Essential dimension of finite \boldsymbol{p}-groups

Nikita A. Karpenko ${ }^{1, \star}$, Alexander S. Merkurjev ${ }^{2, \star \star}$
${ }^{1}$ Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris 6), 4 place Jussieu, 75252 Paris Cedex 05, France (e-mail: karpenko@math.jussieu.fr)
${ }^{2}$ Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA (e-mail: merkurev@math.ucla.edu)

Oblatum 25-VI-2007 \& 22-XI-2007
Published online: 10 January 2008 - © Springer-Verlag 2008

Abstract

We prove that the essential dimension and p-dimension of a p-group G over a field F containing a primitive p-th root of unity is equal to the least dimension of a faithful representation of G over F.

The notion of the essential dimension $\operatorname{ed}(G)$ of a finite group G over a field F was introduced in [5]. The integer ed (G) is equal to the smallest number of algebraically independent parameters required to define a Galois G-algebra over any field extension of F. If V is a faithful linear representation of G over F then $\operatorname{ed}(G) \leq \operatorname{dim}(V)$ (cf. [2, Prop. 4.15]). The essential dimension of G can be smaller than $\operatorname{dim}(V)$ for every faithful representation V of G over F. For example, we have $\operatorname{ed}(\mathbb{Z} / 3 \mathbb{Z})=1$ over \mathbb{Q} or any field F of characteristic 3 (cf. [2, Cor. 7.5]) and ed $\left(S_{3}\right)=1$ over \mathbb{C} (cf. [5, Th. 6.5]).

In this paper we prove that if G is a p-group and F is a field of characteristic different from p containing p-th roots of unity, then $\operatorname{ed}(G)$ coincides with the least dimension of a faithful representation of G over F (cf. Theorem 4.1).

We also compute the essential p-dimension of a p-group G introduced in [15]. We show that $\operatorname{ed}_{p}(G)=\operatorname{ed}(G)$ over a field F containing p-th roots of unity.

[^0]Acknowledgement: We are grateful to Zinovy Reichstein for useful conversations and comments.

1. Preliminaries

In the paper the word "scheme" means a separated scheme of finite type over a field and "variety" an integral scheme.
1.1. Severi-Brauer varieties. (cf. [1]) Let A be a central simple algebra of degree n over a field F. The Severi-Brauer variety $P=\mathrm{SB}(A)$ of A is the variety of right ideals in A of dimension n. For a field extension L / F, the algebra A is split over L if and only if $P(L) \neq \emptyset$ if and only if $P_{L} \simeq \mathbb{P}_{L}^{n-1}$.

The change of field map deg : $\operatorname{Pic}(P) \rightarrow \operatorname{Pic}\left(P_{L}\right)=\mathbb{Z}$ for a splitting field extension L / F identifies $\operatorname{Pic}(P)$ with $e \mathbb{Z}$, where e is the exponent (period) of A. In particular, P has divisors of degree e. The algebra A is split over L if and only if P_{L} has a prime divisor of degree 1 (a hyperplane).
1.2. Groupoids and gerbes. (cf. [4]) Let X be a groupoid over F in the sense of [19]. We assume that for any field extension L / F, the isomorphism classes of objects in the category $\mathcal{X}(L)$ form a set which we denote by $\widehat{X}(L)$. We can view \widehat{X} as a functor from the category Fields/ F of field extensions of F to Sets.

Example 1.2.1. If G is an algebraic group over F, then the groupoid $B G$ is defined as the category of G-torsors over a scheme over F. Hence the functor $\widehat{B G}$ takes a field extension L / F to the set of all isomorphism classes of G-torsors over L.

Special examples of groupoids are gerbes banded by a commutative group scheme C over F. There is a bijection between the set of isomorphism classes of gerbes banded by C and the Galois cohomology group $H^{2}(F, C)$ (cf. [7, Ch. 4] and [13, Ch. 4, § 2]). The split gerbe $B C$ corresponds to the trivial element of $H^{2}(F, C)$.
Example 1.2.2 (Gerbes banded by μ_{n}). Let A be a central simple F-algebra and n an integer with $[A] \in \operatorname{Br}_{n}(F)=H^{2}\left(F, \mu_{n}\right)$. Let P be the SeveriBrauer variety of A and S a divisor on P of degree n. Denote by \mathcal{X}_{A} the gerbe banded by μ_{n} corresponding to [A]. For a field extension L / F, the set $\widehat{X}_{A}(L)$ has the following explicit description (cf. [4]): $\widehat{X}_{A}(L)$ is nonempty if and only if P is split over L. In this case $\widehat{X}_{A}(L)$ is the set of equivalence classes of the set
$\left\{f \in L(P)^{\times}: \operatorname{div}(f)=n H-S_{L}\right.$, where H is a hyperplane in $\left.P_{L}\right\}$, and two functions f and f^{\prime} are equivalent if $f^{\prime}=f h^{n}$ for some $h \in L(P)^{\times}$.
1.3. Essential dimension. Let $T:$ Fields $/ F \rightarrow$ Sets be a functor. For a field extension L / F and an element $t \in T(L)$, the essential dimension
of t, denoted ed (t), is the least tr. $\operatorname{deg}_{F}\left(L^{\prime}\right)$ over all subfields $L^{\prime} \subset L$ over F such that t belongs to the image of the map $T\left(L^{\prime}\right) \rightarrow T(L)$. The essential dimension $\operatorname{ed}(T)$ of the functor T is the supremum of $\operatorname{ed}(t)$ over all $t \in T(L)$ and field extensions L / F.

Let p be a prime integer and $t \in T(L)$. The essential p-dimension of t, denoted $\operatorname{ed}_{p}(t)$, is the least $\operatorname{tr} \cdot \operatorname{deg}_{F}\left(L^{\prime \prime}\right)$ over all subfields $L^{\prime \prime} \subset L^{\prime}$ over F, where L^{\prime} is a finite field extension of L of degree prime to p such that the image of t in $T\left(L^{\prime}\right)$ belongs to the image of the map $T\left(L^{\prime \prime}\right) \rightarrow T\left(L^{\prime}\right)$. The essential p-dimension $\operatorname{ed}_{p}(T)$ of the functor T is the supremum of $\mathrm{ed}_{p}(t)$ over all $t \in T(L)$ and field extensions L / F. Clearly, ed $(T) \geq \operatorname{ed}_{p}(T)$.

Let G be an algebraic group over F. The essential dimension ed (G) of G (respectively the essential p-dimension $\operatorname{ed}(G)$) is the essential dimension (respectively the essential p-dimension) of the functor taking a field extension L / F to the set of isomorphism classes of G-torsors over Spec L.

If G is a finite group, we view G as a constant group over a field F. Every G-torsor over $\operatorname{Spec} L$ has the form $\operatorname{Spec} K$ where K is a Galois G-algebra over L. Therefore, $\operatorname{ed}(G)$ is the essential dimension of the functor taking a field L to the set of isomorphism classes of Galois G-algebras over L.

Example 1.3.1. Let \mathcal{X} be a groupoid over F. The essential dimension of \mathcal{X}, denoted by ed (\mathcal{X}), is the essential dimension ed (\widehat{X}) of the functor \widehat{X} defined in Sect. 1.2. The essential p-dimension of $\mathrm{ed}_{p}(\mathcal{X})$ is defined similarly. In particular, $\operatorname{ed}(B G)=\operatorname{ed}(G)$ and $\operatorname{ed}_{p}(B G)=\operatorname{ed}_{p}(G)$ for an algebraic group G over F.
1.4. Canonical dimension. (cf. [3], [11]) Let F be a field and \mathcal{C} a class of field extensions of F. A field $E \in \mathcal{C}$ is called generic if for any $L \in \mathcal{C}$ there is an F-place $E \rightsquigarrow L$.

The canonical dimension $\operatorname{cdim}(\mathcal{C})$ of the class \mathcal{C} is the minimum of the tr. $\operatorname{deg}_{F} E$ over all generic fields $E \in \mathcal{C}$.

Let p be a prime integer. A field E in a class \mathcal{C} is called p-generic if for any $L \in \mathcal{C}$ there is a finite field extension L^{\prime} of L of degree prime to p and an F-place $E \rightsquigarrow L^{\prime}$. The canonical p-dimension $\operatorname{cdim}_{p}(\mathcal{C})$ of the class \mathcal{C} is the least $\operatorname{tr} . \operatorname{deg}_{F} E$ over all p-generic fields $E \in \mathcal{C}$. Obviously, $\operatorname{cdim}(\mathcal{C}) \geq \operatorname{cdim}_{p}($ © $)$.

Let T : Fields $/ F \rightarrow$ Sets be a functor. Denote by \mathcal{C}_{T} the class of splitting fields of T, i.e., the class of field extensions L / F such that $T(L) \neq \emptyset$. The canonical dimension (p-dimension) of T, denoted $\operatorname{cdim}(T)$ (respectively $\operatorname{cdim}_{p}(T)$), is the canonical dimension (p-dimension) of the class \mathcal{C}_{T}.

If X is a scheme over F, we write $\operatorname{cdim}(X)$ and $\operatorname{cdim}_{p}(X)$ for the canonical dimension and p-dimension of X viewed as a functor $L \mapsto$ $X(L)=\operatorname{Mor}_{F}(\operatorname{Spec} L, X)$.
Example 1.4.1. Let \mathcal{X} be a groupoid over F. We define the canonical dimension $\operatorname{cdim}(\mathcal{X})$ and p-dimension $\operatorname{cdim}_{p}(\mathcal{X})$ of X as the canonical dimension and p-dimension of the functor \widehat{X}.

Example 1.4.2. If X is a regular and complete variety over F viewed as a functor then $\operatorname{cdim}(X)$ is equal to the smallest dimension of a closed subvariety $Z \subset X$ such that there is a rational morphism $X \rightarrow Z$ (cf. [11, Cor. 4.6]). If p is a prime integer then $\operatorname{cdim}_{p}(X)$ is equal to the smallest dimension of a closed subvariety $Z \subset X$ such that there are dominant rational morphisms $X^{\prime} \rightarrow X$ of degree prime to p and $X^{\prime} \rightarrow Z$ for some variety X^{\prime} (cf. [11, Prop. 4.10]).

Remark 1.4.2 (A relation between essential and canonical dimension). Let $T:$ Fields $/ F \rightarrow$ Sets be a functor. We define the "contraction" functor $T^{c}:$ Fields $/ F \rightarrow$ Sets as follows. For a field extension L / F, we have $T^{c}(L)=\emptyset$ if $T(L)$ is empty and $T^{c}(L)$ is a one element set otherwise. If X is a regular and complete variety over F viewed as a functor then one can show that $\operatorname{ed}\left(X^{c}\right)=\operatorname{cdim}(X)$ and $\operatorname{ed}_{p}\left(X^{c}\right)=\operatorname{cdim}_{p}(X)$.
1.5. Valuations. Let K / F be a regular field extension, i.e., for any field extension L / F, the ring $K \otimes_{F} L$ is a domain. We write $K L$ for the quotient field of $K \otimes_{F} L$.

Let v be a valuation on L over F with residue field R. Let O be the associated valuation ring and M its maximal ideal. As $K \otimes_{F} R$ is a domain, the ideal $\widetilde{M}:=K \otimes_{F} M$ in the ring $\widetilde{O}:=K \otimes_{F} O$ is prime. The localization ring $\widetilde{O}_{\widetilde{M}}$ is a valuation ring in $K L$ with residue field $K R$. The corresponding valuation \tilde{v} of $K L$ is called the canonical extension of v on $K L$. Note that the groups of values of v and \tilde{v} coincide.

We shall need the following lemma.
Lemma 1.1 (cf. [11, Lemma 3.2]). Let v be a discrete valuation (of rank 1) of a field L with residue field R and L^{\prime} / L a finite field extension of degree prime to p. Then v extends to a discrete valuation of L^{\prime} with residue field R^{\prime} such that the ramification index and the degree $\left[R^{\prime}: R\right]$ are prime to p.

Proof. If L^{\prime} / L is separable and v_{1}, \ldots, v_{k} are all the extensions of v on L^{\prime} then $\left[L^{\prime}: L\right]=\sum e_{i}\left[R_{i}: R\right]$ where e_{i} is the ramification index and R_{i} is the residue field of v_{i} (cf. [20, Ch. VI, Th. 20 and p. 63]). It follows that the integer $e_{i}\left[R_{i}: R\right]$ is prime to p for some i.

If L^{\prime} / L is purely inseparable of degree q then the valuation v^{\prime} of L^{\prime} defined by $v^{\prime}(x)=v\left(x^{q}\right)$ satisfies the desired properties. The general case follows.

2. Canonical dimension of a subgroup of $\operatorname{Br}(F)$

Let F be an arbitrary field, p a prime integer and D a finite subgroup of $\operatorname{Br}_{p}(F)$ of dimension r over $\mathbb{Z} / p \mathbb{Z}$. In this section we determine the canonical dimension $\operatorname{cdim} D$ and the canonical p-dimension $\operatorname{cdim}_{p} D$ of the class of common splitting fields of all elements of D. We say that a basis $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ of D is minimal if for any $i=1, \ldots, r$ and any
element $d \in D$ outside of the subgroup generated by a_{1}, \ldots, a_{i-1}, we have ind $d \geq$ ind a_{i}.

One can construct a minimal basis of D by induction as follows. Let a_{1} be a nonzero element of D of minimal index. If the elements a_{1}, \ldots, a_{i-1} are already chosen for some $i \leq r$, we take for the a_{i} an element of D of the minimal index among the elements outside of the subgroup generated by a_{1}, \ldots, a_{i-1}.

In this section we prove the following
Theorem 2.1. Let F be an arbitrary field, p a prime integer, $D \subset \operatorname{Br}_{p}(F)$ a subgroup of dimension r and $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ a minimal basis of D. Then

$$
\operatorname{cdim}_{p}(D)=\operatorname{cdim}(D)=\left(\sum_{i=1}^{r} \operatorname{ind} a_{i}\right)-r
$$

We prove Theorem 2.1 in several steps.
Let $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a minimal basis of D. For every $i=1,2, \ldots, r$, let P_{i} be the Severi-Brauer variety of a central division F-algebra A_{i} representing the element $a_{i} \in \operatorname{Br}_{p} F$. We write P for the product $P_{1} \times P_{2} \times \cdots \times P_{r}$. We have

$$
\operatorname{dim} P=\sum_{i=1}^{r} \operatorname{dim} P_{i}=\left(\sum_{i=1}^{r} \operatorname{ind} a_{i}\right)-r .
$$

Moreover, the classes of splitting fields of P and D coincide, hence cdim (D) $=\operatorname{cdim}(P)$ and $\operatorname{cdim}_{p}(D)=\operatorname{cdim}_{p}(P)$. Thus, the statement of Theorem 2.1 is equivalent to the equality $\operatorname{cdim}_{p}(P)=\operatorname{cdim}(P)=\operatorname{dim}(P)$.

Let $r \geq 1$ and $0 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{r}$ be integers and $K=$ $K\left(n_{1}, \ldots, n_{r}\right)$ the subgroup of the polynomial ring $\mathbb{Z}[x]$ in r variables $x=\left(x_{1}, \ldots, x_{r}\right)$ generated by the monomials $p^{e\left(j_{1}, \ldots, j_{r}\right)} x_{1}^{j_{1}} \ldots x_{r}^{j_{r}}$ for all $j_{1}, \ldots, j_{r} \geq 0$, where the exponent $e\left(j_{1}, \ldots, j_{r}\right)$ is 0 if all the j_{1}, \ldots, j_{r} are divisible by p, otherwise $e\left(j_{1}, \ldots, j_{r}\right)=n_{k}$ with the maximum k such that j_{k} is not divisible by p. In fact, K is a subring of $\mathbb{Z}[x]$.

Remark 2.2. Let A_{1}, \ldots, A_{r} be central division algebras over some field such that for any non-negative integers j_{1}, \ldots, j_{r}, the index of the tensor product $A_{1}^{\otimes j_{1}} \otimes \cdots \otimes A_{r}^{\otimes j_{r}}$ is equal to $p^{e\left(j_{1}, \ldots, j_{r}\right)}$. The group K can be interpreted as the colimit of the Grothendieck groups of the product over $i=1, \ldots, r$ of the Severi-Brauer varieties of the matrix algebras $M_{l_{i}}\left(A_{i}\right)$ over all positive integers l_{1}, \ldots, l_{r}.

We set $h=\left(h_{1}, \ldots, h_{r}\right)$ with $h_{i}=1-x_{i} \in \mathbb{Z}[x]$.
Proposition 2.3. Let $b h_{1}^{i_{1}} \ldots h_{r}^{i_{r}}$ be a monomial of the lowest total degree of a polynomial f in the variables h lying in K. Assume that the integer b is not divisible by p. Then $p^{n_{1}}\left|i_{1}, \ldots, p^{n_{r}}\right| i_{r}$.

Proof. We recast the proof for $r=1$ given in [8, Lemma 2.1.2] to the case of arbitrary r.

We proceed by induction on $m=r+n_{1}+\cdots+n_{r}$. The case $m=1$ is trivial. If $m>1$ and $n_{1}=0$, then $K=K\left(n_{2}, \ldots, n_{r}\right)\left[x_{1}\right]$ and we are done by induction applied to $K\left(n_{2}, \ldots, n_{r}\right)$. In what follows we assume that $n_{1} \geq 1$.

Since $K\left(n_{1}, n_{2}, \ldots, n_{r}\right) \subset K\left(n_{1}-1, n_{2}, \ldots, n_{r}\right)$, by the induction hypothesis $p^{n_{1}-1}\left|i_{1}, p^{n_{2}}\right| i_{2}, \ldots, p^{n_{r}} \mid i_{r}$. It remains to show that i_{1} is divisible by $p^{n_{1}}$.

Consider the additive operation $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{Q}[x]$ which takes a polynomial $g \in \mathbb{Z}[x]$ to the polynomial $p^{-1} x_{1} \cdot g^{\prime}$, where g^{\prime} is the partial derivative of g with respect to x_{1}. We have

$$
\varphi(K) \subset K\left(n_{1}-1, n_{2}-1, \ldots, n_{r}-1\right) \subset K\left(n_{1}-1\right)\left[x_{2}, \ldots, x_{r}\right]
$$

and

$$
\varphi\left(h_{1}^{j_{1}} h_{2}^{j_{2}} \cdots h_{r}^{j_{r}}\right)=-p^{-1} j_{1} h_{1}^{j_{1}-1} h_{2}^{j_{2}} \cdots h_{r}^{j_{r}}+p^{-1} j_{1} h_{1}^{j_{1}} h_{2}^{j_{2}} \cdots h_{r}^{j_{r}} .
$$

Since $b h_{1}^{i_{1}} \cdots h_{r}^{i_{r}}$ is a monomial of the lowest total degree of the polynomial f, it follows that $-b p^{-1} i_{1} h_{1}^{i_{1}-1} h_{2}^{i_{2}} \cdots h_{r}^{i_{r}}$ is a monomial of $\varphi(f)$ considered as a polynomial in h. As

$$
\varphi(f) \in K\left(n_{1}-1\right)\left[x_{2}, \ldots, x_{r}\right],
$$

we see that $-b p^{-1} i_{1} h_{1}^{i_{1}-1}$ is a monomial of a polynomial from $K\left(n_{1}-1\right)$. It follows that $p^{-1} i_{1}$ is an integer and by Lemma 2.4 below, this integer is divisible by $p^{n_{1}-1}$. Therefore $p^{n_{1}} \mid i_{1}$.

Lemma 2.4. Let g be a polynomial in h_{1} lying in $K(m)$ for some $m \geq 0$. Let $b h_{1}^{i-1}$ be a monomial of g such that i is divisible by p^{m}. Then b is divisible by p^{m}.

Proof. We write h for h_{1} and x for x_{1}. Note that $h^{i} \in K(m)$ since i is divisible by p^{m}. Moreover, the quotient ring $K(m) /\left(h^{i}\right)$ is additively generated by $p^{e(j)} x^{j}$ with $j<i$. Indeed, the polynomial $x^{i}-(-h)^{i}=$ $x^{i}-(x-1)^{i}$ is a linear combination with integer coefficients of $p^{e(j)} x^{j}$ with $j<i$. Consequently, for any $k \geq 0$, multiplying by $p^{e(k)} x^{k}$, we see that the polynomial $p^{e(i+k)} x^{i+k}=p^{e(k)} x^{i+k}$ modulo the ideal $\left(h^{i}\right)$ is a linear combination with integer coefficients of the $p^{e(j)} x^{j}$ with $j<i+k$.

Thus, $K(m) /\left(h^{i}\right)$ is additively generated by $p^{e(j)}(1-h)^{j}$ with $j<i$. Only the generator $p^{e(i-1)}(1-h)^{i-1}=p^{m}(1-h)^{i-1}$ has a nonzero h^{i-1} coefficient and that coefficient is divisible by p^{m}.

Let Y be a scheme over the field F. We write $\mathrm{CH}(Y)$ for the Chow group of Y and set $\mathrm{Ch}(Y)=\mathrm{CH}(Y) / p \mathrm{CH}(Y)$. We define $\mathrm{Ch}(\bar{Y})$ as the colimit of $\operatorname{Ch}\left(Y_{L}\right)$ where L runs over all field extensions of F. Thus for any field extension L / F, we have a canonical homomorphism $\mathrm{Ch}\left(Y_{L}\right) \rightarrow \mathrm{Ch}(\bar{Y})$. This homomorphism is an isomorphism if $Y=P$, the variety defined above, and L is a splitting field of P.

We define $\overline{\mathrm{Ch}}(Y)$ to be the image of the homomorphism $\mathrm{Ch}(Y) \rightarrow$ $\mathrm{Ch}(\bar{Y})$.
Proposition 2.5. We have $\overline{\mathrm{Ch}}^{j}(P)=0$ for any $j>0$.
Proof. Let $K_{0}(P)$ be the Grothendieck group of P. We write $K_{0}(\bar{P})$ for the colimit of $K_{0}\left(P_{L}\right)$ taken over all field extensions L / F. The group $K_{0}(\bar{P})$ is canonically isomorphic to $K_{0}\left(P_{L}\right)$ for any splitting field L of P. Each of the groups $K_{0}(P)$ and $K_{0}(\bar{P})$ is endowed with the topological filtration. The subsequent factor groups $G^{j} K_{0}(P)$ and $G^{j} K_{0}(\bar{P})$ of these filtrations fit into the commutative square

where the top map is an isomorphism. Therefore it suffices to show that the image of the homomorphism $G^{j} K_{0}(P) \rightarrow G^{j} K_{0}(\bar{P})$ is divisible by p for any $j>0$.

The ring $K_{0}(\bar{P})$ is identified with the quotient of the polynomial ring $\mathbb{Z}[h]$ by the ideal generated by $h_{1}^{\operatorname{ind} a_{1}}, \ldots, h_{r}^{\text {ind } a_{r}}$. Under this identification, the element h_{i} is the pull-back to P of the class of a hyperplane in P_{i} over a splitting field and the j-th term $K_{0}(\bar{P})^{(j)}$ of the filtration is generated by the classes of monomials of degree at least j. The group $G^{j} K_{0}(\bar{P})$ is identified with the group of all homogeneous polynomials of degree j.

The group $K_{0}(P)$ is isomorphic to the direct sum of $K_{0}(B)$, where $B=A_{1}^{\otimes j_{1}} \otimes \cdots \otimes A_{r}^{\otimes j_{r}}$, over all j_{i} with $0 \leq j_{i}<\operatorname{ind} a_{i}$ (cf. [14, § 9]). The image of the natural map $K_{0}(B) \rightarrow K_{0}\left(B_{L}\right)=\mathbb{Z}$, where L is a splitting field of B, is equal to $\operatorname{ind}\left(a_{1}^{j_{1}} \cdots a_{r}^{j_{r}}\right) \mathbb{Z}$. The image of the homomorphism $K_{0}(P) \rightarrow K_{0}(\bar{P})$ (which is in fact an injection) is generated by

$$
\operatorname{ind}\left(a_{1}^{j_{1}} \cdots a_{r}^{j_{r}}\right)\left(1-h_{1}\right)^{j_{1}} \cdots\left(1-h_{r}\right)^{j_{r}}
$$

over all $j_{1}, \ldots, j_{r} \geq 0$.
We embed $K_{0}(\bar{P})$ into the polynomial ring $\mathbb{Z}[x]=\mathbb{Z}\left[x_{1}, \ldots, x_{r}\right]$ as a subgroup by identifying a monomial $h_{1}^{j_{1}} \cdots h_{r}^{j_{r}}$ where $0 \leq j_{i}<$ ind a_{i} with the polynomial $\left(1-x_{1}\right)^{j_{1}} \cdots\left(1-x_{r}\right)^{j_{r}}$. As the elements a_{1}, \ldots, a_{r} form a minimal basis of D, the index $\operatorname{ind}\left(a_{1}^{j_{1}} \cdots a_{r}^{j_{r}}\right)$ is a power of p with the exponent at least $e\left(\log _{p}\right.$ ind $a_{1}, \ldots, \log _{p}$ ind $\left.a_{r}\right)$. Therefore,

$$
K_{0}(P) \subset K\left(\log _{p} \text { ind } a_{1}, \ldots, \log _{p} \text { ind } a_{r}\right) \subset \mathbb{Z}[x] .
$$

An element of $K_{0}(P)^{(j)}$ with $j>0$ is a polynomial f in h of degree at least j. The image of f in $G^{j} K_{0}(\bar{P})$ is the j-th homogeneous part f_{j} of f. As the degree of f with respect to h_{i} is less than ind a_{i}, it follows from Proposition 2.3 that all the coefficients of f_{j} are divisible by p.

Let $d=\operatorname{dim} P$ and $\alpha \in \mathrm{CH}^{d}(P \times P)$. The first multiplicity mult ${ }_{1}(\alpha)$ of α is the image of α under the push-forward map $\mathrm{CH}^{d}(P \times P) \rightarrow \mathrm{CH}^{0}(P)=\mathbb{Z}$ given by the first projection $P \times P \rightarrow P$ (cf. [10]). Similarly, we define the second multiplicity mult ${ }_{2}(\alpha)$.
Corollary 2.6. For any element $\alpha \in \mathrm{CH}^{d}(P \times P)$, we have

$$
\operatorname{mult}_{1}(\alpha) \equiv \operatorname{mult}_{2}(\alpha) \quad \text { modulo } p
$$

Proof. We follow the proof of [9, Th. 2.1]. The homomorphism

$$
f: \mathrm{CH}^{d}(P \times P) \rightarrow(\mathbb{Z} / p \mathbb{Z})^{2}
$$

taking an $\alpha \in \mathrm{CH}^{d}(P \times P)$ to $\left(\operatorname{mult}_{1}(\alpha)\right.$, $\left.\operatorname{mult}_{2}(\alpha)\right)$ modulo p, factors through the group $\overline{\mathrm{Ch}}^{d}(P \times P)$. Since for any i, any projection $P_{i} \times P_{i} \rightarrow P_{i}$ is a projective bundle, the Chow group $\overline{\mathrm{Ch}}^{d}(P \times P)$ is a direct some of several copies of $\overline{\mathrm{Ch}}^{i}(P)$ for some i 's and the value $i=0$ appears once. By Proposition 2.5 , the dimension over $\mathbb{Z} / p \mathbb{Z}$ of the vector space $\overline{\mathrm{Ch}}^{d}(P \times P)$ is equal to 1 and consequently the dimension of the image of f is at most 1 . Since the image of the diagonal class under f is $(1,1)$, the image of f is generated by $(1,1)$.

Corollary 2.7. Any rational map $P \rightarrow P$ is dominant.
Proof. Let $\alpha \in \mathrm{CH}^{d}(P \times P)$ be the class of the closure of the graph of a rational map $P \rightarrow P$. We have mult ${ }_{1}(\alpha)=1$. Therefore, by Corollary 2.6, $\operatorname{mult}_{2}(\alpha) \neq 0$, and it follows that the rational map is dominant.

Corollary 2.8. $\operatorname{cdim}_{p} P=\operatorname{cdim} P=\operatorname{dim} P$.
Proof. As $\operatorname{cdim}_{p} P \leq \operatorname{cdim} P \leq \operatorname{dim} P$, it suffices to show that $\operatorname{cdim}_{p} P=$ $\operatorname{dim} P$. Let $Z \subset P$ be a closed subvariety and $f: P^{\prime} \rightarrow P$ and $g: P^{\prime} \rightarrow Z$ dominant rational morphisms such that deg f is prime to p. Let α be the class in $\mathrm{CH}^{d}(P \times P)$ of the closure in $P \times P$ of the image of $f \times g: P^{\prime} \rightarrow P \times Z$. As mult $(\alpha)=\operatorname{deg} f$ is prime to p, by Corollary 2.6 , we have mult $_{2}(\alpha) \neq 0$, i.e., $Z=P$. By Example 1.4.2, $\operatorname{cdim}_{p} P=\operatorname{dim} P$.

The corollary completes the proof of Theorem 2.1.
Remark 2.9. Theorem 2.1 can be generalized to the case of any finite subgroup $D \subset \operatorname{Br}(F)$ consisting of elements of p-primary orders. Let $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be elements of D such that their images $\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{r}^{\prime}\right\}$ in D / D^{p} form a minimal basis, i.e., for any $i=1, \ldots r$ and any element $d \in D$ with the class in D / D^{p} outside of the subgroup generated by $a_{1}^{\prime}, \ldots, a_{i-1}^{\prime}$, the inequality ind $d \geq$ ind a_{i} holds. In particular, $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ generate D. Then, as in Theorem 2.1, we have

$$
\operatorname{cdim}_{p}(D)=\operatorname{cdim}(D)=\left(\sum_{i=1}^{r} \operatorname{ind} a_{i}\right)-r
$$

Indeed, the group D and the variety $P=P_{1} \times \cdots \times P_{r}$, where P_{i} for every $i=1, \ldots, r$ is the Severi-Brauer variety of a central division algebra representing the element a_{i}, have the same splitting fields. Therefore, $\operatorname{cdim}(D)=\operatorname{cdim}(P)$ and $\operatorname{cdim}_{p}(D)=\operatorname{cdim}_{p}(P)$. Corollaries 2.6, 2.7 and 2.8 hold for P since $K_{0}(P) \subset K\left(\log _{p}\right.$ ind $a_{1}, \ldots, \log _{p}$ ind $\left.a_{r}\right)$.

Remark 2.10. One can compute the canonical p-dimension of an arbitrary finite subgroup of $D \subset \operatorname{Br}(F)$ as follows. Let D^{\prime} be the Sylow p-subgroup of D. Write $D=D^{\prime} \oplus D^{\prime \prime}$ for a subgroup $D^{\prime \prime} \subset D$ and let L / F be a finite field extension of degree prime to p such that $D^{\prime \prime}$ is split over L. Then $D_{L}=D_{L}^{\prime}$ and $\operatorname{cdim}_{p}(D)=\operatorname{cdim}_{p}\left(D_{L}\right)=\operatorname{cdim}_{p}\left(D_{L}^{\prime}\right)=\operatorname{cdim}_{p}\left(D^{\prime}\right)=\operatorname{cdim}\left(D^{\prime}\right)$.

3. Essential and canonical dimension of gerbes banded by $\left(\boldsymbol{\mu}_{p}\right)^{s}$

In this section we relate the essential and canonical (p-)dimensions of gerbes banded by $\left(\boldsymbol{\mu}_{p}\right)^{s}$ where $s \geq 0$. The following statement is a generalization of [4, Th. 7.1].

Theorem 3.1. Let p be a prime integer and \mathcal{X} a gerbe banded by $\left(\mu_{p}\right)^{s}$ over an arbitrary field F. Then

$$
\operatorname{ed}(\mathcal{X})=\operatorname{ed}_{p}(X)=\operatorname{cdim}_{p}(\mathcal{X})+s=\operatorname{cdim}(\mathcal{X})+s
$$

Proof. The gerbe \mathcal{X} is given by an element in $H^{2}\left(F,\left(\boldsymbol{\mu}_{p}\right)^{s}\right)=\operatorname{Br}_{p}(F)^{s}$, i.e., by an s-tuple of central simple algebras $A_{1}, A_{2}, \ldots, A_{s}$ with $\left[A_{i}\right] \in \operatorname{Br}_{p}(F)$. Let P be the product of the Severi-Brauer varieties $P_{i}:=\mathrm{SB}\left(A_{i}\right)$ and D the subgroup of $\operatorname{Br}_{p}(F)$ generated by the $\left[A_{i}\right], i=1, \ldots, s$. As the classes of splitting fields for \mathcal{X}, D and P coincide, we have

$$
\begin{align*}
\operatorname{cdim}(\mathcal{X}) & =\operatorname{cdim}(P)=\operatorname{cdim}(D)=\operatorname{cdim}_{p}(D) \tag{1}\\
& =\operatorname{cdim}_{p}(P)=\operatorname{cdim}_{p}(\mathcal{X})
\end{align*}
$$

by Theorem 2.1. We shall prove the inequalities $\operatorname{ed}_{p}(\mathcal{X}) \geq \operatorname{cdim}(P)+s \geq$ $\operatorname{ed}(\mathcal{X})$.

Let S_{i} be a divisor on P_{i} of degree p. Let L / F be a field extension and $f_{i} \in L\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(f_{i}\right)=p H_{i}-\left(S_{i}\right)_{L}$, where H_{i} is a hyperplane in $\left(P_{i}\right)_{L}$ for $i=1, \ldots, s$. We write $\left\langle f_{i}\right\rangle_{i=1}^{s}$ for the corresponding element in $\widehat{\mathcal{X}}(L)$ (cf. Sect. 1.2).

By Example 1.4.2, there is a closed subvariety $Z \subset P$ and a rational dominant morphism $P \rightarrow Z$ with $\operatorname{dim}(Z)=\operatorname{cdim}(P)=\operatorname{cdim}_{p}(P)$. We view $F(Z)$ as a subfield of $F(P)$. As $P(L) \neq \emptyset$ and P is regular, there is an F-place $\gamma: F(P) \rightsquigarrow L$ (cf. [11, §4.1]). Since Z is complete, the valuation ring of the restriction $\left.\gamma\right|_{F(Z)}: F(Z) \rightsquigarrow L$ dominates a point in Z. It follows that $Z(L) \neq \emptyset$. Choose a point $y \in Z$ such that $F^{\prime}:=F(y) \subset L$.

Since $P\left(F^{\prime}\right) \neq \emptyset$, the P_{i} are split over F^{\prime}, hence $\operatorname{Pic}\left(P_{i}\right)_{F^{\prime}}=\mathbb{Z}$ and there are functions $g_{i} \in F^{\prime}\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(g_{i}\right)=p H_{i}^{\prime}-\left(S_{i}\right)_{F^{\prime}}$, where H_{i}^{\prime} is
a hyperplane in P_{i} for $i=1, \ldots, s$. As $\operatorname{Pic}\left(P_{i}\right)_{L}=\mathbb{Z}$, there are functions $h_{i} \in L\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(h_{i}\right)=\left(H_{i}^{\prime}\right)_{L}-H_{i}$. We have

$$
\operatorname{div}\left(g_{i}\right)_{L}=\operatorname{div}\left(f_{i}\right)+\operatorname{div}\left(h_{i}^{p}\right),
$$

hence

$$
a_{i} g_{i}=f_{i} h_{i}^{p}
$$

for some $a_{i} \in L^{\times}$. It follows that $\left\langle f_{i}\right\rangle_{i=1}^{s}=\left\langle a_{i} g_{i}\right\rangle_{i=1}^{s}$ in $\mathcal{X}(L)$, therefore $\left\langle f_{i}\right\rangle_{i=1}^{s}$ is defined over the field $F^{\prime}\left(a_{1}, a_{2}, \ldots, a_{s}\right)$. Hence

$$
\operatorname{ed}\left\langle f_{i}\right\rangle_{i=1}^{s} \leq{\operatorname{tr} \cdot \operatorname{deg}_{F}\left(F^{\prime}\right)+s \leq \operatorname{dim}(Z)+s=\operatorname{cdim}(P)+s, ~}_{\text {, }}
$$

and therefore $\operatorname{ed}(\mathcal{X}) \leq \operatorname{cdim}(P)+s$.
We shall prove the inequality $\mathrm{ed}_{p}(X) \geq \operatorname{cdim}(P)+s$. As $P(F(Z)) \neq \emptyset$, there are functions $f_{i} \in F(Z)\left(P_{i}\right)^{\times}$with $\operatorname{div}\left(f_{i}\right)=p H_{i}-\left(S_{i}\right)_{F(Z)}$, where H_{i} is a hyperplane in $\left(P_{i}\right)_{F(Z)}$. Let $L:=F(Z)\left(t_{1}, t_{2}, \ldots, t_{s}\right)$, where the t_{i} are variables, and consider the point $\left\langle t_{i} f_{i}\right\rangle_{i=1}^{s} \in \widehat{X}(L)$.

We claim that $\mathrm{ed}_{p}\left\langle t_{i} f_{i}\right\rangle_{i=1}^{s} \geq \operatorname{cdim}(P)+s$. Let L^{\prime} be a finite extension of L of degree prime to p and $L^{\prime \prime} \subset L^{\prime}$ a subfield such that the image of $\left\langle t_{i} f_{i}\right\rangle_{i=1}^{s}$ in $\widehat{X}\left(L^{\prime}\right)$ is defined over $L^{\prime \prime}$, i.e., there are functions $g_{i} \in L^{\prime \prime}\left(P_{i}\right)^{\times}$ and $h_{i} \in L^{\prime}\left(P_{i}\right)^{\times}$with $t_{i} f_{i}=g_{i} h_{i}^{p}$. We shall show that ${\operatorname{tr} \cdot \operatorname{deg}_{F}\left(L^{\prime \prime}\right) \geq}$ $\operatorname{cdim}(P)+s$.

Let $L_{i}:=F(Z)\left(t_{i}, \ldots, t_{s}\right)$ and v_{i} be the discrete valuation of L_{i} corresponding to the variable t_{i} for $i=1, \ldots, s$. We construct a sequence of field extensions L_{i}^{\prime} / L_{i} of degree prime to p and discrete valuations v_{i}^{\prime} of L_{i}^{\prime} for $i=1, \ldots, s$ by induction on i as follows. Set $L_{1}^{\prime}=L^{\prime}$. Suppose the fields $L_{1}^{\prime}, \ldots, L_{i}^{\prime}$ and the valuations $v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}$ are constructed. By Lemma 1.1, there is a valuation v_{i}^{\prime} of L_{i}^{\prime} with residue field L_{i+1}^{\prime} extending the discrete valuation v_{i} of L_{i}^{\prime} with the ramification index e_{i} and the degree [$L_{i+1}^{\prime}: L_{i+1}$] prime to p.

The composition v^{\prime} of the discrete valuations v_{i}^{\prime} is a valuation of L^{\prime} with residue field of degree over $F(Z)$ prime to p. A choice of prime elements in all the L_{i}^{\prime} identifies the group of values of v^{\prime} with \mathbb{Z}^{s}. Moreover, for every $i=1, \ldots, s$, we have

$$
v^{\prime}\left(t_{i}\right)=e_{i} \varepsilon_{i}+\sum_{j>i} a_{i j} \varepsilon_{j}
$$

where the ε_{i} 's denote the standard basis elements of \mathbb{Z}^{s} and $a_{i j} \in \mathbb{Z}$.
Write $v^{\prime \prime}$ for the restriction of v^{\prime} on $L^{\prime \prime}$. Let $K=F(P)$. We extend canonically the valuations v^{\prime} and $v^{\prime \prime}$ to valuations \tilde{v}^{\prime} and $\tilde{v}^{\prime \prime}$ of $K L^{\prime}$ and $K L^{\prime \prime}$ respectively (cf. Sect. 1.5). Note that $f_{i} \in K(Z)^{\times}, g_{i} \in\left(K L^{\prime \prime}\right)^{\times}$and $h_{i} \in\left(K L^{\prime}\right)^{\times}$. We have

$$
e_{i} \varepsilon_{i}+\sum_{j>i} a_{i j} \varepsilon_{j}=v^{\prime}\left(t_{i}\right)=\tilde{v}^{\prime}\left(t_{i} f_{i}\right) \equiv \tilde{v}^{\prime \prime}\left(g_{i}\right) \quad(\bmod p)
$$

Since e_{i} are prime to p, the elements $\tilde{v}^{\prime \prime}\left(g_{i}\right)$ generate a subgroup of \mathbb{Z}^{s} of finite index. It follows that the value group of $\tilde{v}^{\prime \prime}$ is of rank s, hence $\operatorname{rank}\left(v^{\prime \prime}\right)=\operatorname{rank}\left(\tilde{v}^{\prime \prime}\right)=s$.

Let $R^{\prime \prime}$ and R^{\prime} be residue fields of $v^{\prime \prime}$ and v^{\prime} respectively. We have the inclusions $R^{\prime \prime} \subset R^{\prime} \supset F(Z)$ and $\left[R^{\prime}: F(Z)\right]$ is prime to p. By [20, Ch. VI, Th. 3, Cor. 1],

$$
\begin{equation*}
\operatorname{tr} \cdot \operatorname{deg}_{F}\left(L^{\prime \prime}\right) \geq \operatorname{tr} \cdot \operatorname{deg}_{F}\left(R^{\prime \prime}\right)+\operatorname{rank}\left(v^{\prime \prime}\right)=\operatorname{tr} \cdot \operatorname{deg}_{F}\left(R^{\prime \prime}\right)+s \tag{2}
\end{equation*}
$$

As $P\left(L^{\prime \prime}\right) \neq \emptyset$, there is an F-place $F(P) \rightsquigarrow L^{\prime \prime}$. Composing it with the place $L^{\prime \prime} \rightsquigarrow R^{\prime \prime}$ given by $v^{\prime \prime}$, we get an F-place $F(P) \rightsquigarrow R^{\prime \prime}$. As P is complete, we have $P\left(R^{\prime \prime}\right) \neq \emptyset$, i.e., $R^{\prime \prime}$ is a splitting field of P.

We prove that $R^{\prime \prime}$ is a p-generic splitting field of P. Let M be a splitting field of P. A regular system of parameters at the image of a morphism $\alpha: \operatorname{Spec} M \rightarrow P$ yields an F-place $F(P) \rightsquigarrow M$ that is a composition of places associated with discrete valuations (cf. [11, § 1.4]). By [11, Lemma 3.2] applied to the restriction of α to $F(Z)$, there is a finite field extension M^{\prime} of M and an F-place $R^{\prime} \rightsquigarrow M^{\prime}$. Restricting to $R^{\prime \prime}$ we get an F-place $R^{\prime \prime} \rightsquigarrow M^{\prime}$, i.e., $R^{\prime \prime}$ is a p-generic splitting field of P.

By the definition of the canonical p-dimension,

$$
\operatorname{cdim}(P)=\operatorname{tr} \cdot \operatorname{deg}_{F} F(Z)=\operatorname{tr} \cdot \operatorname{deg}_{F} R^{\prime} \geq \operatorname{tr}^{2} \operatorname{deg}_{F}\left(R^{\prime \prime}\right) \geq \operatorname{cdim}_{p}(P)
$$

It follows that tr. $\operatorname{deg}_{F}\left(R^{\prime \prime}\right)=\operatorname{cdim}(P)$ by (1) and therefore, $\operatorname{tr} \operatorname{deg}_{F}\left(L^{\prime \prime}\right) \geq$ $\operatorname{cdim}(P)+s$ by (2). The claim is proved.

It follows from the claim that $\mathrm{ed}_{p}(\mathcal{X}) \geq \operatorname{cdim}(P)+s$.

4. Main theorem

The main result of the paper is the following
Theorem 4.1. Let G be a p-group and F a field of characteristic different from p containing a primitive p-th root of unity. Then $\operatorname{ed}_{p}(G)$ over F is equal to $\operatorname{ed}(G)$ over F and coincides with the least dimension of a faithful representation of G over F.

The rest of the section is devoted to the proof of the theorem. As was mentioned in the introduction, we have $\operatorname{ed}_{p}(G) \leq \operatorname{ed}(G) \leq \operatorname{dim}(V)$ for any faithful representation V of G over F. We shall construct a faithful representation V of G over F with $\operatorname{ed}_{p}(G) \geq \operatorname{dim}(V)$.

Denote by C the subgroup of all central elements of G of exponent p and set $H=G / C$, so we have an exact sequence

$$
\begin{equation*}
1 \rightarrow C \rightarrow G \rightarrow H \rightarrow 1 \tag{3}
\end{equation*}
$$

Let $E \rightarrow$ Spec F be an H-torsor and $\operatorname{Spec} F \rightarrow B H$ be the corresponding morphism. Set $\mathcal{X}^{E}:=B G \times_{B H} \operatorname{Spec} F$. Then \mathcal{X}^{E} is a gerbe over F banded by C and its class in $H^{2}(F, C)$ coincides with the image
of the class of E under the connecting map $H^{1}(F, H) \rightarrow H^{2}(F, C)$ (cf. [13, Ch. 4, § 2]). An object of \mathcal{X}^{E} over a field extension L / F is a pair $\left(E^{\prime}, \alpha\right)$, where E^{\prime} is a G-torsor over L and $\alpha: E^{\prime} / C \xrightarrow{\sim} E_{L}$ is an isomorphism of H-torsors over L.

Alternatively, $\mathcal{X}^{E}=[E / G]$ with objects (over L) G-equivariant morphisms $E^{\prime} \rightarrow E_{L}$, where E^{\prime} is a G-torsor over L (cf. [19]).

A lower bound for $\operatorname{ed}(G)$ was established in [4, Prop. 2.20]. We give a similar bound for $\operatorname{ed}_{p}(G)$.

Theorem 4.2. For any H-torsor E over F, we have $\operatorname{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(\mathcal{X}^{E}\right)$.
Proof. Let L / F be a field extension and $x=\left(E^{\prime}, \alpha\right)$ an object of $X^{E}(L)$. Choose a field a field extension L^{\prime} / L of degree prime to p and a subfield $L^{\prime \prime} \subset L^{\prime}$ over F such that $\operatorname{tr} \cdot \operatorname{deg}\left(L^{\prime \prime}\right)=\operatorname{ed}_{p}\left(E^{\prime}\right)$ and there is a G-torsor $E^{\prime \prime}$ over $L^{\prime \prime}$ with $E_{L^{\prime}}^{\prime \prime} \simeq E_{L^{\prime}}^{\prime}$.

We shall write Z for the (zero-dimensional) scheme of isomorphisms $\mathrm{Iso}_{L^{\prime \prime}}\left(E^{\prime \prime} / C, E_{L^{\prime \prime}}\right)$ of H-torsors over $L^{\prime \prime}$. The image of the morphism $\operatorname{Spec} L^{\prime} \rightarrow Z$ over $L^{\prime \prime}$ representing the isomorphism $\alpha_{L^{\prime}}$ is a one point set $\{z\}$ of Z. The field extension $L^{\prime \prime}(z) / L^{\prime \prime}$ is algebraic since $\operatorname{dim} Z=0$.

The isomorphism $\alpha_{L^{\prime}}$ descends to an isomorphism of the H-torsors $E^{\prime \prime} / C$ and E over $L^{\prime \prime}(z)$. Hence the isomorphism class of $x_{L^{\prime}}$ belongs to the image of the map $\widehat{X}^{E}\left(L^{\prime \prime}(z)\right) \rightarrow \widehat{\mathcal{X}}^{E}\left(L^{\prime}\right)$. Therefore,

$$
\operatorname{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(E^{\prime}\right)=\operatorname{tr} \cdot \operatorname{deg}\left(L^{\prime \prime}\right)=\operatorname{tr} \cdot \operatorname{deg}\left(L^{\prime \prime}(z)\right) \geq \operatorname{ed}_{p}(x)
$$

It follows that $\mathrm{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(\mathcal{X}^{E}\right)$.
Let $C^{*}:=\operatorname{Hom}\left(C, \mathbf{G}_{\mathrm{m}}\right)$ denote the character group of C. An H-torsor E over F yields a homomorphism

$$
\beta^{E}: C^{*} \rightarrow \operatorname{Br}(F)
$$

taking a character $\chi: C \rightarrow \mathbf{G}_{\mathrm{m}}$ to the image of the class of E under the composition

$$
H^{1}(F, H) \xrightarrow{\partial} H^{2}(F, C) \xrightarrow{\chi_{*}} H^{2}\left(F, \mathbf{G}_{\mathrm{m}}\right)=\operatorname{Br}(F),
$$

where ∂ is the connecting map for the exact sequence (3). Note that as $\mu_{p} \subset F^{\times}$, the intersection of $\operatorname{Ker}\left(\chi_{*}\right)$ over all characters $\chi \in C^{*}$ is trivial. It follows that the classes of splitting fields of the gerbe \mathcal{X}^{E} and the subgroup $\operatorname{Im}\left(\beta^{E}\right)$ coincide. It follows that

$$
\begin{equation*}
\operatorname{cdim}_{p}\left(\mathcal{X}^{E}\right)=\operatorname{cdim}_{p}\left(\operatorname{Im}\left(\beta^{E}\right)\right) \tag{4}
\end{equation*}
$$

Let $\chi_{1}, \chi_{2}, \ldots, \chi_{s}$ be a basis of C^{*} over $\mathbb{Z} / p \mathbb{Z}$ such that $\left\{\beta^{E}\left(\chi_{1}\right), \ldots\right.$, $\left.\beta^{E}\left(\chi_{r}\right)\right\}$ is a minimal basis of $\operatorname{Im}\left(\beta^{E}\right)$ for some r and $\beta^{E}\left(\chi_{i}\right)=1$ for $i>r$. By Theorem 2.1, we have

$$
\begin{equation*}
\operatorname{cdim}_{p}\left(\operatorname{Im}\left(\beta^{E}\right)\right)=\left(\sum_{i=1}^{r} \operatorname{ind} \beta^{E}\left(\chi_{i}\right)\right)-r=\left(\sum_{i=1}^{s} \operatorname{ind} \beta^{E}\left(\chi_{i}\right)\right)-s \tag{5}
\end{equation*}
$$

In view of (4) and Theorems 3.1 and 4.2, we shall find an H-torsor E (over a field extension of F) so that the integer in (5) is as large as possible. Let U be a faithful representation of H and X an open subset of the affine space $\mathbb{A}(U)$ of U where H acts freely. Set $Y:=X / H$. Let E be the generic fiber of the H-torsor $\pi: X \rightarrow Y$. It is a "generic" H-torsor over the function field $L:=F(Y)$.

Let $\chi: C \rightarrow \mathbf{G}_{\mathrm{m}}$ be a character and $\operatorname{Rep}^{(\chi)}(G)$ the category of all finite dimensional representations ρ of G such that $\rho(c)$ is multiplication by $\chi(c)$ for any $c \in C$. Fix a representations $\rho: G \rightarrow \mathbf{G L}(W)$ in $\operatorname{Rep}^{(\chi)}(G)$. The conjugation action of G on $B:=\operatorname{End}(W)$ factors through an H-action. By descent (cf. [13, Ch. 1, § 2]), there is (a unique up to canonical isomorphism) Azumaya algebra \mathcal{A} over Y and an H-equivariant algebra isomorphism $\pi^{*}(\mathcal{A}) \simeq B_{X}:=B \times X$. Let A be the generic fiber of \mathcal{A}; it is a central simple algebra over $L=F(Y)$.

Consider the homomorphism $\beta^{E}: C^{*} \rightarrow \operatorname{Br}(L)$.
Lemma 4.3. The class of A in $\operatorname{Br}(L)$ coincides with $\beta^{E}(\chi)$.
Proof. Consider the commutative diagram

The image of the H-torsor $\pi: X \rightarrow Y$ under α is the PGL(W)-torsor

$$
E^{\prime}:=\mathbf{P G L}(W)_{X} / H \rightarrow Y
$$

where $\operatorname{PGL}(W)_{X}:=\mathbf{P G L}(W) \times X$ and H acts on $\mathbf{P G L}(W)_{X}$ by $h(a, x)=$ $\left(a h^{-1}, h x\right)$. The conjugation action of $\mathbf{P G L}(W)$ on B gives rise to an isomorphism between $\operatorname{PGL}(W)_{X}$ and the H-torsor $\operatorname{Iso}_{X}\left(B_{X}, \operatorname{End}(W)_{X}\right)$ of isomorphisms between the (split) Azumaya \mathcal{O}_{X}-algebras B_{X} and $\operatorname{End}(W)_{X}$. Note that this isomorphism is H-equivariant if H acts by conjugation on B_{X} and trivially on $\operatorname{End}(W)_{X}$. By descent,

$$
E^{\prime} \simeq \operatorname{Iso}_{Y}\left(\mathcal{A}, \operatorname{End}(W)_{Y}\right)
$$

Therefore, the image of the class of the torsor $E^{\prime} \rightarrow Y$ under the connecting map for the bottom row of the diagram coincides with the class of the Azumaya algebra \mathcal{A}. Restricting to the generic fiber yields $[A]=\beta^{E}(\chi)$.

Theorem 4.4. For any character $\chi \in C^{*}$, we have ind $\beta^{E}(\chi)=\min \operatorname{dim}(V)$ over all representations V in $\operatorname{Rep}^{(\chi)}(G)$.

Proof. We follow the approach given in [12]. Let H act on a scheme Z over F. We also view Z as a G-scheme. Denote by $\mathcal{M}(G, Z)$ the
(abelian) category of left G-modules on Z that are coherent \mathcal{O}_{Z}-modules (cf. [18, § 1.2]). In particular, $\mathcal{M}(G, \operatorname{Spec} F)=\operatorname{Rep}(G)$, the category off all finite dimensional representations of G.

Note that C acts trivially on Z. For a character $\chi: C \rightarrow \mathbf{G}_{\mathrm{m}}$, let $\mathcal{M}^{(\chi)}(G, Z)$ be the full subcategory of $\mathcal{M}(G, Z)$ consisting of G-modules on which C acts via χ. For example, $\mathcal{M}^{(\chi)}(G, \operatorname{Spec} F)=\operatorname{Rep}^{(\chi)}(G)$.

We write $K_{0}(G, Z)$ and $K_{0}^{(\chi)}(G, Z)$ for the Grothendieck groups of $\mathcal{M}(G, Z)$ and $\mathcal{M}^{(\chi)}(G, Z)$ respectively.

Every M in $\mathcal{M}(G, Z)$ is a direct sum of unique submodules $M^{(\chi)}$ of M in $\mathcal{M}^{(\chi)}(G, Z)$ over all characters χ of C. It follows that

$$
K_{0}(G, Z)=\coprod K_{0}^{(\chi)}(G, Z)
$$

Let q be the order of G. By [17, Th. 24], every irreducible representation of G is defined over the field $F\left(\mu_{q}\right)$. Since F contains p-th roots of unity, the degree $\left[F\left(\mu_{q}\right): F\right]$ is a power of p. Hence the dimension of any irreducible representation of G over F is a power of p. It follows by Lemma 4.3 that it suffices to show $\operatorname{ind}(A)=\operatorname{gcd} \operatorname{dim}(V)$ over all representations V in $\operatorname{Rep}^{(\chi)}(G)$.

The image of the map $\operatorname{dim}: K_{0}(A) \rightarrow \mathbb{Z}$ given by the dimension over L is equal to $\operatorname{ind}(A) \cdot \operatorname{dim}(W) \cdot \mathbb{Z}$. To finish the proof of the theorem it suffices to construct a surjective homomorphism

$$
\begin{equation*}
K_{0}\left(\operatorname{Rep}^{(\chi)}(G)\right) \rightarrow K_{0}(A) \tag{6}
\end{equation*}
$$

such that the composition $K_{0}\left(\operatorname{Rep}^{(\chi)}(G)\right) \rightarrow K_{0}(A) \xrightarrow{\operatorname{dim}} \mathbb{Z}$ is given by the dimension times $\operatorname{dim}(W)$.

First of all we have

$$
\begin{equation*}
K_{0}\left(\operatorname{Rep}^{(\chi)}(G)\right) \simeq K_{0}^{(\chi)}(G, \operatorname{Spec} F) \tag{7}
\end{equation*}
$$

Recall that X an open subset of $\mathbb{A}(U)$ where H acts freely. By homotopy invariance in the equivariant K-theory [18, Cor. 4.2],

$$
K_{0}(G, \operatorname{Spec} F) \simeq K_{0}(G, \mathbb{A}(U))
$$

It follows that

$$
\begin{equation*}
K_{0}^{(\chi)}(G, \operatorname{Spec} F) \simeq K_{0}^{(\chi)}(G, \mathbb{A}(U)) \tag{8}
\end{equation*}
$$

By localization [18, Th. 2.7], the restriction homomorphism

$$
\begin{equation*}
K_{0}^{(\chi)}(G, \mathbb{A}(U)) \rightarrow K_{0}^{(\chi)}(G, X) \tag{9}
\end{equation*}
$$

is surjective.
Denote by $\mathcal{M}^{(1)}\left(G, X, B_{X}\right)$ the category of left G-modules M on X that are coherent \mathcal{O}_{X}-modules and right B_{X}-modules such that C acts trivially on M and the G-action on M and the conjugation G-action on B_{X} agree.

The corresponding Grothendieck group is denoted by $K_{0}^{(1)}\left(G, X, B_{X}\right)$. For any object L in $\mathcal{M}^{(x)}(G, X)$, the group C acts trivially on $L \otimes_{F} W^{*}$ and B acts on the right on $L \otimes_{F} W^{*}$. We have Morita equivalence

$$
\mathcal{M}^{(x)}(G, X) \xrightarrow{\sim} \mathcal{M}^{(1)}\left(G, X, B_{X}\right)
$$

given by $L \mapsto L \otimes_{F} W^{*}$ (with the inverse functor $M \mapsto M \otimes_{B} W$). Hence

$$
\begin{equation*}
K_{0}^{(x)}(G, X) \simeq K_{0}^{(1)}\left(G, X, B_{X}\right) . \tag{10}
\end{equation*}
$$

Now, as C acts trivially on X and B_{X}, the category $\mathcal{M}^{(1)}\left(G, X, B_{X}\right)$ is equivalent to the category $\mathcal{M}\left(H, X, B_{X}\right)$ of left H-modules M on X that are coherent \mathcal{O}_{X}-modules and right B_{X}-modules such that the G-action on M and the conjugation G-action on B_{X} agree. Hence

$$
\begin{equation*}
K_{0}^{(1)}\left(G, X, B_{X}\right) \simeq K_{0}\left(H, X, B_{X}\right) . \tag{11}
\end{equation*}
$$

Recall that $Y=X / H$. By descent, the category $\mathcal{M}\left(H, X, B_{X}\right)$ is equivalent to the category $\mathcal{M}(Y, \mathcal{A})$ of coherent \mathcal{O}_{Y}-modules that are right \mathcal{A}-modules. Hence

$$
\begin{equation*}
K_{0}\left(H, X, B_{X}\right) \simeq K_{0}(Y, \mathcal{A}) \tag{12}
\end{equation*}
$$

The restriction to the generic point of Y gives a surjective homomorphism

$$
\begin{equation*}
K_{0}(Y, \mathcal{A}) \rightarrow K_{0}(A) . \tag{13}
\end{equation*}
$$

The homomorphism (6) is the composition of (7), (8), (9), (10), (11), (12) and (13). It takes the class of a representation V to the class in $K_{0}(A)$ of the generic fiber of the vector bundle $\left(\left(V \otimes W^{*}\right) \times X\right) / H$ over Y of rank $\operatorname{dim}(V) \cdot \operatorname{dim}(W)$.
Remark 4.5. The theorem holds with min replaced by the gcd (with the same proof) in a more general context when the sequence (3) is an arbitrary exact sequence of algebraic groups with C a central diagonalizable subgroup of G.

Example 4.6 (cf. [6], [4, § 14], [16, Th. 7.3.8]). Let p be a prime integer, F be a field of characteristic different from p and C_{m} the cyclic group $\mathbb{Z} / p^{m} \mathbb{Z}$. Let $K=F\left(t_{1}, \ldots, t_{p^{m}}\right)$ and C_{m} act on the variables $t_{1}, \ldots, t_{p^{m}}$ by cyclic permutations. Then K is a Galois C_{m}-algebra over $K^{C_{m}}$. Assume that F contains a primitive root of unity $\xi_{p^{k}}$ for some k. The image of the class of K under the connecting map $H^{1}\left(F, C_{m}\right) \rightarrow H^{2}\left(F, C_{k}\right) \simeq \operatorname{Br}_{p^{k}}(F)$ for the exact sequence

$$
1 \rightarrow C_{k} \rightarrow C_{n} \rightarrow C_{m} \rightarrow 1,
$$

where $n=k+m$, is the class of the cyclic algebra $A=\left(K / K^{C_{m}}, \xi_{p^{k}}\right)$. The group C_{n} acts F-linearly on $F\left(\xi_{p^{n}}\right)$ by multiplication by roots of unity making the F-space $F\left(\xi_{p^{n}}\right)$ a faithful representation of C_{n} of the smallest dimension. By Theorem 4.4 and Remark 4.5, we have

$$
\operatorname{ind}(A)=\left[F\left(\xi_{p^{n}}\right): F\right] .
$$

We can now complete the proof of Theorem 4.1. By Theorem 4.4, there are representations V_{i} in $\operatorname{Rep}^{\left(\chi_{i}\right)}(G)$ such that ind $\beta^{E}\left(\chi_{i}\right)=\operatorname{dim}\left(V_{i}\right)$, $i=1, \ldots, s$. Let V be the direct sum of all the V_{i}. By Theorem 4.2 (applied to the group G over L and the generic torsor E), Theorem 3.1, (4) and (5), we have

$$
\begin{aligned}
\operatorname{ed}_{p}(G) \geq \operatorname{ed}_{p}\left(G_{L}\right) & \geq \operatorname{ed}_{p}\left(\mathcal{X}^{E}\right)=\operatorname{cdim}_{p}\left(\mathcal{X}^{E}\right)+s=\operatorname{cdim}_{p}\left(\operatorname{Im}\left(\beta^{E}\right)\right)+s \\
& =\sum_{i=1}^{s} \operatorname{ind} \beta^{E}\left(\chi_{i}\right)=\sum_{i=1}^{s} \operatorname{dim}\left(V_{i}\right)=\operatorname{dim}(V)
\end{aligned}
$$

Since $\chi_{1}, \chi_{2}, \ldots, \chi_{s}$ generate C^{*}, the restriction of V on C is faithful. As every nontrivial normal subgroup of G intersects C nontrivially, the G-representation V is faithful. We have constructed a faithful representation V of G over F with $\operatorname{ed}_{p}(G) \geq \operatorname{dim}(V)$. The theorem is proved.

Remark 4.7. The proof of Theorem 4.1 shows how to compute the essential dimension of G over F. For every character $\chi \in C^{*}$ choose a representation $V_{\chi} \in \operatorname{Rep}^{(\chi)}(G)$ of the smallest dimension. It appears as an irreducible component of the smallest dimension of the induced representation $\operatorname{Ind}_{C}^{G}(\chi)$. We construct a basis $\chi_{1}, \ldots, \chi_{s}$ of C^{*} by induction as follows. Let χ_{1} be a nonzero character with the smallest $\operatorname{dim}\left(V_{\chi_{1}}\right)$. If the characters $\chi_{1}, \ldots, \chi_{i-1}$ are already constructed for some $i \leq s$, then we take for χ_{i} a character with minimal $\operatorname{dim}\left(V_{\chi_{i}}\right)$ among all the characters outside of the subgroup generated by $\chi_{1}, \ldots, \chi_{i-1}$. Then V is a faithful representation of the least dimension and $\operatorname{ed}(G)=\sum_{i=1}^{s} \operatorname{dim}\left(V_{\chi_{i}}\right)$.

Remark 4.8. We can compute the essential p-dimension of an arbitrary finite group G over a field F of characteristic different from p. (We don't assume that F contains p-th roots of unity.) Let G^{\prime} be a Sylow p-subgroup of G. One can prove that $\operatorname{ed}_{p}(G)=\operatorname{ed}_{p}\left(G^{\prime}\right)$ and $\mathrm{ed}_{p}\left(G^{\prime}\right)$ does not change under field extensions of degree prime to p. In particular $\operatorname{ed}_{p}\left(G^{\prime}\right)=\operatorname{ed}_{p}\left(G_{F^{\prime}}^{\prime}\right)$ where $F^{\prime}=F\left(\mu_{p}\right)$. It follows from Theorem 4.1 that $\operatorname{ed}_{p}(G)$ coincides with the least dimension of a faithful representation of G^{\prime} over F^{\prime}.

5. An application

Theorem 5.1. Let G_{1} and G_{2} be two p-groups and F a field of characteristic different from p containing a primitive p-th root of unity. Then

$$
\operatorname{ed}\left(G_{1} \times G_{2}\right)=\operatorname{ed}\left(G_{1}\right)+\operatorname{ed}\left(G_{2}\right)
$$

Proof. The index j in the proof takes the values 1 and 2 . If V_{j} is a faithful representation of G_{j} then $V_{1} \oplus V_{2}$ is a faithful representation of $G_{1} \times G_{2}$. Hence ed $\left(G_{1} \times G_{2}\right) \leq \operatorname{ed}\left(G_{1}\right)+\operatorname{ed}\left(G_{2}\right)(c f .[5$, Lemma 4.1(b)]).

Denote by C_{j} the subgroup of all central elements of G_{j} of exponent p. Set $C=C_{1} \times C_{2}$. We identify C^{*} with $C_{1}^{*} \oplus C_{2}^{*}$.

For every character $\chi \in C^{*}$ choose a representation $\rho_{\chi}: G_{1} \times G_{2} \rightarrow$ $\mathbf{G L}\left(V_{\chi}\right)$ in $\operatorname{Rep}^{(\chi)}\left(G_{1} \times G_{2}\right)$ of the smallest dimension. We construct a basis $\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{s}\right\}$ of C^{*} following Remark 4.7. We claim that all the χ_{i} can be chosen in one of the C_{j}^{*}. Indeed, suppose the characters $\chi_{1}, \ldots, \chi_{i-1}$ are already constructed, and let χ_{i} be a character with minimal $\operatorname{dim}\left(V_{\chi_{i}}\right)$ among the characters outside of the subgroup generated by $\chi_{1}, \ldots, \chi_{i-1}$. Let $\chi_{i}=\chi_{i}^{(1)}+\chi_{i}^{(2)}$ with $\chi_{i}^{(j)} \in C_{j}^{*}$. Denote by ε_{1} and ε_{2} the endomorphisms of $G_{1} \times G_{2}$ taking $\left(g_{1}, g_{2}\right)$ to $\left(g_{1}, 1\right)$ and $\left(1, g_{2}\right)$ respectively. The restriction of the representation $\rho_{\chi_{i}} \circ \varepsilon_{j}$ on C is given by the character $\chi_{i}^{(j)}$. We replace χ_{i} by $\chi_{i}^{(j)}$ with j such that $\chi_{i}^{(j)}$ does not belong to the subgroup generated by $\chi_{1}, \ldots, \chi_{i-1}$. The claim is proved.

Let W_{j} be the direct sum of all the $V_{\chi_{i}}$ with $\chi_{i} \in C_{j}^{*}$. Then the restriction of W_{j} on C_{j} is faithful, hence so is the restriction of W_{j} on G_{j}. It follows that $\operatorname{ed}\left(G_{j}\right) \leq \operatorname{dim}\left(W_{j}\right)$. As $W_{1} \oplus W_{2}=V$, we have

$$
\operatorname{ed}\left(G_{1}\right)+\operatorname{ed}\left(G_{2}\right) \leq \operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}(V)=\operatorname{ed}\left(G_{1} \times G_{2}\right)
$$

Corollary 5.2. Let F be a field as in Theorem 5.1. Then

$$
\operatorname{ed}\left(\mathbb{Z} / p^{n_{1}} \mathbb{Z} \times \mathbb{Z} / p^{n_{2}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{n_{s}} \mathbb{Z}\right)=\sum_{i=1}^{s}\left[F\left(\xi_{p^{n_{i}}}\right): F\right]
$$

Proof. By Theorem 5.1, it suffices to consider the case $s=1$. This case has been done in [6]. It is also covered by Theorem 4.1 as the natural representation of the group $\mathbb{Z} / p^{n} \mathbb{Z}$ in the F-space $F\left(\xi_{p^{n}}\right)$ is faithful irreducible of the smallest dimension (cf. Remark 4.6).

References

1. Artin, M.: Brauer-Severi varieties (Notes by A. Verschoren). In: van Oystaeyen, F.M.J., Verschoren, A.H.M.J. (eds.) Brauer Groups in Ring Theory and Algebraic Geometry (Wilrijk, 1981). Lect. Notes Math., vol. 917, pp. 194-210. Springer, Berlin (1982)
2. Berhuy, G., Favi, G.: Essential dimension: a functorial point of view (after A. Merkurjev). Doc. Math. 8, 279-330 (2003) (electronic)
3. Berhuy, G., Reichstein, Z.: On the notion of canonical dimension for algebraic groups. Adv. Math. 198(1), 128-171 (2005)
4. Brosnan, P., Reichstein, Z., Vistoli, A.: Essential dimension and algebraic stacks. LAGRS preprint server, http://www.math.uni-bielefeld.de/lag/ (2007)
5. Buhler, J., Reichstein, Z.: On the essential dimension of a finite group. Compos. Math. 106(2), 159-179 (1997)
6. Florence, M.: On the essential dimension of cyclic p-groups. Invent. Math. 171, 175189 (2008)
7. Giraud, J.: Cohomologie non abélienne. Grundlehren Math. Wiss., vol. 179. Springer, Berlin (1971)
8. Karpenko, N.A.: Grothendieck Chow motives of Severi-Brauer varieties (Russian). Algebra Anal. 7(4), 196-213 (1995) (transl. in St. Petersbg. Math. J. 7(4), 649-661 (1996))
9. Karpenko, N.A.: On anisotropy of orthogonal involutions. J. Ramanujan Math. Soc. 15(1), 1-22 (2000)
10. Karpenko, N.A., Merkurjev, A.S.: Essential dimension of quadrics. Invent. Math. 153(2), 361-372 (2003)
11. Karpenko, N.A., Merkurjev, A.S.: Canonical p-dimension of algebraic groups. Adv. Math. 205(2), 410-433 (2006)
12. Merkurjev, A.S.: Maximal indices of Tits algebras. Doc. Math. 1(12), 229-243 (1996) (electronic)
13. Milne, J.S.: Étale Cohomology. Princeton University Press, Princeton, N.J. (1980)
14. Quillen, D.: Higher Algebraic K-Theory, I. Lect. Notes Math., vol. 341, pp. 85-147. Springer, Berlin (1973)
15. Reichstein, Z., Youssin, B.: Essential dimensions of algebraic groups and a resolution theorem for G-varieties. Canad. J. Math. 52(5), 1018-1056 (2000) (With an appendix by J. Kollár and E. Szabó)
16. Rowen, L.H.: Ring Theory, vol. II. Pure Appl. Math., vol. 128. Academic Press, Boston, MA (1988)
17. Serre, J.-P.: Linear Representations of Finite Groups. Grad. Texts Math., vol. 42. Springer, New York (1977) (Transl. from the 2nd French edn. by L.L. Scott)
18. Thomason, R.W.: Algebraic K-theory of group scheme actions. In: Algebraic Topology and Algebraic K-theory (Princeton, N.J., 1983). Ann. Math. Stud., vol. 113, pp. 539563. Princeton Univ. Press, Princeton, NJ (1987)
19. Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97(3), 613-670 (1989)
20. Zariski, O., Samuel, P.: Commutative Algebra, vol. II. Grad. Texts Math. vol. 29. Springer, New York (1975) (Reprint of the 1960 edn.)

[^0]: * The work of the first author has been partially supported by the Collaborative Research Centre 701 "Spectral Structures and Topological Methods in Mathematics" of the Bielefeld University.
 ** The work of the second author has been supported by the NSF grant DMS \#0652316.

