Inventiones mathematicae

Essential dimension of finite *p*-groups

Nikita A. Karpenko^{1,*}, Alexander S. Merkurjev^{2,**}

- ¹ Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris 6), 4 place Jussieu, 75252 Paris Cedex 05, France (e-mail: karpenko@math.jussieu.fr)
- ² Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA (e-mail: merkurev@math.ucla.edu)

Oblatum 25-VI-2007 & 22-XI-2007 Published online: 10 January 2008 – © Springer-Verlag 2008

Abstract. We prove that the essential dimension and p-dimension of a p-group G over a field F containing a primitive p-th root of unity is equal to the least dimension of a faithful representation of G over F.

The notion of the essential dimension ed(G) of a finite group G over a field F was introduced in [5]. The integer ed(G) is equal to the smallest number of algebraically independent parameters required to define a Galois G-algebra over any field extension of F. If V is a faithful linear representation of G over F then $ed(G) \leq \dim(V)$ (cf. [2, Prop. 4.15]). The essential dimension of G can be smaller than $\dim(V)$ for every faithful representation V of G over F. For example, we have $ed(\mathbb{Z}/3\mathbb{Z}) = 1$ over \mathbb{Q} or any field F of characteristic 3 (cf. [2, Cor. 7.5]) and $ed(S_3) = 1$ over \mathbb{C} (cf. [5, Th. 6.5]).

In this paper we prove that if G is a p-group and F is a field of characteristic different from p containing p-th roots of unity, then ed(G) coincides with the least dimension of a faithful representation of G over F (cf. Theorem 4.1).

We also compute the essential *p*-dimension of a *p*-group *G* introduced in [15]. We show that $ed_p(G) = ed(G)$ over a field *F* containing *p*-th roots of unity.

^{*} The work of the first author has been partially supported by the Collaborative Research Centre 701 "Spectral Structures and Topological Methods in Mathematics" of the Bielefeld University.

^{**} The work of the second author has been supported by the NSF grant DMS #0652316.

Acknowledgement: We are grateful to Zinovy Reichstein for useful conversations and comments.

1. Preliminaries

In the paper the word "scheme" means a separated scheme of finite type over a field and "variety" an integral scheme.

1.1. Severi–Brauer varieties. (cf. [1]) Let *A* be a central simple algebra of degree *n* over a field *F*. The *Severi–Brauer variety* P = SB(A) of *A* is the variety of right ideals in *A* of dimension *n*. For a field extension L/F, the algebra *A* is split over *L* if and only if $P(L) \neq \emptyset$ if and only if $P_L \simeq \mathbb{P}_I^{n-1}$.

The change of field map deg : $\operatorname{Pic}(P) \to \operatorname{Pic}(P_L) = \mathbb{Z}$ for a splitting field extension L/F identifies $\operatorname{Pic}(P)$ with $e\mathbb{Z}$, where *e* is the exponent (period) of *A*. In particular, *P* has divisors of degree *e*. The algebra *A* is split over *L* if and only if P_L has a prime divisor of degree 1 (a hyperplane).

1.2. Groupoids and gerbes. (cf. [4]) Let \mathcal{X} be a groupoid over F in the sense of [19]. We assume that for any field extension L/F, the isomorphism classes of objects in the category $\mathcal{X}(L)$ form a set which we denote by $\widehat{\mathcal{X}}(L)$. We can view $\widehat{\mathcal{X}}$ as a functor from the category *Fields*/*F* of field extensions of *F* to *Sets*.

Example 1.2.1. If G is an algebraic group over F, then the groupoid BG is defined as the category of G-torsors over a scheme over F. Hence the functor \widehat{BG} takes a field extension L/F to the set of all isomorphism classes of G-torsors over L.

Special examples of groupoids are gerbes banded by a commutative group scheme C over F. There is a bijection between the set of isomorphism classes of gerbes banded by C and the Galois cohomology group $H^2(F, C)$ (cf. [7, Ch. 4] and [13, Ch. 4, § 2]). The split gerbe BC corresponds to the trivial element of $H^2(F, C)$.

Example 1.2.2 (Gerbes banded by μ_n). Let *A* be a central simple *F*-algebra and *n* an integer with $[A] \in Br_n(F) = H^2(F, \mu_n)$. Let *P* be the Severi– Brauer variety of *A* and *S* a divisor on *P* of degree *n*. Denote by \mathcal{X}_A the gerbe banded by μ_n corresponding to [A]. For a field extension L/F, the set $\widehat{\mathcal{X}}_A(L)$ has the following explicit description (cf. [4]): $\widehat{\mathcal{X}}_A(L)$ is nonempty if and only if *P* is split over *L*. In this case $\widehat{\mathcal{X}}_A(L)$ is the set of equivalence classes of the set

 $\{f \in L(P)^{\times} : \operatorname{div}(f) = nH - S_L, \text{ where } H \text{ is a hyperplane in } P_L\},\$

and two functions f and f' are equivalent if $f' = fh^n$ for some $h \in L(P)^{\times}$.

1.3. Essential dimension. Let T : *Fields*/ $F \rightarrow$ *Sets* be a functor. For a field extension L/F and an element $t \in T(L)$, the *essential dimension*

of t, denoted ed(t), is the least tr.deg_F(L') over all subfields $L' \subset L$ over F such that t belongs to the image of the map $T(L') \rightarrow T(L)$. The essential dimension ed(T) of the functor T is the supremum of ed(t) over all $t \in T(L)$ and field extensions L/F.

Let *p* be a prime integer and $t \in T(L)$. The essential *p*-dimension of *t*, denoted $\operatorname{ed}_p(t)$, is the least tr. $\operatorname{deg}_F(L'')$ over all subfields $L'' \subset L'$ over *F*, where *L'* is a finite field extension of *L* of degree prime to *p* such that the image of *t* in T(L') belongs to the image of the map $T(L'') \to T(L')$. The essential *p*-dimension $\operatorname{ed}_p(T)$ of the functor *T* is the supremum of $\operatorname{ed}_p(t)$ over all $t \in T(L)$ and field extensions L/F. Clearly, $\operatorname{ed}(T) \ge \operatorname{ed}_p(T)$.

Let G be an algebraic group over F. The essential dimension ed(G)of G (respectively the essential p-dimension ed(G)) is the essential dimension (respectively the essential p-dimension) of the functor taking a field extension L/F to the set of isomorphism classes of G-torsors over Spec L.

If G is a finite group, we view G as a constant group over a field F. Every G-torsor over Spec L has the form Spec K where K is a Galois G-algebra over L. Therefore, ed(G) is the essential dimension of the functor taking a field L to the set of isomorphism classes of Galois G-algebras over L.

Example 1.3.1. Let \mathfrak{X} be a groupoid over F. The *essential dimension of* \mathfrak{X} , denoted by $\operatorname{ed}(\mathfrak{X})$, is the essential dimension $\operatorname{ed}(\widehat{\mathfrak{X}})$ of the functor $\widehat{\mathfrak{X}}$ defined in Sect. 1.2. The *essential p-dimension of* $\operatorname{ed}_p(\mathfrak{X})$ is defined similarly. In particular, $\operatorname{ed}(BG) = \operatorname{ed}(G)$ and $\operatorname{ed}_p(BG) = \operatorname{ed}_p(G)$ for an algebraic group G over F.

1.4. Canonical dimension. (cf. [3], [11]) Let *F* be a field and C a class of field extensions of *F*. A field $E \in C$ is called *generic* if for any $L \in C$ there is an *F*-place $E \rightsquigarrow L$.

The *canonical dimension* $\operatorname{cdim}(\mathcal{C})$ of the class \mathcal{C} is the minimum of the tr.deg_{*F*} *E* over all generic fields $E \in \mathcal{C}$.

Let p be a prime integer. A field E in a class C is called p-generic if for any $L \in C$ there is a finite field extension L' of L of degree prime to p and an F-place $E \rightsquigarrow L'$. The canonical p-dimension $\operatorname{cdim}_p(C)$ of the class C is the least tr.deg_F E over all p-generic fields $E \in C$. Obviously, $\operatorname{cdim}(C) \ge \operatorname{cdim}_p(C)$.

Let T: Fields $F \to Sets$ be a functor. Denote by C_T the class of splitting fields of T, i.e., the class of field extensions L/F such that $T(L) \neq \emptyset$. The canonical dimension (p-dimension) of T, denoted cdim(T) (respectively cdim_p(T)), is the canonical dimension (p-dimension) of the class C_T .

If X is a scheme over F, we write $\operatorname{cdim}(X)$ and $\operatorname{cdim}_p(X)$ for the canonical dimension and p-dimension of X viewed as a functor $L \mapsto X(L) = \operatorname{Mor}_F(\operatorname{Spec} L, X)$.

Example 1.4.1. Let \mathcal{X} be a groupoid over F. We define the *canonical dimension* $\operatorname{cdim}(\mathcal{X})$ and *p*-dimension $\operatorname{cdim}_p(\mathcal{X})$ of \mathcal{X} as the canonical dimension and *p*-dimension of the functor $\widehat{\mathcal{X}}$.

Example 1.4.2. If X is a regular and complete variety over F viewed as a functor then $\operatorname{cdim}(X)$ is equal to the smallest dimension of a closed subvariety $Z \subset X$ such that there is a rational morphism $X \dashrightarrow Z$ (cf. [11, Cor. 4.6]). If p is a prime integer then $\operatorname{cdim}_p(X)$ is equal to the smallest dimension of a closed subvariety $Z \subset X$ such that there are dominant rational morphisms $X' \dashrightarrow X$ of degree prime to p and $X' \dashrightarrow Z$ for some variety X' (cf. [11, Prop. 4.10]).

Remark 1.4.2 (A relation between essential and canonical dimension). Let $T : Fields/F \rightarrow Sets$ be a functor. We define the "contraction" functor $T^c : Fields/F \rightarrow Sets$ as follows. For a field extension L/F, we have $T^c(L) = \emptyset$ if T(L) is empty and $T^c(L)$ is a one element set otherwise. If X is a regular and complete variety over F viewed as a functor then one can show that $ed(X^c) = cdim(X)$ and $ed_p(X^c) = cdim_p(X)$.

1.5. Valuations. Let K/F be a regular field extension, i.e., for any field extension L/F, the ring $K \otimes_F L$ is a domain. We write *KL* for the quotient field of $K \otimes_F L$.

Let v be a valuation on L over F with residue field R. Let O be the associated valuation ring and M its maximal ideal. As $K \otimes_F R$ is a domain, the ideal $\widetilde{M} := K \otimes_F M$ in the ring $\widetilde{O} := K \otimes_F O$ is prime. The localization ring $\widetilde{O}_{\widetilde{M}}$ is a valuation ring in KL with residue field KR. The corresponding valuation \widetilde{v} of KL is called the *canonical extension of* v *on* KL. Note that the groups of values of v and \widetilde{v} coincide.

We shall need the following lemma.

Lemma 1.1 (cf. [11, Lemma 3.2]). Let v be a discrete valuation (of rank 1) of a field L with residue field R and L'/L a finite field extension of degree prime to p. Then v extends to a discrete valuation of L' with residue field R' such that the ramification index and the degree [R' : R] are prime to p.

Proof. If L'/L is separable and v_1, \ldots, v_k are all the extensions of v on L' then $[L':L] = \sum e_i[R_i:R]$ where e_i is the ramification index and R_i is the residue field of v_i (cf. [20, Ch. VI, Th. 20 and p. 63]). It follows that the integer $e_i[R_i:R]$ is prime to p for some i.

If L'/L is purely inseparable of degree q then the valuation v' of L' defined by $v'(x) = v(x^q)$ satisfies the desired properties. The general case follows.

2. Canonical dimension of a subgroup of Br(*F*)

Let *F* be an arbitrary field, *p* a prime integer and *D* a finite subgroup of $\operatorname{Br}_p(F)$ of dimension *r* over $\mathbb{Z}/p\mathbb{Z}$. In this section we determine the canonical dimension cdim *D* and the canonical *p*-dimension cdim_{*p*}*D* of the class of common splitting fields of all elements of *D*. We say that a basis $\{a_1, a_2, \ldots, a_r\}$ of *D* is *minimal* if for any $i = 1, \ldots, r$ and any element $d \in D$ outside of the subgroup generated by a_1, \ldots, a_{i-1} , we have ind $d \ge \text{ind } a_i$.

One can construct a minimal basis of *D* by induction as follows. Let a_1 be a nonzero element of *D* of minimal index. If the elements a_1, \ldots, a_{i-1} are already chosen for some $i \leq r$, we take for the a_i an element of *D* of the minimal index among the elements outside of the subgroup generated by a_1, \ldots, a_{i-1} .

In this section we prove the following

Theorem 2.1. Let F be an arbitrary field, p a prime integer, $D \subset Br_p(F)$ a subgroup of dimension r and $\{a_1, a_2, ..., a_r\}$ a minimal basis of D. Then

$$\operatorname{cdim}_p(D) = \operatorname{cdim}(D) = \left(\sum_{i=1}^r \operatorname{ind} a_i\right) - r$$
.

We prove Theorem 2.1 in several steps.

Let $\{a_1, a_2, \ldots, a_r\}$ be a minimal basis of *D*. For every $i = 1, 2, \ldots, r$, let P_i be the Severi–Brauer variety of a central division *F*-algebra A_i representing the element $a_i \in Br_p F$. We write *P* for the product $P_1 \times P_2 \times \cdots \times P_r$. We have

$$\dim P = \sum_{i=1}^{r} \dim P_i = \left(\sum_{i=1}^{r} \operatorname{ind} a_i\right) - r.$$

Moreover, the classes of splitting fields of *P* and *D* coincide, hence $\operatorname{cdim}(D) = \operatorname{cdim}_p(P)$ and $\operatorname{cdim}_p(D) = \operatorname{cdim}_p(P)$. Thus, the statement of Theorem 2.1 is equivalent to the equality $\operatorname{cdim}_p(P) = \operatorname{cdim}(P) = \operatorname{dim}(P)$.

Let $r \ge 1$ and $0 \le n_1 \le n_2 \le \cdots \le n_r$ be integers and $K = K(n_1, \ldots, n_r)$ the subgroup of the polynomial ring $\mathbb{Z}[x]$ in r variables $x = (x_1, \ldots, x_r)$ generated by the monomials $p^{e(j_1, \ldots, j_r)} x_1^{j_1} \ldots x_r^{j_r}$ for all $j_1, \ldots, j_r \ge 0$, where the exponent $e(j_1, \ldots, j_r)$ is 0 if all the j_1, \ldots, j_r are divisible by p, otherwise $e(j_1, \ldots, j_r) = n_k$ with the maximum k such that j_k is not divisible by p. In fact, K is a subring of $\mathbb{Z}[x]$.

Remark 2.2. Let A_1, \ldots, A_r be central division algebras over some field such that for any non-negative integers j_1, \ldots, j_r , the index of the tensor product $A_1^{\otimes j_1} \otimes \cdots \otimes A_r^{\otimes j_r}$ is equal to $p^{e(j_1,\ldots,j_r)}$. The group *K* can be interpreted as the colimit of the Grothendieck groups of the product over $i = 1, \ldots, r$ of the Severi–Brauer varieties of the matrix algebras $M_{l_i}(A_i)$ over all positive integers l_1, \ldots, l_r .

We set $h = (h_1, ..., h_r)$ with $h_i = 1 - x_i \in \mathbb{Z}[x]$.

Proposition 2.3. Let $bh_1^{i_1} \dots h_r^{i_r}$ be a monomial of the lowest total degree of a polynomial f in the variables h lying in K. Assume that the integer b is not divisible by p. Then $p^{n_1}|i_1, \dots, p^{n_r}|i_r$.

Proof. We recast the proof for r = 1 given in [8, Lemma 2.1.2] to the case of arbitrary r.

We proceed by induction on $m = r + n_1 + \cdots + n_r$. The case m = 1 is trivial. If m > 1 and $n_1 = 0$, then $K = K(n_2, \ldots, n_r)[x_1]$ and we are done by induction applied to $K(n_2, \ldots, n_r)$. In what follows we assume that $n_1 \ge 1$.

Since $K(n_1, n_2, ..., n_r) \subset K(n_1 - 1, n_2, ..., n_r)$, by the induction hypothesis $p^{n_1-1}|i_1, p^{n_2}|i_2, ..., p^{n_r}|i_r$. It remains to show that i_1 is divisible by p^{n_1} .

Consider the additive operation $\varphi : \mathbb{Z}[x] \to \mathbb{Q}[x]$ which takes a polynomial $g \in \mathbb{Z}[x]$ to the polynomial $p^{-1}x_1 \cdot g'$, where g' is the partial derivative of g with respect to x_1 . We have

$$\varphi(K) \subset K(n_1 - 1, n_2 - 1, \dots, n_r - 1) \subset K(n_1 - 1)[x_2, \dots, x_r]$$

and

$$\varphi(h_1^{j_1}h_2^{j_2}\cdots h_r^{j_r})=-p^{-1}j_1h_1^{j_1-1}h_2^{j_2}\cdots h_r^{j_r}+p^{-1}j_1h_1^{j_1}h_2^{j_2}\cdots h_r^{j_r}.$$

Since $bh_1^{i_1} \cdots h_r^{i_r}$ is a monomial of the lowest total degree of the polynomial f, it follows that $-bp^{-1}i_1h_1^{i_1-1}h_2^{i_2}\cdots h_r^{i_r}$ is a monomial of $\varphi(f)$ considered as a polynomial in h. As

$$\varphi(f) \in K(n_1 - 1)[x_2, \ldots, x_r],$$

we see that $-bp^{-1}i_1h_1^{i_1-1}$ is a monomial of a polynomial from $K(n_1 - 1)$. It follows that $p^{-1}i_1$ is an integer and by Lemma 2.4 below, this integer is divisible by p^{n_1-1} . Therefore $p^{n_1}|i_1$.

Lemma 2.4. Let g be a polynomial in h_1 lying in K(m) for some $m \ge 0$. Let bh_1^{i-1} be a monomial of g such that i is divisible by p^m . Then b is divisible by p^m .

Proof. We write *h* for h_1 and *x* for x_1 . Note that $h^i \in K(m)$ since *i* is divisible by p^m . Moreover, the quotient ring $K(m)/(h^i)$ is additively generated by $p^{e(j)}x^j$ with j < i. Indeed, the polynomial $x^i - (-h)^i = x^i - (x - 1)^i$ is a linear combination with integer coefficients of $p^{e(j)}x^j$ with j < i. Consequently, for any $k \ge 0$, multiplying by $p^{e(k)}x^k$, we see that the polynomial $p^{e(i+k)}x^{i+k} = p^{e(k)}x^{i+k}$ modulo the ideal (h^i) is a linear combination with integer coefficients of the $p^{e(j)}x^j$ with j < i + k.

Thus, $K(m)/(h^i)$ is additively generated by $p^{e(j)}(1-h)^j$ with j < i. Only the generator $p^{e(i-1)}(1-h)^{i-1} = p^m(1-h)^{i-1}$ has a nonzero h^{i-1} -coefficient and that coefficient is divisible by p^m .

Let *Y* be a scheme over the field *F*. We write CH(Y) for the Chow group of *Y* and set Ch(Y) = CH(Y)/p CH(Y). We define $Ch(\overline{Y})$ as the colimit of $Ch(Y_L)$ where *L* runs over all field extensions of *F*. Thus for any field extension L/F, we have a canonical homomorphism $Ch(Y_L) \rightarrow Ch(\overline{Y})$. This homomorphism is an isomorphism if Y = P, the variety defined above, and *L* is a splitting field of *P*. We define $\overline{Ch}(Y)$ to be the image of the homomorphism $Ch(Y) \rightarrow Ch(\overline{Y})$.

Proposition 2.5. We have $\overline{Ch}^{j}(P) = 0$ for any j > 0.

Proof. Let $K_0(P)$ be the Grothendieck group of P. We write $K_0(\overline{P})$ for the colimit of $K_0(P_L)$ taken over all field extensions L/F. The group $K_0(\overline{P})$ is canonically isomorphic to $K_0(P_L)$ for any splitting field L of P. Each of the groups $K_0(P)$ and $K_0(\overline{P})$ is endowed with the topological filtration. The subsequent factor groups $G^j K_0(P)$ and $G^j K_0(\overline{P})$ of these filtrations fit into the commutative square

$$CH^{j}(\overline{P}) \longrightarrow G^{j}K_{0}(\overline{P})$$

$$\uparrow \qquad \qquad \uparrow$$

$$CH^{j}(P) \longrightarrow G^{j}K_{0}(P)$$

where the top map is an isomorphism. Therefore it suffices to show that the image of the homomorphism $G^{j}K_{0}(P) \rightarrow G^{j}K_{0}(\overline{P})$ is divisible by p for any j > 0.

The ring $K_0(\overline{P})$ is identified with the quotient of the polynomial ring $\mathbb{Z}[h]$ by the ideal generated by $h_1^{\text{ind} a_1}, \ldots, h_r^{\text{ind} a_r}$. Under this identification, the element h_i is the pull-back to P of the class of a hyperplane in P_i over a splitting field and the *j*-th term $K_0(\overline{P})^{(j)}$ of the filtration is generated by the classes of monomials of degree at least *j*. The group $G^j K_0(\overline{P})$ is identified with the group of all homogeneous polynomials of degree *j*.

The group $K_0(P)$ is isomorphic to the direct sum of $K_0(B)$, where $B = A_1^{\otimes j_1} \otimes \cdots \otimes A_r^{\otimes j_r}$, over all j_i with $0 \le j_i < \text{ind } a_i$ (cf. [14, § 9]). The image of the natural map $K_0(B) \to K_0(B_L) = \mathbb{Z}$, where *L* is a splitting field of *B*, is equal to $\text{ind}(a_1^{j_1} \cdots a_r^{j_r})\mathbb{Z}$. The image of the homomorphism $K_0(P) \to K_0(\overline{P})$ (which is in fact an injection) is generated by

ind
$$(a_1^{j_1} \cdots a_r^{j_r})(1-h_1)^{j_1} \cdots (1-h_r)^{j_r}$$

over all $j_1, \ldots, j_r \ge 0$.

We embed $K_0(\overline{P})$ into the polynomial ring $\mathbb{Z}[x] = \mathbb{Z}[x_1, \ldots, x_r]$ as a subgroup by identifying a monomial $h_1^{j_1} \cdots h_r^{j_r}$ where $0 \le j_i < \operatorname{ind} a_i$ with the polynomial $(1 - x_1)^{j_1} \cdots (1 - x_r)^{j_r}$. As the elements a_1, \ldots, a_r form a minimal basis of D, the index $\operatorname{ind}(a_1^{j_1} \cdots a_r^{j_r})$ is a power of p with the exponent at least $e(\log_p \operatorname{ind} a_1, \ldots, \log_p \operatorname{ind} a_r)$. Therefore,

$$K_0(P) \subset K(\log_p \operatorname{ind} a_1, \ldots, \log_p \operatorname{ind} a_r) \subset \mathbb{Z}[x]$$

An element of $K_0(P)^{(j)}$ with j > 0 is a polynomial f in h of degree at least j. The image of f in $G^j K_0(\overline{P})$ is the j-th homogeneous part f_j of f. As the degree of f with respect to h_i is less than ind a_i , it follows from Proposition 2.3 that all the coefficients of f_j are divisible by p.

Let $d = \dim P$ and $\alpha \in CH^d(P \times P)$. The *first multiplicity* $mult_1(\alpha)$ of α is the image of α under the push-forward map $CH^d(P \times P) \to CH^0(P) = \mathbb{Z}$ given by the first projection $P \times P \to P$ (cf. [10]). Similarly, we define the *second multiplicity* $mult_2(\alpha)$.

Corollary 2.6. For any element $\alpha \in CH^d(P \times P)$, we have

 $\operatorname{mult}_1(\alpha) \equiv \operatorname{mult}_2(\alpha) \mod p.$

Proof. We follow the proof of [9, Th. 2.1]. The homomorphism

$$f: \operatorname{CH}^d(P \times P) \to (\mathbb{Z}/p\mathbb{Z})^2,$$

taking an $\alpha \in CH^d(P \times P)$ to $(mult_1(\alpha), mult_2(\alpha))$ modulo p, factors through the group $\overline{Ch}^d(P \times P)$. Since for any i, any projection $P_i \times P_i \to P_i$ is a projective bundle, the Chow group $\overline{Ch}^d(P \times P)$ is a direct some of several copies of $\overline{Ch}^i(P)$ for some i's and the value i = 0 appears once. By Proposition 2.5, the dimension over $\mathbb{Z}/p\mathbb{Z}$ of the vector space $\overline{Ch}^d(P \times P)$ is equal to 1 and consequently the dimension of the image of f is at most 1. Since the image of the diagonal class under f is (1, 1), the image of f is generated by (1, 1).

Corollary 2.7. Any rational map $P \rightarrow P$ is dominant.

Proof. Let $\alpha \in CH^d(P \times P)$ be the class of the closure of the graph of a rational map $P \dashrightarrow P$. We have mult₁(α) = 1. Therefore, by Corollary 2.6, mult₂(α) \neq 0, and it follows that the rational map is dominant.

Corollary 2.8. $\operatorname{cdim}_{P} P = \operatorname{cdim} P = \operatorname{dim} P$.

Proof. As $\operatorname{cdim}_p P \leq \operatorname{cdim} P \leq \operatorname{dim} P$, it suffices to show that $\operatorname{cdim}_p P = \operatorname{dim} P$. Let $Z \subset P$ be a closed subvariety and $f: P' \dashrightarrow P$ and $g: P' \dashrightarrow Z$ dominant rational morphisms such that deg f is prime to p. Let α be the class in $\operatorname{CH}^d(P \times P)$ of the closure in $P \times P$ of the image of $f \times g: P' \dashrightarrow P \times Z$. As $\operatorname{mult}_1(\alpha) = \operatorname{deg} f$ is prime to p, by Corollary 2.6, we have $\operatorname{mult}_2(\alpha) \neq 0$, i.e., Z = P. By Example 1.4.2, $\operatorname{cdim}_p P = \operatorname{dim} P$.

The corollary completes the proof of Theorem 2.1.

Remark 2.9. Theorem 2.1 can be generalized to the case of any finite subgroup $D \subset Br(F)$ consisting of elements of *p*-primary orders. Let $\{a_1, a_2, \ldots, a_r\}$ be elements of *D* such that their images $\{a'_1, a'_2, \ldots, a'_r\}$ in D/D^p form a minimal basis, i.e., for any $i = 1, \ldots r$ and any element $d \in D$ with the class in D/D^p outside of the subgroup generated by a'_1, \ldots, a'_{i-1} , the inequality ind $d \ge$ ind a_i holds. In particular, $\{a_1, a_2, \ldots, a_r\}$ generate *D*. Then, as in Theorem 2.1, we have

$$\operatorname{cdim}_p(D) = \operatorname{cdim}(D) = \left(\sum_{i=1}^r \operatorname{ind} a_i\right) - r.$$

Indeed, the group D and the variety $P = P_1 \times \cdots \times P_r$, where P_i for every $i = 1, \ldots, r$ is the Severi–Brauer variety of a central division algebra representing the element a_i , have the same splitting fields. Therefore, $\operatorname{cdim}(D) = \operatorname{cdim}(P)$ and $\operatorname{cdim}_p(D) = \operatorname{cdim}_p(P)$. Corollaries 2.6, 2.7 and 2.8 hold for P since $K_0(P) \subset K(\log_p \operatorname{ind} a_1, \ldots, \log_p \operatorname{ind} a_r)$.

Remark 2.10. One can compute the canonical *p*-dimension of an arbitrary finite subgroup of $D \subset Br(F)$ as follows. Let D' be the Sylow *p*-subgroup of D. Write $D = D' \oplus D''$ for a subgroup $D'' \subset D$ and let L/F be a finite field extension of degree prime to p such that D'' is split over L. Then $D_L = D'_L$ and $\operatorname{cdim}_p(D) = \operatorname{cdim}_p(D_L) = \operatorname{cdim}_p(D'_L) = \operatorname{cdim}_p(D') = \operatorname{cdim}_p(D')$.

3. Essential and canonical dimension of gerbes banded by $(\mu_p)^s$

In this section we relate the essential and canonical (p-)dimensions of gerbes banded by $(\mu_p)^s$ where $s \ge 0$. The following statement is a generalization of [4, Th. 7.1].

Theorem 3.1. Let p be a prime integer and \mathfrak{X} a gerbe banded by $(\boldsymbol{\mu}_p)^s$ over an arbitrary field F. Then

$$\operatorname{ed}(\mathfrak{X}) = \operatorname{ed}_p(\mathfrak{X}) = \operatorname{cdim}_p(\mathfrak{X}) + s = \operatorname{cdim}(\mathfrak{X}) + s.$$

Proof. The gerbe \mathcal{X} is given by an element in $H^2(F, (\mu_p)^s) = \operatorname{Br}_p(F)^s$, i.e., by an *s*-tuple of central simple algebras A_1, A_2, \ldots, A_s with $[A_i] \in \operatorname{Br}_p(F)$. Let *P* be the product of the Severi–Brauer varieties $P_i := \operatorname{SB}(A_i)$ and *D* the subgroup of $\operatorname{Br}_p(F)$ generated by the $[A_i], i = 1, \ldots, s$. As the classes of splitting fields for \mathcal{X} , *D* and *P* coincide, we have

(1)
$$\operatorname{cdim}(\mathfrak{X}) = \operatorname{cdim}(P) = \operatorname{cdim}_p(D) = \operatorname{cdim}_p(D)$$

= $\operatorname{cdim}_p(P) = \operatorname{cdim}_p(\mathfrak{X})$

by Theorem 2.1. We shall prove the inequalities $\operatorname{ed}_p(\mathcal{X}) \ge \operatorname{cdim}(P) + s \ge \operatorname{ed}(\mathcal{X})$.

Let S_i be a divisor on P_i of degree p. Let L/F be a field extension and $f_i \in L(P_i)^{\times}$ with div $(f_i) = pH_i - (S_i)_L$, where H_i is a hyperplane in $(P_i)_L$ for i = 1, ..., s. We write $\langle f_i \rangle_{i=1}^s$ for the corresponding element in $\widehat{\mathcal{X}}(L)$ (cf. Sect. 1.2).

By Example 1.4.2, there is a closed subvariety $Z \subset P$ and a rational dominant morphism $P \dashrightarrow Z$ with $\dim(Z) = \operatorname{cdim}(P) = \operatorname{cdim}_p(P)$. We view F(Z) as a subfield of F(P). As $P(L) \neq \emptyset$ and P is regular, there is an F-place $\gamma : F(P) \rightsquigarrow L$ (cf. [11, § 4.1]). Since Z is complete, the valuation ring of the restriction $\gamma|_{F(Z)} : F(Z) \rightsquigarrow L$ dominates a point in Z. It follows that $Z(L) \neq \emptyset$. Choose a point $y \in Z$ such that $F' := F(y) \subset L$.

Since $P(F') \neq \emptyset$, the P_i are split over F', hence $\operatorname{Pic}(P_i)_{F'} = \mathbb{Z}$ and there are functions $g_i \in F'(P_i)^{\times}$ with $\operatorname{div}(g_i) = pH'_i - (S_i)_{F'}$, where H'_i is

a hyperplane in P_i for i = 1, ..., s. As $\text{Pic}(P_i)_L = \mathbb{Z}$, there are functions $h_i \in L(P_i)^{\times}$ with $\text{div}(h_i) = (H'_i)_L - H_i$. We have

$$\operatorname{div}(g_i)_L = \operatorname{div}(f_i) + \operatorname{div}(h_i^p),$$

hence

$$a_i g_i = f_i h_i^p$$

for some $a_i \in L^{\times}$. It follows that $\langle f_i \rangle_{i=1}^s = \langle a_i g_i \rangle_{i=1}^s$ in $\mathfrak{X}(L)$, therefore $\langle f_i \rangle_{i=1}^s$ is defined over the field $F'(a_1, a_2, \ldots, a_s)$. Hence

$$\operatorname{ed}\langle f_i \rangle_{i=1}^s \le \operatorname{tr.deg}_F(F') + s \le \dim(Z) + s = \operatorname{cdim}(P) + s,$$

and therefore $ed(\mathcal{X}) \leq cdim(P) + s$.

We shall prove the inequality $\operatorname{ed}_p(\mathfrak{X}) \geq \operatorname{cdim}(P) + s$. As $P(F(Z)) \neq \emptyset$, there are functions $f_i \in F(Z)(P_i)^{\times}$ with $\operatorname{div}(f_i) = pH_i - (S_i)_{F(Z)}$, where H_i is a hyperplane in $(P_i)_{F(Z)}$. Let $L := F(Z)(t_1, t_2, \ldots, t_s)$, where the t_i are variables, and consider the point $\langle t_i f_i \rangle_{i=1}^s \in \widehat{\mathfrak{X}}(L)$.

We claim that $\operatorname{ed}_p \langle t_i f_i \rangle_{i=1}^s \geq \operatorname{cdim}(P) + s$. Let L' be a finite extension of L of degree prime to p and $L'' \subset L'$ a subfield such that the image of $\langle t_i f_i \rangle_{i=1}^s$ in $\widehat{\mathcal{X}}(L')$ is defined over L'', i.e., there are functions $g_i \in L''(P_i)^{\times}$ and $h_i \in L'(P_i)^{\times}$ with $t_i f_i = g_i h_i^p$. We shall show that $\operatorname{tr.deg}_F(L'') \geq \operatorname{cdim}(P) + s$.

Let $L_i := F(Z)(t_i, \ldots, t_s)$ and v_i be the discrete valuation of L_i corresponding to the variable t_i for $i = 1, \ldots, s$. We construct a sequence of field extensions L'_i/L_i of degree prime to p and discrete valuations v'_i of L'_i for $i = 1, \ldots, s$ by induction on i as follows. Set $L'_1 = L'$. Suppose the fields L'_1, \ldots, L'_i and the valuations v'_1, \ldots, v'_{i-1} are constructed. By Lemma 1.1, there is a valuation v'_i of L'_i with residue field L'_{i+1} extending the discrete valuation v_i of L'_i with the ramification index e_i and the degree $[L'_{i+1} : L_{i+1}]$ prime to p.

The composition v' of the discrete valuations v'_i is a valuation of L' with residue field of degree over F(Z) prime to p. A choice of prime elements in all the L'_i identifies the group of values of v' with \mathbb{Z}^s . Moreover, for every i = 1, ..., s, we have

$$v'(t_i) = e_i \varepsilon_i + \sum_{j>i} a_{ij} \varepsilon_j$$

where the ε_i 's denote the standard basis elements of \mathbb{Z}^s and $a_{ij} \in \mathbb{Z}$.

Write v'' for the restriction of v' on L''. Let K = F(P). We extend canonically the valuations v' and v'' to valuations \tilde{v}' and \tilde{v}'' of KL' and KL'' respectively (cf. Sect. 1.5). Note that $f_i \in K(Z)^{\times}$, $g_i \in (KL')^{\times}$ and $h_i \in (KL')^{\times}$. We have

$$e_i\varepsilon_i + \sum_{j>i} a_{ij}\varepsilon_j = v'(t_i) = \tilde{v}'(t_i f_i) \equiv \tilde{v}''(g_i) \pmod{p}$$

Since e_i are prime to p, the elements $\tilde{v}''(g_i)$ generate a subgroup of \mathbb{Z}^s of finite index. It follows that the value group of \tilde{v}'' is of rank s, hence rank $(v'') = \operatorname{rank}(\tilde{v}'') = s$.

Let R'' and R' be residue fields of v'' and v' respectively. We have the inclusions $R'' \subset R' \supset F(Z)$ and [R' : F(Z)] is prime to p. By [20, Ch. VI, Th. 3, Cor. 1],

(2)
$$\operatorname{tr.deg}_F(L'') \ge \operatorname{tr.deg}_F(R'') + \operatorname{rank}(v'') = \operatorname{tr.deg}_F(R'') + s.$$

As $P(L'') \neq \emptyset$, there is an *F*-place $F(P) \rightsquigarrow L''$. Composing it with the place $L'' \rightsquigarrow R''$ given by v'', we get an *F*-place $F(P) \rightsquigarrow R''$. As *P* is complete, we have $P(R'') \neq \emptyset$, i.e., R'' is a splitting field of *P*.

We prove that R'' is a *p*-generic splitting field of *P*. Let *M* be a splitting field of *P*. A regular system of parameters at the image of a morphism α : Spec $M \rightarrow P$ yields an *F*-place $F(P) \rightsquigarrow M$ that is a composition of places associated with discrete valuations (cf. [11, § 1.4]). By [11, Lemma 3.2] applied to the restriction of α to F(Z), there is a finite field extension M' of M and an *F*-place $R' \rightsquigarrow M'$. Restricting to R'' we get an *F*-place $R'' \rightsquigarrow M'$, i.e., R'' is a *p*-generic splitting field of *P*.

By the definition of the canonical *p*-dimension,

$$\operatorname{cdim}(P) = \operatorname{tr.deg}_F F(Z) = \operatorname{tr.deg}_F R' \ge \operatorname{tr.deg}_F(R'') \ge \operatorname{cdim}_p(P).$$

It follows that $\operatorname{tr.deg}_F(R'') = \operatorname{cdim}(P)$ by (1) and therefore, $\operatorname{tr.deg}_F(L'') \ge \operatorname{cdim}(P) + s$ by (2). The claim is proved.

It follows from the claim that $\operatorname{ed}_p(\mathfrak{X}) \ge \operatorname{cdim}(P) + s$. \Box

4. Main theorem

The main result of the paper is the following

Theorem 4.1. Let G be a p-group and F a field of characteristic different from p containing a primitive p-th root of unity. Then $ed_p(G)$ over F is equal to ed(G) over F and coincides with the least dimension of a faithful representation of G over F.

The rest of the section is devoted to the proof of the theorem. As was mentioned in the introduction, we have $ed_p(G) \le ed(G) \le dim(V)$ for any faithful representation V of G over F. We shall construct a faithful representation V of G over F with $ed_p(G) \ge dim(V)$.

Denote by C the subgroup of all central elements of G of exponent p and set H = G/C, so we have an exact sequence

$$(3) 1 \to C \to G \to H \to 1.$$

Let $E \to \operatorname{Spec} F$ be an *H*-torsor and $\operatorname{Spec} F \to BH$ be the corresponding morphism. Set $\mathcal{X}^E := BG \times_{BH} \operatorname{Spec} F$. Then \mathcal{X}^E is a gerbe over *F* banded by *C* and its class in $H^2(F, C)$ coincides with the image

of the class of *E* under the connecting map $H^1(F, H) \rightarrow H^2(F, C)$ (cf. [13, Ch. 4, § 2]). An object of \mathcal{X}^E over a field extension L/F is a pair (E', α) , where *E'* is a *G*-torsor over *L* and $\alpha : E'/C \xrightarrow{\sim} E_L$ is an isomorphism of *H*-torsors over *L*.

Alternatively, $\mathcal{X}^E = [E/G]$ with objects (over L) G-equivariant morphisms $E' \to E_L$, where E' is a G-torsor over L (cf. [19]).

A lower bound for ed(G) was established in [4, Prop. 2.20]. We give a similar bound for $ed_p(G)$.

Theorem 4.2. For any *H*-torsor *E* over *F*, we have $ed_p(G) \ge ed_p(X^E)$.

Proof. Let L/F be a field extension and $x = (E', \alpha)$ an object of $\mathfrak{X}^E(L)$. Choose a field a field extension L'/L of degree prime to p and a subfield $L'' \subset L'$ over F such that tr.deg $(L'') = ed_p(E')$ and there is a G-torsor E'' over L'' with $E''_{L'} \simeq E'_{L'}$. We shall write Z for the (zero-dimensional) scheme of isomorphisms

We shall write Z for the (zero-dimensional) scheme of isomorphisms $\operatorname{Iso}_{L''}(E''/C, E_{L''})$ of *H*-torsors over L''. The image of the morphism $\operatorname{Spec} L' \to Z$ over L'' representing the isomorphism $\alpha_{L'}$ is a one point set $\{z\}$ of Z. The field extension L''(z)/L'' is algebraic since dim Z = 0.

The isomorphism $\alpha_{L'}$ descends to an isomorphism of the *H*-torsors E''/C and *E* over L''(z). Hence the isomorphism class of $x_{L'}$ belongs to the image of the map $\widehat{\mathcal{X}}^E(L''(z)) \to \widehat{\mathcal{X}}^E(L')$. Therefore,

$$\operatorname{ed}_p(G) \ge \operatorname{ed}_p(E') = \operatorname{tr.deg}(L'') = \operatorname{tr.deg}(L''(z)) \ge \operatorname{ed}_p(x).$$

It follows that $\operatorname{ed}_p(G) \ge \operatorname{ed}_p(\mathfrak{X}^E)$.

Let $C^* := \text{Hom}(C, \mathbf{G}_m)$ denote the character group of *C*. An *H*-torsor *E* over *F* yields a homomorphism

$$\beta^E : C^* \to \operatorname{Br}(F)$$

taking a character $\chi : C \to \mathbf{G}_m$ to the image of the class of *E* under the composition

$$H^1(F, H) \xrightarrow{\partial} H^2(F, C) \xrightarrow{\chi_*} H^2(F, \mathbf{G}_{\mathrm{m}}) = \mathrm{Br}(F),$$

where ∂ is the connecting map for the exact sequence (3). Note that as $\mu_p \subset F^{\times}$, the intersection of Ker(χ_*) over all characters $\chi \in C^*$ is trivial. It follows that the classes of splitting fields of the gerbe \mathcal{X}^E and the subgroup Im(β^E) coincide. It follows that

(4)
$$\operatorname{cdim}_p(\mathfrak{X}^E) = \operatorname{cdim}_p(\operatorname{Im}(\beta^E)).$$

Let $\chi_1, \chi_2, \ldots, \chi_s$ be a basis of C^* over $\mathbb{Z}/p\mathbb{Z}$ such that $\{\beta^E(\chi_1), \ldots, \beta^E(\chi_r)\}$ is a minimal basis of $\text{Im}(\beta^E)$ for some r and $\beta^E(\chi_i) = 1$ for i > r. By Theorem 2.1, we have

(5)
$$\operatorname{cdim}_p(\operatorname{Im}(\beta^E)) = \left(\sum_{i=1}^r \operatorname{ind} \beta^E(\chi_i)\right) - r = \left(\sum_{i=1}^s \operatorname{ind} \beta^E(\chi_i)\right) - s.$$

In view of (4) and Theorems 3.1 and 4.2, we shall find an *H*-torsor *E* (over a field extension of *F*) so that the integer in (5) is as large as possible. Let *U* be a faithful representation of *H* and *X* an open subset of the affine space $\mathbb{A}(U)$ of *U* where *H* acts freely. Set Y := X/H. Let *E* be the generic fiber of the *H*-torsor $\pi : X \to Y$. It is a "generic" *H*-torsor over the function field L := F(Y).

Let $\chi : C \to \mathbf{G}_{\mathrm{m}}$ be a character and $\operatorname{Rep}^{(\chi)}(G)$ the category of all finite dimensional representations ρ of G such that $\rho(c)$ is multiplication by $\chi(c)$ for any $c \in C$. Fix a representations $\rho : G \to \operatorname{GL}(W)$ in $\operatorname{Rep}^{(\chi)}(G)$. The conjugation action of G on $B := \operatorname{End}(W)$ factors through an H-action. By descent (cf. [13, Ch. 1, § 2]), there is (a unique up to canonical isomorphism) Azumaya algebra \mathcal{A} over Y and an H-equivariant algebra isomorphism $\pi^*(\mathcal{A}) \simeq B_X := B \times X$. Let A be the generic fiber of \mathcal{A} ; it is a central simple algebra over L = F(Y).

Consider the homomorphism $\beta^E : C^* \to Br(L)$.

Lemma 4.3. The class of A in Br(L) coincides with $\beta^{E}(\chi)$.

Proof. Consider the commutative diagram

The image of the *H*-torsor $\pi : X \to Y$ under α is the **PGL**(*W*)-torsor

$$E' := \mathbf{PGL}(W)_X / H \to Y$$

where $\mathbf{PGL}(W)_X := \mathbf{PGL}(W) \times X$ and *H* acts on $\mathbf{PGL}(W)_X$ by $h(a, x) = (ah^{-1}, hx)$. The conjugation action of $\mathbf{PGL}(W)$ on *B* gives rise to an isomorphism between $\mathbf{PGL}(W)_X$ and the *H*-torsor $\mathrm{Iso}_X(B_X, \mathrm{End}(W)_X)$ of isomorphisms between the (split) Azumaya \mathcal{O}_X -algebras B_X and $\mathrm{End}(W)_X$. Note that this isomorphism is *H*-equivariant if *H* acts by conjugation on B_X and trivially on $\mathrm{End}(W)_X$. By descent,

$$E' \simeq \operatorname{Iso}_Y(\mathcal{A}, \operatorname{End}(W)_Y).$$

Therefore, the image of the class of the torsor $E' \to Y$ under the connecting map for the bottom row of the diagram coincides with the class of the Azumaya algebra \mathcal{A} . Restricting to the generic fiber yields $[A] = \beta^E(\chi)$.

Theorem 4.4. For any character $\chi \in C^*$, we have ind $\beta^E(\chi) = \min \dim(V)$ over all representations V in Rep^(χ)(G).

Proof. We follow the approach given in [12]. Let H act on a scheme Z over F. We also view Z as a G-scheme. Denote by $\mathcal{M}(G, Z)$ the

(abelian) category of left *G*-modules on *Z* that are coherent \mathcal{O}_Z -modules (cf. [18, § 1.2]). In particular, $\mathcal{M}(G, \operatorname{Spec} F) = \operatorname{Rep}(G)$, the category off all finite dimensional representations of *G*.

Note that *C* acts trivially on *Z*. For a character $\chi : C \to \mathbf{G}_{\mathrm{m}}$, let $\mathcal{M}^{(\chi)}(G, Z)$ be the full subcategory of $\mathcal{M}(G, Z)$ consisting of *G*-modules on which *C* acts via χ . For example, $\mathcal{M}^{(\chi)}(G, \operatorname{Spec} F) = \operatorname{Rep}^{(\chi)}(G)$.

We write $K_0(G, Z)$ and $K_0^{(\chi)}(G, Z)$ for the Grothendieck groups of $\mathcal{M}(G, Z)$ and $\mathcal{M}^{(\chi)}(G, Z)$ respectively.

Every *M* in $\mathcal{M}(G, Z)$ is a direct sum of unique submodules $M^{(\chi)}$ of *M* in $\mathcal{M}^{(\chi)}(G, Z)$ over all characters χ of *C*. It follows that

$$K_0(G, Z) = \coprod K_0^{(\chi)}(G, Z).$$

Let q be the order of G. By [17, Th. 24], every irreducible representation of G is defined over the field $F(\mu_q)$. Since F contains p-th roots of unity, the degree $[F(\mu_q) : F]$ is a power of p. Hence the dimension of any irreducible representation of G over F is a power of p. It follows by Lemma 4.3 that it suffices to show $\operatorname{ind}(A) = \operatorname{gcd} \dim(V)$ over all representations V in $\operatorname{Rep}^{(\chi)}(G)$.

The image of the map dim : $K_0(A) \to \mathbb{Z}$ given by the dimension over *L* is equal to $\operatorname{ind}(A) \cdot \dim(W) \cdot \mathbb{Z}$. To finish the proof of the theorem it suffices to construct a surjective homomorphism

(6)
$$K_0(\operatorname{Rep}^{(\chi)}(G)) \to K_0(A)$$

such that the composition $K_0(\operatorname{Rep}^{(\chi)}(G)) \to K_0(A) \xrightarrow{\dim} \mathbb{Z}$ is given by the dimension times $\dim(W)$.

First of all we have

(7)
$$K_0(\operatorname{Rep}^{(\chi)}(G)) \simeq K_0^{(\chi)}(G, \operatorname{Spec} F).$$

Recall that X an open subset of $\mathbb{A}(U)$ where H acts freely. By homotopy invariance in the equivariant K-theory [18, Cor. 4.2],

$$K_0(G, \operatorname{Spec} F) \simeq K_0(G, \mathbb{A}(U)).$$

It follows that

(8)
$$K_0^{(\chi)}(G, \operatorname{Spec} F) \simeq K_0^{(\chi)}(G, \mathbb{A}(U))$$

By localization [18, Th. 2.7], the restriction homomorphism

(9)
$$K_0^{(\chi)}(G, \mathbb{A}(U)) \to K_0^{(\chi)}(G, X).$$

is surjective.

Denote by $\mathcal{M}^{(1)}(G, X, B_X)$ the category of left *G*-modules *M* on *X* that are coherent \mathcal{O}_X -modules and right B_X -modules such that *C* acts trivially on *M* and the *G*-action on *M* and the conjugation *G*-action on B_X agree.

The corresponding Grothendieck group is denoted by $K_0^{(1)}(G, X, B_X)$. For any object *L* in $\mathcal{M}^{(\chi)}(G, X)$, the group *C* acts trivially on $L \otimes_F W^*$ and *B* acts on the right on $L \otimes_F W^*$. We have Morita equivalence

$$\mathcal{M}^{(\chi)}(G,X) \xrightarrow{\sim} \mathcal{M}^{(1)}(G,X,B_X)$$

given by $L \mapsto L \otimes_F W^*$ (with the inverse functor $M \mapsto M \otimes_B W$). Hence

(10)
$$K_0^{(\chi)}(G, X) \simeq K_0^{(1)}(G, X, B_X).$$

Now, as *C* acts trivially on *X* and B_X , the category $\mathcal{M}^{(1)}(G, X, B_X)$ is equivalent to the category $\mathcal{M}(H, X, B_X)$ of left *H*-modules *M* on *X* that are coherent \mathcal{O}_X -modules and right B_X -modules such that the *G*-action on *M* and the conjugation *G*-action on B_X agree. Hence

(11)
$$K_0^{(1)}(G, X, B_X) \simeq K_0(H, X, B_X).$$

Recall that Y = X/H. By descent, the category $\mathcal{M}(H, X, B_X)$ is equivalent to the category $\mathcal{M}(Y, \mathcal{A})$ of coherent \mathcal{O}_Y -modules that are right \mathcal{A} -modules. Hence

(12)
$$K_0(H, X, B_X) \simeq K_0(Y, \mathcal{A}).$$

The restriction to the generic point of Y gives a surjective homomorphism

(13)
$$K_0(Y, \mathcal{A}) \to K_0(A).$$

The homomorphism (6) is the composition of (7), (8), (9), (10), (11), (12) and (13). It takes the class of a representation *V* to the class in $K_0(A)$ of the generic fiber of the vector bundle $((V \otimes W^*) \times X)/H$ over *Y* of rank dim(*V*) · dim(*W*).

Remark 4.5. The theorem holds with min replaced by the gcd (with the same proof) in a more general context when the sequence (3) is an arbitrary exact sequence of algebraic groups with C a central diagonalizable subgroup of G.

Example 4.6 (cf. [6], [4, § 14], [16, Th. 7.3.8]). Let p be a prime integer, F be a field of characteristic different from p and C_m the cyclic group $\mathbb{Z}/p^m\mathbb{Z}$. Let $K = F(t_1, \ldots, t_{p^m})$ and C_m act on the variables t_1, \ldots, t_{p^m} by cyclic permutations. Then K is a Galois C_m -algebra over K^{C_m} . Assume that F contains a primitive root of unity ξ_{p^k} for some k. The image of the class of K under the connecting map $H^1(F, C_m) \to H^2(F, C_k) \simeq \operatorname{Br}_{p^k}(F)$ for the exact sequence

$$1 \to C_k \to C_n \to C_m \to 1$$
,

where n = k + m, is the class of the cyclic algebra $A = (K/K^{C_m}, \xi_{p^k})$. The group C_n acts *F*-linearly on $F(\xi_{p^n})$ by multiplication by roots of unity making the *F*-space $F(\xi_{p^n})$ a faithful representation of C_n of the smallest dimension. By Theorem 4.4 and Remark 4.5, we have

$$ind(A) = [F(\xi_{p^n}) : F].$$

We can now complete the proof of Theorem 4.1. By Theorem 4.4, there are representations V_i in $\operatorname{Rep}^{(\chi_i)}(G)$ such that $\operatorname{ind} \beta^E(\chi_i) = \dim(V_i)$, $i = 1, \ldots, s$. Let *V* be the direct sum of all the V_i . By Theorem 4.2 (applied to the group *G* over *L* and the generic torsor *E*), Theorem 3.1, (4) and (5), we have

$$\operatorname{ed}_{p}(G) \ge \operatorname{ed}_{p}(G_{L}) \ge \operatorname{ed}_{p}(\mathcal{X}^{E}) = \operatorname{cdim}_{p}(\mathcal{X}^{E}) + s = \operatorname{cdim}_{p}(\operatorname{Im}(\beta^{E})) + s$$
$$= \sum_{i=1}^{s} \operatorname{ind} \beta^{E}(\chi_{i}) = \sum_{i=1}^{s} \operatorname{dim}(V_{i}) = \operatorname{dim}(V).$$

Since $\chi_1, \chi_2, \ldots, \chi_s$ generate C^* , the restriction of V on C is faithful. As every nontrivial normal subgroup of G intersects C nontrivially, the G-representation V is faithful. We have constructed a faithful representation V of G over F with $ed_p(G) \ge \dim(V)$. The theorem is proved.

Remark 4.7. The proof of Theorem 4.1 shows how to compute the essential dimension of *G* over *F*. For every character $\chi \in C^*$ choose a representation $V_{\chi} \in \text{Rep}^{(\chi)}(G)$ of the smallest dimension. It appears as an irreducible component of the smallest dimension of the induced representation $\text{Ind}_{C}^{G}(\chi)$. We construct a basis χ_1, \ldots, χ_s of C^* by induction as follows. Let χ_1 be a nonzero character with the smallest dim (V_{χ_1}) . If the characters $\chi_1, \ldots, \chi_{i-1}$ are already constructed for some $i \leq s$, then we take for χ_i a character with minimal dim (V_{χ_i}) among all the characters outside of the subgroup generated by $\chi_1, \ldots, \chi_{i-1}$. Then *V* is a faithful representation of the least dimension and $\text{ed}(G) = \sum_{i=1}^{s} \text{dim}(V_{\chi_i})$.

Remark 4.8. We can compute the essential *p*-dimension of an arbitrary finite group *G* over a field *F* of characteristic different from *p*. (We don't assume that *F* contains *p*-th roots of unity.) Let *G'* be a Sylow *p*-subgroup of *G*. One can prove that $ed_p(G) = ed_p(G')$ and $ed_p(G')$ does not change under field extensions of degree prime to *p*. In particular $ed_p(G') = ed_p(G'_{F'})$ where $F' = F(\mu_p)$. It follows from Theorem 4.1 that $ed_p(G)$ coincides with the least dimension of a faithful representation of *G'* over *F'*.

5. An application

Theorem 5.1. Let G_1 and G_2 be two *p*-groups and *F* a field of characteristic different from *p* containing a primitive *p*-th root of unity. Then

$$\mathrm{ed}(G_1 \times G_2) = \mathrm{ed}(G_1) + \mathrm{ed}(G_2).$$

Proof. The index *j* in the proof takes the values 1 and 2. If V_j is a faithful representation of G_j then $V_1 \oplus V_2$ is a faithful representation of $G_1 \times G_2$. Hence $ed(G_1 \times G_2) \le ed(G_1) + ed(G_2)$ (cf. [5, Lemma 4.1(b)]). Denote by C_j the subgroup of all central elements of G_j of exponent p. Set $C = C_1 \times C_2$. We identify C^* with $C_1^* \oplus C_2^*$.

For every character $\chi \in C^*$ choose a representation $\rho_{\chi} : G_1 \times G_2 \rightarrow$ $\mathbf{GL}(V_{\chi})$ in $\operatorname{Rep}^{(\chi)}(G_1 \times G_2)$ of the smallest dimension. We construct a basis $\{\chi_1, \chi_2, \ldots, \chi_s\}$ of C^* following Remark 4.7. We claim that all the χ_i can be chosen in one of the C_j^* . Indeed, suppose the characters $\chi_1, \ldots, \chi_{i-1}$ are already constructed, and let χ_i be a character with minimal $\dim(V_{\chi_i})$ among the characters outside of the subgroup generated by $\chi_1, \ldots, \chi_{i-1}$. Let $\chi_i = \chi_i^{(1)} + \chi_i^{(2)}$ with $\chi_i^{(j)} \in C_j^*$. Denote by ε_1 and ε_2 the endomorphisms of $G_1 \times G_2$ taking (g_1, g_2) to $(g_1, 1)$ and $(1, g_2)$ respectively. The restriction of the representation $\rho_{\chi_i} \circ \varepsilon_j$ on C is given by the character $\chi_i^{(j)}$. We replace χ_i by $\chi_i^{(j)}$ with j such that $\chi_i^{(j)}$ does not belong to the subgroup generated by $\chi_1, \ldots, \chi_{i-1}$. The claim is proved.

Let W_j be the direct sum of all the V_{χ_i} with $\chi_i \in C_j^*$. Then the restriction of W_j on C_j is faithful, hence so is the restriction of W_j on G_j . It follows that $ed(G_j) \leq dim(W_j)$. As $W_1 \oplus W_2 = V$, we have

$$\operatorname{ed}(G_1) + \operatorname{ed}(G_2) \le \dim(W_1) + \dim(W_2) = \dim(V) = \operatorname{ed}(G_1 \times G_2).$$

Corollary 5.2. Let F be a field as in Theorem 5.1. Then

$$\operatorname{ed}(\mathbb{Z}/p^{n_1}\mathbb{Z}\times\mathbb{Z}/p^{n_2}\mathbb{Z}\times\cdots\times\mathbb{Z}/p^{n_s}\mathbb{Z})=\sum_{i=1}^s[F(\xi_{p^{n_i}}):F].$$

Proof. By Theorem 5.1, it suffices to consider the case s = 1. This case has been done in [6]. It is also covered by Theorem 4.1 as the natural representation of the group $\mathbb{Z}/p^n\mathbb{Z}$ in the *F*-space $F(\xi_{p^n})$ is faithful irreducible of the smallest dimension (cf. Remark 4.6).

References

- Artin, M.: Brauer–Severi varieties (Notes by A. Verschoren). In: van Oystaeyen, F.M.J., Verschoren, A.H.M.J. (eds.) Brauer Groups in Ring Theory and Algebraic Geometry (Wilrijk, 1981). Lect. Notes Math., vol. 917, pp. 194–210. Springer, Berlin (1982)
- Berhuy, G., Favi, G.: Essential dimension: a functorial point of view (after A. Merkurjev). Doc. Math. 8, 279–330 (2003) (electronic)
- Berhuy, G., Reichstein, Z.: On the notion of canonical dimension for algebraic groups. Adv. Math. 198(1), 128–171 (2005)
- Brosnan, P., Reichstein, Z., Vistoli, A.: Essential dimension and algebraic stacks. LAGRS preprint server, http://www.math.uni-bielefeld.de/lag/ (2007)
- Buhler, J., Reichstein, Z.: On the essential dimension of a finite group. Compos. Math. 106(2), 159–179 (1997)
- Florence, M.: On the essential dimension of cyclic *p*-groups. Invent. Math. 171, 175– 189 (2008)
- Giraud, J.: Cohomologie non abélienne. Grundlehren Math. Wiss., vol. 179. Springer, Berlin (1971)

- Karpenko, N.A.: Grothendieck Chow motives of Severi–Brauer varieties (Russian). Algebra Anal. 7(4), 196–213 (1995) (transl. in St. Petersbg. Math. J. 7(4), 649–661 (1996))
- Karpenko, N.A.: On anisotropy of orthogonal involutions. J. Ramanujan Math. Soc. 15(1), 1–22 (2000)
- Karpenko, N.A., Merkurjev, A.S.: Essential dimension of quadrics. Invent. Math. 153(2), 361–372 (2003)
- Karpenko, N.A., Merkurjev, A.S.: Canonical *p*-dimension of algebraic groups. Adv. Math. **205**(2), 410–433 (2006)
- 12. Merkurjev, A.S.: Maximal indices of Tits algebras. Doc. Math. 1(12), 229–243 (1996) (electronic)
- 13. Milne, J.S.: Étale Cohomology. Princeton University Press, Princeton, N.J. (1980)
- 14. Quillen, D.: Higher Algebraic *K*-Theory, I. Lect. Notes Math., vol. 341, pp. 85–147. Springer, Berlin (1973)
- Reichstein, Z., Youssin, B.: Essential dimensions of algebraic groups and a resolution theorem for *G*-varieties. Canad. J. Math. **52**(5), 1018–1056 (2000) (With an appendix by J. Kollár and E. Szabó)
- Rowen, L.H.: Ring Theory, vol. II. Pure Appl. Math., vol. 128. Academic Press, Boston, MA (1988)
- 17. Serre, J.-P.: Linear Representations of Finite Groups. Grad. Texts Math., vol. 42. Springer, New York (1977) (Transl. from the 2nd French edn. by L.L. Scott)
- Thomason, R.W.: Algebraic *K*-theory of group scheme actions. In: Algebraic Topology and Algebraic *K*-theory (Princeton, N.J., 1983). Ann. Math. Stud., vol. 113, pp. 539– 563. Princeton Univ. Press, Princeton, NJ (1987)
- Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. Math. 97(3), 613–670 (1989)
- Zariski, O., Samuel, P.: Commutative Algebra, vol. II. Grad. Texts Math. vol. 29. Springer, New York (1975) (Reprint of the 1960 edn.)