall now consider the following categories:

Fields - category of �nitely generated �eld extensions of k,

Sets0 - category of pointed sets, i.e., sets with a marked element,

AGrps - category of abelian groups,

and the following covariant functors:

H i( � ), from Fields to AGrps.

H1( � ; G), from Fields to Sets0. Here G is a (�xed) algebraic group.

G � V ar( � ), from Fields to Sets0. Here again, G is a �xed algebraic group. If
F 2 Fields then G� V ar(F ) is the set of birational equivalence classes of generically
free primitive G-varieties X such that k(X=G) ' F (as �eld extensions of k). Note that
for each F 2 Fields the marked element in G� V ar(F ) is the G-variety X0 �G; here
the variety X0 is chosen so that k(X0) = F . An inclusion F ,! F 0 of �elds induces the
map G � V ar(F ) �! G� V ar(F 0) of pointed sets given by X 7! X 0

0 �X=G X , where
k(X 0

0) = F 0.

Spaces(V;�), from Fields to Sets0. Here (V = kn; �) is a (�xed) structured space.
If F 2 Fields then Spaces(V;�)(F ) is de�ned as the set of all structured spaces (W =
Fn; �) of type (V; �); see De�nition 8.1. The marked element in this set is (V; �)
k F .
An inclusion F ,! F 0 of �elds induces a morphism Spaces(V;�)(F ) �! Spaces(V;�)(F

0)
given by (W;�) 7! (W;�)
F F

0.

De�nition 12.2 ([Se3, 6.1], [B, 4.1], [KMRT, 31.B]) Let G be an algebraic group.
A cohomological invariant of dimension n associated to G is a morphism of functors
f : H1( � ; G) �! Hn( � ).
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12.2 Cohomological invariants and essential dimension

Lemma 12.3 (a) The functors H1( � ; G) and G� V ar( � ) are isomorphic.

(b) If (V; �) is a structured space and G = Autk(V; �) then the functors H1( � ; G),
G� V ar( � ) and Spaces(V;�) are isomorphic.

Proof. Part (a) is proved in [Se4, I.5.2]; see also [Po, 1.3] and Remark 2.17. To prove
part (b), de�ne

fF : G� V ar( � )(F ) �! Spaces(V;�)(F )

by fF : X 7! (RMapsG(X; V ); �
X
G ) for every F 2 Fields. Now Lemma 7.6(c) shows

that fF is a map of pointed sets for each F , Lemma 7.6(a) shows that the maps fF
collectively de�ne a morphism of functors f from G � V ar( � ) to Spaces(V;�), and
Proposition 8.6 shows that f is an isomorphism. 2

In view of the above lemma we can view a cohomological invariant of degree n
associated to G as a morphism of functors G�V ar( � ; G) �! Hn( � ) or, if G is of the
form Aut(V; �), as a morphism of functors Spaces(V;�) �! Hn( � ).
Proposition 12.4 Let f : G�V ar �! Hn( � ) be a cohomological invariant associated
to G and let X be a primitive generically free G-variety such that fF (X) 6= 0. (Here
F = k(X)G.) Then

(a) ed(X;G)� n.

(b) Let V be a generically free linear representation of G and let K = k(V )G. Then
fK(V ) 6= 0.

Proof. (a) Assume the contrary. Then there exists a G-compressions X �! Y such
that dim(Y=G) � n� 1, i.e.,

trdegk(L) � n� 1 ; where L = k(Y=G)G = k(Y )G : (22)

Since X is birationally isomorphic to X=G �Y=G Y (see Lemma 2.16(b)) and f is a

morphism of functors, we conclude that fL(Y )
res�! fF (X) where res is the restriction

map Hn(L;C) �! Hn(F;C). However, in view of (22), the cohomological dimension
of L is � n � 1 (see [Se4, II.4.2]) and thus fL(Y ) 2 Hn(L;C) = (0). Consequently,
fF (X) = (0) in Hn(F;C), a contradiction.

(b) By Corollary 2.20, there exists a compression X�kd �! V , where d = dim(V ).
Then fF 0(X � kd) is a homomorphic image of fK(V ); here F 0 = k(X � kd)G; hence it
is enough to show that fF 0(X � kd) 6= 0. Note that fF 0(X � kd) is the image of fF (X)
under the restriction map Hn(F ) �! Hn(F 0). Since F 0 is a purely transcendental
extension of F , this restriction map is injective; see [Se4, Remark 1, p. 85]. Thus
fF 0(X � kd) 6= 0, as claimed. 2

Note that we can associate a trivial cohomological invariant to any group G by
setting fF to be the zero map for every F 2 Fields. We shall denote this invariant by
f = 0 and refer to it as the zero invariant.
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Corollary 12.5 If there exists a non-zero cohomological invariant of dimension n as-
sociated to G then ed(G) � n.

Proof. Immediate from Proposition 12.4; see De�nition 3.5. 2

12.3 Examples

We now apply Corollary 12.5 to give alternative proofs of several lower bounds on
ed(G), which we previously established by other methods. Every group G we shall
consider in Examples 12.6-12.10 is of the form G = Autk(V; �); thus we will interpret
a cohomological invariant of degree n associated to G as a morphism of functors f :
Spaces(V;�)( � ) �! Hn( � ); see Lemma 12.3.

Example 12.6 G = On. Let V = kn and � be a non-degenerate symmetric bilinear
form on V so that Autk(V; �) = On. Recall that for any F 2 Fields, (W = Fn; �) is
of type F if and only if � is a non-degenerate symmetric bilinear form on W . For each
i � 1 we can now de�ne a cohomological invariant fi : Spaces(V;�)( � ) �! H i( � ) of
degree i associated to On by (fi)F (W;�) = wi(�), where � is the quadratic form such
that �(x) = �(x; x) and wi(�) is the Stiefel-Whitney class of �.

It is easy to see that fi = 0 for all i � n + 1. We claim that fi 6= 0 for any
i = 1; : : : ; n. Indeed, suppose F = k(a1; : : : ; ai) and � =< a1; : : : ; ai; 1; : : : ; 1 >, where
a1; : : : ; ai are independent variables over k. Then wi(�) = (a1) � : : : � (ai) 6= 0 in H i(F );
see Lemma 12.1. Applying Proposition 12.4 to fn, we obtain an alternative proof the
inequality ed(On) � n (cf. Theorem 10.3).

Example 12.7 G = SOn. Let V = kn and let � = �1 + �2, where �1 is a volume
form and �2 is a non-degenerate symmetric bilinear form on V , as in the beginning
of Section 10.3. Recall that Autk(V; �) = SOn (see Example 6.3(e)) and that for any
F 2 Fields, Spaces(V;�)(F ) can be identi�ed with the set of isomorphism classes of
symmetric bilinear forms on Fn of determinant 1 (see Example 8.4(b)). For every i � 1
we can de�ne a cohomological invariant fi : Spaces(V;�)( � ) �! H i( � ) of degree i
associated to SOn by (fi)F (�2) = wi(�2), where wi is the ith Stiefel-Whitney class, �2
is a symmetric bilinear form of determinant 1 on Fn, and �2(x) = �2(x; x). Note that

�2 '< a1; : : : ; an�1; (a1 : : : an�1)
�1 >'< a1; : : : ; an�1; a1 : : : an�1 >

for some a1; : : : ; an 2 F . It is easy to see that fi = 0 for all i � n. If n is odd then
wn�1(�) = (a1) : : :(an�1), which is non-zero if a1; : : : ; an are independent variables
over k and F = k(a1; : : : ; an); see Lemma 12.1. This gives an alternative proof of the
inequality ed(SOn) � n� 1 for n odd; cf. Theorem 10.4.

If n is even then fn�1 = 0. Taking a1; : : : ; an�2 to be independent variables over
k and an�1 = 1 and applying Lemma 12.1, we see that fn�2 6= 0. This proves the
inequality ed(SOn) � n� 2 for n even. To recover the stronger inequality

ed(SOn) � n � 1 (23)
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of Theorem 10.4 for even integers n � 4, we consider the cohomological invariant

gn�1 : Spaces(V;�)( � )�! Hn�1( � )

given by (a1)(a2) : : :(an�1); see [Se4, Remark 2, p. 188]. Here a1; : : : ; an�1 are the
coe�cients of �2, as above. Taking a1; : : : ; an�1 to be independent variables over k and
applying Lemma 12.1 once again, we conclude that gn�1 6= 0. This gives an alternative
proof of the inequality (23).

Note that this argument is not as di�erent from the proof of Theorem 10.4 as it
may seem. The key step here is proving that gn�1 is well-de�ned. One way of doing it

involves passing to a P�ster form on �n=2�1
i=1 �i(kn), in a manner similar to the argument

we used in Section 10.3.

Example 12.8 G = Sn. Let A be the (split) etale k-algebra k � : : : � k, so that
Autk(A) = Sn; see Example 6.3(f). Recall that (W = Fn; �) is a structured space of
type A if and only if � de�nes the structure of an n-dimensional etale F -algebra on W ;
see Example 8.4(c). Thus a cohomological invariant associated to Sn is a cohomological
invariant of etale algebras. These invariants were completely described by Serre; see [B,
Section 4]. In particular, for each i = 1; : : : ; n, one can de�ne a cohomological invariant
fi : SpacesA( � ) �! H i( � ) by (fi)F (B) = wi(trB(x

2)), where B is an n-dimensional
etale F -algebra, trB(x

2) is the trace form on B, and wi is the i-th Stiefel-Whitney class.
Then fi = 0 for any i > [n=2] (see [B, 4.6]) but fi 6= 0 for i = [n=2] (see [BR2, Theorem
8.4]). Consequently, by Proposition 12.4, ed(Sn) � [n=2]; cf. [BR1, Thm. 6.5].

Example 12.9 G = G2. A non-zero cohomological invariant f3 of dimension 3 associ-
ated to G2 is constructed in [Se3, Sect. 8]. By Proposition 12.4 this construction gives
an alternative proof of the inequality ed(G2) � 3; cf. Theorem 11.2 and Remark 11.3.

For the reader's convenience, we brie
y recall the de�nition of f3. Recall that
G2 = Autk(O), where O is the split octonion algebra over k. Moreover, for F 2 Fields
the structured space (W = Fn; �) is of type O if and only if (W;�) = OF (a; b; c) for
some a; b; c 2 F ; see Remark 11.4. The trace form of OF (a; b; c) is isomorphic to a 3-
fold P�ster form << a; b; c >>. We now de�ne f3 as the Arason invariant of this form,
i.e., fF : SpacesO(F ) �! H3(F ) is given by OF (a; b; c) �! (a)(b)(c). This invariant
is non-zero because (a)(b)(c) 6= 0 in H3(F ) if a; b; c are algebraically independent over
k and F = k(a; b; c); see Lemma 12.1.

Example 12.10 G = F4. Non-zero cohomological invariants f3 and f5, of dimen-
sion, respectively 3 and 5, associated to F4 are constructed in [Se3]; we brie
y recall
their de�nition below. The existence of f5 gives an alternative proof of the inequality
ed(F4) � 5; cf. Theorem 11.5.

Recall that F4 = Autk(A), where A is the split Albert algebra over k and that
structured spaces of type A are precisely 27-dimensional exceptional simple Jordan
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algebras; see Example 8.4(d). If B is a F -algebra of type A than the trace form of B
satis�es the identity

trB(x
2)� << a1; a2; a3 >>'< 1; 1; 1> � << a1; a2; a3; b1; b2 >>

for some a1; a2; a3; b1; b2 2 F , where the P�ster forms << a1; a2; a3 >> and <<
a1; a2; a3; b1; b2 >> are uniquely de�ned by B; see [Se3, Theorem 10]. (The proof
of this assertion for reduced Jordan Algebras is, in fact, similar to our computa-

tion in Section 11.4.) Then (f3)F (B)
def
= (a1)(a2)(a3) 2 H3(F ) and (f5)F (B)

def
=

(a1)(a2)(a3)(b1)(b2) 2 H5(F ). To see that these invariants are non-zero, let F =
k(S1; S2; S3; T1; T2) and B be as in the proof of Theorem 11.5. Then in view of (19) and
(20), we have (f3)F = (S1)(S2)(S3) 6= 0 in H3(F ) and (f5)F = (S1)(S2)(S3)(T1)(T2) 6=
0 in H5(F ); see Lemma 12.1. Thus f3; f5 6= 0, as claimed.

12.4 The Rost invariant and simply connected semisimple groups

The Rost invariant H1( � ; G) �! H3( � ) is de�ned in [KMRT, 31B]. This invariant
is non-zero for every simply connected exceptional group G; see [KMRT, (31.40) and
(31.47)]. For G = G2 and F4, this invariant is the invariant f3 of (respectively) Exam-
ples 12.9 and 12.10. In the case G = E6, the non-vanishing of the Rost invariant gives
an alternative proof of the inequality ed(E6) � 3; cf. Proposition 11.6. For G = E7

and E8, we obtain the following result.

Proposition 12.11 (a) ed(E7) � 3, (b) ed(E8) � 3. 2

The next theorem may be viewed as a weak form of Serre's Conjecture II [Se4, III.3,
p. 139]. The conjecture says (in the case of function �elds over k) that every simply
connected semisimple group G is 2-special; cf. De�nition 5.5 and Remark 5.9. This is
equivalent to the assertion that ed(X;G) = 0 or � 3 for every irreducible generically
free G-variety X ; cf. Proposition 5.6. On the other hand, Theorem 12.12 below says
that ed(V;G) = 0 or � 3, where V is a vector space with a generically free linear action
of G.

Theorem 12.12 Let G be a simply connected semisimple group. Then either G is
special (and thus ed(G) = 0) or ed(G) � 3.

Proof. We may assume without loss of generality that G is simple and simply con-
nected. Indeed, if ed(Gi) = 0 for every simple factor Gi of G then ed(G) = 0 (see
Lemma 3.8) and if ed(Gi) � 3 for one of the factorsGi then ed(G) � 3 (see Lemma 3.7).

If G = G2, G = F4 or G is of classical type then G is known to be 2-special (see
De�nition 5.5 and Remark 5.9) and thus the desired conclusion follows from Propo-
sition 5.6. If G = E6 then ed(G) � 3 by Proposition 11.6. If G = E7 or E8 then
ed(G) � 3 by Proposition 12.11. 2
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12.5 Mod p invariants

De�nition 12.2 and Proposition 12.4 remain valid if H i( � ) is interpreted as H i( � ; C),
where C is a cyclic group of prime order (not necessarily Z=2Z). Moreover, Proposi-
tion 12.4(b) can be strengthened as follows.

Proposition 12.13 Suppose there exists a non-zero cohomological invariant f : G �
V ar( � ) �! Hn( � ; C). Let V be a generically free linear representation of G, X
be a primitive generically free G-variety, and X �! V be a G-compression which is
generically m : 1. (In other words, [k(X)G : k(V )G] = m.) If m is relatively prime to
the order of C then ed(X;G) � n.

Proof. Since m = [k(X)G : k(V )G] is relatively prime to jCj, the restriction map
Hn(k(V )G; C) �! Hn(k(X)G; C) is injective; see [Se4, Sect. 2.4]. The desired conclu-
sion now follows from Proposition 12.4(b). 2

Example 12.14 Applying Proposition 12.13 to the cohomological invariants we dis-
cussed above (all de�ned with C =Z=2Z), we arrive at the following result.

Suppose V is a generically free linear representation of G and, X �! V is an
m : 1-compression, where m is an odd integer. Then

(a) ed(X;G) = n, if G = On,

(b) ed(X;G) = n� 1, if G = SOn with n � 3,

(c) ed(X;G) � [n=2] if G = Sn (cf. [BR2, Thm. 7.1]),

(d) ed(X;G) = 3 if G = G2,

(e) ed(X;G) � 5 if G = F4, and

(f) ed(X;G) � 3 if G = E6, E7 or E8.

Example 12.15 Let V be a generically free linear representation of the exceptional
group F4, X be a generically free F4-variety, and X �! V be an F4-compression,
which is generically m : 1, where m is not divisible by 3. Then ed(X;F4) � 3.

This follows from the non-vanishing of the Serre-Rost invariant

H1( � ; F4) ' SpacesA( � )�! H3( � ;Z=3Z) ;
see [Se3, Sect. 9.3] and [Rost1]. (Here A is the Albert algebra and SpacesA(F ) is
the set of 27-dimensional exceptional Jordan algebras over F , as in Examples 8.4(d)
and 12.10.) 2

Remark 12.16 We do not know whether the inequality ed(PGLnr) � 2r of Theo-
rem 9.3 can be proved by the methods of this section. However, if n = p is a prime
then the above bound is \stable under prime to p-extensions" in the following sense.
Let V be a generically free linear representation of PGLpr and X be a generically free
irreducible PGLpr -variety. If X admits an m : 1-compression X �! V , with m rela-
tively prime to p, then ed(X;PGLpr) � 2r. Equivalently, if D is a prime-to-p extension
of a universal division algebra UD(m; pr) then �(D) � 2r; see [Re, Theorem 16.1(b)].
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Appendix

Since the time that this paper was �rst submitted for publication, a number of new
results on essential dimension have been obtained by this and other authors. We
summarize some of them in the table below.

Group EssentialDimension Proof
POn � n � 1 [RY]

Spinn

8>>>>><
>>>>>:

= 4; if n = 7(�); 10
= 5; if n = 8; 9; 11
= 6; if n = 12; 13
= 7; if n = 14

� [n=2] + 1 if n � 0;�1mod8

[Rost2]
[Rost2]
[Rost2]
[Rost2]
[RY]

F4 = 5 [Ko2]

E6 simply conn:

(
� 4
� 6

[RY](��)

[Ko2]

E7 simply conn:

(
� 7
� 9

[RY]
[Ko2]

E7 adjoint � 8 [RY]
E8 � 9 [RY]

(�) For n = 2; : : : ; 6, the group Spinn is special and, hence, has essential dimension
0; see Proposition 5.3.

(��) Independent proofs of the inequality ed(E6) � 4 were communicated to us by
R. S. Garibaldi and M. Rost.
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