ON FINITE SIMPLE GROUPS OF ESSENTIAL DIMENSION 3

ARNAUD BEAUVILLE

Abstract

We show that the only finite simple groups of essential dimension 3 (over \mathbb{C}) are \mathfrak{A}_{6} and possibly $\mathrm{PSL}_{2}\left(\mathbb{F}_{11}\right)$. This is an easy consequence of the classification by Prokhorov of rationally connected threefolds with an action of a simple group.

Introduction

Let G be a finite group, and X a complex projective variety with a faithful action of G. We will say that X is a linearizable if there exists a complex representation V of G and a rational dominant G-equivariant map $V \rightarrow X$ (such a map is called a compression of V). The essential dimension $\operatorname{ed}(G)$ of G (over \mathbb{C}) is the minimal dimension of all linearizable G-varieties. We have to refer to $[B \mathrm{BR}]$ for the motivation behind this definition; in a very informal way, ed (G) is the minimum number of parameters needed to define all Galois extensions L / K with Galois group G and $K \supset \mathbb{C}$.

The groups of essential dimension 1 are the cyclic groups and the diedral group D_{n}, n odd [BR]. The groups of essential dimension 2 are classified in [D2]; the list is already large, and such classification becomes probably intractable in higher dimension. However the simple (finite) groups in the list are only \mathfrak{A}_{5} and $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$. In this note we try to go one step further:

Proposition. The simple groups of essential dimension 3 are \mathfrak{A}_{6} and possibly $\operatorname{PSL}_{2}\left(\mathbb{F}_{11}\right)$.
The result is an easy consequence of the remarkable paper of Prokhorov [\mathbb{P}, who classifies all rationally connected threefolds admitting the action of a simple group. We can rule out most of the groups appearing in [叉] thanks to a simple criterion [RY]: if a G variety X is linearizable, any abelian subgroup of G must fix a point of X. Unfortunately this criterion does not apply to $\operatorname{PSL}_{2}\left(\mathbb{F}_{11}\right)$, whose only abelian subgroups are cyclic or isomorphic to $(\mathbb{Z} / 2)^{2}$.

1. Prokhorov's list

Let G be a finite simple group with $\operatorname{ed}(G)=3$. By definition there exists a linearizable projective G-threefold X. This implies in particular that X is rationally connected. Such pairs (G, X) have been classified in [P]: up to conjugation, we have the following possibilities:

Date: January 19, 2011.
(1) $G=\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$ acting on a Fano threefold $X \subset \mathbb{P}^{8}$;
(2) $G=\mathfrak{A}_{5}, \mathfrak{A}_{6}, \mathfrak{A}_{7}, \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right), \mathrm{PSL}_{2}\left(\mathbb{F}_{11}\right)$, or $\mathrm{PSp}_{4}\left(\mathbb{F}_{3}\right)$.

The groups $\mathfrak{A}_{5}, \mathfrak{A}_{6}, \mathfrak{A}_{7}$ have essential dimension 2,3 and 4 respectively, and $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$ has essential dimension 2 [D1]. We are not able to settle the case $G=\mathrm{PSL}_{2}\left(\mathbb{F}_{11}\right)$ (see $\S 3$). As for $\mathrm{PSp}_{4}\left(\mathbb{F}_{3}\right)$, we have:

Proposition 1. The essential dimension of $\operatorname{PSp}\left(4, \mathbb{F}_{3}\right)$ is 4 .
Proof : The group $\mathrm{Sp}\left(4, \mathbb{F}_{3}\right)$ has a linear representation on the space W of functions on \mathbb{F}_{3}^{2}, the Weil representation, for which we refer to [AR], Appendix I. This representation splits as $W=W^{+} \oplus W^{-}$, the spaces of even and odd functions; we have $\operatorname{dim} W^{+}=5$, $\operatorname{dim} W^{-}=4$. The central element $(-I)$ of $\operatorname{Sp}\left(4, \mathbb{F}_{3}\right)$ acts on W by ${ }^{(-I)} F(x)=F(-x)$, hence it acts trivially on W^{+}, and as -Id on W^{-}. Thus we get a faithful representation of $\operatorname{PSp}\left(4, \mathbb{F}_{3}\right)$ on W^{+}, with a compression to $\mathbb{P}\left(W^{+}\right) \cong \mathbb{P}^{4}$, hence $\operatorname{ed}\left(\operatorname{PSp}\left(4, \mathbb{F}_{3}\right)\right) \leq 4$.

To prove that we have equality, we observel that $\operatorname{PSp}\left(4, \mathbb{F}_{3}\right)$ contains a subgroup isomorphic to $(\mathbb{Z} / 2)^{4}$. One way to see this is to use the isomorphism $\operatorname{PSp}\left(4, \mathbb{F}_{3}\right) \cong$ $\mathrm{SO}^{+}\left(5, \mathbb{F}_{3}\right)$: the group of diagonal matrices with entries ± 1 and determinant 1 is contained in $\mathrm{SO}^{+}\left(5, \mathbb{F}_{3}\right)$, and isomorphic to $(\mathbb{Z} / 2)^{4}$. By $[\overline{\mathrm{BR}]}$ we have

$$
\operatorname{ed}\left(\operatorname{PSp}\left(4, \mathbb{F}_{3}\right)\right) \geq \operatorname{ed}\left((\mathbb{Z} / 2)^{4}\right)=4
$$

2. The GRoup $\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$

It remains to prove that the pair $\left(\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right), X\right)$ mentioned in (1) is not linearizable. To do this we will use the following criterion ([$[\mathrm{RY}]$, Appendix):

Lemma 1. If (G, X) is linearizable, every abelian subgroup of G has a fixed point in X.
Proposition 2. The essential dimension of $\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$ is ≥ 4.
The group $\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$ has a representation of dimension 7 , hence its essential dimension is ≤ 6 - we do not know its precise value.
Proof : The group $\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$ acts on a rational Fano threefold $X \subset \mathbb{P}^{8}$ in the following way $\left[\mathbb{\mathbb { P }}\right.$. Let U be an irreducible 9-dimensional representation of $\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$; there exists a non-degenerate invariant quadratic form q on U, unique up to a scalar. Then $S L_{2}\left(\mathbb{F}_{8}\right)$ acts on the orthogonal Grassmannian $\mathbb{G}_{\text {iso }}(4, U)$ of 4 -dimensional isotropic subspaces of U. This Grassmannian admits a $O(q)$-equivariant embedding into \mathbb{P}^{15}, given by the half-spinor representation [M]. The threefold X is the intersection of $\mathbb{G}_{\text {iso }}(4, U)$ with a subspace $\mathbb{P}^{8} \subset \mathbb{P}^{15}$ invariant under $\mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$.

Let $N \subset \mathrm{SL}_{2}\left(\mathbb{F}_{8}\right)$ be the subgroup of matrices $\left(\begin{array}{cc}I & a \\ 0 & I\end{array}\right)$, $a \in \mathbb{F}_{8}$. We will show that N has no fixed point in $\mathbb{G}_{\text {iso }}(4, U)$, and therefore in X.

[^0]Let χ_{U} be the character of the representation U. We have $\chi_{U}(n)=1$ for $n \in N, n \neq 1$ (see for instance $[\mathrm{C}], 2.7$). It follows that U restricted to N is the sum of the regular representation and the trivial one; in other words, as a N-module we have

$$
U=\mathbb{C}_{1}^{2} \oplus \sum_{\substack{\lambda \in \hat{N} \\ \lambda \neq 1}} \mathbb{C}_{\lambda},
$$

where \mathbb{C}_{λ} is the one-dimensional representation associated to the character λ. The subspaces \mathbb{C}_{α} and \mathbb{C}_{β} must be orthogonal for $\alpha \neq \beta$; since q is non-degenerate, its restriction to each $\mathbb{C}_{\lambda}(\lambda \neq 1)$ and to \mathbb{C}_{1}^{2} must be non-degenerate.

Now any vector subspace $L \subset U$ fixed by N must be the sum of some of the \mathbb{C}_{λ}, for $\lambda \neq 1$, and of some subspace of \mathbb{C}_{1}^{2}; this implies that L cannot be isotropic as soon as $\operatorname{dim} L \geq 2$. Hence N has no fixed point on $\mathbb{G}_{\text {iso }}(4, U)$, and X is not linearizable by Lemma 1.

3. About $\mathrm{PSL}_{2}\left(\mathbb{F}_{11}\right)$

The Weil representation W^{-}of $\mathrm{SL}_{2}\left(\mathbb{F}_{11}\right)$ factors through $\operatorname{PSL}_{2}\left(\mathbb{F}_{11}\right)$, hence provides a 5-dimensional representation of the latter group; thus its essential dimension is 3 or 4 . According to $\mathbb{\mathbb { P }}$ there are two rationally connected threefolds with an action of $\mathrm{PSL}_{2}\left(\mathbb{F}_{11}\right)$, the Klein cubic $X^{\mathrm{k}} \subset \mathbb{P}^{4}$ given by $\sum_{i \in \mathbb{Z} / 5} X_{i}^{2} X_{i+1}=0$ and a Fano threefold $X^{\mathrm{a}} \subset \mathbb{P}^{9}$ of degree 14, birational to X^{k}. The group $\mathrm{PSL}_{2}\left(\mathbb{F}_{11}\right)$ has order $660=2^{2} .3 .5 .11$; its abelian subgroups are cyclic, except the 2-Sylow subgroups which are isomorphic to $(\mathbb{Z} / 2)^{2}$. A finite order automorphism of a rationally connected variety has always a fixed point (for instance by the holomorphic Lefschetz formula); one checks easily that a 2-Sylow subgroup of $\operatorname{PSL}_{2}\left(\mathbb{F}_{11}\right)$ has a fixed point on both X^{k} and X^{a}. So lemma 1 does not apply, and another approach is needed.

REFERENCES

[AR] A. Adler, S. Ramanan: Moduli of abelian varieties. Lect. Notes in Math. 1644, Springer-Verlag, Berlin (1996).
[BR] J. Buhler, Z. Reichstein: On the essential dimension of a finite group. Compositio Math. 106 (1997), no. 2, 159-179.
[C] M. Collins: Representations and characters of finite groups. Cambridge University Press (1990).
[D1] A. Duncan: Essential Dimensions of A_{7} and S_{7}. Math. Res. Lett. 17 (2010), no. 2, 263-266.
[D2] A. Duncan: Finite Groups of Essential Dimension 2. Preprint arXiv:0912.1644, to appear in Comment. Math. Helv.
[M] S. Mukai: Curves and symmetric spaces, I. Am. J. Math. 117 (1995), no. 6, 1627-1644.
[P] Y. Prokhorov: Simple finite subgroups of the Cremona group of rank 3. Preprint arXiv:0908.0678.
[RY] Z. Reichstein, B. Youssin: Essential dimensions of algebraic groups and a resolution theorem for G varieties. With an appendix by J. Kollár and E. Szabó. Canad. J. Math. 52 (2000), no. 5, 1018-1056.

Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice, Parc Valrose, F-06108 Nice cedex 2, France

E-mail address: arnaud.beauville@unice.fr

[^0]: ${ }^{1}$ I am indebted to A. Duncan for this observation.

