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Abstract

We show that Y. Prokhorov’s “Simple Finite Subgroups of the Cre-
mona Group of Rank 3” implies that, over any field of characteristic 0,
the essential dimensions of the alternating group, A7, and the symmetric
group, S7, are 4.

Introduction

Let k be a field of characteristic 0. Throughout this note we assume that
all varieties, actions and maps are defined over k.

Let G be a finite group. A compression is a dominant rational G-
equivariant map of faithful G-varieties. Let V be a faithful linear repre-
sentation of G viewed as a G-variety. We define the essential dimension
of G, denoted edk(G), to be the minimal value of dim(X), where X is
taken from the set of all faithful G-varieties sitting under a compression
V 99K X. From [4, Theorem 3.1], we see that the essential dimension
depends only on k and G — the choice of linear representation V does
not matter.

The purpose of this note is to show that the essential dimension of
the alternating group A7 and the symmetric group S7 can be computed
using the recent work of Prokhorov [12] on the classification of rationally
connected threefolds with faithful actions of non-abelian simple groups.
Our main result is the following:

Theorem 1. edk(A7) = edk(S7) = 4.

The essential dimension of a finite group was introduced by Buhler and
Reichstein in [4]. The concept has since been extended to much broader
contexts (see [13] and [1]).

The following results hold when k has “sufficiently many roots of
unity;” for example, when k is algebraically closed. If G is an abelian
group then edk(G) = rank(G) [4, Theorem 6.1]. We have edk(G) = 1 if
and only if G is cyclic or odd dihedral [4, Theorem 6.2]; see also [10] and
[6]. If G is a p-group then edk(G) is equal to the minimal dimension of a
faithful linear representation of G; this is a deep result of Karpenko and
Merkurjev [9].
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The values of edk(Sn) are of special interest because they relate to
classical questions of simplifying degree n polynomials via Tschirnhaus
transformations. In particular, the degree 7 case features prominently
in algebraic variants of Hilbert’s 13th problem. In this language, several
results for small n were established by Hermite, Joubert and Klein in the
1800s. For more information, see the discussion in [4] or [5].

The values of edk(Sn) and edk(An) are known for all n ≤ 6. Buhler
and Reichstein [4] establish bounds for symmetric groups when n ≥ 5:

n− 3 ≥ edk(Sn) ≥ ⌊n/2⌋ . (1)

We note that these bounds tell us that edk(S7) is either 3 or 4. For the
alternating groups An, they found the following bounds when n ≥ 5:

n− 3 ≥ edk(An) ≥ 2⌊n/4⌋ . (2)

From this edk(A6) is either 2 or 3. Recently, Serre found the exact value:

Theorem 2 (Serre [15, Proposition 3.6]). edk(A6) = 3.

Taking Theorems 1 and 2 into account we can improve some of the
known bounds in higher dimensions. From [4, Theorem 6.5], we have that
edk(Sn+2) ≥ edk(Sn) + 1 for any n ≥ 1. Similarly, from [4, Theorem 6.7],
we have edk(An+4) ≥ edk(An) + 2 for any n ≥ 4. We have the following
for n ≥ 6:

n− 3 ≥ edk(Sn) ≥
—

n+ 1

2

�

, (3)

n− 3 ≥ edk(An) ≥

8

>

<

>

:

n

2
for n even

n−1

2
for n ≡ 1 mod 4

n+1

2
for n ≡ 3 mod 4

. (4)

Proof of the main theorem

Our proof of Theorem 1 is in the same spirit as Serre’s proof of Theorem
2. For Serre’s argument, it suffices to show edk(A6) 6= 2 by the bounds
in (2). One must show no A6-surface sits under a compression from a
linear A6-variety. Serre uses the Enriques-Manin-Iskovskikh classification
of minimal rational G-surfaces (see [11] and [8]) to reduce the problem
to one surface with an A6-action (P2 with the linear action). It is then
shown that the group acting on this remaining surface has an abelian
subgroup without fixed points. This eliminates this last surface in view
of the following:

Proposition 3 ([14, Proposition A.2]). Let A be a finite abelian group
and ψ : V 99K X be an A-equivariant rational map of A-varieties over C.
If V has a smooth A-fixed point and X is proper then X has an A-fixed
point.

For our proof, will need to show that edC(A7) 6= 3. Serre looked at
rational surfaces; we consider unirational threefolds. Our analog of Serre’s
reduction to P2 is Prokhorov’s classification for the group A7:
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Theorem 4 (Prokhorov [12, Theorem 1.5]). Let X be a rationally con-
nected threefold over C with a faithful action of A7. Then X is equivari-
antly birationally equivalent to one of the following:

(i) A subvariety of P6, with the standard permutation A7 action, cut out
by symmetric polynomials of degrees 1, 2 and 3.

(ii) P3 with a linear action of A7.

We will need the following lemma to reduce to the case where k = C:

Lemma 5. Suppose G is a finite group and k is a field of characteristic
0. Then edk(G) ≥ edC(G).

Proof. First, note that edk(G) ≥ edK(G) for K an algebraic closure of k
(see [1, Proposition 1.5]). Next, we have edK(G) = edC(G) since K and C

both contain an algebraic closure of Q (see [3, Proposition 2.14(1)]).

Proof of Theorem 1. We have the following string of inequalities:

4 ≥ edk(S7) ≥ edk(A7) ≥ edC(A7) ≥ edC(A6) = 3 .

Indeed, the first inequality follows from the bound 1. The second and
fourth inequalities follow from the standard fact that edk(G) ≥ edk(H)
for any subgroup H of a finite group G. The third inequality follows from
Lemma 5. To prove the theorem it suffices to prove that edC(A7) 6= 3.

Suppose edC(A7) = 3. Then there exists a dominant rational A7-
equivariant map ψ : V 99K X from a linear A7-variety V to a 3-dimensional
A7-variety X. From this, X is unirational and, thus, rationally connected.
We may assume that X is one of the threefolds from Prokhorov’s Theo-
rem.

Note that V has an A7-fixed point (the origin) and X is proper. Thus
all abelian subgroups of A7 have fixed points by Proposition 3. For each
threefold, we will exhibit an abelian subgroup of A7 without fixed points
on X. This leads to a contradiction and, so, edC(A7) 6= 3 as desired.

Case (i): Consider A = 〈(1 2 3), (4 5 6)〉, an abelian subgroup of A7. Let
ζ be a third root of unity. Consider the following points in P6:

(λ1 : λ1 : λ1 : λ2 : λ2 : λ2 : λ3)
(1 : ζ : ζ2 : 0 : 0 : 0 : 0)
(1 : ζ2 : ζ : 0 : 0 : 0 : 0)
(0 : 0 : 0 : 1 : ζ : ζ2 : 0)
(0 : 0 : 0 : 1 : ζ2 : ζ : 0)

where λ1, λ2, λ3 ∈ C are not all 0. These correspond to the eigenspaces
of a lift of A acting on C7. Thus these are all the A-fixed points on P6.

We claim that none of these points lie on X. For points of the first
form, there are only two solutions of x1+. . .+x7 = 0 and x2

1+. . .+x2
7 = 0:

λ1 = −1 ±
√
−7, λ2 = −1 ∓

√
−7, λ3 = 6

One then checks that x3
1 + . . . + x3

7 6= 0 for these two points and for the
remaining points. We have an abelian subgroup without fixed points —
a contradiction.
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Case (ii): In this case A7 acts linearly on P3 and can be viewed as a
subgroup of PGL4(C). Let

A = 〈(1 2)(3 4), (1 2)(5 6)〉

be an abelian subgroup of A7. Let B be the inverse image of A in GL4(C).
We have the following exact sequence of groups:

1 → C
× → B → A→ 1

where C× is the set of scalar matrices in GL4(C). Recall that A has a fixed
point on P3. This is equivalent to saying that the action of B (viewed as
a 4-dimensional linear representation) has a 1-dimensional subrepresenta-
tion χ : B → C×. This gives us a splitting B ≃ A× C×. In particular, B
is abelian.

There are two distinct projective representations of A7 in PGL4(C) [7],
but they are complex conjugates so it suffices to look at one. An explicit
description of a preimage of A7 in GL4(C) can be found in Blichfeldt [2,
pg. 142]. Using a computer algebra package, one checks that elements in
the preimages of (1 2)(3 4) and (1 2)(5 6) do not commute. Thus B is not
abelian — a contradiction.
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