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Lecture 1: Lie algebra cohomology

In this lecture we will introduce the Chevalley–Eilenberg cohomology of a Lie
algebra, which will be morally one half of the BRST cohomology.

1.1 Cohomology

Let C be a vector space and d : C → C a linear transformation. If d 2 = 0 we
say that (C,d) is a (differential) complex. We call C the cochains and d the
differential. Vectors in the kernel Z = kerd are called cocycles and those in the
image B = imd are called coboundaries. Because d 2 = 0, B ⊂ Z and we can
define the cohomology

H(C,d) := Z/B .

It is an important observation that H is not a subspace of Z, but a quotient. It
is a subquotient of C. Elements of H are equivalence classes of cocycles—two
cocycles being equivalent if their difference is a coboundary.

Having said this, with additional structure it is often the case that we can choose
a privileged representative cocycle for each cohomology class and in this way
view H as a subspace of C. For example, if C has a (positive-definite) inner
product and if d∗ is the adjoint with respect to this inner product, then one can
show that every cohomology class contains a unique cocycle which is annihil-
ated also by d∗.

Most complexes we will meet will be graded. This means that C = ⊕
n Cn and

d has degree 1, so it breaks up into a sequence of maps dn : Cn → Cn+1, which
satisfy dn+1 ◦dn = 0. Such complexes are usually denoted (C•,d) and depicted
as a sequence of linear maps

· · · −−−−→ Cn−1 dn−1−−−−→ Cn dn−−−−→ Cn+1 −−−−→ · · ·

the composition of any two being zero. The cohomology is now also a graded
vector space H(C•,d) =⊕

n Hn , where

Hn = Zn/Bn ,

with Zn = kerdn : Cn → Cn+1 and Bn = imdn−1 : Cn−1 → Cn .

The example most people meet for the first time is the de Rham complex of dif-
ferential forms on a smooth m-dimensional manifold M, where Cn =Ωn(M) and
d :Ωn(M) →Ωn+1(M) is the exterior derivative. This example is special in that it
has an additional structure, namely a graded commutative multiplication given
by the wedge product of forms. Moreover the exterior derivative is a derivation
over the wedge product, turning (Ω•(M),d) into a differential graded algebra. In
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particular the de Rham cohomology H•(M) has a well-defined multiplication in-
duced from the wedge product. If M is riemannian, compact and orientable one
has the celebrated Hodge decomposition theorem stating that in every de Rham
cohomology class there is a unique smooth harmonic form.

The second example most people meet is that of a Lie group G. The de Rham
complexΩ•(G) has a subcomplex consisting of the left-invariant differential forms.
(They form a subcomplex because the exterior derivative commutes with pull-
backs.) A left-invariant p-form is uniquely determined by its value at the iden-
tity, where it defines a linear mapΛpg→R, where we have identified the tangent
space at the identity with the Lie algebra g—in other words, an element ofΛpg∗.
The exterior derivative then induces a linear map also called d :Λpg∗ →Λp+1g∗.
When G is compact one can show that the cohomology of the left-invariant sub-
complex is isomorphic to the de Rham cohomology of G, thus reducing in effect
a topological calculation (the de Rham cohomology) to a linear algebra prob-
lem (the so-called Lie algebra cohomology). Indeed, one can show that every
de Rham class has a unique bi-invariant representative and these are precisely
the harmonic forms relative to a bi-invariant metric.

1.2 Lie algebra cohomology

Let g be a finite-dimensional Lie algebra and M a representation, with # : g →
EndM the structure map:

(1) #(X)#(Y)−#(Y)#(X) = #([X,Y])

for all X,Y ∈ g. We will refer to M together with the map # as a g-module. (The
nomenclature stems from the fact that M is an honest module over an honest
ring: the universal enveloping algebra of g.)

Define the space of linear maps

Cp (g;M) := Hom(Λpg,M) ∼=Λpg∗ ⊗M

which we call the space of p-forms on g with values in M.

We now define a differential d : Cp (g;M) → Cp+1(g;M) as follows:

• for m ∈M, let dm(X) = #(X)m for all X ∈ g;

• for α ∈ g∗, let dα(X,Y) =−α([X,Y]) for all X,Y ∈ g;

• extend it to Λ•g∗ by

(2) d(α∧β) = dα∧β+ (−1)|α|α∧dβ ,

• and extend it to Λ•g∗ ⊗M by

(3) d(ω⊗m) = dω⊗m + (−1)|ω|ω∧dm .
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We check that d 2m = 0 for all m ∈ M using (1) and that d 2α = 0 for all α ∈ g∗

because of the Jacobi identity. It then follows by induction using (2) and (3) that
d 2 = 0 everywhere.

We have thus defined a graded differential complex

· · · −−−−→ Cp−1(g;M)
d−−−−→ Cp (g;M)

d−−−−→ Cp+1(g;M) −−−−→ · · ·

called the Chevalley–Eilenberg complex of g with values in M. Its cohomo-
logy

Hp (g;M) = kerd : Cp (g;M) → Cp+1(g;M)
imd : Cp−1(g;M) → Cp (g;M)

is called the Lie algebra cohomology of g with values in M.

It is easy to see that

H0(g;M) =Mg :=
{
m ∈M

∣∣#(X)m = 0 ∀X ∈ g
}

;

that is, the invariants of M. This simple observation will be crucial to the aim of
these lectures.

It is not hard to show that Hp (g;M⊕N) ∼= Hp (g;M)⊕Hp (g;N).

We can take M to be the trivial one-dimensional module, in which case we write
simply H•(g) for the cohomology. A simplified version of the Whitehead lemmas
say that if g is semisimple then H1(g) = H2(g) = 0. Indeed, it is not hard to show
that

H1(g) ∼= g/[g,g] ,

where [g,g] is the first derived ideal.

In general, the second cohomology H2(g) is isomorphic to the space of equival-
ence classes of central extensions of g.

We can take M = g with the adjoint representation # = ad. The groups H•(g;g)
contain structural information about g. It can be shown, for example, that H1(g;g)
is the space of outer derivations, whereas H2(g;g) is the space of nontrivial in-
finitesimal deformations. Similarly the obstructions to integrating (formally) an
infinitesimal deformation live in H3(g;g).

One can also show that a Lie algebra g is semisimple if and only if H1(g;M) = 0
for every finite-dimensional module M.

Using Lie algebra cohomology one can give elementary algebraic proofs of im-
portant results such as Weyl’s reducibility theorem, which states that every finite-
dimensional module of a semisimple Lie algebra is isomorphic to a direct sum of
irreducibles, and the Levi-Mal’čev theorem, which states that a finite-dimensional
Lie algebra is isomorphic to the semidirect product of a semisimple and a solv-
able Lie algebra (the radical).



BRST 2006 (jmf) 6

1.3 An operator expression for d

On Λ•g∗ we have two natural operations. If α ∈ g∗ we define ε(α) : Λpg∗ →
Λp+1g∗ by wedging with α:

ε(α)ω= α∧ω .

Similarly, if X ∈ g, then we define ı(X) : Λpg∗ → Λp−1g∗ by contracting with
X:

ı(X)α= α(X) for α ∈ g∗

and extending it as an odd derivation

ı(X)(α∧β) = ı(X)α∧β+ (−1)|α|α∧ ı(X)β

to all of Λ•g∗. Notice that ε(α)ı(X)+ ı(X)ε(α) = α(X)id.

Let (Xi ) and (αi ) be canonically dual bases for g and g∗ respectively. In terms
of these operations and the structure map of the g-module M, we can write the
differential as

d = ε(αi )#(Xi )− 1
2ε(αi )ε(α j )ı([Xi ,X j ]) ,

where we here in the sequel we use the Einstein summation convention.

It is customary to introduce the ghost ci := ε(αi ) and the antighost bi := ı(Xi ),
in terms of which, and abstracting the structure map #, we can rewrite the dif-
ferential as

d = ci Xi − 1
2 f k

i j ci c j bk ,

where [Xi ,X j ] = f k
i j Xk are the structure functions in this basis. To show that the

above operator is indeed the Chevalley–Eilenberg differential, one simply shows
that it agrees with it on generators

dm = αi ⊗Xi m and dαk =−1
2 f k

i jα
i ∧α j .

Finally, let us remark that using ci b j +b j ci = δi
j and Xi X j −X j Xi = f k

i j Xk , it is

also possible to show directly that d 2 = 0.


