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INTRODUCTION

The purpose of these seminars is to provide an introduction to -

.combinatorial topology, The topics to be covered are @

1+ The combinatorial category and subdivision theorems,
2. Tﬁélpolyhedral category, |
3. Regular neighbourhoods,
4..Unknotting of spheres,

5. General Pogition,

6. Engulfing lemmas,

7. Bmbedding and isotopy theorems.

At first sight the unattractive feature of combinatorial theory as

applied to manifolds is the kinkiness and unhomogeneity of a complex ag

compared with the roundness and homogensity of a manifold. However this is

due to a‘confﬁsion between the techniques and subject matter. We resolve this
confugion by separating into two different categories the tools and objects of‘,
study. The tools in the combinatorial category we keep as special as possible,

namely finite gimplicial complexes embedded in Euclidean space.

- These possess two crucisl proparties @

i) finiteness, and the use of induction

ii) tameness, and niceness of intersection.

Meanwhile objects of study we make as general as possible. Our definition of

polyhedral category contains not only
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T : i} polyhedra;

ii) mgnifolds (bounded or not, compact or not),

but glso the following spaces, which have not been given a combinatorial

structure befors :
iii) non~paracompact manifolds, for example %the Long Line;
iv) infinite dimensional manifolds, for example the orthogonal group,

. v) joins of non-compact spaces; for example the suspension of an

open interval,

vi) function spaces; for example the space of all piecewise linear

embeddings of compact manifold in another manifold.

As the examples show, a polyhedral space need not be triangulable,
and if it is, it'dces not have a specific friangulation, but is a set with a
gtructure. The structure is, roughly speaking, a mayimal family of subpolyhedra,

and the structure determines the topology.

_ Our theory is directed towards the study of manifolds, and in
partioular of embeddings and isotopies. Recently it has become apparent thav
combinatorial results differ substantially from differential results; a st;iking
case is '83 in 86 ' whi&h.knots différentially, and unknots combinatorially.
In fact combinaterial theery seemg to behave well in, and to have techniques

to handle, most situations with codimension % . Just as differential theory

behaves well and can handle most situations in the stable range..

We shall therefore concentrate on geometry in codimension ) 3 .
P This means we shall neglect a number of interesting and allied Yopics that
E depend more on algebra, for example i) codimension 2 |

‘ | ii) immersion theory

; _ o | - i1i) relations with differential theory.




Ghapter 1 ¢ THE COMBINATORIAL CATEGORY.

_Simglekes‘

Let E° denote Buclidean p-space. An n-simplex (n3 0) A in E°
is the convex hull »f n + 1 1inéarly independent pointa. ‘
We call the peints vertices, and say that A gpans them. A is closed and
compact; A denstes the boundary, A the interior. A simpiex B spanned by
a subset of the vertices is called a face of A, written B‘< A . Simplexes
joinable we define the join AB to be the simplex spanned by the vertices of

both; ﬁtherwige the join is undefined.’

Complexes ' R

o

A finite simplicial cemplex, or complex, K in ot ig a finite

collection of gimplexes such that
C , ' (1) if A &X, then all the faces of A are in K,

(i) if 4, BE K, then A nB is enpty or a common face .
The star end link of a simplex A K. are defined -

st {4,K) ::{B; A<B Y, 1k(4,K) = {B; 4B€ K]
Two complexes K,L in P are Jjoinable provided
(1) if A€XK,B&L then AB joinable

' | (i1) if A,A*E K end B,B'é¢ L, then AB A A'B' is empty or a

- commnon face .

If KL are joinable, we define the jéin KL = KWL w [ABjAeck, BEL] ;

otherwise the join is undefined .

The underlying point set | K| of X is called a ouclidean polyhedron .

e e gt e B T
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L is called a subdivision of X if |L{ = RS ; and every simplex of L

is contained in some simplex of X .

a o
Examples, 1) Choose a point A & & .

A

L={K-st{a,K)) U 4 A

Then L is a subdivision of K, and we say L is obtained from K by

starring A& (at 4) .

2} A first derived K(?) of K ig obtained by starring all the

gsimplexes of XK in some order such that if A S B then A preceedes 3B

(for example in order of decreasing dimension) .

. Another way of defining K(i) is to define the subdivision of each simplex,
inductively in order of increasing dimension, by the rule A' = A A',

| P
in K. hn o dorived K7 is defined inductivoly as the Firsh derived

Therefore & typical simplex of X

| of an (r-1)"2  derived. The berycentric first derived is obtained by sterring

at. the barycentres.

Convex linear cells ’

A convex linear cell, or cell, A in B s é non-empty compact

subset given by {‘mere@wﬁﬁms f1=0“'”fr:0 and

linear inequalities gy 2 Oyusn Qgg > 0.

Aface B of A is acell (i.e. non-empty) obtained by replacing some of the

ineguaties g > 0 by equations g; = 0.

The O-dimensicnal faces are called vertices., It is easy to deduce the

following elemehtary properties

1) A is the convex hull of its vertices

. 2) A is a closed compact topological n-cell, where n + 1

]

is the maximum number of linearly independent vertices,

P P
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3) A simplex is a cell. |

4)- The intersection or product of itwo cells is another.

5) Let x be a vertex of the cell A , and Jet B be the union
of faces of A not containing x .

Then A = the cone x B .

A convex linear cell complex, or cell complex, K is a finite collection of

cells such that

(1) if A ¢ X, then all the faces of 4 are in K,
(i1) if A, B €K, then ANB is empty or a common face .

@

Lemme 1 ¢ A convex linear cell complex can be subdivided into a simplicial

complex without introducing sny more vertices.

Proof : Order the vertices of the cell complex K .
Write each cell A ag a cone A = xB , whers x is the first
vertex, Subdivide the cells inductively, in order of increasing
dimension. The induction beging trivially with the vertices .
For the inductive step, we have already defined the subdivision
A' of A, and so define A' 1o be the cone A' =xB'.
The definition is compatible with subdivision C!' of any face
C of A containing x, because since x is the first vertex
6f A, it is also the first vertex of - C . Therefore each cell,

and hence K , is subdivided into a simplicis) complex .

Corocliary 1

ae

- The uwnderlyving set of a cell complex is a euclidean polyvhedron.

Corollary 2 + The intersection of product of two euclidean polvhedra

ig anolher. o . ~

For the intersection or product of gimplicial complexes is a

cell complex .

Y . . X ’
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Maps.

Suppose K in Ep, L in Eq .

“Amap £ : XK-L is a continuous map (K] = Ly .

Call f simplicial if it maps vertices to vertices and simplexes linearly fto

simplexes. Call f an isomorphism, written f : K%L , if it is a simplicial
homeomorphiam., The graph [ f of f is defined as usual

rf.,".; {(x,fx) ; xeiK!l}(_{leIL[cqu‘qm

Call £ piecewise linear if either of the two definitions hold‘:

(1Y The graph I'f of f is a euclidean polyhedron

(2) "Phere exist subdivision K' , L', of K,L with respect %o

-which f is simplicial .

Notice that cordition (2) clearly implies condition (1), because the

graph of & linear map from a gsimplex to a simplex is a simplex, and so the

‘graph of a simplicial map K —»L is a complex isomorphic.to K . We shall

prove the converse, and therefore the equivalence of the two definifions, in
Lemma 7 « Definition (1) is the aesthetically simpler, while definition (2)

is the one which is used'continually in practice.

The reader is warned against the standard mistake of confusing
projective maps with piecewise linear maps. For example the projection onto
the base of a friangle from the opposite vertex of a 1ine not parallel to the

base is not piecewise linear .

Infact the graph [ f in the square | K| x | L] s pert of a
rectangular hyperbola . o
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Lemma 2 ¢ The composition of two piecewise linear msps is another .
‘s s I S
Proof :  We uge defimition (1), Given K —s L .25 M, let

| | Fe(Tex MDA (1K) 2T g € P E”

 Then [ consists of all points (x, fx, gfx) , x € } K|

: o . L . P R P T

i _ Therefore the projection 7T : XE*X B -~ x B

i o meps |~ homeomorphically onto T~ (g £)

: -7 Since f,g are piecewiss linear, [ is a euclidean polyhedron’

§ | " by Lemma 1 Corollary 2 . The image under the linear projection 1
of any complex triangulating [~ gives an isomorphic complex

triengulating T {gf) . Hence [~ (gf) is & euclidean polyhedron,

and gf 1s piecewise linear .

Definition : Lemma 2 enables us to define the gombinatorial category fi with -

;<~ E : { objects : finite simplicial compleéxes

maps ¢ piecewlse linear maps.

We shall also need the suboategory of embeddings F. with

the same. objects
maps ! injective piecewige linear maps.
3 _ , We proceed to prove some useful subdivision theorems .

[
f . . . i

Lemma 3 ¢+ If K DL , then (i) any subdivision XK' of K induces a subdivision

L' of L, end (11) any subdivision L' of L can be extended to
B subdivision X' of K . ‘

§ | Proof : (1) is obvious
: ) (ll) subdivide, inductively in order of 1ncrea31ng dimension,
i , A

those 81mp1exes of K-L +that meet L , by the rule A' =4 A A

[R ‘ o where A is an interior point .

A pmpotg o £1 21 1S TSt LYy gt A 30 P s A 1 1 g S i L g
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Corollary ¢+ Qiven a simplicial embedding f :+ K-~ L , and a subdivigion K' '

of ¥, there exists a subdivision L' of L such that

£ K'->L' is eimplicial .

Lemma 4 3 If {X|D]L] , Then there exists an rth derived K(r) of X and.

(x)

g subdivision L' of L such that L! is_a subcomplex of K .

-Proof By induction on the number of simplexes of L . The induction
' starts trivially when L =§ ., If A is a principal simplex of

I (principal means not the face of another), then by induction

(z~1)

" -choose K to contain a subdivision of Iwd .

(x)

Choose a derived K& K(r"i) at

, by starring each simplex B &
o .0 b 0 : ‘
apoint in A 1B if A meets B, and arbitrarily otherwise .

Then . K(r) containg subdivision of 'L-A, 4 and hence of L .

Corotlary 1. If 1X] = 1LY , then X, I have a comon subdivision .

Corollary 2..17 | K[> lLil L=, ...,1r, then there exist sﬁ%division K, L'i,

guch that a1l the L'i are gubcomplexes of K! ,

Corollery 3. The union of two euclidean polyvhedra is another .
For subdivide a large simplex containing them both, so that esch

appears as a subcomplex . The union is-¢lsoasubcomplex .

Lemma 5 : Given a simplicial map f :+ K->L , and a subdivigion L' of L,

then there exists a subdiviesion K' of K such that £ : K'-a Lt

“is simplicial .

. » ‘ ‘
Proof : Let X § = £ L', vwhich is a cell complex subdividing XK .
By Lemma 1 we car_l.choose a pimplicial complex K!' pubdividing

I‘C,j y introducing no new vertices. Then each simplex of K' is
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mepped linearly to a simplex of L', and so £ ¢ K'-» L' is

simplicial »
Définition + Amap f ¢ K-—?Eq. is linesr if sach simplex is mapped lineerly .

Lemme 6 : Let € be the inclusion L € B> Given amsp £ : K—>L , such

that ef : Kw%Eq ig linear, then there exist subdivisiong K', L!

of X . L with respect to which f is simplicial

Proof If A,C€ X, let B, =1 4, .
i i i i

By linearity ‘Bi' is a cell, possibly of lover dimension than Ai ’
and I_Bi\ & 1Ll « By Lemma 4 Corollary 2, choose simplicial
subdivisions L', B! of L, B, such that each B/ is a
subcomplex of L', Then for each i, 'fm‘]Bi 18 a cell complex
subdividing 4, , and the union ¢ is a cell complex
subdividing K . By Lemms 1 choose a simplicial subdivision

Kt oef L , introducing no new vertices . Then f : K'->1L' is

glmplicisl .

Lemma 7 : The two definitions of piécewise lirearity  are equivalent .

Proof & We bave observed (2) ==3(1) +trivially. Therefore we shall prove
(1) = (2) . Swppose X in ', L in E* end let f£: K1
~ be amap whose graph [ f is a euclideen polyhedron, In other

words, there exist a complex M in BY'Y cuch that [M] = [T f .

T

The projection 5P x gl - 1 > &P maps M homeomorphically
onte X , and linearly into o ; therefore by Lemma 6, Sthere exist
sibdivisions M', K' with respect to which T, is simpliciel .

Hence TT1 : M'—>K' is an isomorphism . Similarly °
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T, B x E%—» 5% maps M into L (not necessarily
homeomorphically), and linearly into Eq; therefore there exist
+ . subdivisions M" , L' with respect to which TT2 is gimpliciel,
Let Kﬂ be the subdivision of KXK' isomorphic to M" . Then f
. is the composition of the simplicial maps
TTZ M . -1
1?é

= A ST
/ 1'e 3 m > T,

J/TT Hence f : K-»L is piecewise linear by definition (2)
i : .

Let T be a finite subset of (3 y such that if amap isin T so
ig i%ts range and domain . The diagram‘of T ig the 1-complex obtained by
replacing each complex by a vertex and each map by an edge. Call T a
free in Qi if its diagram is simply—connected.'Call T one-way if each
complex is the domain of at most one map. Therefore in a one-way tree there
is exactly one complex that is the domain of no map, and every other complex
is the domain of exactly one map . Call T simplicisl if every map of T ig
gimpliciael . Call T' a gubdivigion of T if it has the same diagram, and
each complex of T' 1ig & subdivision of the corresponding complex of T ,
and each map of T' (qua map between the underlying polyhedra) is the same

as the corresponding map of T .

- g
Theorem {3+ If T is a one-way trec in Ci , 0r & tree in Z» , then T hasg

%

a gimpilicial subdiviaion .

Proof by induction on the number of meps in T . Let T be a onewwéy tree
in C? . \

The imduction begins ﬁrivially with no maps .
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Suppose T has at least one map. Then there exist complex K
and amap f : K-->»L in T, such that K is not the range

or domain of any other map in T .

By Lemma 7 , there exist subdivisions K', L' of K, I with
respect to which f is simplicial . Let T, be the one-way tree obtained
from T by omitting K and £, and re?lacing L by L' . By induction
there 1s a simplicial subdivision Tj of" T, s In particular: T, contains
a subdivision L" of L' . By Lemma 5 there exists a subdivigion K" of K!
such that f ; K"-»L" is simplicial. Let T' =T! togethor with K" ans

f e Then T' is a gimplicial subdivigion of T .

Now suppose T is a tree in ?i s not necegsarily énemway. There
is a complex ‘K. which is the range or domain of exsctly one'map « If K is
the domain, proceed as before. If K is the range , let the map bé fi1 Lk,
Proceed as befors, except that we can use thé Goliorary to Lemma 3 instead

of Lemma 5 to form K" , since f is an embedding . The proof of Theorem 1

—

. is complete .

The following £40 examples show that the hypotﬁeses of Theorem 1 .

are necessary as well ag sufficient .

Exémgle 1 e I%‘is necessary that a free in C be one-way ,

otherwise it conbtding a subtree

-
£

We can ohoose f , g g0 that there exists no simplicial subdivision as

follows ¢

g et e 4 e e s e ey . N e i 81 e S 13 e by g e At £ s ey e
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Let K=L=M=1, the unit interval, and let

/3 iy
f map ey O
[0, 1/3J , [1/351] | linearly ,

Qe 0
2/3 ey

map -
& p 1 50

[0,2/5]., {2/3,11 linearly »

Suppose there is a simpliciel subdivision, containing ‘K' s

Let p,ayr be fﬁa numbers oflvertices of K! betyeen, respectively, 0 and
/3, 1/3 ard 2/3, 2/3 and 1.,
Since f is simplicial on K', we have p = q4 1+ 1.

From g similarly, p+ 1+ q=r . Hence gq=-%a&8 contradictidn‘.

Therefore there is no simplicial subdivision .

Ixample 2 « 1t is necegsary that the diagram in Ei be a tree;

otherwise it contains a circular subdisgram
\ ' .

We can choose the maps so that there ig no simplicial subdivision as follows @
Let all the complexes be 1 , and &ll the maps be the identity except 1 ,
and let | '
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0 —s 0
f map 13 —s 2/3.
N Ty 1 .
[0,1/3] /3, 1] linearly .

Suppose there is a simplicial subdivision containing f i K'-3 L' . Going .
round all the other maps we have the identity map simplicial, and so K' =1L' .
Using'the same notation as in Example 1 , since f . ig simplicisl, we deduce
p=p+ 1+ g Hence g¢g=-1, again a ec;ntradictiono Therefore T has no

simplicial subdivision .

ot

Remark . 4 "comutative diamgram" in & has simplicial subdivision if the

maps are determined by a maximal tree. For example :

> e e
ig determined by

. ‘ M :h;‘ B :::
hut N .

Pl

V N is not determined by a %ree.
%
¢ i
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Chanter 2 ¢+ THE POLYHEDRAL CATEGORY

In this chapter we give mainly definitions and examples to describe
the categof'y. We omit the proofs to most statements to make the reading eésier,

and because la‘cérl chapters do not depend on them.

Let X be a set (without as yet any toPBngy)a A polyhedron in X

is an injective function f : K-> X where X is a finite simplicial complex . -

By a function we mean, as usual, a function from the set of points of the

underlying euclidean polyhedrcn 1% to"she set X . We write
domf\:K, imf=7fK.

Two polyhedron fl H Kl -3 £ xd f2 : Kg-—> X are related if there is a
third f3 : I% —+ X such thatb ' '

L'l

i)  im f3 = im f1 My im f,2

. ~1 1, . ¥
i1) fl f3,f2 fjf_ E): .

ot
K3 2//? -‘;‘f3
/i >

o 5

O s iaaaet
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A family 7 of polyhedra i X is & set in which any twe are related .
er’celm-f glmf;fc;l}

A polystructure, (or more briefly a structure), r? on X is a fanily such-
‘that

1) im ¥ covers X

;
141) 7¥ 7
g

The last comition means that given K BT S, X with £ € Yand g

ii) im ¥ is a lattice of subsets of X

a pilecewise linear embsdding, then fg & 3f

A polyspace X = (X,'7) is a set X together with a polystructure ‘Ef on X .

opology

/

The topology T(H) of the structure F is the identification

© topology
£ = dom :—}/ r:f

— ) ‘ i )
. Here dom o reens the disjoint union of the euclidean polyhedra
. (...,4 . [l
{dom t;fe b } » ond the identification is given by JF: dom ’3 e Ko

We can deduce (non-trivially) :
i)' Each £ : X — X is a homeomorphism into

ii) A set UC X is open {or closed) if and onmly if U /%f K is
open (or closed) in £ K, each 7€ F . '

If X is a topological space, then a polystructure on X is one with the

same topology .

Exemple % « The discreto striucture on a set X is given by maps

of pointe into X . This gives the discrete "copqlog_yi .
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Example 2 + The natural structure T (En) on Buclidean space B

is the set of all piecewise linesxr embeddings Ko B oo This gives the

natural topology .

‘Bxample 3 . The natural structure o (K) on a complex K is the
set of all piecewise linear embeddings L -~ X . The natural structure on

the euclidean polyhédron |X| is the same .

Bxample 4 » Suppose f '[ K} = X is a homeomorphism from a
eucliidean polyhedron onto a topological space X . Then f SF(K) gives a
polyhedral structure F (X) on X . ‘ '

Ve call X » with this struqturg9 a polyhedron .

Notice that ‘F (X) contains the triangulation f , and all Telated
triangulations « Conversely the structure is uniquely determined by any
trisnguletion in it . |

/
L

Remark 1 , We have used the word polyhedron in three ways
i) euclidean-polyhedron
ii) polyhedron-in-a-set
iii) polyhedron .
The usage is coherent, because (i) with its natvral structure is an example
of (iii) , and the image of (ii) with its induced (eee below) structure is an

example of (iii) .

Remark 2 . It is possible to have many structures on a set ;

more examples are given below . However 1t can be shown (non~trivially) that

1) Any structure is meximal with respect to its topology : the

topology of a stricily smailer structure is strictly finer (more open se%s) N

2) The natural structures of E" and of polyhedra are maximal .
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Subsgsnaces

Let %= (X ,"3) be a polyspace . If Y& X, we define the

In general . T{

induced structure on Y to be
TiY={fe™] ;imf¢ T}
It is easy to verify that FlY isa polysfructure on ¥ .
We call Y = (Y ,F!Y) a polysubspace if it has the induced topology ¢

FICIE I IR

5

| ¥) has a finer topology .

‘ h
S Exemple 1 . Y is a polysubspace of '§

' N

This is & parficularly satisfactory example , because combinatorially it is
always a little embarrassing to regard the infinite ﬁriangulation of En as

a satiefactory "substructure® of the finite triangulation of S5 .
We state elementary properties of polysubspaces, leaving the proofs
to the reader :
i) Any open set of X 'is a polysubspace .
ii) Any polyhedron in X is a polysubspace .
iii) A polysubspace of a polysubspace is a polyéubspace .
iv) The intersection of two polysubsvaces 1s & polvsubspace .

Therefore the notion of polysubspace substantially enlarges the concept of

"tame" set to include both polyhedra and open sets .

Example 2 . The union of two polysubspaces is not necessarily

%

poly « For example let A = open disk in E2'

Bew=a boundary point .
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Ther AisB , with structure 71 AU B is locally compact; a compact
neighbourhood of B in A(B is a closed disk D, having B on '
ifs boundary , and with D = BC 4. But with the induced topology

A VB is net 1ocally-compact,.becausé B has no compact neighbourhood.

Exemple 3 . A circle in E2 is not.a polysubspace , because the

induced structure is discrete .

Exenple 4 + 4 closed disk in E° is not & polysubspace . With
% the induced structure it is non-compact ; any subset of the bbundary being
{ closed . It is like the Prifer manifold with each attached disk shrunk to

g a point .

+

s
ha’os \
Cy

L A fwnction f i X —» Y between two polysﬁaces is called a
e polymap if £ F (D& T (1) C.

In other words , given . g ¢ §(X) , then fg cen be factored through the
structure of Y , fg = g'f! for some g'é& F (¥) » whore f' dis piecewise

; linear ,

&
b

It is easy %6 deduce

1) A polymesp is continuous with respect fo the structure topologies ,

and is_thergfore a map between the underlying topological spaces .

2) £ i+ KL is a polymap if and culy if it is piecewise linear .
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e © 3) Tdentities and compositions of polymaps are polymaps.

Thereforé we can define the polvhedral category EP to consist of polyspaces

: and polymaps .

Call a polymep a polyhomeomorphism written f : X =2,

if £ ¥ X = FO) .

We deduce 1} it is a homeomorphism, and

% | - 2) #1 is also a polyhomeomorphism .

Call a polymap a polyembedding , written £ ¢ X C Y, if it is

an embedding , (i.e. a polyhomeomorphism only a polysubspace of Y) .
We deduce 3) £ : X—>Y is a polymap if and only if its greph

fxf: X-—>XxY is a polyembedding .

o Remark

g ; ‘} It would be natural to call a polymap f : X—Y injective if
X = q;(Y)J f X . This definition is weaker than polyembedding ,
oo | because it does not require the imasge £ X to be a polysubspace of Y .

But it is of interest for the following reason . Consider the categories i
(1) space and embsddings
(2) polyspaces and injective poiymapé

1 - | (3) polyspaces ahd polyembeddings.

Tnen (4) A (2) = (3) . Tow some constructions such as join and mapping
;  cylinder are. functorial in (2) but not in (1) , and %herefore not in (3) .
For these constructions the‘polystructure is more natural than its

sccompanying topology .
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Bases.

Pt )

A base Nb for a polystructure on & set. X is a family of
polyhedra such that im §% covers X (i.e. only the first structure axiom) .
é As with structures, the topology T (55) is the identification topblogy |
i X =dom B/ . We say ¥ is a base for E if A

1) B c t};_'

11) every set of im 7 is contained in a finite union of sets
of im 3 .

We can deduce
1) Every structure has a base (trivially) .
: 2) Every base is +the base for a unigue structure; and the base

and structure have the same topolozy .

v _ Exemple 1. Any polyspace has a base of simplexes,
(77; b= { £ d;dmf = simplex } .
: - Example 2. 2" has a base of all ﬁrsimplexes .

; Fxample 3. A polyhedron X has & vase of one element , namely a
i triangulation f : K —> X .

s

Example 4 . ZThe Woven Scuare . Let X be the stnare 12 .

Let /GS be the base consisting of all horizontal‘and'vertical intervals, oz,

T 4 i AL WL A

.moere precisely, all horizontal and vertical linsar embeddiﬁgs of 1 + The
resulting structure is smaller than the natural structure, dbecause it conbaing
no 2-dimensional polyhedra . The resulﬁing tevology is finer than the natural
topology, and is therefore Hausdorff, but is not locally compact , nor simply-
¢ connected . A typical open neighbourhood of a point looks like a maltese cross.

Any subset of the dizgonal is a closed set .

Exemple 5 . (The pathological Woven Square). We enlarge the

structure of the Woven Square by weaving in one more thresd so badly, that
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it produces a non-Hausdorff topology . Let d: E-«}Ia be the diagonsl map ;.
and let e:I—»T be the function that is the identity on the irrationals,

but reflects tho rationals about the mid-point . We add to the bage of the
étructure of the Woven Square one more element , the polyhedron f = de @ ,

I ~4~>12 « The topology of the Woven Square is thersby cosrsened , so that the
ends of the disgonal cennot be separated by disjoint open sets . (The proof

uses measure theory, and deperds upon the non-countability of the base) .

Definition, We call a base 33 Yepolozieal if 1t is also a base
for the topology () in the folléwing sense : given x €& X, there exists
£& U5, such that im £ isa - (closed) neighbourhood of x in X in the
topology T{{) . For instance , in Example 2 above , the set of all
n-gimplexes in. g% is a topological base , But in Example 4 , the base
for the woven square is not topological . The structures for infinite

manifolds and function spaces that we.give below will not be topological .

riangulable Spaces

The pathological examples 4 and 5 above indicate some of the

consequences of the definitionsof polyspace . However since our ihﬁerest

lies towvards manifolds, we do nbt stress the pathology , but rather use it

to obtain ingight into the siricture of important polyspaces such as function

spaces » One of the advantages of polyspace 1is that it is more general

than the triapguleble space , even if we use infinite triangulations . In

fact ve avoid infinite friangulations , because we regard them as alien to
"the subject , being too diffuse a tool , and defining too restrictive & space .
IThe'algebraic elegance of infinite complexes should not be confused with

.their geometric limitations - However it is worth menﬁﬁdning the relationship

“between polyspaces and triangulable spaces .
Given a polyspace X , then there are six possibilities :

i) X is a polyhedron , i.e. its structure containg finite triangulations .
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i1) X is not a polyhedron , but we can enlarge the structure of X to ba

a polyhedron ~ for example the woven square .

iii) There is a locally-finite infinite triangulation £ ¢ X —¥ X', whose
restriction to any finite subcomplex is in the structure - as for
I . '
example in E .
If X is conmected , then a necessary and sufficient condition for
this is that the structure have a countable topological base . 4
consequence is that the topology is paracompact , Hausdorff , and

‘locally compact .
iv) The structure can be enlerged to give (iii) .

v) The structure is maximal , but (i) and (iii) are not true ;
for example the Long Line (see below) . '

vi) The structure is not maximal , but (ii) and {iv) are not true ;
for example the pathological woven square, or w2 =dimensional

manifolds, ox fwietion =oaces (see below) 0

Compacitneasas

Guegtion 1. Is a compaof polyspace a polyhedron 7 The answer is yes
if it hag a countable base , or if it " has a topological base , but is
unsolved otherwise . ' ‘

Question 2 . Does the lattice of compact subsets of a polyspace
refine the lattice of polyhedra ?

The quéstion is importent for studying the hcmotc?y gtructure of function

Spaces .

Manifolds

An n=polvball is a polyhedrcn triangulated by an n-simplex .

An n-polysphere is a polyhedron triangulated by the boundary of an {n+1)~simplex.

TR A SRR SR S e £ L n LR 1A Y Srrby e e A0 128 b i o
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Definition ¢ an n-polymanifold M iz a polyspace , each point of

which hag an n—polybali neighbourhood .

More precisely , each point has s closed neighbourhood (wiﬁh respeef
to the structure topology) which is a polysubspace , and which, with the
induced structure , is an n~polyball . The boundary M is the closed
polysubspace of those points which lie on the boundary of their neighbourhoods ,
and is an (n-1)-polymanifold . The interior MM -0 is the complementary

open polysubspace .

We call M closed if compact and M o ﬁ o
bounded if compact and 'ﬁ é é .
open if non-compact and M= g .

If M compact then any friangulation in the structure is a combinaforial
manifold (i.e. the lirk of every vertex is an (n—T)—sphere'or ball according
as to whether the vertex is in the interior or boundary ; the proofbis by
verifying that the property is invariant under subdivision, and true in an

n~-simplex) .

' Exemple f « The Long Line ié ¢btained by filling in (with unit
intervels) all the ordinals wp to $he first non-countable , and is given
the order topology . Then it can be shown (non trivially) that the Long Line
hgé a 1 - polymanifold structure,-although it is nonmparaéompéct, and therefore

]

non-triangulable .

Examéle 2 » The Prifer-manifolds are non—triangﬁlabie n~manifolds ,
npy 2.

Direct Limit g

Suppose Xn s D= 0, 1, 2,.00, i3 & sequence of polyspaces , such

that, for each n , Xn is a polysubspace of X£+ . Define the limit structure

1
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on X =UX to be
T o= vFE&) .

The topology of '}{ is the same as the limit topology »
Example 1

-1

Let Xn =E", Assure E° C E Lingarly .

Then E™’ = UE" is Fuclidean of =~gpace . This is not to be confused with ,
nor homeomorphic (in either topology) o R &° s dilbert space , which is the

product of countable copies of the reals !

Example 2

%
¥

Let B° = point ; BY = § B
n

. y the suspension . Then B" is an
repolyball , and B®? = UB" the 99 -polyball . This is not to be confused

with , nor is homeomorphic to , I °°", the Hilbert cube .

Example 3

! ; the suspension . Then s" is

Let $° = two points 3 S° = 857~
an n~polysphere, and 5% = Usn the oo ~polysphere . It is true "thér%: B®®
hes 5% as a closed subpolyspace -, with complementary open subspace
B9~ 5% % §“°, lNevertheless we do not call these boundery and interior

because it is --fairly easy %o show polyhomeomorphisms

o

" Therefore 3% is homogeneoua without boundsry , because S SOl TN

Exzmple g

let 0=10 {}n be the infinite orthogonal group . Any triangulation

of On can be extended to a triangulation of On;;« » The resulting structures’

_ 1
define a polystructure on 0, o
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Infinite manifolds . The above definition is good for n = o@ , -

T.he gbove examples are &ll infinite manifolds. Similarly other clagsical
groups ; and the infinite Grassman and Stiefel manifolds . We observe that /

an 2 -manifold hag no boundary because an oo ~ball has no bourdary . ‘

Products,

Let K,L be complexes in P ’ e . Then K»x L is a cell

complex in BY'TY, and so the natural structure ' (X x L) is uniquely

defined . Given now two polyspaces X, ¥ , define the pfoduct structure .

Fxy) = ({£xe) n; e 'Br(x)., ge T, ne Flaos x dong) o

N

. f} ol fxg
r——

i

1_'."e can deduce @

it

1) The product is. functorial on ~ .

2) A furetion £ : X > Y is a polymap if and only if the graph
Txf+ X~3XxY is a polyembedding . '

‘Joing
The topological join X %Y of two gvaces X , ¥ dis obtained
from XV (XxIxT)v Y by identifying x = (x, 0, v), v =(, 1, y)

all x&€ X, y& Y, and giving the identification topology .
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If X, Y are polyspaces we define the join structure '3 (X » 1) as follows .

Given ¥ in 2, L in E%, we identify E° , B% with

P x0x0, 0x8%x 1 in P xr%x1,c B2FE,

The images of K, L ere joinable in BPTY' and we defime XK % L to be their

join . The complex K %L has a natural structure ’}(K %# L) « Define
7 (X+Y) = {(f*g i fe P, ee FE), ne 7T (dont x domg) .

We can deduce that the topology of }’ (X * Y) ig the same as the topology

of the join X % ¥ above .

The join « ig functorial on the category of maps, but not on the’
subcategory of embeddings . Give X'C X, Y' <& Y then X' % Y' does not
always have the topolOgy induced from the inclusion X' » Y'C X * Y .

For. example let X = I , &' = (1)'. , amd Y =Y'=18 pomt o Then the cone on

o - .
I is not & subspace of the cone on I ; the cone on I haa a :{‘iner topotony

~than the inmduced topology , and is locally compact at the vertex , whereas

the induced topology is not (cf. the polysubspace Bxample 2) .

On the other hand the join is functorial in the category of poly-
subspaces and injective polymaps; the naturality in the category dictates the

fopology to be chmeﬁ on the join , which is then not functorial in the

gubcategory of polyembeddings . The explanation 1ls that the concept join is
essehtially a combinatorial idea, and so as we should expect, in this context

the polystructure is more basic than the ftopology . -

Funetion Snaceas:

Let X be a polyhedron , and Y =& polyspace . Let YX bz the cet

ef polymaps X-3Y . Ve define the funciion space structure '} YX on YX
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as follows . If £t K—»Y" is an injective function , let £' : X x K->T
be the associated function given by £'(x , k) = (fk) x . Define

’}(YX)= {f;f' isapomap} .

Lenms (Hudscm) Any two such f’s are rela‘ted'.

Therefore F (Y is a family of polyhedra in Y. and the three
axioms for a polystructure are easy to verify. We can deduce the following
properties

1) The structure of ™ is functorial on X,Y in T In other

 words if f: Yj-—'-yx and g.3 Y-» Yl. are polymaps, then the induced function

‘ gf: YX%YEKI- ;

is elso a polymap .

2) If XY are pol‘yﬁedra and Z a polyspace then there is a

natural polyhomeomorphism

(ZY)X_"’—:: gxx

Remerk 1 » If X not a polyhédron (not compact) then the above
definition does not give a polystructure . For example if X=E', Y = E2

then Hudson's theorem fails; there exist two f's that are not related .

Remark 2 . The topology of the structure is strictly finer than
the compact open topology , and is therefore Heusdorff ., If Y isa polyhedron
or & menifold then both topologies give the same homotopy structure on YX .

(Question : is this true for general Y ?)

I‘so‘copy

Let {X ¢ Y) denote the polyspace of polyombeddings of X in Y ,

with strunture induced from v, (Question : is it a polysubspace of T ?)
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One of the main reasons for the way we have developed the theory is that
the follov}ing four definitiens of isotopy are now tfivially equivalent .

A polyisotopy of X in Y ig’
i} a point of (X< Y) L
ii) apolymep I—{Xc Y)
11i) . a polymapl Xx I—$Y , which is & p&ly@mbedding at each level ,
iv) a levelwpreserving polyesmbedding X x I -5 ¥ x I .
If f,g ¢ X—Y are.the beginning and endlpoints of the isotopy , we say the
isotopy moves fX onto gX , and that f , g are igotopic .

Let H(Y)_ denote the polyspace of polyhomeomerphisms of Y onto

iteelf, with structure inducec from YX . An ambient polyisotopy of Y is s

polyare in H{Y) starting at the identity, and finishing at e , say » If

X ia a polysubgpace of ¥ we say the ambient isotopy moves X onto_eX .

If f: XY is a polyembedding (or polymap) we say f, ef are ambient
isetopic « Later we shall prove a thecrem of Hudson , which says that the
notions of isotopy and ambient isotepy‘ooincide for manifeids of codimension
» 3+ In codimension 2 f{hey are essentially-different, becauge ordinary

Knots in B can be untied by isotnpy , but not by embient isotopy .

'

Renark

If ¥ = En', there is another definition of isotopy favoured by

gome writers , which we call linear isctopy, and it is worthwhiie analysing the

difference « A linear homotopy of X in En is constructed as follows :

choose & fixed trisngulation K of X, and for each vertex v € K g B
polymap fv I »u}En . For each t y Let g, ¢ K-wefEn be the linsar map
determined by the vertex map v—»»i‘v(t) « Then {gt} or g Kx I-— E"
ig the linear homotepy . If g is an embedding at each level we call g a

- linear isotopy . We make the following observations
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i) Not every linear isotopy is poly, because in general the itrack

g{X x I) left by the linear isotopy is a curvilinesr ruled surface rather than

"a euclidean polyhedron .

ii) Wot every polyisotopy is linear, as shown by the example below .

iii) If two polymaps are linearly isotopic then they are polyisctopic
The converse is also true (non~trivially) if X is a manifold of

codimension ), 3 .

' iv) Linear isotopy'is not functorial. We justify this last statemert
by defining'a polystructure on (X< En) that exactly caétures linear isotepy ;
more precisely we shall construct a polystruchure, T;L say , on '(En)X guch
that linear homotopies are the polymaps I -~-~-~>(En)X with respect %o ?ﬁ;;
and linear isotopies are the poiymaps I — (X< E') with respect to the induced

structure .

Define ’EFL as follawst if K is a triangulation of X with kX
vertices , then the set MK of linear maps K ~3E can be given a
polystructure 1L, 25 | If K i a subdivision of X , then M C M.,
is a polyembedding .

s ‘the union taken over ail triangulations in the-

-

Therefore (En)X =tJ ¥
K

structure of X, and i3 defined by %the limit polystructure . We shall

ghow that if En"%HBn is a polyhomeomorphism, then the induced function

tS,avZ

(En)x'—#éa(En)X s which is a polyhomeomorphism with respect to the function

*

space structure, is not even continuous with respect to E;L

Bxemple 1 . Tet X =1 and Y = E2 y and consider the isctopies
I—{Ic Eg) rerformed by & caterpillar crawling firstly along s straight
twig , and secoﬁdly along a bent twig + The firet isotopy ; f say , is
linear , and therefore also poly . The second isotopy , g say , is poly ‘
but not linear , because we cannot describe it in terms of a fixed

triangulation of X = I, » This shows ;; qﬁ :;L o Now suppose the caferpillar

+
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performg g by starting with hls nese, and finishing with his tail, at the

Q
bend in the twig . Then g1 1igs a closed set in the topology of S;L"

_ o .
whereas fI 1ig not . There is en obvious polyhomeomorphism 2 of B2
bending a straight fwig into a bent twig , and the induced map of (I ¢ E2)

o} ] .
into itself maps f1 into gl . Therefore it cannot be continuous with

- respect to the topology of Sfb .

The explanation is that ':¥ is functorial on X,Y & E? s Whereas
:?L is functorisl only on X € Sﬁ’ and Y in the subcategory of euclidean
gpaces and linear maps . Since our theory is dirscted towards isotopies of

-

manifolds in manifolds, we favour t; and reject GFL

Example 2 . Let E® denote the set of polyhomeomorphiems of En
ontec itself having compact support . The hypothesié of compact support éensbles
us to define on 7 y as above , both & function space polystructure 7
and a linear polystructure G;é, Let VH?', Hg be the resulting topological
spaces, both having i as underlying set . Then it appears that it ,_Hz
havg.different homotopy structures . By Alexander's Lemme on isotopy , it is

19.

easy'to show that H? is contractible . Hewever Kuiper has used the queer

differential structures on S/ to show that either T, (Hg) Ao

or ﬂ”1(H§), qé 0 . This is essentially a phenomen on of codimension zero .

‘D egeneracy

Let f: XY be a polymap . Define the non-degenerate structure
g (£) of £ vy '

7 (£) = {g € J(x) ;5 tg¢ (T;‘(Y)} .

Note that in general fg é f;(Y) because it is not injective . Call f non-
degenorate if 7] (£) is a base for J (X) . Otherwise f is degéncurty .

Exémple 1 - A polyembedding is non-degenerate .

E—
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Bxemple 2 . A polyimmersion (local embedding) is non-degenersate .

Exemple 3 . A simpiicial map is non-degenerate if and only if it

maps each simplex non-degenerately .

Example 4 . We ghall show that any map of a polyhedron of dﬁmension.
< n to an n-manifold can be put into "general position" where it is non-

degenerats .

mapping cyvlinder problen

The problem is To define a natural stfucture on the mapping cylinder
C ofa map f 3 X— ¥ . We explain why this problem is, in a sense,

insoluble .

ts Topological . The topoloéical.mapping cylinder € is obtained
from Xx L UY by identifying (x,1) = f x, all x¢ X, and is given the

identification topology . Then € is functorial on the category of maps .

2. GCombinatorial . Suppese f : K— L is a simplicial map .
Whitehead ga&e a Tule for defining the simplicisl mapping oylinder s G say
of f , which is & triangulation g: G-=>C “of the ﬁopologicél mapping
cylinder . This rule is functorial on the category of simplicial maps , but
not on the category of piecewise linear maps . For suppose XK', L' are
;;gdivisions of K, L, giving rise to the simplicial cylinder g's G'-» C .
Then , although G,G' are piecewise linearly homecmorphic , g ,'g' are Egg

in general related . Therefore the identity meps X'-» K , L' K induce the

_ identity C - C , but only a piecewise projective mep G'—> G .

%. Polyhedral . The ingclugion C L X # Y of the mapping cylinder
in the join induces a natursl polystructure & (C) on C that is functorial
tn the categery of polymaps . However :§‘(C) gives the wrong topology (too
fine a one) . | \ |

Example 1 . The identity on I has mapping cylinder a square , and

polystructure the Woven Square (of example 4 above) »
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Example 2 «» The mepping cylinder of a simplicial map of a
2-simplex onto & {-asimplex epitomises the problem , because when embedded

in E3 it looks like the prow of & ghip .

The structure (C) has a base consisting of &.1 horizontal sections , end

gll vertical sections going athwartships , but no 3-dimensional stuff .

Exawple 3 . If f is simplicial , then the simplicial mapping
cylinder G->C is related to 'F (C) . In otker words , & (C) can be
enlarged (non—naturally) fo contain any gimplicial cylihder,-and is the

e intersection of all the structures determined by the simplicial cylinders »

Example 4 . On the subcategory of non-degenerate polymaps the
natural structure F (C) can be enlarged to a structure C?}(C) that (1)
¢ is functorial on this subcategory (ii) contains all simplicial cylinders ,

and (iii) gives the correct topolegy + A base for 3;1(0) is

BaF) v{lexnn: g, ne FlaoncxD) .

Toncludi ng Remarks

We cen enlarge or change % by enlarging or changing the tool (3 .

b L 77 i RS e

Example 1 « Enlarge Cz to contain piecewise projective maps .

: Example 2 « Further enlargs C? to contain piecewise élgebraio

o

complexes and piecewise algebraic maps. Then algebraic varieties in B




II.
w 20 -

would become polysubsp_aces o

Ixemple 3 . Replace C3 'by the category of open subsets of o _
and differential maps . Then .\_(P would be the category of differential

manifolds and differential maps.

Gabrielle has pointed out that a polyspece ig equivalent to a

contrav_ariant fuctor from G to the category of sets and functions , obeying

-two axioms of intersection and union; a polymep is a naftural transformation

between two such' functora .
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Chapter 3 : REGULAR NEIGHBOURHOODS

From now on we shall omit the prefix "poly", and whenever we say

space, map, manifold, etc., we mean polyspace, polymap, pclymanifold, etce.s

;0

Lemma 8, A convex linear cell is a ball®

Proof : Given a convex linear cell B we have to exhibit a specific
piecewise linear homeomorphism from a simplex /\ onto B . Since B is in
| some Euclidean space, we can choose £\ O B . Let & be
a point in g, Then radial projection from 2 gives a
homeomorphiem i\. — B s but this is not piecewige linear

by the Standard Mistake. We get round this difficulty by

defining a pseudo radial proqeoflon as follows. Let ﬁh

be the cell subdivision of N consisting of all cells
A €A ) B & B. Let A" be a simplicial subdivision of

A . Radial progectlon of & " determines an isomorphic subdivigion B" of '_ _

B , and radial projection of the vertices determines the simplicial\ igomorphism,
vhich is of course plecewise linear. Joining fo X gives the required

homeomorphism A-> B .

Corollary « Jeoing of sr}he‘res and balls obey the rules ‘:

1) pPpley gPrat!

.
te d o e
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Proof. BSince the structure of a join is functorlal, it suffices to
prove one example » '
i) The Join of two simplexes is a simplex

‘ - i1} In Ep+q+.1 choose Bp, 'Bq“M o be simplexes crossing at their barycentres.

i Then Bpl:'iqH is a convex linear cell.

R AT

1ii} Teke the boundary of ii) .

We call a complex J a combinatorisl ne-manifold if the link of

- S

each vertex is an (n—1)-sphere or an (n-1)-ball.

Lemma O » Suppose | J L =M . Then J is a combinatorial manifold

: if end only if M is a manifeld .

Proof . One way is trivial; for if J 15 a combinatorial manlfold ¢

( then the closed vertex stars of J give a covering of M by balls, such that

each point of M has some ball as a neighbourhood . . ‘
Conversely suppose M is an n-manifold ,' and let X be a vertex

of J in D?I . By the definition of manifold (polymam.fold) there is a

i piecewise linear embedding f : A - J covering a neighbourhoed of ¥ ,

where A is an n~simplex , such that f—1x € 8 . Subdivide so that

f fi@ AVYasJY is simplicial; ize have plecewlse linear homecmorphisms

*

A sy P x, A0)

(e, 7)) e 1k (3, )

348 o S A i, SO0 T e WY 2 T

+ Where the middle arrow is an isomorphism and the other two arrows are pseudo

réﬁial-;ﬁrojections . Hence lk(:}c“,J) is an (n—1)—sphere '

If x isa vertex of J in N, there is a smn.la:r s:Ltuation except

-1 e A s and so it follows that lk(x, J) is a ball.

i e

.that f
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Corollarv 1 » Let !J! =M be en nemanifold . If A s e

pe=gimplex of J , then

homeomorphisn B

either 1x(4,7)

il

O
(n~p-1)~sphere and e M

"

or 1k{A,J) = (p~p=2)wball and A C M .

il

Proof « Ve show the iink is a sphere or ball by induction on p ,
the induction starting at p = 0 by the Lemma . If p > 0 ,; write A =xB,
and then 1k(4,7) = 1k{x,1x(8,J)), which is the link of a vertex in an
(n~p)~sphere or ball, by inducticn, and is therefore an (nwpwl)«sphere or ball

by the Lemms .

Any point of ﬁ has A 1k(A;J) es a closed neighbourhood , end ‘so _
lies in ﬁ or M according as to whether it lies in the interior or boundary
of this neighbourheod, il.e. according as to whether 1k(A,J)‘is a sphere br béllB
Therefore if the link is a sphere then .ic; § , and if the link is a vall then

L3

ACH y 8ince M is closed .
Corollary 1 ‘justifies the following definition : if J is a

combinatorial manifold, define the boundary by to be the subcomplex

J:{AéJ; 1k(4,3) = ball ]

.

: 0
and the interior to be the open subcomplex J =J - J .,

We deduce at once :

Corollery 2. If 1Jf = M = manifold, 4hen | J| =M .

Definition . If gt is an (n~1)~ball contained in the boundary
M oof an n-manifold M, we call gl g face of M end write ‘

Bn"1«( Mn « We are particularly interested when M' = B" a ball also. Lot

A" denovte an n~simplex .

Theorem 2 « T£ B2 ¢ 3% and A TF LA tyon amy

] -l
o A . can be extended to a homeomorphism
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Corollary . If two balls meet in a common face , then their union

is a ball . (For by Theorem 2 the union is homeomorphic to the suspension of

& simplex) .

Theorem 3 » If B C 8% +4hen S-B" is a ball

Remark 1 .

The original proofs of Theorem 2 and 3 were given by Newman and
Alexander in the 1920's and 30's and used "stellar theory" instead of
combinatorial theory . The essentizl notion of the proof is to replace the
finite simplicial structure of a ball by some orderced finite structure, and
theh use induction on the number of steps in the ordering (the induction
starting trivially with a simplex) . Newman and Alexander used an ordering
by stellar subdivisions; we give a new proof here, based on ordering by
collapsing . The collapsing technique was invented by Whithehead in 1939, and
ig more powerful than stellar theory because it includés the theories of
regular neighbourhcods and simple homotopy type . Notice that some concept
of an ordered structure seems vital, because without it we cannot prove :

Schdnflies Conjecture ¢+ IF SnmlCl Sn then the closures of each

component of the complement is a béll v

The conjecture is true for n-€ 3, but ungolved for n >3 .
It is known by Morton Brown's result thab they are triangulated topological
balls, but not known whether they are polyballs . Our ignoraice of whebther
they are polyballs when n = 4 implies our igaocrance of whatlier they are even

polymanifolds when n = 5 (the links of boundary vertices may g0 haywire) .

Remark 2 .

The procf of Theorem 2 and 3 is done togetner by induction on n .

The induction starts trivially with n =0 . ‘e shall show first that
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Theorem Zn is equivalent to Theorenm 3n « The inductive step is achieved

1
by showing that ‘
Theorem 2 , T £ 1 2

j == Theoren 5,

Theoren 31‘ y T LD

The inductive step 18 long, involving Lemmas 10 -~ 17 and Theorems 4 - 8 ,
during which we shall often have to make inductive use of Theorems 2 and 3 .

However we can avoid going round in a circle by
i) assuming everything o be of dimensiong n
ii) avoiding the use of Theorem 31‘1

until Theoren 3n is proved . To emphasise which statements are involved in
the induction, and at the same time avoid repetition, we put a star against
all those lemmas or theorems which depend upon. Theorem 21' ‘and its Corollary ,

rgn, and’li‘heorem3r ;g T & N

Lemma 10 . Any hcmeomom‘hism between the bourdaries of two balls

can be extended to the interiors .

Proof » We are given I : B~ 32 . ‘ L o+
Choose triangulations g i A — Bi . Define h: A m—-yé‘x by the commutative

i - diagram ' '

A “*‘**"“*-—M o e
ng ( &2
AN

‘ \

f .
B‘i. ? BZ

Extend h conswise %o a homeomorphism h': A — A e

Then the reciu:ired homeomorphise ! : B1 — 82 iz given by the commutative




Stell

B gt

III.

- B -
diagram
FaN ht Fay
ey
g s
1 2
| BN
v 5
3, R

Theoren 2n is equivalent to Theoren Bn 1 -

Proof « Assume Theorenm Qn . Given Bn“l - Sn-»-l , then joining
to a point 2, we have Bn"l < :>~:Sn--l . Let A B e s simplex with face
An—l and oppbsite vertex v . Choose a hemeomorphism Bnﬁl---«x’-anml , and .

extend it to xSn“l —y AP . Therefore Sn--l Bn_l

is homeomorphic to the
pall y A T, |

. . ne), n
Conversely assume Theorem 3 . Given B L B

n-1
is a ball . Therefore given & homeomorphism B

extend kn—l - A n=l to a hemeomorphian ﬁann"l —_— Y Anﬂl y by Lemma 10 .

s then we know

el oA D=l
—y O y We can

Therefore we have defined 1'3”_>an ', and can extend to Bn--a Anl s again by

Lemma 10 .

ar subdivisgion

Recall from Chspter 1 that an elementary stellar subdivision of K

is given by
» o]
KV = (X - st(8,X)) U a A 1k(4,K) where a & A, AGK.

A stellar subdivision of X . writteng K, is the result of a finite

nunber of elenentary cnes .

Examples 1) An B gerived is a stellar 0

Cii} If KDL, then any stellar subdivision of K

determines a unique stellar subdivisicn of L , and conversely .




L
A

iii) LY is not a steller subdivision of a triangle .

Collapging

If XOL , ve say there is an glementary simpliciel collapse from

K to L if K- L consists of a principal simplex A of K together

with a fres face . Therefore if A = a B, then

B

aB =T N A

- We describe the‘elamentary simplicial collspse by saying gollapse A onto a B,

or collapse Al £rom B .

v s . e . .
Ve say K gimplicislly coilepses to L , written K™ L , if there is a-

sequence of elemeniary simplicial collapsesgoing from K to L . If L 1is

a point we call X simplicially collapsible, and write X 2,0 ,
Examples .

i) A cone simplicially collapses onto any subcone « For just collapse

ail the other simplexes in towards the vertex .

D~ /\

More precisely let a X be the cone on K, eand a L be the subcone on L ,

"where L € K . Then order the simplexes Bl’°'°’Br of K- 1 in order-of -

decreaging dimension , and collapse a Bi from Bi s L= dieeesr o
i1} A cone is simplicially collapsible .

iid) A simplex is simplicially.collapsible . Both these are special

cages of 1) . .
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Ve now repeat the definition for polyhedra . If X3 Y are polyhedra ,

we say fthere is an elementary collapse from X %o Y if there exists Bn>dﬁl

such that

Y =YyuB"

B -y n3®

We describe the elementary collapse by saying

wl n b9\ T,
collapse 3" onto 3" , or collsnse B™ frop B - B .

We say X collspsesto Y , written X-~Y , if there is a sequence of elementary
collapses going from X %o Y. If Y isa point we call X c¢ollapsible ,
and write X 0 . For example a ball is collapsible .

We now investigate the relationship between simplicial collapsing
and coliapsing . We write K=wIL if {K{~1!L| . The significance of this
laat definition is that the balls scross which the collapse takes place may not

e subcomplexes of ¥ . It is Trivially true that
K“’"‘ﬁm.ﬁ L = K~yL,
but the converse is unkmown . Whalt we can prove is

# Theorem 4 . If K ™=L , then there exists a subdivision X, 0

of K, L such that XK'~ - Lt ,

¥% Corollary 1 . IEf X ==Y then there exists a triangulation such

that X ~8, 71, ,

* Corollary 2 . If X is ceollensible, then there exists a

triangulation that ig simplicially cellapsible

Before proving Theorem 4 we digress g little to indicate the

'conseqpenoes of the definition of éollapsing .
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Simple hometopy % y e

The relation X™=Y between X and Y is ordered . If we forget
the ordering, then we generate an equivalence relation between polyhedra called

simple hemotopy Tvoe « Since a collapse is & homotopy equivalence, this ig a

finer equivalence relation than homotopy fype . 1t is strictly finer, because,
for examplé, the lens spaces L(7,1, L(7,2) are of the same homotopy type ,
but not of the same simple homotopy type . But for simply-connected spaces
romotopy type = simply homotopy type , and there are simply-connected non—

homeomorphic manifolds of the same homobopy type .

The Dunce Hat

If we preserve the order X =—»Y +%hen the relation between X, Y
is much sharper . Trivially if X is.collapsible then X is contractible
(homotopywise) . But the converse is not true. For example'consider the
Dunce Hat I which is defined to be a triangle with its sides
identified ab = ac = bc » Then D is contractible
(although the contraction is hard o visualise) , and so D
is the same simple homotopy type ag a point; tut D dis not

collapsible because There is nowvhere fo ghart. Although

D>30 , it can be shown that D x I~,0 .

2
Conjecture . I1If X ds a contractible Z-complex then K x I—0

This éonjecture is interesting because it implies the 3-dimensional
Poincaré Conjecture, as follows . Let M3 be a compact contractible 3-manifold;
it is éufficient to show that M3 is a ball . Cell X is & spipe of ¥ if
M —X . Now M3 has a contractible spine . By the conjecture

M3 x I"&K? x» L0, and we shall show in Theorsm 8 Corollary ?\that this

implies MB x L= B4,. Hsnee MBz: E4 = S:3 , and by the Schdnflies Theorem

C =B , aball.
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In particular the conjecture is true for the Dunce Ha*th , and s0 any
. it y =3, having D as a spine is a ball . This is also.true for n2 5
’ because D ummdts iny 5 dimensions . However it is not true for n=4
‘because there is an Mé #* Bér {in fact '}‘Tl(l“fié() # 0) having D as a spine .
The construction of M£iL is due to Mazur, and defined by attaching a 2-handle 1o
Stox 83 ; by a curve in the boundary that is homotopic , dbut nb‘c igotopic , To

~the first factor :

- .
Lemma 11 « If K ™a L, then we can reorder the elementary

collapses so that thev are in order of decreasing dimension .

bt K2 ~ K3 are consecutive elementary collapses,
13

Proof . Suppose K1

~the first being across & srom B s and the second across ¢ from Dq_l,
We shall show that if p £ q then we can interchange the ordsr of the collapses
(which is not true if »p > q) . The lemma follows by performing a finite

. number of such interchanges .
dince p <« g, ¢t is notv a face of & oor Bp“]' . Therefore C%,

which is principal in K2 y Temains ijrinci'pal in K‘| « Also qul\;;&: A or B,

becauss A , B 8o not lie in K2 . and s0 Dq"l cannot be a face of A or



.

oK of ¥X.

IiI.
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B (again sincé p £ ¢-1) . Therefore D vremains a free face of ¢ din X, .

2
Therefore , if- K; = K1 - (CUD), then there is an elementary collapse
Kj'ﬂ K; across ¢ from D . Meanvhile A remains principal in K; , and
B remains a free face . Therefore there is an elementary collapse ks

2 1
across A from B ., The lemma is proved . :

Remark . Although Lemma {1 indicates a certain freedom to rearrange
the order of collapses, we cannot rearrange arbifrarily . For example if 33
i1s a simplicially collapsible 3~ball , if we start collapsing 33 carelegsly
we may get stuck before reaching a point - for instance the dunce hat is a spine
of BB , 80 that by mistake we might get stuck at the dunce hat » This problem
is Tthe reason why the methods which clasgified Z-manifolds failed to qlassify .
Jemanifolds . ‘

Again , if K~ L and X' is an arbibrary cubdivision of K ,
then trivially K'~ L' but we do nqt mow if K"“5; Lt . However we can

prove a more limited result :

Lepma 12 » If K"‘%}L then ¢~ K ‘53 g 1 for any stellar subdivision

Proof . By induction we msy agsume both the simplicial collapse and

stellar subdivision to be elementary . Suppose

K=LULA

it

s B

it

LO A, and suppose

g- K is obtained by sterring € at ¢ . Thers are three cases
(i If C4 A, then the lemma is trivial
. (41) If CA B, then the cone a(sB) collapsesto the subcone al{c B)

(11) If €44, but CLB,let C=aB ,B=B3, .
)

]
B
N g L U subcone alc 5132)-= L .

Tren g~ K NgT L v cone a(c



~

. ' III.
w 12 -

#emma 1% . If X v L is an elementary collspse . then there exisgts

a subdivision such that K' L' and L' is steller (but K' may not be) .

Proof « let A=K-L, and B3=A0L . Then A is an
n-ball.and B & face . Let A, I be an n-simplex and an (n~1)-face .

By Theoren 2n chooss a homeomorphism

-

B AB s A,

) |
!\"‘\ e

Choose subdivisions so that h is a simplicial isomorphisn h : A',B! __;";3, L\ LY
Let ¢+ A —s 7 Ye the linear projection , mapping the vertex opposite

o

to the barycentre of [ . Choose subdivisions A", ™" of A', [ ' g0

-that

TT .g A” —_ rll .

is simplicial . Call such a subdivision of A gyiirdrical « Let A" , B" be

the isomorphic subdivisions of A' , B'", Let B"' be an :cth derived of B ,

 subdividing B" , and let [T "' the correspording subdivision of [ % ., By

Lemma 5 , choose a subdivision A "' of A" suwch that 7w : A" wy [
simpliclial , and let A' be the corresponding subdivision of A" . Then B!
is‘ a stellar subdivision of B , and induces & stellar subdivisgion L! 6f L .
Define X' = AWMUL' . Since A"' iy cylindrical , A ™! ‘*~\ir““
cylinderwise , in decrsasing order of dimsnsion . Hence A"’\\i Brt 5 and 80

K ~E1
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Preoeof of Theoren 4

S

We are _given a collapse X M Y ; that is to say a éequence of -

elementary collepsed
IKI '-‘:’-“X\NAX \Saoi\)x ':.IL’U

_ By Theorem 1 we can find a subdivision Kr of K, such that , for each 1 ,
% there is a subcomplex Ki covering Xi . Therefore we may write the

elementary collapseé
Kr\‘\_‘h Krml\ npo\\ KO +

; If r =1 the result follows by Lemma 13 + If r> 1 we show the result by

Jdnduction «  Assume ve héve found a subdivision K’r 1 of Kr—l such that

to a subdivision K! of X .
r by

¥ 1
I

g
t t : <
¥ o ~ K o o, By Lemma 3 extend K ol

loply Lemma 13 to the elemehtary collapsge K‘r'“§§3?r_l y o obtain a
simplicial collapss Kﬂr.\iiﬁ Knrml ; Where K"rml is & stellar subdivision
of K'r__1 . The latter fact enables us to appeal to Lemma 12 to deduce

: . IS
§ . KN \‘\S..‘ K" and 30 KN ) \'-. Kl! R
i r-l = T ! 7 > %%

PFull subcomplexes

ir K¢ J are complexes , we say K 1s full in J if no simplex
of J <« K has all its vertices in K . We can deduce the elementary properties

of fullness i

(i) 1Ifr X< 7 , and J!' g first derived complex of J then K' is
full in J' .,

[

(13) If X fwll in J, and J% any subdivision of J , then K¥
full in J* . ‘

e o o g S ek ki e e g 4 s A A N A 4 e

{(3ii) If X fwlldin J, and 4 & simplex of J, then ANK is

empty or a face of 4 .

S

****** e
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(iv) If X full in J , then there is a unique simplicial map

£ 317 —I (the unit interval) such that f Lo -k,

o

Seishbourhoods

Let J be a complex and let X C |J]| . The simplicial

neishbourhood N (X,J) is the emallest subcomplex of J containing a

topological neighbourhood of X . It consists of all (closed) simplexes of

J meeting X , ftogether with their faces .

Now suppose X is a polyhedron in an ne-manifold ‘M . Ve construct
4 derived neighbourhoodg of X dn M as follows « If ¥ is compact choose a
g triangulation J , K of N, X . If M is not compact chooge a triangulation
é d, K of ho%’ X vwhere M0 is & subpolyhedron containing a topological
f neighbourhood of X in M . Yow in general Md‘ will not be a manifold round
the edges , but it wmll be a manifold near X , which is all that matters .
TR More precisely , if AG N (X, J) +hen 1k (4,J) f.snp y AC i
(- Cal, Ao
For simplicity of exposition we identify M= 1Jl o, X= X} .

; Choose now an rt? derived complex J(r) of J .

Call N =N (X,J(r)) an rth' dervived neighbourhood of X in M

If r=1 and X full in J we call N a derived neighbovrhood of X in M .

¢ A fortiorilif r 3 2, then any rth derived neighbourhood is a derived neigh-
§ bourhcod, because K(T_l) full in J(rdl) » If Jt, §" denote first and

second deriveds, it is easy to show that

(1) W (x, ) =) st (x,97), the union taken over all vertices

x &K,

-

JESES—— e

(1) ® (x, 3 = U st (A, ), the union taken over all simplexgs

A€ X, where A denotes the point at which A is starred in J!
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Lemna 14 -  Any two derived neishbourhoodsof X in M are

nomeomorphic , keening X fixed .

Proof . Let N, =¥ (x, J'l) y Ny =0 (x, le) be tne two given
neighbourheoods . If M 1s compact , let Jo be a common subdivision of

J‘l R J2 . If M is not compact choose subdivisions of J'l s
in a common subcomplex , and let Jo be this swbcomplex . Choose a first

devived J' of J and let N =N{X,J').
o . o] O [+]

J2 that intersect

Let £ : Ji_*.)]'. be the unique simplicial map such that f-lO = Xy

vhich exists by the hypothesis of fullness . Choose & >0 and such that

€ < fox, forall vertices x€ J ,x & X. Let‘&'i (i=o0,1) denote
& first derived of J, obtained by starring A€ J, on £l if fA=1
and arbitrarily otherwisé » Then | N (X, Ji’ Vo= 1 0,8),4=0, 1.

ik ": - v './':’ / L ,-':
A,i;f;{ v ’fe'\\'{f\;;:;;' ,’/r A

Pt Y 7
Ty h Y

) Sl

Therefore Nl o N (X ’ Ji) ; lsomorphic

s ¥ (x, Jé) , homeomorphic by identity map
= ¥, isomorphic L

= N2 » similarly .

Remark . Lemma 14 fails for first derived neighbourhoods without
the fuliness cordition, which indicates the reagon for having to pass o the
second derived in general to obtain a derived neighbourhood. Fozr exanple
suppose X ig the boundary *of & Jegimplex in J . Then the first derived

neighbourhood 1s connscted , but the second derived dg not o
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Corollary . Any derived neighbourhood of X in M‘ collapses fo X o

Proof . By Lemma 14 it'suffices to prove for ons particular derived
neighbourhood. Thetefore choose a triangulation J , K of M, X such that
K i fullin J, and let N =K (X, ¢ ) where JE is defined as in the
proof of Lemma 14 .

Order the simplexes Al’ couy Ar of J <KX that meet XK in
order of decreasing dimension . Fach Ai meets N in &

convex cell Bi » with a face C, = A, N fgl . There is

an elementary collapss of Bi frem Ci s and the sequence

of collepses 1= 1, «es, * dotermines the collapses

LT

RS

Lemma 15 ». Let hi1 K—=XK be a homeomorphism of a complex that maps

ecach simnlex onto itself, and keers a subcomplex T Tixed o Then h ig

ambient isotopic to the identify keeping L fixed .

Proof . The obvious isotopy meving along straight paths is not
piecevwise linear by the standard mistske . However it is easy to construct a
piecewige linear isotopy H: X x I - Kx I inductively on the prisms
Ax 1, A&K, in order of increasing dimension . For each prism , {H] Axl
is given by irduction, H | 4 x 0 is the identity , and B (a,1) = ha .
Therefore H| (A4 x I)“l is already-defined, so map the centre of the prism to

itself and join linearly . By costruction H keeps L fixed .

[,

Corollary 4 . The ° . -rphism between any two first derived

. complexes is ambient isotopic 4 vhe identity .

Corcllary 2 . Any two derived neighbourhoods of X dn M ars

embient isotopic , keeping X fiyed . If X C ﬁ s the isotop& gcan be chosen

to keep ﬁ fixed .
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For in the proof of Lemma 14 the homeomorphism was achieved by
two isomorphisms between first deriveds , both keeping X fixed . The first
deriveds can be chosen to sgree outside the neighbourhoods, and so the isotopy

keeps M fixed if X«:.ZT9 R

*Theorem 5 » A derived neizhbourhood of a gollapaible polvhedron

is an nenanifold is an m-ball .

Proof . By induclztion on n , starting trivially with n=0.

By Lemma 14 it suffices to prove the theorem for one particular derived
neighbourhood , and so we choose a second derived neighbourhood N = N {X,J"),
where X= {K} , KCJ, and J" is the second barycentric derived complex
of J . Since X is collapsible, we can choose K such that K~S0 by
Theorem 4 . : _

Let r be the number of elementary simplicial collapses involved
in X "%.O o We show N dis a ball by irduction on T + The induction starts
trivially with r = 0, for then X is a point ;, and N its closed star, '
wh:i;;:h is a ball by Lemwa 9 . For the inductive step , let. K~L be the
first elementary simplicial collapse, collapsing‘a simplex- A from B , say ,

~

~ ” ~ .
where A=aB . Let A, B denote the barycentres of A, B, Now

N=§N (&, J"=PUvgouR ,

where P =N (L, I , Q:N(A,J"),R:N(B,J“);

Now P is a ball by irduction , and Q , R are balls since they sre closed
stars of vertices . If we can show that @ is glued onto P by a common
face , then P W Q is a ball by thé Corollary to Theorem 2n : similerly if

R is glued onto P v Q by a common face then N is a ball . Therefore the .
proof is reduced to shoving the P Q, and (P U@ n R are (n-1)-balls
because if they are balls then they must be common faces , since “the interiors

of P, Q, R are disjoint .
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New PO Qc Q = (A, dv) . Let

i

Jo=1k (A, IO = A (k@) s.

*

where the prime thought this proof always denotes the barycentric first dexived
complex » There is an isomorphism

v

g g
& ,
Q -Eos I,

~~

. . -~
determined by the vertex map AC ~—>C , for all C & Ty o Under this

iscmorphisn

o~
: [

PN Q¥ (aB , I, ).
Now a B is collapsible , being a cone , and {(a B)! is fwil in J, » vhich
is an (n-1)-sphere or ball , by Lemma 9 . Therefore N (a B , Jt.) 1s a

derived neighbourhood of & collapsible polyhedron , and is an (r-1)-ball by

irduction on n . Hence P Q is an (n-1)-ball .

Similerly (PuQ)nR C R, and if we now choose J, =1k (B , J1) ,
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then there is an isomorphism R _§i>J’* , throwing PuUuQ AR onto
N(AB, J'.) + For the seme reason as before we deduce (PUQ)NR isan

(nnl)mball « This completes the proof of Theorem 5 .

¥Theorem & . Suppose the manifeld Vi and the ball B> meet in

& common facte » Let X be a closed subset of Mn not meeting 5" .  Then

, . n n n . .
there is a homeomorphism M s M U B7 keeping X fixed .

Proof . Since X is closed , MW" < X is a manifold . Let B %
be the common face , and let 4 be a derived neighbourhood of % in

n C v . On _ On i1
M'-X , vhich is a ball by Theorem 5 « Since A4 C M , B does not meet

A

Tl
kN

gk \/ “\\\‘.

-] ) -
and so B is & face of A", Since A" R B® meet in the common face B" 1,
n-l In %n--l

their wnion is a ball by the Coroliary to Theorem 2n . Let Bl =B w.

®

which is a ball by Theoren 3n 3

Ve now comstruct the homsomorphism h . Defins h %o be the identity
on (¥ - A U (A" - B 1 . In particular h is the identity on X . Extend

'] * T o
=1t 3" s B b0 a homeonowphisn BB by Lemma 10 .

]

Similerly extend h 3 Ao — (47U B %o the interiors . Then h hag the

desired properties .

Lemma 16 « Any homeomorphism of & ball onto itself keepineg the

boundary fixed ig isotopic to the identity keeping the boundary fixed .
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Proof . It suffices to prove for a simplex » Given h t A .y A

wa construct the isctopy f: 4 xI A xI asfollows . Let

h.’}c,tgo
x,; t=1 or x & A .

‘This giveg f level preserving on ( éix I)' « Define £ level preserving

on A x I by wmaepping the centre of $he prism to itself, and joining to the
boundary linearly . Then f is the desired isotopy . "

. no.,
¥Lemma 17 « Suppose Mnf_’. Qn are manifolds , and that M is =

O
clesed subset of Q- . Then Q ~ M is & manifold .

Proof . Let M;.l = Q,n - Mn .

xE ’M;l has a ball neighbourhood in .Mi

a ball neighbourhood in Q" that is conteined in M?Ll ; because 0 is

. n n n n
closed in - Q. If , on the other hand , X CH N Ml y then x &Q° by

We have to show that every point
. 1f ze @ -w', then x has

Wothesis s and s0 K lieg in the interior of a bell in Qn . Trisngulate
this ball so that v is a vertex , and so that its meets Mo ina
subcomplex . If ST is the link of x , then ST T MY is a ball by
Lemma 9 . Therefore the closure of the complement , Snml a Mil s 13 a ball

by Theoren 3n~1 . Hence x has s ball neighbourhood in .M;l .

*Theorem 7 « Supposs 'MnC Qn are manifelds ., and that Mn is &

On n . 1 \ n
ciosed subset of Q . Tet B he an n~-ball in © meetinge M din a

. 1 . n
common face . Let X be & closed subset of @  not meeting B, Then

there is an smbient isotopv of Qn moving Mn onto I\'Inu Bn . and keeping.

XU Q" fixed .
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Proof .

Let Bnﬂl bs the common face ; and let B;l -1 = B" - BTJ‘ ’
which is a bsll by Theorem 3 Let i\‘In = Qn ~ (I-Enu Bn) ¢ which is

) n-l ° 1
a manifold by Lemma 17 , since Mnu 8" is a manifold by Theorem 6 .

Lot D” be & derived neighbourhood of B in the manifold Q- O =

Then D" 4is a ball by Theoren 5 . Let A% = D°n 7, lﬁn mml

. If when constructing i we choose a ftriangulation that meets o ’ 3" in

subcomplexes , thls ensures that I R Ail are respectively derived neigh-
bourhcods of Bnﬁl N B;l"l in W™ R Mil and thereforve are balls . A" meets

3" in the comion face BT , and’ A, mests 3" in the comon face By

Therefore AT UB" , A’l‘ U B" are balls by Corollary to Theorem 2_ ..

Next we construct a homecmorphism h of o? onto itself as
‘n b o Y 4 T §

. an . On_l '
follows » Define h =1 on D WA - B7") ., Extend h': B 3B, to

the inberiors by Lemma 10 . Similarly extend AT —»(A" 0 3™ amd

] (Bnl,,d A e Al to the interiors . By Lemma 16 the identity is isotopic

to h, keeplng D® fixed . Extend this to an ambient isotopy of Q°

0
keeping fixed Q,n - DY (in particular X U Q ) s By construc’cign this

isotopy moves 1" onto M U BY

n--l‘
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Regular neishbourhoods .

: The definition of regular neighbourhood is more powerful than that
! ' of derived neighbourhcod because it isg intrinsic , and leads at once to an

existence and uniqueness theorem .

Let X be a polyhedron in a manifold M . A regular neighbourhood
N 6f X in M is a polyhedron such that B

i) ¥ is a neighbourhood of X in. M.
ii) ¥ is an nemanifold (n = &im M)

131) NW X .

*Theorem 8

(1) Any derived neishbourhood of X in M is regular .

"§ . - {2) Any two resuler neighbourhoods of X in M _are homeomerphic ,

. keeping X fixed ,

) 0
(3) I1f_ X c M, then any two regular neighbourhdods of X in N

; are amblent isotopic keepine XU M fixed .

Remark . |

Clearty (3) is stronger then (2) « However it ig valuable to have
(2) in cases where (3) does not apply . For example suppoée X is a spine of
¥ in the interior of M ; then by (2) M is homeomorphic to any reguler
neighbourhoed N of X in M . But obviocously M and ¥ arevnot ambient

igotopic .

"Proof of Theoren 8 ;

Part {(1) . Let N =N (X, J!) be a derived neighbourhood of X
in ¥ . We have to verify the three conditions for regularity . bondition (i)
follows from the definition, and (iii) frem the;Corollary to Lemma 14 . To

AL A B b e i R b v s
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verify (ii) we check the link of esch vertex % €N . Let L = 1k (x, J')_a
If = &X, then 1k (x, N) = L , which is a sphere or bell . If = &X, . .
then x g R , vhere A is a unique simplex in J - K , K being the

subcomplex of J corvering X . By the fullness of K in J, AnK=238 ,_‘

a face of 4.
Now L = A'S , where 5 is isomorphic to (1k (4,9))', and so is
8 ball or sphere « Since S 1ies in the interior of st (4,K) it does not

- meet X, and therefore L N X = A\ X =B' ., Therefore

I
=
P}
-
=
p

1k (x,X)

B
2=
P P
o B
e e
- T
[o's R

.which is a ball ; because N(B',A') is a ball by Theorem 5 , being a derived .
neighbourhoed of B in 4 . The proof of part (1) is complete ..

For part (2) it suffices by Lemma 14 to show that eny regulaer
reighbourheed is homeomorphic to a derived neighbourhood , keeping X fixed .
If N is the regular reighbourhood , use Theorem 4 to choose a $riangulation

J, K of N, X such that J collepses simplicially to K

£

J::Kr\a Kr“l\ﬂcai\!KoﬂK '

Let J" bve the barycentric second derived of J , and let . Ni =N (Ki ’ J”) .
Then N is a derived neighbourhood of X in M , and N, =W . Asin the
proof of Theorem 5 , Ni is obtained from Ni 1 by glueing on two balls .

Neither of these balls meets X , because Ni— is & neigﬁbourhood of X and

1L

80 by Theorem & there is a homeomorphism Ni -dyNi keeping X fixed .

‘ 1
Composing these , we have the desired homeomorpnism No-m% J

For part (5) we meke the same construction cg for part (2) y 8nd .
instead of Lemma 14 and Theorem 6 we use Corollary 2 to Lemma {5 and
Theorem 7 to ghow that the two neighbourhoods are ambient isotopic keeping

)

XUN fixed . The proof of Thecrem 8 ig complete .
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Proof of Theorem 311

At last we pome to the end of our mammoth induction . We recall that
in the proofs of Theorem 4 -~ 8 we have used Theoren 21_ y T4 n and Theorem 31, ’
r & n, but not Theorem 3n . We now-use'Theorem 8 to prove Theorem 3n « This
will maxe Thsorem 2 = 8 and the accompanying lemmasg valid for all n .

Given Bn - Sn we have to show that S b BI is a ball . Choose

m‘l--; Sn throwing & vertex x of A mkL onto a

point y € BY . Let 4% = f (stlx, A ™)) . Then the balls A™, B® are

both regular neighbourhceds of y in st s and so by Theorem 8 Pert 3 are

ambient iso%cpic . Therefore the closures of their complements are

homeomorphic » But S§% - AD = f A", where A ™ is the face of A n+1’

opposite x . Hence SO - BB ig m ball .

We conclude the chapter with some ugeful corollaries to Theorem 8 .

Corollary 1 « A manifold is collapsible if and_only if it is g ball .

For if it is collapsible , then it is a regular neighbourhood (in itself) of any
point , and therefore a ball by Theorem 5 . |

0 ' - o
Corollary 2 » If XM, and N, Nl are regular neighbourhoods
of X in M, such that NTC,I?I,, .then N-«-‘I(\Jil':"f\?xla

Proof . Construct two derived neighbourhoods as in the proof of

Lemma 14 . oLl

=t {o,E]), Nimfﬁl[ol,éj.

%Meo<545<1. Then

‘ 6 -

o)

] 2 e x1= ¥

Therefore the result is true for ¥, N;e . By Theorem 8 (2) choose a
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homeomorphism h t N N keeping X fixed . Now h ¥, N are both
Q .

regular neighbourhoods of X in N, and so by Theorem 8 (3) wé can ambient

isotope h~N§ onto Nl keeping N fixed . Therefore

Corollary % « The combinatorial annulus theorem . If A , B are

9 0 -
two n=balls such that A 2B, then A= B & g™ L x I ., Proof by Corollary 2.

of M (i@e, MY X)) o If XY or YNX then Y is also a spine of M .

ogf, » If XNY the result is trivial , becauss then M NXNTY,

™ 'y

If YNX, let N be a regular neighbourhood of Y in fl. Then
FYY~X, and so N is also a regular neighbourhood of X . By Corollary 2,
f). .
M-NEMxI, and so MNE . Therefore MNNYWY , and so0 ¥ is a spine
of M. | I |

process . However such factorization is only truve for manifolds , and not trus

for polyhedra in general . For instance

TEN 0

...I \o :?éé> X_\sjftdll

X o7

Consider the following examvle . Let x y 2z be a triangle , and let y', z'
be two interior points rot concurrent wi*h x . Let X be the space obtained
by identifying the intervals Xy e=xy', X2 =x3", and,;o% Y be the image

lof v % in X..
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J

Then X YO conewise ‘, and T \sO because Y is an arc . But XY because
any initial elementary simplicial collapse of any triangulation of X must
have its free face in Y , and so must remove part of B. Similerly can duild

examples to ghow that

X ~s.0
Y~s0 bzFpxurwo
XNT~s0

Bemark 2 + Corollary 4 is useful for simplifying spines  For |

- example the spine of a bounded 3-manifold can be normaliged in the following

sense : we can find a spine , which is a 2-dimensional cell complex in which
every edge bounds exactly 3 faces , and every vertex _bounds exactly 4 edges
and 6 faces » For chocse.a spine in the interior; expand each edgé like a

banana and collapse from one side; then expand each vertex like a pinespples
and collepse from one face . By Corollary 4 any sequence of expansions and

collapsesleaves us with a spine, and the process described makes it normal .

. * ot e om
sl wwd ol wel om ) o
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Chapter 4 : UNENOTTING BALLS AND SPHERES

¢

‘ Supposs i nd are manifolds; we say the embedding is proper
m_, Cn . 0q QI g o
if We u? am Mmc'_ M* . A {quml-manifold pair M7 =M M) is a pair
such that e ut properly » The godimengion of the palr is ¢ = g« m .

The boundary u®T (ﬁq,l\?n ) is a pair of the same codimension . We write
¥ uP® ir WP p? e W =W,

In this chepter we are intorested in gphere pairs SV ™ ang ball
pairs BY® , The houndary of a ball pair is a sphere pair. If '
UM e Al o oa11 BYT g gace of MEROL '

The standard (g,m)-ball pair 38 A ¥ (2% A%, A™ where & m

is the standard mesimplex, and ¢ o denotes (g-m)=fold suspension o -

TR YT M M L AR St e donnss L

 The standard {q,m)=sphere pair is A Grlymel . We say a sphere or ball pair
ls unlmotted if it is homeomorphio to a standard pair . The cone on an unknotted
(q,m) ball or gphere palr gives an unknotted (q+1,m+3.) ball peir . -

Theorem 9 « Any sphere or ball pair of codimengion . 3  is unknotied.

Remark 1 » In codimension 2 the theorem fmils for both spheres
and balls. The (3,1) sphere pairs give classical knobt .
theery, and in higher dimensions knots can be tied for

example by suspending and spinning (3,1) kmots .

eaboen
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anjecture 1 « The sphere pair (Sq,Sq-e) ig urknotted if Sq—Sq._2

is a homotopy S1 « If g =3 the result is true by a theorem of Papakyriako~ A

poulos « If ¢ » 5 an analogous topological theorem of Stallings says that if
the sphere is topologically locally unknotted then it is topologicaEyunknotted.

Conjecture 2 . Svhere and ball pairs wikrot in codimensien 1 . This

is the Schidnfiles conjecture which is true for q {3, and unsolved for q 54 .

-

Conjecture 3 « If B is a ball pair contained in-an unknotted sohore

pair of the geme dimension, %hon B is vpknotted . This is teue for ccdimension
,} 3 by Theorem 9 . It is true for ccdimension 2 when gq =3 by the wigus
factorization of classical knot fleory (en unkrotted curve is not tho sumaof two
knota) . It is true for codjmensicﬁ T when q 43 Dby the Schonflies Theoren .

But otherwise in codimensions 1 and 2 is unsolved .

A modified result is that B<C 8 are both unknotted then the

complementary ball pair S~ B is also unknotted . This proved by Theorem 8

Remark 2 . In differential theory Theorem 9 is no longer true because
Haefliger has knotbed S0 differentially in S0 . Above this critical

dimengion, in the stable range, he has unknotted all sohere pairs .

Plan of +the proof of Theorem 9 .

Most of this chemter is devoted to proving Theerem 9 . The pxact

s by induction on m keeping the codimonsion ¢ =g -~mnm fixed . Ve eventually

show +thas

Thenrem 9qu,m~1 mm==3  Theoren 9%m
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The induction starts trivially with m = O ; for, given ¢ , then a(0,0) ball
pair ig a ball B° with an interior point B° ,  which ig homeomerphic %o a
standard pair . '

Next we observe that :

Urknotting of (g,m)=ball pairs implies unknotting of {g,m)=sphere pairg .

i ~ Proof . Given Sq’m—_-(sq,sm) ; triengulate the pair and choose a

vertex x & Sm . Let

Bg’m = (Sq “S't(x,sq) [ sm "Stﬁ]fgsm)) L
If A =y A % is the standard gimplex, then

A‘ qtlemyl A LM A Qo

L

vy

By hypothesis choose an unknotting homeomorphiem Bq’?i ..,,.,.3 A S, then map
A q+1 gUH'}.

L]

x t0 y and extend linearly to an unknotting Sq,m

Lemma 18 » Let (3% B™) and (€% ™) be two unknotted ball pairs .

*

Then anv _homeomorphisms f 32 ‘__)éq and gt Bmmé-Cm that agree on B

can be extended to a homeomorphism h @ 3% -0l ¢

Proof . BExtend f conewise to %: B%—50% ag in the proof of

Lemma 0. . Let e:Cmn---arCm- be the composition

—

I £ I € m
e BE ey
[ L3

Then e keeps o™ fixed y since £ , g agree on B, By the unknottedness
wé can suspend e %0 a homeomorphism et o4 »——>Gq fixed on E}q . Then
h=of : Bq-—) ¢l agrees with both f and g, and p'roves the Lemma .




]

!

P

; -4 -
:

Coroilary . Anv homeomorphism between the boundaries of two

o dion s v s i L e o

unknotted ball pairs can be extended to the interiora

Lemma 19 « Assune Theoren 9q 1ope) Then if two unknotted (q,m)
-1,

ball pairs meet in & common face their union is a unimotted ball pair .

‘ Proof . Let B]_’Bg be the ball pairs meeting in the face F .
‘Let 2 A be the suspension of the sbandard (g-1,m=l) ball pair A , with
suspensi{.m poilrfcs X, » X, say 3 ChogSe an unlmo’f‘c:i.ng F—sA by hypcthesise.
Extend P -4 to urknottings B, - Py X, A by the asbove corollary .
Similarly extend éi-—a» (xi A )T to the interiors » Then Blu 32 is
unknotted by the homeomorphism onto & A :

; Lemma 20 « If (B3%B™) 4c e ball pair of codimension > 3 - then
| o BiN PR, . . | -

( : ‘ Remark . Lemma 20 fails in codimension 2 j for exemple a knotted
arc properly embedded in 133 is not a gpine of 33 « The proof of Lemms 20
involves some geometrical construction, and we posipone it until after Lemma 23,
which is the crux of the matter . First let us show how Lémma 20 implies

Theorem 9 .

" Proof of Theorem 9 assuming Lemma 20

We assume Theorem 9 .y} Vhere gm 3 « By the observation

_ a1l,m
that unimotting balls implies unknotting spheres, it suffices to show that a

o P b R Y AN S £ b

given ball pair B = (BL3™) is unknotted .
Choose & triangulation J , K of Bq‘,Bm guch that XK is éimpliciailly

. collapsible

NS S FE-SE S

KéKr\’" Kr-\“ coe \, Kospoint ul
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Let J" be the second barycentric derived of J , and let B, be the ball pair

% ) Biz(N(K ;I N (K, wﬂ) .

i

5 We show imductively that B, 1is unkmotted .

The induction starts with 1 =0, because Bo is a
cone on the ball or sphere pair (1k(KO,J”),1k(KO,K”))

which is unknotted by Theorem 9 . For the
, gmlym-1 .

inductive step assume 'Bim1 unimotted » 4s in

Theorem 5 1, we notice that Bi is obtained by

glueing on two more small ball pairg, each by a

common face , and each of which being unknotted like
B0 »  Hence Bi;,ia unkmotted by Lemma 19 « At the end of the induction Br
is unknotted » |

| . Now B, = ®%E™ , where M% is a regular neighvourhood of BY
(- ’ in BY, But by Lemnma 20 , BY itself is emother regular neighbourhood .
‘ Therefore by Theorem 8 Part 2 there is a homecmorpiism Bq~—~%Nq keeping
3" ﬁmd,w,inmmrmms,aMmemmmBqﬁr,mwmgB
‘unknotted .

Conical subdivisions

We shall need a lemma sbout subdividing cones « Let € = vX be a

cone on a polyhedron X, with vertex v ., If Y < C, the subcone through Y

is the smallest subset of C containing Y of the form v2 , 2 X . For
§ _ example a subcone through a point is a generator of the cone . A triangulation

of C is ocalled gonical if the subcone fhrough each simplex is a subcomplex .

Lepma 21 « Any trianeulation of .C has a conical subdivision .
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Proef « Let C also denote the given ftriangulation . Let f: C -yl
denote the piecewise linear map such that fﬂl(O) = v, fﬂl(l) =%, and cuch

that f wmaps each generator linearly . Choose & > 0, and such that £ & £x

for every vertex 2 & 0, m== v . Choose a Tirst derived G' of C such

that each simplex of C meeting f-l(fl) isr starred on i‘ﬂl(&) . Then

fml (& ,l] ) fml(S) are subcomplexes , K, I say , of (!, and
C'=Kwv L. _ et £: E-»L Ve radisl p'rojection s which is a projective
map and not pilecewise linesr . Then fxg: K- [ E,,l‘,} xL isa projective

homgomorphisn

.....

piecewise linear, and so there are subdivisions such that 1T : K =1 is
-1
Ki « Then K' isg a subdivigion of ¥ ,

containing L' as s swbcomplex , becavse TU (f x g) : L=> 3 i the identity . |

simplicial . Let X' = (f x g

Let C"=K'v v L', Then €" is a subdivigicn of € , and is conical

because KJ" ig cylindricol .

Shadowas

Lot I% be the g~cube . We single out the last coordinate for

special reference and write 11 . I-q"l x L » Intultively we regard 1 as
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vertical , and Zq#l as horizontal , and identify Iqu with the bage of the
cube + Let X be a polyhedron in ¥, Imagine the sun vertioaliy,bverhead ,'
causing X +to cast a shadow; a point of IP lies in he shadow of X if it
is vertically below some point of X . |

Definition . Let X' be the closure of the set of points of X that
lie in the same vertical line as some other ﬁoint of X (i.e. the set of pointé
of X that either overshadow , or else are oveféhadowed by some‘otherlpoint

. R .
of X) . Then X is a subpolyhedron of X,

Lemma 22 . Given a ball pair BL 8™ of codimension 3. 3 , then

there is a homecmornhism Btum —— Iq,x guch that

‘ i) X _dces not meet the bage of the cube

ii) X meets each verticél line finitely

idl) ddm X & m- 2.

Proof « First choose the homeomorphism to'satisfy 1) , which is
easy . Now iriangulate ‘Iq,X » Then shift all the wvertices of th;s triangulation
by arbitrary small moves into general position , in such a way that sny vertex
.in the interior of I¥ vemairs in the interior, and any vertex in a face of
¥ remains inside that face . If the moves are sufficiently small, the new
positiong of vertices determine an isomerphic triangulaticn , and a |
honeemorphism of P onto itself . The general position ensures that conditions

.(ii) and (iii) are satisfied , because m £ q -3,

and 80 dmx*,;;‘.‘(mﬁ-l)ﬁ-m-q\g_rm-aE R

Remark . The "general position" of the above proof may be analysed
more rigorously as follows . Each vertex is in the interior of some face ,
and has coordinates in that face . The set of all such coordinates of all

vertices determine a point 3 some high dimensional euclidesn gpace , and
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the sufficient smallness means that & is permitted to vary in an cpen set ,

U say . To satisfy the conditions (11) and (iii) we merely have to

choose o €U , so a8 to avoid a certain finite set of proper linear subspaces o

collapsing

Suppose we are given polyhedra 1Poxoy , such that X Y s
an elementary cbllapse « We call this collapse‘sunny if no point of X - Y
tieg in the shadow of X . We call a sequence of elementary sunny collapses

& sunny collapse , and if ¥ is a point we call X sunyy collapsible .

Corollary 4o Theorem 4 . If X is sunny collapsible then some

trisneuleation is simplicially sunny collapsible . For each elementary sunny

collapse is factored in a sequence of elementary simplicial sunny collapses o

Lerma 23 » 1f (1510 is (qum)-ball pair of codimension ¥ 3

satisfyine the conditions of Lemma 22 then "X is sunny collapsible .

Repark . Lemma 23 fails with codiménsion 2 « The classical exampie

of a knotted arc in EB gives a good intuitive feeling for the obstruction

to aISunny collapse : locking down from above it is

&<

> ¢ possible to start collapsing away until we hit

underpasses , which are in shadow and so prevent

any further pProgress .

"
~

) ~
\L | .

Definition . A princinal l-complex is a complex in which every

principal simplex is k~dimensional .
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"Proof of Lemma 23 .

We shall construct inductively a decreasing sequence of subpolyhedra’
il D..u} = 3 ‘
X XO o Xi Xﬁ & point ,
and , for each 1 , a homeomorphism
o nei-l
t X
fi L — v K@
onto a cone on a principal (m~i~-1)~complex, satisfying the fhree conditions :
* .
1) fi Xi does not contain the vertex of the come , and meets each
generator of the cone finifely .
- % .
2) dim Xi  meim2 .
3) There is a swiny collapse X i ™~ X

The irduction starts with X = XO o

Condition (2) is by hypothesis and (3) is vacuous . Choose a homeomorphism
£, X —> A, vhere A. is the standard w-simplex . SinceO fOX* is a sub-
polyhedron of dimension & n~2 y WO 2an choose a point v & A = fOX* y and
in general position relative to fOX . Starring A at v makes A into

the cone v A on A , which is principal . Condition (2) is satisfied by

our choice of v o

The induction finishes with Xm = a point , end so we shall have

a sunny collapse

XN X N XN = N X

“which will prove fthe lemma .
The herd part is the inductive step -

Suppose we ares given fiwl H Xi_lum——yv'KE“l , setisfying the three conditions,
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we have to construct fi y Koy K@ulnl and prove the three conditions

e

i 5 '
et C , L friangulate v K ) fi 1 Xiwl + By Lemma 21 we can

choose € +to be conlcal . In particular € coniaging a subdivision
K" of ¥, Define

Km_i—l = the (m—i—l)—skeleton of (ngi), s which is a
prineipal complex since Km"i was principal « Let 00 be the subcomplex
of  triengWlating the subcone v et e, + C > C Do the
inclusion map‘i We ghall construct another embedding | -

e Co - C

that differs siightly , but significantly , from ey ¢ Having chosen . e , then

there is a unique subpolyhedron Xi y and homeomorphism fi , such that the

'diagram

X > ki
£ 9
V
¢ ..m___i.m> C

is commatative .

: * *
It is no good choosing e = e, 1 because then Ki = Xim} which

‘would be of too hizh a dimehsion « In fact this is the crux of the matter :

‘we must errange some device for collapsing away the top-dimensional shadows

*
,of Ximl s The first thing to cbserve is that the triangulation I of
fiul Ximl ig in no way related to the embedding of Xz 1 in the cube 1 .

The inverse images of simplexes of L may wrap around and overshadow each

other hopelessly, so our next task is to take a subdivision that remedies
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this confusion « We have plecewise linear meps

f—l
1 i-1 ¥ X 741

where the first is a homeomorphism , and T is vertical projection onto the

base of the cube I+ . By Theorem 1 we can choose subdivisions L' of L,

(Iqel)‘ of qul and a triangulation M of X+

i1 such that the maps

o . - f_ o “Tr - . ‘ . ;\
et o oy afhy :
are simplicial .

Recall that dim M ¢ m-i-1 , by induction on i . Let A

Al’A2’°°"Ar be the (m—iyl)-simplexes of M . ZE=sch Aj ig projected nonw

degenerately by 1T, because of Lemma 22 (ii) . If j A=k there are two
p0851b111t1es : ezther il A LT Ak or T A TT'AK In the first case
T maps A Ak dlsaozntly and sg 1o poant of A v Ak overshadows any
other » In ﬁﬂe second case either AJ overshadows Ak or vice versa .
Consequently overshadowing induces a.partial ordering amongst the A's )

and we choose the ordering Al’ Ag’“"’Ar to be compatible with this partial
ordering . VWe summarise the conclusion :

Sublemma . All n01nts of X that overshadow Ak are contained

We now pass to L' . Let Bj = fj lAj & L' . The next step in the

proof is to construct a little (m-i+l}-dimensional blister Zj about each"Bj
in the cone € . The blisters are the device thal enable us to make the sunny
collapse, and the fact that there is just sufficient room to construct them is
en indication of why codimension 3, 3 ié & necessary and sufficient condition'

Tor unknotting .
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o . |
Pix j. Let Bj be the barycentre of Bj » Since the base of the

cone is principal , there is simplex D'+~ & (K™)' such that Bj ig
contained in the subcone v D . There are two cas?s depending on whether or
not Bj lies im D, in the base of the cone . If BjCi D, let bj be &

0 -
point in D near Bj , and let aj be a point in the generator v Bj near

pair of points on the generator through %j )y near 'Bj and either side of
ﬁj « 1In either cass define the blister

" o] A
Bj . If Bj<¥.3 , let bj be a point in v D near Bj , and let as be a

Z_ = a,b,B. .
J JddJdd

barycentres so that no two blisters meet
more thaun is necessary (i.e. Zj Nz, =
=B, 0 B,) + The hobtonm of the blister
is a8, and the top is a,bB, . Let~
J JJdd
ej ne the map
@,.14,B, —y ab.B,
B R B 3373

that raises the blister, and is given by

~
mapping B.—>h. .
pprng 3 i

Now ‘CO meets each blister in its botitom . Therefore we can define
the embedding e 3 Co—e—C by chocsing e = ej on the intersection with each
blisgter , and e = 1 otherwiss . .In other words e is a map that raises all
the blisters . Having'defined ¢ , we have compieied the definition of Xi
A gl

There remains to verify the three conditions . Condition (2) helds

because by our construction Xg = Xi 1 s Xﬁ

= tbe (m-i~2)-3keleton of ¥ .

We choose the points sufficiently near to the
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Condition (1) holds , because

¥* *

fi Xi T -l xi

1

for which the cordition holds by induction .

Finally we come to condition (3) + Let 2 = U Zj . TFor each

(m-i)~simplex D e (x@“l)* , VI - 7 is a ball because it is a simplex

with a few blisiers pushed in round the edge, and D - 2 is a face . Therefore

collapse each v D -2 from D - Z . We have collapsed
C Ny e Cg\J Z .

and the inverse image under fi determines a sunny collapse

1

-1
La N 4w f)2,

' *

sunny because we have not yet removed any point of Xi 1
Ve now collapse the blisters as follows . Bach blister meets e C0

in its top , and so by collapsing each blister onto its top in turm, Jel,.e.,x,

we effect a collapse
el VWZivMeC .
0 0

if Yj = f;il Zj y then the inverse image of this collapse determines a

sequence of elementary collapses
T T ‘
X_L_)k‘) Y' ) X, U U Y,\-J oo \N‘ X, »
i J i J L
1 2 .
Each of these elementary collapses is sunny by the Sublemma, because by the

time we come to collapse Yk s say , the only poinﬁs that might have been in

: )
gshadow are thoge in Ak » bub these are sumny for we have already removed
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e&erything that overshadows them . We have demonstrated the swmy collapse
Xi 1 Y Xi s which completes the proof of Lemma 23 .

Proof of Lemma 20 .

We caﬁ,now return to the proof of Lemma 20 , which will conclude
the proof of Theorem 9 . Given a ball palr (quBm) of codimension » 3 ,‘
we have to show BY N B . By Lemma 22 it suffices to show for a bhall
pair (1%, X) satisfying the conditions of Lemma 22

By Lemma 23 and the Corcllary tc Theorem 4 we can choose &

triangulation K of X that is simplicially sunny collapsible .-
- hN = i
K = K \ Kl\s v e+ N K = apoint,

Let Li be the polyhedron consisting of IQfltix together with all points '
in the shadow of Ki « We shall show that

q ‘ »
I N DN BN e N LN X

o]

The first step is asfollows . Choose a ¢oylindrical subdivigion (Iq)'
of 1% containing a subdivision Lé of L . Then collapse (I 1Yy Lé

prismwise from the top, in order of decreasing dimension of the prisms .

The last step is easy , bscause Lr consigtg of - IQ?l U X Joined
by a single arc » Collapse Iqu onto the bottom of this arc, and then
collapse the arc . There remain the intermediate steps Li 1 Y Li s

iml’ono,rl

P

O r
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Fix i, and suppose the elementary simplicial sunny collapse

Ki—l g Ki collapses AA frem B, when A=gaB, Gh00seﬁa point b
below the barycentre B of B, and sufficiently close to B for AN X = A
(this is possibly by Lemma 22 (ii))‘._ et T = Li togqther with all points
in'ﬁhe ghadow of ab é . Since the collapse iz sunny, no pdints st Ki
wwmmwhzug,mdm TﬂblmaﬁBf,TubAmLyl.Inmmr

words collapsing b A from v B gives.an elementary collapse
L Ny LT .
i=1 p o

Pinally collapse iy N Li prismwise downwards from abB , as in the first

' case . This completes the proof of Lemna 20 and Theorem 9 .

o

Isotopies of balls and s phexres

Recall that Lemma 16 proved that any homeomorphism of a ball unto
itself keeping the boundary fixed is isotopic to the ideniity keeping the

boundary fixed .
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Corollaery 1 to Theorem 9 . If g-m > 3 , then eny two proper

embeddings B ¢ 34 that asree on .ﬁm are ambient isotopic keeping 2% fixed,

Proof . Let f£,g be the embeddings . By Lemma 18 we can extend

1 Bq_.>.Bq and gf_l : 7 Bmu} g B" , which agree on BT s to a homeomorphism:
netween the ball pairs

(%1 B") — (8%g 2%) .

By construction ”hf =g, and, by Lemma 16, h is ambient isotopic to the

identity keeping BY fived .

. . . . no,
Thecrem 10 . Any orientation preserving homeomorphism of 3 ig

igotopic to the identitv .

Proof : by induction on n , starting trivially with n = 6. Let
f Ybe the given homeomorphism . Chocse a poinkt X € g , and ambient isotopic

fo tox . Thismoves f to fl-, say 5 where fl.y:m by SN

Chonsge a‘ball B containing o in its interior . Then B,le are regular
neighbourhoods of ™ , and so by Theorem 8 ambilent isotope sz onto B .

B

This moves fl to f2', say , where sz =B , The. restriction f2

preserves orientation , and is therefore isotopic to the identity by induction .

Exterd the isotopy conewise to B and SP - B, making it into an ambient

igotopy , that moves f to f3 , 8ay where f IB =1 . Apply Lemma 16 to

each of B, 8P o B to amblent lsotcpe f3 1nto the 1dent1ty .

Corollary 2 to Theorem 9 . If g-m > 3, then any two emb@@ﬁings

Smci Sq‘ are ambient isotopic .

Proof . If (s%5™), ¢> m, is en unknotted sphere palr, then §%

is the (q-m)-fold suspension of S , and so there is

(1) an orientation reversing homeomorphism of s%, throwing g

+




o
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onto iteelf, and

-(2) en orientation preserving homeomorphism of Sqr, throwing "

onto itself with reversed orientation .

et £, g: Sm*é s% be the two given embeddings . Since ¢-m 2 3,

the unknotting gives a hémeomorphism (Sq,fsm)wﬂa (Sq,gSm), which we can
" .
choose to be orientation preserving on 5% hy (1) s and which is therefors

isotopic to the identity by Theorem 10 . Therefore f is ambient isotopic

m, A el n n
S =8 o Let hegftt £8°_ons” . By

(2) above and Theorem 10 , we can choose f, 5o that h is orientation

to fl , say , such that f

preserving .

Now apply Theorem 10 toc the smaller sphere s y to obtain an isotopy from the
identity to h ; suspend this isotopy of s into an ambient isotopy of g4
moving fl into g .

Remark . The above two corollaries are also true for unknotted ball
and sphere pairs of codimension 1 end 2 . The aim of the next four chapters

is to obtain similar results for arbitrary manifolds . '

[} . .
LR ME SR
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Chapter 5 : IS0ICPY

\

The natural way to classify embeddings of one manifold in another
ig by means of isotopy. Bul there are several definitions of isotopy, and the
purpoée of thig chapter is to prove three of the definitions equivalent. The
three tha%hwe consider {(of which the first two were mentioned in Chap%ér 2)

- are

(1) Isotopy, sliding the smaller manifold in the larger through a l

Tamily of embeddings ;

(2) -Ambisnt isctopy, rotating the lgrger manifold on itself, carrying

the smaller with it

(3) Isotopy by moves, making a finite number of local move s, each'

inside a ball in the larger manifold, analogous to moving & complex in
Buclidean space by shifting the vertices, like the moves of classical knot

theory .
Since any homeomorphism of a ball keeping the boundary fixed is
isctopic to the identity it follows at once that

isotopy by moves  =z=—=p ambient isotopy w=m==3» dsotopy .

In Theorems 11 and 12 we shall show that these arrows can be reversed .
To reverse the second arrow, that is to cover an isotopy by an ambient isotopy,

it is necessary to impose a local unknottedness condition on the igotopy .

+o0 s beew
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Defin

For otherwise the kmots of classical knot theory give counterexamples of
embeddings that are mutually isotopic but not ambient isotopic. However the
results of Chapter 4 show that this phenomenon occurs only in codimension 2,

and possibly codimension 1 .

Throvghout this chapter we shall ve considering embeddings of a
compaet memanifold M in a gemanifold Q , which may or may not be compact .
Ve restrict attention to proper embeddings f ¢ M—»Q ; wrecall that f ig

proper provided f-lQ = 1'; in particular if M dis closed , then eny embedding .

L4 0 - ) * 4
of M in Q is proper . By a hcomeomorphism of Q , we mean a homeomorphism

of Q onto itself ; in particular a hcmeomorbhism is a proper embedding,,

itions  of Isotony

Recall definitions that have been given in previous chapteré .

(1) & horeomorphism h of ¥ is a homeomorphism of M onto itself .

If Y& M and b | ¥ = the identity we say h keeps Y fixed .

(2) An isotopy of M in Q is a proper level preserving embedding
F:MxI-»>QxI .

Denote by F, the proper embedding M—»Q defined by T (x,t) = (th,t) ,

¥ ‘
all x& M . The subspace L»m) FtM of Q is.called the track left by the
tel '
isotopy .

If XCH, we say F keeps X fived if F(x,t) = F(x,0), all x & X and
tel .,

(3) The embeddings f , g : M-»Q are isotopic if there exists
an isotopy F of M in Q with F =f, F, =g. o '



{4} An ambient isotopy of Q is a level preserving homeomorphism
& is defined

the identity, where ag sbove H
Wz gay that H coversg the isotopy F if

H: QxI~»Qx T such that H
by Hx,t) = (Htx,t), all x € Q.
the diagram
‘ Qx I :
’ ’ s \\Hé
Fo z I | = Qx 1
- ' ;;7 .
_ _ {/////”'F

MxI
is commutative; in other words FJG = HtFO , all t€&€I .
(5) The embeddings T,g -Mw%rQ are ambient isoteopic if there is
:g',
MxI-sQxI is the
Therefore since we have restricted

an ambient isotopy H of @ such that H. T
M= Q, then 2 proper embedding

If

Remark .
same as a homeomorphism Qx I — Qx I,
attention to proper embeddings , the only difference between an isotopy of

Q@ in Q, and an ambient isotopy of Q , is that the latber has to start
with the identity ; .consequently two homecmorphisms of Q are isotopic if and

[y

only if they are ambient isctopic .
& homeomorphism or ambient isotopy of Q is said to be

? (6)
suggorted by X if it keeps Q- X fixed . By contlnulty the frontier
XN Q~ZX of X in Q must also be kept fixed .
(7) An interior move of @ .is a homeomorphism of @ -supported by a

ball keeping the boundery of the ball fixed . A boundary move of Q is a



t"{

&)

al

V.
- b -

homeomorphism of @ supported by a ball thai meets @ in a face ; the
complementary face is the frontier of the ball that is kept fixed by continuity.

(8) The embeddings f,g ore isotopic by moves if there is a
finite sequence hl,hg,...,hn of moveg of @ ‘suoh that h1 h2 era hhf =&

1y unknotted embeddings

- Let f: M-3.Q bYe aproper embedding . Let Q be a regular
neighbourhood of £l in @ . Let ¥,L be trianguiations of N, QJ guch

that £ : X ~» 1L i simplicial . Ve éay that  is a locally unlmotted

embedding if, for each vertex v &€ K, the pair
(1 (£v,1), 7 (1x(v, K) ) *

is unknctted . Notice that since the embedding is proper, the pair is either

8] [
& sphere or ball pair according to whether vé M or v& M .

Sorollary 3 to Lemma $ . Any vroper embedding of codimension > 3

ig locally unknotted . Therefore then we say‘"locally unknotted"” in fubure

we refer only to the cases of codimension 1 or 2 .

Bemark 1 « The definition is independent of Qo , and the

triangulations, because if all the links are unknotted, then the same is ftrue

~ for any subdivisions of K, L, and hence also true for any other

triangulations .

Remark 2 . An equivalent condition is to say that the closed sters
of vertices are unknotted bvall palirs',' but in codimensions 1 and 2 the

equivelence, for a boundary vertex , depends upon a result that we have

[
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guoted, but not proved, that if an unkmotted ball pair has an ﬁnknotted facé

then the complementary face is also unknotted .

Remark 3 « If T : M—>Q is locally wiknotted embedding, then so

is the restriction te the boundaries £ ¢ M~3Q &

Remark 4 . We say a ball pair (BLB®) is locally wnknotted if the
inclusion is s0 ; for example this always happens in codimension 23 or in
the classical case (q,m) = (3,1) . Suppose (3%, 8% is locally unknotted ,
and let N% be é regular neighbourhood of B in 8%, Then although
(8%,8™) nay ve {globally) knotted, it can be shown that (§%,B") is unknotted ,

- by adapting the proofs of Lemma 19 and Theorem 9 .

Local

ly unknotted i1sotopiles

We say an isotopy F: Mx I —sQx I is locally unknotted if

(1) each level F. ¢ H—5Q is a locally unknotted embedding , and
(ii) for each subinterval J¢ I , the rvestriction F: Mx J—yQx J

ig a locally unknotted embedding .

Remark 1 . If F is a locally unknotted isotopy, %then so is

the restriction to the boundaries F : Mx I—3Q x I « The proof is non=trivial

(as in Remark 2 above) and ig ‘omitted . As we need to nse the fact in

Corollary 1 to Treorem 12 below , we should either accept it withoud proof ,
or else add it as an additional condition in the definition of locally

unknotted isotopy .
demark 2 . Any isotopy of codimension > 3‘ ig locally unknotted .

Remarlc 3- . The sbove definition is tailored to our needs .

There is an aliernative definition as follows ; we say an isotopy is locally
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trivial if , for each (x,t) & M x I , there exists an m~ball neighbourhood 4
of x ir M, and an interval neighbourhood J of ¢ in I ’ and a

commutative diagram

AxJ < s S hxd
Voo P ‘
_Mx I > QxI

where éL denotes (qym)ufold susp@nsidn , and G 1is a level presefving

' embedding onto a neighbourhood of F(x,t) . It is easy to verify that

F is a locally trivial isotopy

\

F is a locally unlmotted isobopy

U

F is an isotopy and a. locally unknotted embedding .

We shall prove in Corollary to Theorem 12 that the top arrow can be reversed .
Therefore a locally trivial iéotopy is the same as a locally unknotted isotopy
We cohjecture the bottom arrow can aléo be reversed - it is a problem depending

i

upon the Schinfliies problem, and the unique factorisation of sphere knots .

-

We now state the theorems y and then prove them in the order stated .

Troorem 11 + Let H be an ambient isotopy of @ with compact

support keeping ¥ fixed » Then H.  can be expressed as the product of a

1
finite pumber of moves keeping Y fixed . ‘ e
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Addendum . - Given anv trianguletion of a_neighbourhood of X , then

the moves can be chosen to be supporied by the vertex stars . Therefore the

moves can be made arbitrarily small .

Fa

Corollery . Let M be compact , let f : M- @ be a proper locally

unknotted embedding , and let & be a homeomorphism of M that is isotopic to

the identity keeping M fixed ., Then g can be covered by a homeomorphiem

h of Q keepirg é fixed ! in other words the disgram 1 commubtative ¢

E(”, Remark .
In fact the corollary is improved by Theorem 12 below , to the extent
§ of covering not only the homeomorphism but the whole isotopy » However we

need to use the corollary in the proof of Theorem 14 , in the course of

proving Theorem 12 .

Theorem 12 » (Covering isotopy theorem) .

Let F: MxI-—sy0xT bea locally unotted isotopy keeping M fixed ,

H
and let W be a meighbourhood of the track left by the isctony « Then F can

be covered by an ambient isotopy supported by N -keeping @ fixcc .

Adderndum .« Let X be a compact subset of @ and N a neighbourhood

of X in §Q . Then an embient isotoony of é supported by X can be ertencded

A

to an ambient isotopy of @  supported by N .
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Corellary 1 « Theorem 2 remains true if we omit "keeping M fixedh.

»

" from the hyvothesis and "keeping @ fixed" from the thesgis .

Corollary 2 . Let f,z : M —»0Q be two proper locally unknofted

embeddings . Then the followineg four conditions are equivalent :

(1) f.or are isotopic by a locally unknotted isotopy

(2) £,z are ambient isotopic

(3) f,e ere ambient isotopic by en ambient isotopy with compact

support

(4) f,2 are isotopic by moves .

Corollary.® . An isotopy is locally trivial if and only if it is

locally unknotted o

Proof of Theorem i1

We are given an embient isotopy E: Qx I > Q x I with compact

support, and have to show that B. is a composition of moves . We first prove.

i _
the theorem for the case when Q@ 1s a combinatorial menifold , namely a
simpliicial complex in En, say +» Then Q@ x I ig a cell complex in B x I .

We regard E' as horizontal end I as vertical.

Let XK, L be subdivisions of Q x I such that H: K~ 1L is
simplicial (in fact s simpliéial i‘somorphism) . Let A be a principal simplex
of L, and B a vertical line element in A . Define A (4) %o be the |
angle between H—l(B) and the vertical . Since H : K~3 1L is simplicial, this
does not depend upon the choice of B . Since H is level preserving ,. ‘ ‘
g (s (,’_,,';E’ . Define £ =max O (4) , the meximum teken over all principal

simplexes of L . Then § ¢ 10
2



-0
Now let W denote the set of all linear maps Q-—+I (i.e. maps
that mep each simplex of Q linearly into I) . Let ‘

*

Ve = {fé‘w’;maxf:minf(s)}.‘
If f&W, denote by £ the graph of £ , given by
f =1xf:Q—Qx1 .

Then f£¥* meps each simplex of @ linearly into B'x I . Tet @ (f) be the
meximum angle that eny simplex of f¥ QO makes with the horizontal . :
Given £ >0 , there exists 0 » 0, such that if £ & g, then @ () L E
for choose 5 sufficiently émall compared with the i-simplexes of | Q.
Choose & ¢ L= B ,-and choose § accordingly .

2

P
i

Now let f be a map.in WS" and q & point of Q . Consider the :
intersections of the arc H-l(q x I) with £% Q ; we claim there is exactly -

one intersection .

Qxi H—l(qxl) ] Qx I
\/—‘M/*(/\ ~i axl
£ P
Q k. Q “L 28

* #*, ' *
For gince f is a graph, f Q separates the complement (@Qx1I)-f Q -nto

points above and below the graph . If there were no intersection , then che

_arc would comnect the below-point H “(q,0) o the above-point H ~(q,1) ,

1T
contradicting their separation . A% each intersection, since (f’ (£} + B¢

v g en e g £ b g i e
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the arc , oriented by I , passes from below to above . Hence thers can be at .

noest one intersection .

Let p: Qx I—»Q denote the projection onto the first factor .
Then | L

k:pﬁf*:qf+Q

igsal -1 map by the sbove claim , and a0 is a (piecéwise Linear)

homeomorphism of Q .

By the compactness of Q and I , choose & sequence of maps .

‘fo,flf.ae,fn in Wy, such that fo(Q) =0 ,'fn(Q) =1, and for edeh ,

%9land fi sgree on &ll but one , v, 8ay of the vertices of Q . Define
N * N _ . . - ~ . _ -1
ki = D K fi o Then ko - HO = the identity, and kn = H Define hi = k&k

1° feml

Then h, is a homeomoxphism of Q supported by the ball ki'(EF(vi,Q)) s

keaplng ki (1k(vi,Q)) fixed , and so igs a move « Therefore Hl =-hnhn~l°'°h1 ’
a compesition of moves . ’
If H keeps Y fixed , %hen %|Ym%|¥,%rmm i, and so

each move hi keeps Y fixed . In particular the moves keep Q- X fixed ,

and are supported by X .

Suppose now that @  is a compact manifold ; let T—+Q be a

triangulation in the structure . We have proved the Yheorem for T and 50

it also follows for Q .

Suppose now that Q is non-compasct « Tet N Dbe é'regular
neighbourhood of X in Q. Then N is a compact subnanifold s and
NO(Q-K) CY. Therefore H| N x I is an ambient isotopy of N keeping

N NY fixed , and by the compact case H, | N is a composition of moves

1
supported by X keeping N N Y fixed . The moves can be extended by the

identity to moves of Q keeping Y fixed , and so H, is composition of

1
moves of Q « The proof of Theorem 11 is complets .

L]
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"@{' 2roof of the Addendum to Thoorem 11

We are given a triangulation T-3» N of a neighbourhood of X , and
have to show that the moves chosen to be supported by the vertex stars of T .
Without ioss of generality we can agsume N is a regular neighbourhood ,
because any neighbourhood containg a iegular neighbourhood . Therefore T

is & combinatorial menifold . Let (3 denote the open covering of Nx I :

,/5 =

where w runs over the vertices of T . Let')_&be the Lebesgue mumber of

fot () xIjwer |,

the covering H”lﬁ) of WxI. Choose a subdivision T' of T such that
the mesh of the star covering of T' is less than A /2 . In the above
proof of Theorem 11 use T' instesd of Q ; and choose é with the additional

| regtriction that. 9 4 Mo

N RN
\\\ oy | ' :?\\\\~

AN T L RN

(N ; o 1 \12%227 ///,,ﬂww—m
e RPN~ RO |

\ E\\\j\\\ : NN

st (Vi; T oh (wi,LT)

Continuing with the same notation as in the proof of Theorem 11 4 for each
i +the ball fi (st(vi, T1)) , is of diameber less than A , and so is

contained in HJl(st(wi, T) x I) for some vertex w, & T o Therefore

support hi c. ki (gg(vi, ") ¢ st(wi: )

ag degired .
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Proof of the Corollary to Theorem 11 .

Colla

g £ |
Given M y M Y @, where g is isotopic to the identity

keeping M fixed , we leave to cover g by a homeoniorphim h of Q.

Let N be a regular neighbourhood of fM In Q , and choose
triangulations of M , N - call them by the same names - such that f M. N

ig simplicial « By the Addendum we can write

8= 88y 8,

where gi is supported by the ball B? = st(vi,M) ; for some vertex Vs €M .

Let B:C.Ll = ‘gsc*(fvi; G} . Then the ball pair (BS , T BTZ) 'is unknotted., because
f is locally unknotted , and therefore the homeomorphism fe, £ of the

smaller ball can be suspended to a homeomorphism , hi say, of the larger ball .
Since g keeps M fixed , g keeps ]'312 fixed , and =0 hi keeps }‘33 fixed.

Therefore h:i. extends fo a meve of & keeping Q fixed . The composition

n= hl h2°"hn COVETS &

i

Lo
[¢4]

Before proving Theorem 12, it is necessary to prove a couple bf
theorems about collars of compact manifolds « The theorems can be generalised
to non~compact manifolds, but we shall only need the cdmpact case « Define a

collar of M +to be an embedding
et Mx I N
such that ¢(x,0) = x, all x €4,

Let f: M—>Q be a proper locally-unknotted embedding between two compact

mar_zifolds; and let ¢, d 'be' collars of M, Q. We say ¢ , d are

e e ¢ . Pt et - s g ey S
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compatible with £ if the diagram

. d
Qx I ey Q

]

MXIME._._..}.Ml r

&

ig commutative and imdNin f = im fo .

Lemma 24+ Glven a proper locally unknotted embedding betwéen

compact manifolds, there exist compatible collars .

Corollary . Anv compact manifold has a collar o (For in thé lemma

choose the smaller:manifold %o be a point)

"Proof of Lemma 24 . ‘ o

L Let M+ dencte the mapping cylinder of ﬁ ¢ M. Then
M = MxI WM, vith the identification (%, 1) = %, and the induced
structure . Then " has a natural collar . The given proper embedding
f: ¥M-—>Q induces a proper embedding £ :‘M+~wé-Q+ with which the naturai

collarsg are compatible .

Let ?' denote the retraction maps of the mapping cylinders ,

shrinking the collars ; then the diagram

Q" m«f—-me Q
, .
al £
oout P > M
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is commutative . We shall produce homeomorphisms ¢,d (not’mefaly meps)

‘such that
+ d ‘
Q > Q
£t £
o+ 0 '
M " 5 M

2

is commutative, and sucp that ¢,d agree with ﬂ on the boundaries .

The restrictions of ¢,d to the natural collars will prove the lemms .

' Choose triangulations of M,Q -~ call them by the same names -
such that f is ummpllclal, and let M' , Q' denote the barycentric derived
complexes « For each p-simplex AE M let A denocte its dual in ﬂ H

more precisely A is the (m~1~p)—ball in H!' given by

# ‘
e Y s o)

e | VEh

Using the linear structurs of the prisms A x I, & £ 1 s define the m-ball
e M x I %o be the join

+o

A e (x O)‘(A* x1) .

The set of all such balls cover M x I and determine a triangulation of
M x I; the latter agrees with M' on the overlap , and so together with

M! determines a triangulation of M ,

Order the simplexes Al’AZ""’Ar of K in an order of locally
increasing dimension (i.e. of Ai‘AQ Aj then 1< Jj) . Similarly order the
-simplexes B, , B2,.,,,BS of L such that fA, =B, lgigr ‘:

Define irductively ,
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—_ 1 - —
My =¥', M =M U A
Q. = Q! Q =@ . u B,
0 ! i i~1 i

We have ascending sequences of subcomplexes

\f[' = C. C (R} C M “"..... M = se e — IE =

IJ{O M]. T T4 1 5 &

) ) ‘ +
Q o= QO C Q.lClocun--oo.atacooocolrnoicb.ol Q’SMQ‘ ¥

such that f+Mi € q, , for each i . Ve shall show inductively there exist

homeomoTphisms o5, such that

4.
kR

Q > Q

A |
vl | £
, ¥

H

s is commutative, and such that Gi’di agree with ¢ on the boundaries .

The irrluction baging trivially with c, = do = idénti‘cies, and ends with

whet we want .

,'d to be

Por the inductive step, fix i , and assume éi el

1
defined « Thers are two cases: . '

Case (i), i & r ., For = O;é let aJ. denote the barycentre

of A %3, and let bj=f+ a, + Let P denote the (@ =1, m = 1) ball

peir

ot
P = (lk (bl ] Qi""}.) § lk(blg f Miﬂ}.)) ,‘

which is unknotted becauss by hypcfhesis f: M¥ewyQ ig Jocally unkmotted
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and so by induction f.-i' ¢ M, Qi 1 ig also + Then b.P is the cone

1

+ :L-l ¢

? the cone pair on b, P .

pair on P, and bo bl

1

4
i

v ’ . "
Sublemma . There exists a homeomorphism h i bublPUblP —»}‘p}LP that

Mmaps 'bu —3 bl_,_ ig the identity on P , and maps bUP - blf’ linearly

Proof « If P were a standard ball pair , and bP acone on P,
and ‘nl the barycentre of (the smaller of the pair) b(}P s then _th@ proof
would be triviel by linear projection . An unknotting homeomorphism from P -
onto a standard pair maps the given set-up onto the gtandard Se‘iﬁ-up , and '

the sublemma follows by composition .

Returning to the proof of the iemma, notice thai bobl'{s i;s none 7
other than the ball pair (B: , £F Az) , and so h extends by the identity to

a homeomorphism of manifeld pairs

. . . +.
n s (Qi’f Mi) ———»—-——-‘——-}(Qiml’f Ml"l) ®
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Define ¢, = ¢, (f+)m}“hf+ and d, =d, .h« Then o, 4, 4, are homeomorphisms
i i1 1 i1 i i

satisfying %the commutativity conditicn .

Finally we have to show that Ci’d% agree with § on the boundaries-

. . + 4 . . . . .
For points outside Ai s Bi this follows by induction . Tor points in

+ ot

Ai R Bi it follows from the diagram .
® h -_ 9 ‘ . ‘ o !
- bo g . ? bl ' o L :
I . o o
4 = / F =4 |
) . ‘ _ ‘ .
b (p®) -

which is commutative by the linearity of the sublemma .

Case (ii) 3> r . 'This case is simplex, because only the larger

manifeld @ 1is concerned . In case (i) ignore the smaller ball ; the proof
i ‘ 1 Qe cepi - i '
gives a homeomorphism h ¢ Qi-u~>Qiml keeping Mi Mi—l Tixed

Define ¢, = c, and d, =4, . h o The proof of Lemma 24 is complete .
i i-1 i =l -

Our next task is to improve Lemma 24 in Theorem 14 to the extent
of moving the smaller coliar from thesis to hypothesis . First it is f
necessary to show , in Theorem 13 , that any two collars of the same manlfold
are ambient isotopic , and for this we need three lemmag » Lemma 24 is about
shortening a collar ; Lemme 25 is about isotoping a homeomorphisn which is
not level preserving into one which is level preserving ovef'é gmall
gubinterval ; and Lemma 26 is about isotoping an isotopy‘o Iin each lemma an
isotopy is constructed, and we must be careful to avoid thé standard misfake

and make sure that it is a polymap (ineb piecewise linear) N

Notation . Suppose 0 < &'.S. 1. Let I denote the interval
-

LO,é.H . Given a collar ¢ of M , define the shortened collar
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L]

* I
CE, ¥ ox w«%vM.

by og (,8) =0 (x,6t) , all xeM, t & I .

&

Lomma 25 » The collars o, c£ are ambient isotopic keeping M

fixed .

Proof . First lengthen the collar ¢ as follows ., The image of
¢ 1ig a submanifold of M., and so the closure of the complement is also a
submanifold (vy Lemma 17), with boundary c(i‘:i x 1) « Therefore the latter
has & collar , which we can add to ¢ to give a collar , & say , of M

B w eT == °
_su;h that ¢ 61/2 hen 06 d&/e

By Lemma 16 there is an émbieni; isotopy G of 1, keeping i
fixed , and fimishing with the homeomorphisn that neps [0, 1/2 ], [1/2, 1]
linearly onto ]:O, 5/2] , [E/Z, 3.] . Let 1 x G be the ambient isotopy
of Mx I, and Jet H be the image of I x G under d » Since 1 x G keeps
I:I X I fixed , we can extend H by the identity to an smbient isctopy H of

M keeping ¥ fixed « Then Hec =c¢ £ proving the lemma .

1

% ot

Lemma 26 o Let X be a nolvhedron, and £ ¢+ X x IE -3 X X I

an embedding such that £1 X x 0 dis the identity . Then There exists

< o :
5, 0 £ 6 < &, and an embedding gz ¢ X x I——>X x I such that s

]

(1) g is level preserving in I, 3
)

[
(i) g is smbient isotopic te f keeping X x I fixed ;

(141) If Y<€ X, and fl¥x I ¢ s already level preserving, then

we can choose g to agree with f on Y x IE s end the embient isotopy to

keep (Y x Ig_) fixed .

Proof « Let K, L be triangulations of X x IQ y Xx I such
that £ 7 K— L is simplicial (in faci“; o simplicial embedding) . Choose S y



o

- 19 -

0 < b < € s 80 small that no vertices of X or L lie in the interval

0<% £ 5 . Choose first deriveds K', L' of K, L according fo the rule :
if the interior of a simpiex meets the level X x o s then gtar it at a point

on Xx ¢ 3 otherwise star i% barycenirically « Let g ¢ X' I! ‘be the firsf

derived map . We verify the three propefties H

Property (i) holds because by construction g is level preserving
. B
at the levels O and & , and any point in between these two levels lies on
a unigue interval that is mapped linearly onto another interval , both

intervals beginning (at the same point) in X x 0 and erding in X x 5 o

To prove property (ii) define amother first derived L' of L by
the rule : if a simplex lies in f K then star it so that T : XK' Lt is
simplicial: otherwise star it barycentrically . The isomorphism L" —1L!

is isotopic to the identity by Lemma 15 Corollasry 1, and so f , g are

ambient isotopic . The isotopy keeps fixed any subcomplex of L on which

L' and LY agree’, and in particular keeps X x I fixed .

To prove property (iii) we put extra conditions on the choices of

K and L' . Choose K =0 as to contain. ¥Yx I ag a gubcomplex  Having

g

#chosen K , K, and therefore L" , then choose ‘L' 80 as to agree with 1L"

on £(Yx'Ic), this being compatible with the condition of starring on the S -
Jrrel because f]Y x I, is already level preserving . Therefore H keeps

(Y x1 fixed .

) -

[N

Lemma 27 « Lot # 1 Xx I~ x 1 be an smbient isotopy of X .

Let h be the ambient isotooy of X +that consista of the identity for halfl the

time followed by g at twice the speed » Then g ., h are smbient dgotopic

keeping X x I fixed .
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"Proof . Triangulate the

w Ia-mg I be the simplicial map
determined by mapping the vertices

to 0O or 1 as shown . ,
Define G : (Xx ) xl->Xx1I)xl
by

G ((X)S)’:b)er ((gu(s,lt)x;s)sﬁ) .

~ Then (i) & is a level Preserving homeomorphism, and

(ii} ¢ is piecewise linear, because the graph [7 ¢ of G is the
intersection of two subpolyhedra of (X x 12)2

' -1 2
!“C—z((lxu)e) rgﬂ(}( xrl>,
2)2-9-(X x 1)2 ,'where' Mg is the
graph of g, and | 1 is the greph of the identity on 1,

where (1 x u)2 denotes the map (X x I

Therefore G is an isotopy of X x I in iteelf . DBy the
construction of uw, G moves g %o h keeping X x I fixed . Therefore
g y n are ambient isotopic keeping X x 1 fixed «

Theorem 13 . If M i3 compact, -then any two collars of M are -

T

[

ambient isotonic keeving M fixed .

Proof . Given ftwo collars , the idea ig to (1) anbient isotope one
of them until it is level preserving relative to the other on a swall intervail,
(11) isotope it further until it agrees with the other on a smaller interval,

and then (3ii) isotope both onto this common shortened collar .
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Let c,d + M x I— M be the two given collars . Since each maps
onto a neighbourhood of M in M, we can choose & > 0, such that '
c(ﬁ xIe ) alM % I) . Since c¢,d are embeddings, we can factor ¢ =4 L,

where f is an embedding such that the diagram-
Mx i,
o
v /
Mx I

is commutative, and f1Mx 0 is the identity .

e e A R T s

i e i e e, e

.
/ N &‘T“‘l“ \

By Lemma 26 there exists S ;s 0¢ 25 < & , and an ambient isotopy F of
131 x I moving f to g keeping Mx I fixed , and such that g is level
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preserving for 0 Lt £ 2 $ . The reason for making g level proserving .
is that we cen now apply Lemma 27 end obtain an ambient isotopy G of M x 125
2¢ 2§ Tixed , and s%'loh that 3{1 ';LS the
identity for 0 ¢t ¢ . Extend h %o an embedding h: Hx I -»Hx I by

moving g {ﬁ x I to h keeping M x I

bty making it agree with g outside M x I » and extend G by fthe identity

. 2g
to an ambient isotepy of M x I .

 Then G F is an asmbient isotopy moving f to h keeping M x I
fized + Let H be the image of G F under d . Since GTF keeps Mx 1
fixed , we can extend H by the identity to an ambient isotopy H of M

keeping M fixed . Let e = H‘c « Then e is a ceollar ambient isctopic to

‘¢, and agreeing with the beginning of d , because of x &M and %t &1 then

it

elx,d t)

ch(x,g £)

d GiFld‘lo(x,é £)
aqpﬂmﬁﬂ

e (x,t)

i 1

i

#
juh
g
—~
ke
T
et
N’

il
o
[
P
"
ok
e

Therefore e¢ =d7 , and so by Lemma 25 there is a sequence of ambien®

0
isotopic collars ¢, &, e

i

b‘ L]

il

d . The proof of Theorem 13 is complete .

Theorem 14 + Gilven é proper locally uninotted enmbsdding

f i@ MeyQ Tetwecen commact manifolds, and a collar ¢ of ﬁ‘3 then there

exigts a compatible collar d of & .

Proof . Lemma 24 furnishes compatible collars , ¢ , a* say ,

of M, Q. By Theorem 13 there is an ambient isotopy & of M 'keepiﬁg

M fixed , such that Gl

by a homeomorphism h of Q keeping @ fixed . Let d = hd” .

¢t =c . By Coroliary to Theorem 11 we can cover Gl
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Then the commutativity of the diagram

Q x I d s,
N \EQ\\\\\Q ////,/ﬁ/w
. Q
£x1 '[f - £
*
C/ M Gl
Mx I \ .‘Iﬁ

Q
I

.
-

and the fact that

imdoin §

imhd O imhf
h (im ¥ N in £)
n {im £ %)

H

It

it

im feo ,

ensure that the collars ¢ , d are compatible with f . The proof of
Theorem 14 is complete .
We now prove the critvical lemma for the covering isotopy tTheorem ,

Theorem 12 .

Lemma 28 . Let M?, Q be compact, and P a locally unknotted

~
[~

igotopy of M din @ keeping ﬁ fixed ., Then there exists £ > 0 , and a

of _Q_ that keeps O fiyod and

short ambient isotopy H: O x I =20 x 1

2 &

covers the besinnine of ¥ ., In other words the diasgran

’ Qx I



ig commutative .

Proof. For the convenience of the proof of this lemma we assume

that F_=F . Tor, if not , replace I by F* where T

N |
F, =(F, t ¢ /2 , o : : | !

(Fo oy t 12 .

¥ 3 . ’ .
Then, since FO = F_l + the proof below gives H covering the beginning of

* B ‘
F , which is the same as the beginning of F if £ ¢ 1/2 .

Thevofore assune F_=F . Thig mesns that the two proper

embeddings Py, Fo x1l of MxI in Q x I agree on the boundary (M x I)' y
because F keeps M fixed . Choose a collar ¢ of Mx I , and then by
Theorem 14 choose collars 4 , do- of Qx I suchthat ¢ , d are compatible
“with P, and ¢, do‘ are compatible with FO % L o We have a commutative

disgram of embeddings

(exD'x 1T
P
\
do/
K Fxl
Qx1I (MxI)axI
\ | .

M X I

Notice that both the collars d , d_ maps (Q x 0) x0 to QxO0 . Therefore
im & contains a neighbourhood of Qx 0 in Qx I, and so contains Q x I@ ;
for some R .~ 0 . Similarly do dml(Q'x Zﬁ)) ‘containg a neighbourhood of

"Qx 0, &nd so contains Q x I‘}< y for some o , 0 £ K £ [3,
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Let G =4 d;l HE inx — QX Eﬁ . Then G hag the properties

(1) ¢ | QxT - identity, because d , d = agree on (Qx 1) x93
(i1) G ] Q% O = identity .

(iii) G covers the begimning of F in the sense that the diagram

QXIK
o 8
¥
Mx IM

‘is commutative o For if x &M and ft € ID( s then by compatibility

; = im (F N odm g = 3 \
(PD X, t) & im (FO x l}f’ ind = in (Fo x 1) ¢
Therefore for some y € (I x 1) %I ).

(FO x, &) = (FO x1) oy = a Fx1)y .



Therefore "

1§

6 (1) (5, ) = () @ (Fx1)y

a(F x 1) y

]

= F oy

-1
P F(Foxl) (Foxl) oy -

il

FFFoxl)"lr(Fox,t)

= Mx,t) .

In other words G(Foxl) « I' , which proves (1ii) .

By Lerma 26 there is an & , 0 < & < X and an embedding
H:Q x_Ev%-ué Qx Is embient isotopic to G, such that H | Qx 0 - identity ,
and H 1is level preserving in I¢ . Further, since G is already level
pregerving on @ VT M} x T , we can by Lemma 26 (iii) choose H to agree
1 with G on this subpolyhedron . In other words , the restriction
.(y H: Qx IE - Q.x IE. is a short ambient isotopic covering the beginning of

Foand keeping Q fixed .

Proof of Theorem 12 , the coverinz isctopy theorem s

We are given a locally unknotted isotopy F:HxI—QxI
keeping ﬁ fixed , and a subdivision N of the track of F-, and we have to
cover F by an anbient isotépy H of Q supported by N keeping é. fixed .
We are given that’' M is compact , and we first consider fhe.case when Q is

algo compact and N = Q .

If 04t <1, the definition of locally unknotted isotopy ensures'
that the restrictions of ¥ +to [O y t] and [t , 11 are 1océlly |
unknotted embeddings , and therefore we can apply Lemma 7 to both sides of
the level % , and cover F in the neighbourhood of ¢ . More preéisely,

for each t & I, there exists a neighbourhood J(%) of tin 1, and &
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level preserving homeomorphism H(t) of Q,xé'(t) guch that H(t) keeps

Q Tfixed , H(t) = 1, and such that the diagram

£
Qx J<t) '
i H(t)
thl -‘7 -QXJ(t)
F
i x_J(t)

ig commutative . By compaciness of I we cancover I by a finite number

(t) |

of such intervals J o Therefore we can find values tl,ta,.e.,tn and

= g ] ki ; 4 ‘t')
0 8 < 5, ¢ i { 8.1 T 1, such thgt for each 1, [Si ' si+}.]CJ( i,
. t. :
Write EE - g0 .
We now define H by induction on 1 , as follows . Defire Ho = 1o,
Suppose Hi: : @->Q has been defined for 0t ¢ 8 such that HJG Fo = F‘c .
Then define '

H = H{E )Y™8 , for s, ¢t{s, .

i )wl
t t 8, 8. i TN iyl
Therefore $o4 i
T T T
H, FO = &t(hs.> i Fo
1 kR
i1 =1
- Ht(Hs_) FS
1 L
i
=H ¥
' ol
mFt .

At the end of the induction we have Ht defined and H“%: FO z F% s a8l t &1,
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Moreover H isg piecewise linear, because it is composed of a finite number of
» " .4
. , . . . . i
piecewise linear pieces, and H keeps Q fixed because I~ does . Therefore

the proof is complete for the case when Q is compact and N =0Q.

We now extend the proof to the general case , when Q is not
necessarily compact , and N € Q . Ve may assume that N is a regular
neighbourhood of the tracl , because any neighbourhood contains a regular
neighbourhood . Thereforer N is a compact submanifold of Q « By the |
compact case , cover F Dby an ambient isotopy of Q covering F supported

by N and keeping Q fixed . The proof of Theorem 12 is complete .

Proof of Addendum to Theorem 12 .

We have to extend a givén ambient isotopy H of é with compact
support X fo an ambient isotopy H%' of Q supporied by a given neighbourhood
F of X in Q. (5 is not a corollary because the embedding GxI-sqxl
irduced by H is not proper) » Without loss of generally we may assume the

neighbourhoed K of X {0 be regulsr , and therefore a compact manifold .

—

Regtrict H to X and extend by the identity to an ambient isotopy , G

say , of N Xkeeping N - X fixed . '1 0

! : Triangulete thg square 12 as o ' 1
shown, and let n 3 Ieg—}I be the simplicial
map determined by mapping the vertiées to 0

or 1 a8 shown. A

1

Define G : (WxT) xI—» (WxT)xI by

G*((x,s),t) = (_(Gu(syﬁ)x,s),t) .

S
=
8

. ‘
Ag in the proof of Lemma 27, it follows that G  is an amblent isotopy of

NxI keeping (W xI) U (N=X) xI fixed .
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. U % *
Choose a coliar ¢ ¢ Nx Iy ¥ and let H be the dmage of G

* o *
under ¢ » Since G keeps Nx 1 fixed , H can be extended by the

E.3 (]
identity to an asbient isotopy of N ; and since G keeps (W=~ X) x 0,

¥*
H  keeps the frontier of N fixed , and s0 can be further extended to an
: * ¥
ambient isotopy H of Q@ supported by N . By construction H.  extends

H, eag desired .

Proof of Corollary 1 to Theorem 12 «

Coroliary 1 is concerned with the case when the isotopy ? of N
in Q does not keep B fixed . Let T be the track of F in Q , which
is compact since M is compact « ILet ﬁ : ﬁ x I —~ﬁ>é x L denote the
ig . Let X ba & regular neighbourhood of the track T er of ¥ in Q ;
and let N be 8 Tegular nelghbourhood of X in . Q « By chooging X, N
suffxclently small , we can ensure that the glven nelghbourhood N of T

is also a meighbourhood of NO .

Use Theorem 12 to cover F by an ambient isotopy of Q supported

by £, and by the Addendum extend the latter to an ambient isotopy , G say ,

of Q@ mpported by N . Then P is an isotopy of M in Q keeping
M fixed , whose track is contained in T No e But N dis a N
neighbourhood of T LiNb ; and SO we can again use Theoreml12 to cover G~ F
by an ambient isctopy , H =say , of Q supported by N . Therefore GH

covers I and is supported by N .

Recall Lemma 16 » Anv homeomorphism of & ball keeving the boundary fized

is isotopic %o the identity keeping the boundary fixed .

Corellary . Any hOﬂ@OﬂOIDhl%m of a ball keeping a face fixed is

isotopic to the identity keeping %he face fixed . ¥For by Theorem 2 the ball
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ig homebmorphic to & cone on the complementary face . First isotope the
complementary face back into position, and extend the isotopy conewise to the

ball ; then isotepe the ball .

Proof_of Corollary 2 to Theorem 12 .

We have to show the equivalence of : ‘ o
(1) isotépic,
(2) ambiznt isoto?ic,

(3) embient isoiopic by an ambient isotopy with éompact support,
and

{(4) isotopic by moves .

(0 implies (3)~ﬁy Theorem 12 and Corolilary 1, because we Can chooOse
the neighbourhood N to be compact. (3) implies (4) by Theorem 11 .
(4) implies (2) by Lemma 16 and dorollary, because then each move is

ambient isotopic to the identity . Finally (2) implies (1) trivially .

Proof of Corollarvy % to Theorem 12 .

If ® is a locally trivial isotopy , then by definition sach point
in M x I has a neighbourhocd which is locally unkn&tted ¢ therefore F is
locally unkmotted . Conversely if F is a locally unknotted isotony , then
the level FO :is a locally unknotied embedding , and so the constant isotopy
FO x 1 is locally trivial . By Theorem 12 cover F by H; then F = H(FO % 1)
is locally $rivial , because the homeomorphism H preserves local triviality .
This completes the proofs of the theorems and corollaries stated at the

beginning of the chapter .
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Remarks on combinatorial isotopy. '

We have framed the definitions of isotopy and proved the theorems
in the polyhedral category , because that is the spirit of these.seminars .
In other words , there is no reference to any specific lriangulations of
either of the manifolds concerned . However there is a definition of discotopy -

in the combinatorial category when the réceiving manifold Q Thappens to be

Buclidean space , by virtue of the linear structure of Euclidean space . The
manifold M ié'given a fixed triangulation , X say , and the isotopy is
defined by moving the vertices of K . A% each moment the embedding of M

ig uniquely determingd by the posifions of the vertices ; and by the linsar
structure of Euclidean space . But a general polyhedral manifold Q has only 5

piecewise linesr structure , not a linear structure, and so the positions of

- the vertices df K do not determine a unique embedding of M . It is no

good picking a fixed triangulation L of @, and_cpnsidering‘;ggggg

embeddings XK — L , because this has the effect of‘trapping M locally ;

and preventing the movement of any simplex-of K across the boundary of any
gsimpiex of X . Therefore fto obtain any useful form of isotopy it is essential -
to retain the pelvhedral structure of Q , even though we may descend to the

combingforial stmucture of M . We now give a definition in these terms , which

looks at first sight much more special than the definitions of isotopy sbove ,
but in fact turns out to be equivalent ; we stale the theorem without proof ;
The moral of the story is : stick to the polyhedral category and don't tinker
about with ?he combinatorial category ; keep the latter out of definitions and
theorems , and use it only as it ought to be used , as an inductive tool for

proofs .
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Linear moves with respect to a triangulation

Lot AL be the standard g-simplex, end A" an m-dimensicnal
faco , q > m . Lot x be the barvcentre of A 9 ; and ¥y a point betwesn - x
and the baryoentre of A" . Let o1 8%~ A% ve the homeomorphism
throwing x to ¥y , mapping the boundary by the identity , and joining

linearly .

Let M be closed , K a triangulation of M, and let T, g: M=0Q

be proper embeddings . We say there is a move from £ %o o linear with

regpect to K if the following occurs :

There is a closed vertex star of K , 4 = st (v,K) say , and a

q-tall B ¢ Q, and a homeomorphism h: B ~> A% such.that

: 0
(1) f.2 agree on XK - A,

(1) a=7f15=¢"8,
(1ii) hf maps 1k(v,X) —> A ™, homeomorphically ,
v Eammane? 4 Jé ¥

A ey oy m s Dy Joining linearly .

(iv) gl4 = n n‘”h(f&A) .
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Roughly speaking, b is a local coordinate system , chosen so
that the move from f to g 1looks as simple as possible , just moving one
vertex of X linesrly in the most harmless fashion, like & move of classical

knot theory .

Addendun  {stated withous proof) . Let M be closed , and K an

arbitrary fixed triansulation of M . Let f.#: M—>Q be proper embeddinegs

that eare locally unknotted and ambient isotopic . I codimension > O, then

£ .z arve isotopic by moves linsar with respect to ¥ .

v

The addsendum becomes suwrprising if we imagine embeddings of a
2-gphere in a manifold , and choose K to be the boﬁndary of a 3~gimplex ,
with exectly 4 vertices . Then we can move from any embedding To any ovther
“isotopic embedding by assiduously shifting just those 4 vertices linearly
back and forth . All the work is secretly done by -judicious choice of the
balls , or local coordinate systems in the receiving fanifold , in which the

moves are made .

Remark » DNotice the resiriction codimension > O that occurs in
the addendun (bub not in Theorem 11 for example) . It is an open question
as to whether or not the restriction is necessary . In particular we have the

problem : iz a homeomorphisn of a ball that keeps the boundary fived isotopic

to the didentity by linear moves 7

L .
Lo HE TR
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Chapter 6: GENERAL POSITION

General position is a technique applied to (poly) maps
from polyhedra into manifolds. The idea is to use the
nomogeneity of the manifold to minimise the dimension of
intersections. Throughout this chapter X,Y will denote
polyhedra and M a2 compact manifold. The small letters x, y, m
will always dennte the dimensions of ¥, Y, M respectively, and
@ shall assume x,7y<nr . In particular we tackle the following

two situstions.

Situation (1) ILet f:X - M be an embedding and let Y be a

subpolyhedron of M. In Theorem 15 we show it is possible to
move f +to another embedding g such that gXNY is of minimal

dimension, namely < x+y~-m . We describe the move f - g by

s2ying ambient isotope .£f into genersal position with respect to Y.

There are refinements such as keeping 2 subpolyhedron XO of X

fixed, 2nd wmoving f|X-X into general position.

0

Situation (2) Let f:X - M be 2 map, not necessarily an

embedding. First we show in Lemma 32 that f is howmotopic to
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a non-degenerate map, g say, where non-degenerate mecans +that
in any triangulatinon with respect to vhich g is simplicial
each simplex is mapped non-degenerately (2lthough of course
many simplexes of X may be mapped onto one simplex of M).

Next we show in Theorem 17 that g 1is homotopic to a
map, h say, for which the self-intersections are of minimal
dimension, namely < 2x-m . Not only the double points but
also the sets of triple points, etc., we wish to make minimal.
We describe the composite homotopy f - g = h Dby saying

move £ into general position. There are refinemcnts such as

keeping X, fixed if f}XO happens already to be in general
position, =and arranging also for lei to be in general position
for a finite family {Xig of subpolyhedra (notice that the
general position of f does not imply the general position of
lei unless x=3x; ).

We ohserve that situation (2) is part of a general
programme of "improving" maps, and is an essential step in
passing from algebra to geometry. TFor example suppose that an
algebraic hypothesis tells us there exists a continuous-map
X - M (we use the hyphenated "continuous-map" to avoid
confusion with our normal usage map = polymap), and that we want
to deduce as a geometrical thesis the existence of a homotopic

embedding X € M . Then the essential steps are:



continuous map
gimpliecial approximation
A4
map
local - 1 ait
houotopy V general position
non-degenerate map Chapter 6
general position
%
\map in general position
global engulfing .
Domotopy | piping Chapters 7 and 8.

embedding

Remark on homotopy The general programme is to investigate

criteria for

(1) an arbitrary continuous-map to be homotopic to =
polyembedding, and

(2) for two polyembeddings to be polyisotepic. Therefore although
we are very careful to make our isotopies piecewise linear
(in situation (1)) we are not particularly interested in

making our homotopies piecewise linear (in situation (2)).

We regard isotopy 28 geometric, and homotopy as algebraic-

topological.

Invariant definition If M is Euclidean space, then general

position is easy because of linearity: it suffices to move
the vertices of some triangulation of X into "general

position", and then the simplexes automatically intersect
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minimally. However in a manifold we only have piecewise
linearity, and the problem is complicated by the fact that the
positions of the vertices do not uniquely determine the maps of
the simplexes; therefore the mnving of the vertices into
"general position" does not guarantee that the simplexes
intersect minimally. In fact defining general position in
terms of a particular triangulation of X leads to difficulties.
Notice that the definitions of general position we
have given above depend only on dimension, and so are invariant
in the sense that they do not depend upon any particular
triangulation of X or M. The advantages of an invariant
definition are considerable in proctice. TFor example, having
moved 3 map I into general position, we can then triangulate
f so that £ is both simplicial and in general position (a
convenient state of affairs that was not possible in the more
naive Euclidean space approach). The closures of the sets of
dnuble points, triple pecints, etec. will then turn out to be a

descending sequence of subcomplexes,

Transversality In differential theory the corresponding

transversality theorems of Whitney ond Thom serve a different
purpose, because they assume X,Y to be manifolds. Whereas
in our theory it is essential that X, Y be more general
polyhedras than manifolds. For gcneral polyhedra the concept
of "transversality" is not defined, and so our theorems 3in

2t minimising dimension rather than achieving transversality.
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When X,Y are manifolds then transversality is well defined in
combinatorial theory, but the general position techniques given
below are not sufficiently delicate to achieve transversality,
except in Theorem 16 for the special case of O-dimensional
intersections (x+y=mn).

When x+y>n the difficulty can be pinpointed as
follows. The basic idea of the techniques below 1s to reduce the
intersection dimensicn of two cones in euclidean space by
moving their vertices slizghtly apart. However this is nc good
for transversality, because if two spheres cut combinatorially
transversally in En, then the two cones on them in En+1, with
vertices in general position, do not in general cut transversally:
there is trouble at the boundary.

The use of cones is a prinmitive tool compared with the
function space techniques used in differential topology, but is
sufficient for our purposes because the problems are finite. I3t
might be wmore elegant, but probably no easier, to work in the

combinatorial function space.

Wild embeddings Vithout any condition of local niceness, such

as piecewise linearity or differentiability, then it is not
possible to appeal to general position to reduce the dimension
of intersections. TFor consider the following example. It is
possible to embed an arc and a disk in E4(and also in E",

n=4) intersecting at one point in the interior of each, and to

choose £ >0, such that is is impossible to E-shift the disk off
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the arc (2lthough it is possible to shift the arc off the disk).
The construction is as follows: Let A be a wild arc in E3 .
and let D be a disk cuttinz A once 2t an interior point of
each, such that D is essential in E3-A . If we shrink A %o

a point x, and then multiply by a line, the result is 4-space,
(E3/A))(R =t (by a theorem of Andrews and Curtis). If D'
denotes the imnge of D in E3/A , then D'XxO0 =zeets xxR

in one point xx0 , and D'%x0 is essential in EY - (x XR) .
Therefore if ¢ is less than the distance between 3ﬁ'x.0 and

xxR , it is izpossible tn E-shift the disk D'X 0 off the arc xxR,

Compz.ctness We restrict oursclves to the case when X is a

polyhedron and therefore compact. Consequently we can assune
that M is also compact, for, if not, replace M by a regular
neighteourhood N of fX in M. Then N is a compact manifold
of the same dimension, and moving f into general position in

N a fortiori moves f into general position in M.

General position of points in Euclidean space Before we can

move maps into general position we need = precise definition of
the general position of a point in ILuclidean space EY with
respect to other points, as follows. Let X be a countable
(finite or denumerable) subset of E? . Fach point is, trivially,
a8 linear subspace of En, and the set X generates a countable
sublattice, IL(X) say, of the lattice of all linear subspaces of
E® . et SU1(X) ©be the set union of all proper linear subspaces
in L(X) . Since L(X) is countable, the complement I -{UX)
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is everywhere dense. Define yéEn to be in general position

with respect to X if y £ fUX) .

Now let & be an n-simplex and X a finite set of points

in & . We say y € D is in general position with respect to X

if the same is true for some linear embedding Acx? (the
definition being independent of the embedding). Let A e a
subdivision of 4 , with vertices Xy9Xpgeos X, 82Y. We define

an ordered seqguence (y1 gese ,ys) ¢ A to be in general position with

’ : L] - - - L3
respect to A if, for each i, 1<ig¢s, y; is in general

position with respect to the set (x1 seeesXy s Tyneeos¥s g ) .

. I /
Lemma 29 Given 2 subdivision A of A and a sequence

(V1,.q.,vs) of vertices of A (not necessarily distinzt), then

it is possible to choose 2 sequence (y1,...,ys) < A in general

vosition with respect to A’ , such that Yi is arbitrarily

close to Vi 1€icgs

Proof  Inductively, the complement & -f(x,,... 'V 4 -1 ) is

dense at Vs enabling us to choose y. arbitrarily near vy o
Remark 1 Notice that 2ll the y, have to be interior to O .

Remark 2 This is the first time we have used the reals:
previously all our theory would work over the rationals, and even
now it would suffice to use smaller field, like the =21lgebraic

nunber field,

Remark 3  There is an intrinsic inelegance in our definition of

o sequence of points being in general position, because if the
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order is changed they may no longer be so. To construct a
counter-example in 52 , choose 4 points X such that LUTX)
contains all rationals on the real axis (regarding E@ as the
complex numbers), =nd then add T, AT in that order. To get
rid of this inelegance, and at the same time preserve the lattice
property would be more trouble than it is worth; because all

we need is some gadget to make Lemm=zs 30 and 34 work.

ISOTOPING TiBEDDINGS INTO GENERAL POSITION We consider situation

(1) of the introduction. TLet Xp€ X, YCM be polyhedra, and
let M be o manifold. Let x = dimX-X,, y=din¥, o= dim M.
Let g:¥X -~ M be 2 map. We say that gIX-XO is in general

position with respeet to Y if

dim (g(X-XO) NY) € x+y-m .

Theorem 15 Given XockX and YCM, 3nd an enbedding f:X - 1IU

.
such that f(X-X,) € M, then we can ambient isotope f into g

by an arbitrarily sm2ll 2mbicnt isotopy keeping i and the image

fixed, such that g|X-X

of X 0

0
respect to Y .

is in general position with

Remark 1 In the theorem we say nothing about fiXo teing in
general position. In frnet in many applications for engulfing
in the next two chapters, leO will definitely not be in

general position with respect to Y. The intuitive idea is to

think of }Q) and Y as large high-dimensional blocks, and X-—XO
a8 a little low-dimensional feeler attached to )Q) by its
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frontier Xb n ﬁtrﬁo . The theoream says we can ambient
isotope the focler keeping its frontier fixed so that the
interior of the feecler meets Y minimally (although its
frontier may not). In other applications we may 2lready have

f

XO in general position, 2as in the following three corollaries.

Corollary 1 f fIXO is already in general position, or if

————

fXy does not meet f(X-—XO), tken Theorem 15 is true for maps

as well as embeddings.,

Proof Apply the theorem to the embedding of the imnge

fXC M, =nd ambient isotope £fX 1into general position with
respect to Y keeping fXO fixed. (Notice the extra
hypothesis is necessary, otherwise hoving to keep fXO fixed
may prevent us from moving awkward pieces of X-XO thnt

overlap X, ).

[»]
Corpllary 2 (Interior Case) Given 2 map f:X - M and

YC M +then we can ambient isotope f into general position

with respect to Y keeping M fixed.

For put XO==¢ in Corollary 1.

Corollary 3 (Bounded Cose) Given a mip f:X -1 =2nd Y CMNM,
1

let X.=f 'M, Yy=YnM . Then we can ambient isotope f 1o

0
g such that g[XO is in general position in M with respect

to Y, , and ng-—XO in generzl position in M with respect

<+

Y.
Proof First apply Corollary 2 to the boundary, and extend the
ambient isotopy of ﬁ! to M by Theorem 12 Addendum; then apply

Corollry 1.
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For the proof of Theorem 15 we shall use a sequence‘of
special moves which we call t-shifts, and which we construct
below. The parameter 1t concerns dimension, with 0gt<x .
The construction involves choices of local coordinate systeams
(i.e. replacing the piecewise line~r structure by local linear

structures) and choices of points in general position.

The t-~shift of an embedding By Theorem 1 choose triangulations

of X, XO and M, Y with respect to which f:X = II is
simplicial. Let X, L denote the triangulations of X, M. Let
X', L' denote the barycentric derived cou.plexes modulo the
(t-1)-skeletons of K, L (obtained by starring all simplexes of
dimension 2t , in some order of decreasing dimension). Then
f:X' - L' remeins simplicial because f is non-degenerate (it
is an embedding).

Let A be a t-sinplex of X, =2nd B=fA +the image
t-simplex of L. ILet 2,1 be the barycentres of A,B (with
fa=b). Then

where P, Q are subcomplexes of X',L' ., If A ¢ XO’ then
dim P € x~-t-1, and Q is an (m-t-1)-sphere because fA cf.
Let

£, :aAP - bBQ

A

denote the restriction of f . Then fA is the join of three
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° 3

maps 2—b, A-B and P—-Q , and thereforo cmbeds the frontier
AP of aAP in the boundary BQ of the m-ball bBQ .

The idea is to construct another embedding

g ¢ 2AP - ©BQ

that =2grees with f, on the frontier AP, and is ambient
isotopic to :fa keeping the boundary BQ fixed. We shall call

the move fA - g, & local shift, and give the explicit construct-

ion below. TFrom the construction it will be apparent that 8y
can be chosen to be arbitrarily close to fA , and the ambient
isotopy be made arbitrarily small.

Now let 4 run over all t-simplexes of K: for each
AC X-—XO construct a local shift fA = 8 2nd for each
AC X, define g, =f, . The closed stars {§¥(a,K')} cover
Z =and overlap only in their frontiers, on which the {g,} agree
with £, and therefore with each other. Therefore the {gA}
combine to give a globnl embedding g:X - M arbitrarily close
to £ . Also since the stars {§¥(b,L')S overlap only in the?r
boundaries which the local ambient isotopies keep fixed, the
latter combine to give an arbitrarily small global ambient
isctopy from £ to g . INMoreover the ambient isotopy is
supported by the simplicial neighbourhood of f(X-XO) in L',
and so in particular keeps fXO\J ﬁ fixed,

We call the move f-—+g a t-shift with respect to ¥

keeping X, fixed. Notice that Y entered into the construction



-1}~

when choosing the triengulation L of M so as to have Y g

subcomplex.

Local shift of an embedding We are given a simplicial embedding

£:alP - bBY

which is the join of the three maps a2-+b, A—-B and P-Q ,
and we want to construct

gt alP - bBQ .

(We drop the subscript 4 fron f, and g, o)
Now Q is an {(m-t-1)-sphere, and by construction YNQ is

a subcomplex of Q, and by hypothesis both YNQ and fP are of
lower dimension than Q. Therefore, if A is an (m~t)-siaplex
with an (m-t-1) face r s We can choose a hoaeonorphism

n:g - A
throwing fP U (YNQ) into the face I' ., ILet v be the barycentre
of O, and extend h : Q » & to h:bQ - O by mapping b-v
and joining linearly. Choose subdivisions such that

hos (pQ)' - &
is simplicial. Choose v, near v in A in general position with
respect to & . Then in particular v1;4v because v 1is a vertex
of &'. Define the homeomorphism

k1 VAN VAN
to be the join of the identity on Z& to the map VoV, . Define

k béQ - bﬁQ
to be the join of the identity on B to the homeomorphisn

h~l

k.h s bQ = by .

1
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Then ! iz 2 h»o .eonorphisa of the b-11 béQ keeping the

boundary fixed, Define
g = kf : aAP - bBQ .

Then g is ambient isotopic to f keeping the boundary fixed by
Lemma 15. We can make g arbitrarily near f, and the isotopy
arbitrarily sm2ll, by choosing vy sufficiently near v Q This

completes the definition of the local shift.

~p~  f£(ap) g(ak)

Remark oince £,k are joins, it follows that g : aAP - bBQ

is the join of g:aP - bQ to f:A - B . However g:aP — 1Q
is not a join with respect to the simplicial structure of bQ,
as the diagram shows, but is a join with respect to the linear

structure induced on bQ from A by 1.

Lemma 30 Given the hypothesis of Theorem 15, let f—-g be a

t-shift with respect to Y keeping Xb fixed.

(i) If f is in general position with respect to Y, then

so is g.

(ii) On the other hand if f is not in genersl position, and if

di;:(f(X—XO) NY) =t >x+y=~-n then dia(g(X-X,)NY) = t-1
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Pronf (i) It suffices %o ex2mine the local shift from f +o
g:aiAP - 0vBQ , for a t-simplex A C.X-XO . Since g agrees

with f on the frontier iP , we have
dim(g(X—XO) NY NBQ) € dim(f(X-XO)nY) $ X+y-m .

Therefore it suffices to examine the intersection of g(X-—XO)r\Y
with the interior of the ball bBQ . |

Since Y is a2 subcomplex of L, Y meets the interior of
bﬁQ only if B C Y, 2and so we assune this to be the case,

Therefore

g(X-%,) nYA bBQ = Bn~! (v,hfP N vh(Q NT))

dim(g(X-—KO) NY N int(dBQ)) = 1t + max dim(v1C1 nvea)

where the maximum is taken over 211l pairs of simplexes 01,0

of &' such that C, <€ hfP, C < h(QnNY) 2nd such that

1

v101 N vC meets the interior of & .

Since BC1 , BC are in the images of X-XO, Y under

hf , h respectively, we have dim C, € x-t-1, dim C € y-t~1.

1
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E%Y . and 1et (] denote the linear

Regrd & as enmbedded in
subspace spanned by C. There are two possibilities, according

28 to whether or not [C] and [01] span [r] .
case (2) [c] ana D%] span (r] . Therefore {[vC] and
[V1C1] span [&] , 2nd so

din(v,C, A v0) £ dim v,C, + dim vO - din O

(x-%) + (y=1t) - (m~-%) .

Therefore

t o+ dim(v1C1 NnvC) € x+y-o .

Case (b) [C] and [01] do not span LI 1. Therefors [vc]

and [01] span 2 proper subspace of [Z}] , which does not

contain Vy o by our choice of v, in, and the definition of,
general position in A with respect to 4! .

(Note that this application was the reason for our definition

of the gencral position of a point off the lattice of subspaces
generated by the vertices of A' ; =~ more complicnted application

of the same kind occurs in Lenma 34 below.) Therefore

[ R
V1C1 nvC = C1 n ¢

which does not mest the interior of & , contradicting our
assumption that it did. Therefore case (b) does not apply, and

the proof of prrt (i) of Lemma 30 is complete.
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(ii) We are given dim(f(Y-—XU) NY) =1t >x+y-m,
and have to show that the t-shift drops this dimension by one.
Again it suffices to examine the local shift., Since

f(X-XO) NY 1is contained in the t-skeleton of L, 2nd since

bBQ N (t-skeleton of L) = B ,
we have

g(X-XO)nYAéQ = £(X-Z)NYTNBQCE

which is of dimension +-1 . Moreover f(X-—Xb) nNYo2B,

for some B, and so dim(g(X-—XO) NY)2t-1 . Conversely, to
show dim(g(X-XO) NY)£t-1, it suffices to show that
g(X—«XO) NY does not meet the interior of béQ, for =2ny B.
If BeY +this is trivinlly true, nnd so nssume B = fACY .
Again there are two cases, and, as above, only case (a) applies.

In case (),

dim(v1C1 Nve)< (x+y-m) -1t <0,

and so V1C1 N vC is empty. Therefore g(X-—XO) NY does
not meet the interior of bBBQ , and the proof of Lemma 30 is

complete.

Proof of Theorem 15 Given f:X -1 , let s = dim(f(X-Xo)r\Y)

and assume S » X+y=-m , otherwise the theorem is trivinl.
Perform t-shifts for +t = s,8-1,...,x+y-n+1 , 1in that order:
by Lemms 30 (ii) each t-shift knocks the dimension of the

intersection down by 1, until we are left with 2n embedding

in general position with respect to Y. Each t-shift, and
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therefore 2lso their composition, can be realised by an
arbitrarily small awmbient isotopy keeping fXO U il fixed.:

The prorf of Theorem 15 is complete.

O~-DILENSIONAL TRANSVERSALITY Let X, Y, M be manifolds such

thot x+y =m, =2nd let £:X =M and YcCl be proper
embeddings such that f is in general position with respect to
Y . Therefore £XnY is -~ finite set of points interior to

M . Given ve&€ fI NY we say f is transversal to Y at v

if, for soame (and hence for any) triangulation of

T
A

£
TSy
)

Y
contzining v as vertex, there is 2 homeomorphisno

kS N m X
st(v,11) - % = m¥xm¥

throwing st(v,fX), st(v,Y) onto E*, B respectively. We

say f is transversal to Y if it is tronsversal at each point

of £fXNnY

Ex2nmple Let M be 2 4~ball with boundary S3 , and let X, Y

be two locally unknotted disks in M formed by joining the centre
to two unknotted curves in S3 that link wmore than once. Then
f:XCM is in general position with respect to Y, but not

transversal.
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Theorem 16 Let X, Y, M be manifolds such that x+y =num ,

and let f:X -M and Y <M be proper embeddings. Then we

can ambient isotope f into g by an arbitrarily small ambient

isotopy such that g is transversal to Y .

Proof First ambient isotope f into general position, and then
perform a O--shift with respect to Y. Since fX NY does not

meet the bound:zries of each local shift it suffices to examine

the interior of one local skift g, : AP - BQ ( A,B = points

because t=0 ) . As in the proof of Lemma 30, only case (a)
applies, and the intersection of the two cones in O consists

of a finite number of points where an x-simplex crosses a

y-simplex at point interior to both; such a crossing is transversal.

Therefore 8, is transversal to BQ NY, and so g is transversal

to Y.

SINGULAR SETS Ve now pass nnto situation (2) of the

introduction, to the homotoping of nmaps into general position.
Let f£:X =M be a map between polyhedra (for this definition
it is not necessary that M be a manifold).

The singular set S(f) of f is defined by:

S(f) = closure{:xé)(; £ lex £ X} .
Then S(f) =@ if and only if f is an embedding.

The branch set Br(f) of f is a subset of S(f) defined by:

Br(f) = {x€X; no neighbourhood of x is embedded by f}',
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We deduce that Br(f) is closed, and that Br(f)=¢% if and

only if g is an immersion.

The rth

singular set Sr(f) of f is defined by:
1
5. ()

Sr(f) = closure Sr'(f) .

i

i x€X: £ 'fx contains at least r points} .

Thus Sz(f) is the closure of the double pecints, SB(f) the

triple points, etc.. We deduce

T = S1(f)382(f)3 cesas D S (L) .

S(f) = Sz(f) = 82'(f) ¥ Br(f)

To prove the last statement it suffices to show 32—82' < Br
therefore suppose x € 82—82’ . Then there is a sequence

X, 7%, that is identified with a disjoint sequence {yn},
which tends to a limit N because X 1is compact. Therefore
Px=Ffy, and so x=y because X,é 52' . Consequently any
neighvourhood of x contains xn;éyn , for some n, and so it is
not embedded. Hence x € Br .

Notice that =although 82 - 82' <€ Br, 1in general

Br ¢ Sy, = 85 and
- [
Sr Sy ¢ Br , for r>2
The singular sets have been defined invariantly, without

reference to any triangulation. Now choose triangulations

¥, L of X, M such that f:X - 1L is simplicial.
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Lemma 37 (1) There is an integer s, and a decreasing

sequence of subcomplexes

K = K.]DKZD.“DKS = Ks+1 = ... = K

such that |K,| = S.(£f) .

(ii) s5_(f) = @ if and only if f maps every

simplex of K non-degenerately.

(iii) There is a subcomplex L, K,2 L 2K, , such

that |L] = Br(f) and dim (L-K.) < din K,

Proof (i) Let A be a p-simplex of X . We shall show that

1.2 .
fi is the

if £ nmeets S(f) then K< S:(f) . Tor £7
disjoint union of open simplexes of K, and must contain either
a simplex of dimension > p, or at least r simplexes of
dimension p. In either case, each point of ﬁ. is identified
under f with at least r-1 obther points, and so & cs1(f) .
Therefore Sg(f) is the union of open simplexes, and so the
closure Sr<f) is a subcomplex, K_ say.

Let n be the number of simplexes of XK. If A €& Kr--K°° 9
then K is identified with at least r~1 other simplexes, and

so rsn . Therefore Kr:=K¥ for r>n . Define s to be the

least r such that Kr==K'

(i) If a simplex is mapped degenerately then a continuum
is shrunk to a point and S_(f) # 4 . Conversely if every
simplex is mapped non-degenerately then at most n points can

be identified, and so S_(f) =4 .
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(iii) If 4 € X_ , then A faces some simplex mapped
degenerately and so 4 < Br(f) . If A ﬁ K., then st(4,K) is
mapped non-degenerately, and either 2 < X-Br(f) or 4 C Br(f)
according as to whether or not 1k(A,K) is embedded. Therefore
Br(f) is the union of closed simplexes, and is therefore a
subcompléx, L say.

If A€ L-K,, there is a vertex x € S,(f|1k(4,K)) , and

so XA € K2 . Therefore dim A < dim X, , and so

dim (L-X%.) < dia K, .

NON~-DEGENERACY Define f£:X ~ M +to be non-degenerate if

S.(f) =@ . The justification for the definition is Lemma 31 (ii) .
We recall that this is equivalent to the more general definition

given in Chapter 2.

Lemms 32 Given a map T : XX - MR from a nolvhedron X to a

manifold M, with x<wn, then we can homotope f to a non-

degenerate map & by an arbitrarily small homotopy. If, further,

}Q)( X and fIXO ig already non-degenerate, we can keep Zb

fixed during the honmotony.

Proof  Choose triangulations of X,M with respect to which f
is simplicial; let K be g first derived coumplex of the
triangulation of X, and let B1"°"Bt denote the open vertex
stars of the triangulation of M (each BS is either an open
m-cell or a half-open m-cell, according to whether vertex lies

in the interior or boundary of M ). The set {BS} is an open
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covering of M, and f has the property:
(P) for each A€XK, f(st(4,K)) ¢ sone B, . Any map X -1
sufficiently close to f also satisfies (P).

Now order the gimplexes A1”°”’Ar of X in sone

order of locally increasing dimension (i.e. if ‘Ai< Aj then
i

igj), and let Ki = k)Aj . %We comnstruct, by induction on i,
1

starting with fo=:f s, & sequence of maps fi :X - M such that
(i) f,~f, 4 by an 2rbitrarily small homotopy keeping Lo
fixed,
(ii) £, satisfies (®),
(iii) £,|K; 1is non-degenerate
The end of the induction g::fr proves the lenma.

For the case when X, € X and f|X, is already non-
degenerate, we choose the original triangulation so as to
contain )Q) as a subcomplex, choose the ordering so that
Xy = ]Kj} , some j, and then start the induction at j , with
fj==f .

We must now prove the inductive step. Assume fi—1

defined, and let L=4, , L=s%t(4A,K) , and let B denote

the B, such that £,

S L € B . Choose g homeomorphisn

1
h:B -4 onto a simplex and define g::hfi_1 s 1in other words
the diagram

i-1
L > B

is commutative.
¥ We do not clain that fi :Ki =+ 1 1s siuplicial, nor do we clain
thet £, eubeds end simplex of K, in M, but only that Sw(filKi)=¢ .
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Choose subdivisions L', A' of L,8 such that
g:L' - ' is simplicial, and such that L' has at least one
[+}
vertex in A . Let Xqg0ce,yX denote the vertices of L

p
L, and let Xp+1,.a°,xq denote the remaining

=@

contained in

IS

vertices of L' . Choose a sequence of points (y1,.,.,yp)<: O
in general position with respect to £' , such that Ty is
arbitrarily close to fxn, lenegp . Define g':L' =L

to be the linear map determined by the vertex map

g'x, = Yy o 1€ng¢yp
gx, » P&negaqg .

A, which is non-degenerate by induction, and

Then g'!ﬁ =g
S0 glA is non-degenerate by our choice of y's Dbecause

dim A < din & . Now define fi: X M so that fi agrees with
fj.q outside L, and on L the diagran

1

L : 3B

ol
(=]

VA

is conmutative. Having defined fi we must verify the three
inductive properties.

Firstly g'e g Dby straight line paths in A, keeping

1

the frontier Pr(L,K) fixed. Therefore h 'g' ~ h—1g can be

extended to a homotopy fi'v fi__1 supported by L., By the

choice of ordecring of 4i's, K € K-1L , and so the hounotopy

i-1

keeps K,_, fixed. Secondly f, satisfies (P) provided the
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homotopy is sufficiently small. Thirdly fi]Ki is non-degenerate

because Ki = K VA, and fi is non-degencrate on Ki—1 by

i-1
induction and on A by construction. The proof of Lemma 32 is

complete.

GENER:L POSITION OF MAPS Consider maps of X* into M, where

x<m o Define the codimension

d = d2 = X -~ ¢ = 2¥ -n1n .,

More generally define the r-fold point dimension

dr = x - (r=-1)c

Define g:X ~ M *to be in general position if

‘sk £ o
dirm %r(g) €£4d,, each r

Our principal aim is now to show that any map is homotopic to a
map in general position.

Remark 1 The dimensions are the best possible, as can be seen
from linear intersections in euclidean space.

Remark 2 If £ is in general position then f 1is non-degenerate
and

dim Br(f) < a5

The first follows from Lemama 31 (ii) , because we are assuming
X <mnrm, and 8o dr < 0 for r large; the second then follows

from Lemma 31 (iii) .
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Remork 3 Ve shall confine oursclves to the.intorior of manifplds
for simplicity. The engulfing theorems are especially tricky at
the boundary. In applications the boundary problem can generally
be treated independently and more ¢l zantly by the Addendum to
Theoren 12.

Remork 4 In applications we frequently have the relative
situation of wanting to keep a map fixed on a subpolyhedron XO
of X which already happens to be in general position (and is
often eabedded)., Therefore before stating the main theorem we
introduce a relative deiinition.

Suppose Xk>CZX . Define g:¥X = M 1o be in general

position for the pair (X,XO) if
(i) g is in general position.

(i1) ngo is in general position.

(1ii) if X< %, then dim(Sr(g)f\Xo) < dr’ each r.
Romark 1 If xy=x, then (i) iwmplies (ii), and (iii) is vacuous,
and so then general position of g inplies general position for
(XJO) . But if xy<x, then (i) does not inply (ii) or (iii).
Remark 2  Condition (iii) is, surprisingly, the test possible.

At first sight it would seemn that we ought to be able to make
din (5,.(g)nX,) ¢ 4, - (x - x4)

instead of aerely $ dr-1 . But if ¥ is not a manifold, then

the non-homogeneity of X may cause certain points of X always

to lie in S_(g) independent of g. It is not the r-fold points
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Sf(g) themselves,Abut the linit points in the branch set that
cause the trouble.

Exanmple Let X be the join of a p-simplex }Q) to an n~dimensional
polyhedron not ecmbeddable in 2n-space, and let m = 2n+1 . Then
X cannot be locally embedded at any point of XO, and so

Xy € Br(f) for all g. If g is in general position for (X,XO)
then

H

dim Sz(g) = d2 p+ 1

it

p
but dz-—(x-xo) < 0 for n large.

Remark 3 In applications we shall be primarily concerned with
the whole singulor set S(f) . But in critical cases we shall
want to "pipe away" the wmiddles of the top dimensional siumplexes
of S(f), and in order to do this it will be important that the
interiors of such simplexes consist of pure double points, and
should avoid the triple point set, the branch set, and a certain
subpolyhedron XO° We sunmarise this information in a useful

forms:

c;l - . 3
Theorem 17 Let £:X - M be in general position for the pair

(X,XO), where Xy x<m ., Denote the double point dinension
L

by @& =2x-~mn . Let XK be a triangulzation of X, thot contains

XO ag g subeomplex, and such that f:K - M is siwmplicial

for some 3rianzulation of I,

(i) Then the singul-rities S(f) of f form a subcomplex

of K of dimension < d .
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(ii1) If A is = d-sinmplex of S(f), then there is exactly

one_other d-simplex A, of S(f) such that fi==fi, . If T,U,

denote the open stars of A, A, in K, then U, U, are contained

in X-X,, 2nd the restrictions f]U, f}U* are embeddings:
o
the images fU, fU, intersect in f?&:fﬁl* , and contain no

other points »f £X.

Proof (i) By Lemma 31 and the definition of general position
of .

(ii) Dim S3(f) < 4 by definition of general position,
and so ingB)(f) . Also dim Br(f) < 4 by Lemma 31 and so

o <
A ¢ Br(f) . Therefore A < 82' (f) Dbecause
ACs(f) = S2'(f) W Br(f) .

In other words E consists of exactly double points, and so
fA=FfA, for exactly one other simplex 4, .

Now & ¢ Xy, because dim(S(£)AXy)<d, by definition
of general position for the pair (X,XO) . Therefore
U = st(A,X) € X-Xy , because X, is a subcomplex. Since f is
non-degenerate, if f]U was not an embedding, then c“); < Br(f)',
a contradiction. Similarly for U, . Finally if u€U, fu=fu,
and ufu, , then ué€ 3(£)n U = %, and so u,€ £, . Therefore
fU, fU, meet only in ff?:fz* , and contain no other points of
£fX . The proof cof Theorem 17 is conmplete.

The rest of the chapter is devoted to showing that any

map can be moved into general position.
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o]
Theorem 18 Let f:X - M be 3 map from a polyhedron X to_the

interior of a manifold M, where x<m . Suppose f]XO is in

general position where XO is a subpolyhedron of ¥. Then f~g

by an arbitrarily small homotopy keeping XO fixed, such that g

is in general position for the pair (X,XO) .

(Notice that the theoren is trivial if x=mn ).

Corollary 1 sny map X-M is homotopic to 2 map in general

position.
Proof  First homotope X into the interior, and then put X,= ]

in the theorem.,

Corollary 2 With the hvpothesis of Theorem 18, let {Xil be

a finite family of polyhedra such that XOC XiC X , each 1i.

Then we can choose g s0 a3 to be in general position for every

pair (Xi,Xj) for which XiDXj (including j=0 ).

Proof Choose a triangulation XK of X containing all the Xi
as subcomplexes, by Theorem 1, and let X” be the n-skeleton of
K . By induction on n, use Theorem 18 to homotope fIKn into

il fixed,

general position for the pair (Kn,Kn"1) keeping K
and extend the homotopy frow K t0 K by the homotopy extension
theorem. The induction begins with n=xy , by moving fIKn
into general position keeping XO fixed. At the end of the
induction we have a map g, that is in genseral position for each

adjacent pair of skeletons containing XO . If n=x; then

X< k7, and so gIXi is in general position. If X, 3 Xj then
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either xizzxj and the gener~l position of g‘Xi implies
general position for the pair (Xi,Kj) ; or else x> xy and
(:{ing) < (XK"Y, so condition (iii) is satisfied for

(Xi’Xj) because it is satisfied for (Kn,Kn—1).

Remark  In Corollary 2, if we put Xy=¢ and the family equal
to the famnily of skeletons of a triangulation X of X, we
recover, for zencral pesition in manifolds, 2 generalisation

of the primitive gencral position of K in euclidean space.

Corollary 3 Given f:¢:¥X —-1IM and Ye¢I, we can homotope f

to general position g such that for each r,

din (gSr(g) nYy) < d+y-m .

Proof Having mnved f into general position g by Corollary 1,
we then use Theorem 15¢ by induction on r , starting with r
large and Sr(g =7 , anbient isotope gSr(g) C M into general

position with respecet to Y keeping 25 +1(g) fixed.

r

The t-shift of = map  The proof of Theoreu 18 is like that of

Theoren 15, and uscs a generalisation of the t-shift as follows.

Given XO<:}C and f :X - i such that £ XO is in
general positicn, then in particular f}XO is non-degenerate,
and so by Lenma 32 we can first homotope £ into a non-degenerate
nap keeping XO fixed., Therefore assune f non-degenerate.
Choonse triangulations K,IQ) of X,XC> and L of M such that

f:¥ - L is simplici2l. TLet X', L' denote the barycentric

derived coamplexes modulo the (t-1)-skeletons of X,L .
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Then £,K' =» L' remnins sioplicial because f is rnon-degenerate..
Lot B be a t-sicplex of fK, and let A1’°°°’An be the

simplexes of X that are wmapped onto B, which arc all t-siuplexes

since f is nopn-degenerate. Order the A's so that those in X,

cone 1lnst: in other words there is an integer g such that

Aiﬁ X, if and only if g«ign . TLet ai,b be the barycentres

of 4;,B (with fa, =0 ). Then for each i

S+ o ™ - ' gy { = ':.
s5t(ey,2') = a;4,P, 5T(b,L') = bBEQ ,

and if fi denotes the restriction

£f. : a,A. P, = 1B

5
<

!
=
+
t_]

<

of £, then fi is the join of the three maps ai"+b ;
Ai—*B znd P.-=Q . The local shift, given below, deteraines
2 New map

. 2 aA P, = bBRO
=5t i™ivd e

i}

that equals .fi if 1>qg, and is honotopic to :fi keeping the

frontier AiPi fixed if 1£g . Therefore, letting i =and B
vary, the local maps g; cnmbine into 2 global wap g X = K

that is howmotopic to £ Yy =n arbitrarily small homotopy keeping

XO fixed. We c¢all the rove f-g a t-shift keeping EQ) fixed.

Local shift of a nmap The local shift is ouch the s~me as

before, except that instead of moving one cone away from the
centre we have to nove several cones away fron each other.

Although ench cone is not in general eaubeddcd, the movement of
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each cone can be realised by an ambient isotopy as in the local
shift of an embedding, but of course the wmovement of the union
of the cones is only a honotopy.

As before, choose 2 homeozorphisa hi: Q - é» onto the
boundary of an (m~t)=-sinplex, throvwing %{fPi into the
(m—-t=1)=face [ (which is possible since by hypothesis x<mnm ).
Extend h to h:bQ = A by mapping b to the barycentre v of
£, and joining linearly. Subdivide so that h: {(bQ)' = A' is
simplicial. Define V=V, g¢i<n, and choose a sequence
(v1?v2,.,.,vq)-£ 5 near v in general position with respect to
O, Let ki : &S- 0> be the homeomorphisnm joining the identity
on éx to the map AR I In particular ki==1, i>q . Tor
each 1, define

gy ¢ aiiipi - béQ

3

to be the join of the mnps f: Ai -+ B and h_1kihf: aiPi - bQ .

If i>qg then gizzfi, and if i< g then g; is awmbient
isotopic (z2nd therefore homotopic) to f; by an arbitrarily small
acbient isotopy keeping fixed the boundary éQ (and therefore

the frontier AiPi)° This conpletes the definition of the local

shift.

Lemaa 33  In the local shift Sr(gi) = Sr(fi) .

Proof The singul-r sets are unaltered by ambient isotopy.

Corollary A t=-shift preserves non-degeneracy.
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Lemna 34  With the hypothesis of Theorem 18 let f-g be a

t-shift keepinz X for 211l x«= ,

T ———rm el

£3ive T <
o fized. If dic 8 (f)< 4

then the sane is true for =z.

Corollary A t-shift preserves general nosition (for choose

s  sufficiently large).

Proof of Temma 34 Suppose not: suppose d:>dr, where

d = din Sr(g) and r<s . Since g agrees with f on the
frontiers of the local shifts, something must go wrong in the

interiocr of some local shift. Therefore

oy
}—J .
i3

n . .
(el i (a5 3By = 45F5)) = a,
and

n
s, by s ™ - A
dinm Sr(gl ‘\,I}(ai}')i - J_i)) = d-t .

- . . - N ‘l
Therefore if we choose subdivisions (Kjaifi)', A\ of \JaiPi,
~ 1 . . N . . . . N
L with rcepect to which hg is simplicial, then there is a
. " . . o / o -
(d=t)~sinplex D € L, in the interior of &, that is the image

under hg of at least r sinplexes. Select a set of exactly »

sinplexes mapping onto D, and, of these, suppose Ty lie in

n
aiP., 121i<q, and suppose rq lie in \J a;Pi. Therefore
1 q+1 1
we have
9
r:§;ri , O:’grigr, each 1.
V)

Fa ]
We shall now choose certain sinplexes Cic { and DiCLZX, for
i=0,1;...,0, with the properties

D. > D
i

(%) dim D, £ din & ~ r;c .

i
(Recall c¢ = ecodinmensinn = n~x .)
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Firstly if r, =0, choose C; = ™ ana D, = D, so that (%) A4s
trivially satisfied.
Secondly suppose ri;éO and i1 . By Leamz 33
> 5 : is « e . i c :
hg ri(glaiPi) is a subecone of hg(alPi) with vertex v, and

base hf Sr-(f!Pi) - Therefore there is a simplex C,¢€ A such
i

that
¢, < hfSri(f]Pi) ,
Di = Vici D D °
Therefore
din C; = dia Sri(fIPi)
- dinm DY -4 -
= din Sri(flai*_i;i) t -1
< d. -t~ 1, by hypothesis since
* r.s r<s ,
i
= m—ric~’c-‘l , where c¢ = codiaension ,
Therefore
dim 'D1 = *-ric-—t

verifying property (*).

Finally suppose rO%O . DBy construction g is the sane
n
25 £ on UaiP

and so there is a siaplex Cyé A such that
q+1

i

DO = VCODD o



-33-

We verify (*) as in the previous case:
CIVES
din CA € dinm S f F.
0 o q+1 +
n .
= din Sro(f!q+1 al ‘lPi) -t -1
< dfo -t -1, since rgEr<s , and so
: < As. _
dim Dy < din A ryC -

ts in the proof of Lemma 30, embed A in cuclidean

space, and denote by [Ci] the linear subspace spanned by Ci ’

gte..
contradiction.

Case (&) For each j, 1%

Case (D) Not (a) .

As before there are two possibilities, each leading to a

31
jgaq, Q[Di] and [Dj] span [A] .

In case (a) we deduce
din ”J;\[D‘! sin & = dim JAT[D,] + dim D
[0 N} EO ;4 + al1ld = 10 ro\ i‘ -+ 1im i
Summing for j=1,2,...,9, =2nd cancelling, we have
q 3 . .
dim (;)\ [Di] = % dinm Di - q dimn &
= din A + % (dim D, - din )
0
q
< (n=-t%t) - S r.c, by (%)
g1
= ;-1 - rc
= d_ -1
r
< d=-t ,
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- q
contradicting the fact that ¥t ¢ %\Di < N [Di] .
0 0

_ In case (b), there exists some j, 1£j<q , such that
?51[Di] and [Dj] do not span DQ] . Therefore DJ#ZLS, and
S0 rj¢fo and Djzzijj . Also JQC[Di] and [Cj] span a
proper subspace, { say, of Dﬁ} . Now the vertices of the C's
and D's arc 211 vertices of 4 , and our choice of v in
general position in & with respect to 4\ ensures that
.ij-ﬂ'g because the definition of the general position of a

point involved sufficient lattice operations to cover this

eventuality. Therefore TT N ijj = Cj , =and so
q
DC AD<CTWnaAan, = c.cl
g 1 ] ]

contradicting our choice of D in the interior of JANS This

-completes the proof of Lenma 34.

Leana 35 With the hypothesis of Leomma 34 suppose that

¢in 8_(f) =t >d, . Then dim S_(g) =t-1 .

Corollary Yith the hypothesis of Theoren 18, we can move T

into genersl position by t-shifts keeping Eb fixed,

Proof By increasing induction on s, starting trivially with

s=1, and, for each s, by decreasing induction on t, starting

with +t=din Ss(f) , we can reduce each singular set Ss(f) to

its correct dimension by Lemuma 35, at the sane time keeping ®rrcct the

singular sets Sr(f)’ r<s, by Lemma 34.
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Proof of Lemma 35 Let d=dim S_(g) . By Lemma 31 S_(£) is

9 t-dinensional subconplex of the triangulation K of X used
in the t-shift f-g . By construction the t-shift keeps the

(t-1)-skeleton of K fixed, and so
Sq(g)i) SS(f) N ((t-1)-skeleton of K )
inplying that 4 2 t -1

Suppose & » t-1 3 then d:>ds , and with one
modification the proof is exactly the same as that of Lemna 34,

substituting s for r. That is to say, we exanine the interior

fe]

of 2 local shift, and find D77, < A, that is the image of r,

n
simplexes in fa.,iPi ,; and r; siuplexes in aiPi , 1€i<qg, where
g+1
s = %_ri
0
Ofrigs for Czsiggqg

The mndification that we need to prove is

ry< s for 0<ic<g

in order to be able to verify (*), and therefore achieve a
contradiction in each of the two cases. The contradictions
estzblish d = t-~1

There renains to prove the modification, and for this we
use two picces of hypothesis that we have not yet used, that
dim S_(f) = t and f}XO is already given to be in general

position.
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Using Lemma 33 and that Ss(f) is contained in the

t-skeleton of X, we have for each i,

< - —

5.(gla;B) = 5.(£]a;F;)
< (aiPi) n (t-skeleton nf X))
= (f}ipl) A .._Li

= 9.
1

Now trivially s22 , because if s=1 then Ss(f) =X and
dS:=x and so we cculd not have dim Ss(f)> dS, And a; 1s
the only point of aiPi mapped by g to i Therefore

SS(gIaiPi) =0 , and so r;<s for 1<icq .

There remains the ease 1i=0 . If n-qz 8, then there
are at least s sinplexes Aq+1"°”’ﬁn of }Q) napped by f into
the t-simplex B, ioplying din Ss(f|Xo) 2t >4, , and
contradicting the hypothesis f}XO in general position. Therefore

n
n-qg < s, Let 2 = U aiPi . By definition of the t-shift
q+1

g agrees with £ on 72, and so
Ss(g]Z) < 7% N (t-skeleton of X))

n
= {J a; .
q+1 +

Since oy, ATE the only points of Z nmapped by g to

-.,(»q+1 9 ®
v , and since there are less than g of then, we deduce

Ss(glz) =@ , and so ry< s . The proof of Lemma 35 is complete.
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Lemna 36 Given XOCZX s Xg<€ X, and f:X -~ I , suppose that

both f and leO are in general position. Let f-g De a

t-shift keeping Xy fixed.
(i) If dim(Sr(f)nIXO)< d, , for all r<s , then the samne is

true for g.

(ii) If, further, t=d, then dim(SS(g)n XO)< dg -

Corollary 4 t-shift preserves general position for pairs.

For use the Corollary to Lexuma 34, and Leama 36(i) with s large,

Proof of Lemna 26 (i) Suppose not. Then for some r, < s, we

have dim(Sr(g)r\XO) = d because din Sr(g)s dr by

T ]

Lemma 34 Corollary. As in the proof of Lemoa 34 we exanine the
(o]

interior of 2 local shift, and find a simplex Da b, of

dizension dr-t , in the inage of Ty sinplexes of

n

2 = \J a;P; » and r, siaplexes of aiPi , 1€£igq . 4lso
q+1

D& Xy . But X;naP, = g for 1<i<q , and so ro;éo

Therefore D is in the im2ge of Sro(gIZ) N X, . But
glz = £]2 , and

by hypothesis, =2nd so in the verification of (¥*) (as in the

proof of Lemna 34) we gain one diuension:

1 ™ & Adr -
dim D, din & rye

Therefore in case (a) we have

g -
din g[:Di_j <a, -t
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d -t
contradicting the construction D T <« f\I&

In case (b) the contradiction is unchanged.

(i1) The proof of Leuma 36 part (ii) is the same as for

part (1), except for the modification of having to show

r.<s, for O=<=i<q ,

a8 in the proof of Lemna 35, TFirstly rO;éO because D < Xy
and so r;<s for 1<i<qg . Finally o< s otherwise we

should have s simplexes of LXO napped onto B, inplying
din 5 (£]Xy) 2 ¢ = 4 ,

S

contradicting the hypothesis X >Xq a2nd the condition

din 5_(£|X,) < a, - s(x-x;)

included in the general position of £ XO . The proof of

Lenna 36 is complete.

Proof of Theorem 18 We are given f:X - % with leO in
general position, and we have to move f into general position
for the pair (X,XO) keeping XO fixed. Leunma 35 Corollary
shows that f can be wmoved into general position using t-shifits.
If X=Xy We are then finished, because the general position
of g inplies general position for the pair. If X > Xy , there
renains to =chieve condition (iii) for genernl position of the
pair. Leoma 36 shows this czan be =2lso using t-shifts, by
induction on s putting tzzds, and starting trivially with
s=1 . The general position of f meanwhile is preserved by

Lemnma 34 Corollary.
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Chaptor 7 : TINGULFING.

The idea of an engulfing the »rem is to convert a
homotopy statement into a geometrical statement: 1t is a key
step in passing from elgebra to geometry.

Por exammle let X be a compact subspace in the interior
of a manifold i, and consider the following two statements about X.

(1) X is inessential in M ; that is to say the
inclusion map X < M is hcomotoplc to a constant.

(2) X is contazined in an m-ball in M. The first is
a homotopy statement about X , and ths second 1s a geometrical
statement., Obviously the sccond implies ths first, because a hall
"is contractible. The converse is not so obvious, and 1s given by
ouf first engulfing theorem. For the thecrem we shall assume thatv
M 1is k-connected, that is to say the homotopy groups ﬂi(m) vanish
for 1 < k.

Rt}

Theorem 10. Let M _be a k-conpected manifold, angd

rxs

XK

g compact subspace in the interior of M. such that x <m - 3
ly if

and 2x g m + k - 2, Then X is inessential in M if and only

it is contained in a ball in the interior of M.
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We shall prove a gencralisationu in Theorem 21 below,
from which the above result follows at once. However since the
proof of Theorem 21 is long, involving svecial techniqgues for the
boundary, we give a shorter proof of Theorem 19, which will
illustrate the main idea of an engulfing theorem. The proof
reqguires four lemmas, the first three of which are straightforward.
The last one, Lemma U8, involves a more complicated technique
called "piping", and we postpone this until later in the chapter
in order not to interrupt our main flow of thought. In effect
the piping lemma is only concerned with winning the last dimension

m

[o]
Lemma %7. Let BY be a submanifold of . If

\, » Y o . . .
L w ¥ in M and Y c B then we can ambient isoton B until

[}
X c B. In particular iTf ¥ is contained in a ball in M . then

rg

Q
roor. First we may assume that Y < B, for if not

o

|

isotop B onto a reguler nelghbourhcod of itself in ﬁ, by
Theorem 8(3). The proof is easy to visualise because as Y expanés
to X we push B along with it. Notice that we may have to push
other bits of B out of the way as we go, which explains why it
was necessary to have B in the interior of M.

How for the details : triangulate a ncighbourhood cof X
in M so that X, Y are subcomplexes. By subdividing if necessary
we can ensure that X collapses simplicielly to Y. By induction

on the number of elementary simplicial collapscs, it suffices to
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consider the case when X ™ Y is an =slementary simplicial collapse.
(Wotice that we do not say anything about B being a subcomplex of
the triangulation, for otherwise this would violate the induction,
because during the induction B gets pushed around.)

Suppose, therefore, that X ™~ Y across the simplex

;f)
3

v = aF from the face F. L&t ' denote the barycentre of F,
and L the 1link of P in M, which is a sphere because

P c X c ﬁ. Let A be a simplex of dimension 1+dim L, and
choose a homeomorphism h : L - i. Map § to the barycentre

A

A
A of A, and extend linecarly to a homeomorphism h : FL - A.

° Q
Since gF < Y < B,

we can choose a point b 1in the
A

interior of the segment aF such
® (o}
that abF ¢ B. Let £ : A - A be

-,

oy

the homeomorphism defined
mapping hb - 2, Xeeping A fixed, and joining linearly. The
composition h—1fh : %L - §L throws b onto %, Join this
composition to the identity on ﬁ to give & homecomorphism of

ET(F, M) onto itself, which keeps the boundary fixed, and which
therefore extends to a homeomorphism g : M - M ambient isotopic

to the identity, kecping M - st(¥F, M) fixed. The isotopy keeps

Y fixed9 because Y does not mect st(F, M), and moves abié onto A.
Since ﬁ oY U abﬁ, the isotopy moves B to gB where

(o}
gB oY u A= X. The proof of Lemma 37 is complete. We shall prove

a more delicate version of this result in Lemma 42 below, replacing
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the manifold B Dby an arbitrary subspace.

Lemma 38, Let S(F£) denote the singular set of the

map f : X -2, Tet Y be such that X o7 o 8(f) and XMWY,

X
Then X S~y Y.

Proof. Let X, L be trisngulations of X, Z such that

f : XK ->1L is simplicial. Let X' bec a subdivision of X such

that Y is a subcomplex, and XK' collanses simplicially to Y.

Let
E' = Ko™ Kg ™ o0 ™ K, =7
1a
dencte the seguence of clementary simplicial collapses, and suppose,

for each 1, X, , K., across the simplex A; from the face Bi'

We claim that K. N K. is an clementary collapse across the
i-1 i P

ball fA4A. from the face fBi (notice that we do not claim it is a

-4

eimplicial collapse becausc in general there is no subdivision L'

R T CIA N T2 ATEUR AW, + TN D
such that £ : XK' - L' is simplicial). The reason for our claim is
that f maps Ai linearly into somc simplex of L, and

nen-degenerately becauss A, £ 8(f). Thereforc fA; is a ball
o »
U Bi N Ki = £ Tbecausc

f o
1A

and fBi a face. Also Ty

(o] o)
A UBj cX-YcX- S(f). Thereforc TA; n fK, 1s the complementary

1

face of f£A. to fRB.. Therefore fKi_”\§3fKi.

1
The sequence of elementary collapses gives X ™., fY.

. R . .. om
Lemma *9, I X© is insescniial in M, then there

. 3 A o 5 R .
exist subspaces ¥, 4% g M, such thet X g ¥ =%, y < x + 1, and

7 £ 2X - m + 2.
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The proof is trivlial 1f x > m - 3, for then choose
X =Y = Z. Therceforc assume x € m - 3. We Tiwrst prove a weaker
result, namely the same statcment cxcept that Z is one dimension
higher.

Proof of the weaker result (z < 2X —m + 5).

Let C be the cone on X. Bince X is inessential, we can extcnd the

o [o
~r

inclusion X ¢ ¥ to a continuous-map £:0 - M. By the relative

simplicial approximation theorem wec can make f plecewisc linear,

keeping f|X fixed. By Theorcm 18 we can homotop f into gencral

position keeping £|X fixed. Therefore the singular set S(f) of
f will be of dimension < 2(x + 1) - m.

Let D be the subcone of C through S(f); that is to say D
is the unicn of all rays of C that mecet 8(f) in some point other
than the vertex of the cone. Then dim D € 2x - m + 3. Jet
Y = £fC, Z = £D. ©Since a cone collapses to any subcone we have C™.D,
and since D o S(f) we have Y ™2 by Lemma 38. 8Since £X = X, we have
Xc ¥ ~u2; and the proof of the weaker result is complete.

Proof of the stronger result (z € 2x —m + 2).

For this we necd the piping lemma (Lemma 48) below. Since the proof

of the piping lemma is long we postpone it until later in the chapter.
As in the weaker cascy, let C be the cone on X, and

£:C - ﬁ a (piecewisc linear) cxtension of the inclusion X c ﬁ.

Triangulate X and let C, be the subcone on the (x - 1)-skeleton

of X. By Theorem 18 we can homotop f into general pesition for
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the pair C, X U C, keeping f|X fized. The triple X,
Cox c CX+1 is cylinder-like (in the sense of the piping lemma)
and so by the piping lemma we can homotop f keeping fI|X fixed,
and choose a subspace U4 < C such that

S(f) c o4

aim(Co N Ci) < dim Gy < 2% - m + 2

C~:Cp U C~aCo.
Let D %Dbe subcone through C; nCy; dim D < 2x - m + 2. Then
Co UCs, ™D u C; because Gy ™~ D and Cy n Cy ¢ . Therefore
C~DuC,. Define Y = £C, 2 = £(D u C;) and the result follows
by Lemma 38, buczuse D u Gy o S{(f). The proof of Lemma 39 is complete.

Eroof of Theorem 19.

X . . o .
We have X inessential in M, and havc to show that

l*}
X is containcd in a ball in M. The proof is by induction on X,
starting trivially with x = - 1. Assumg¢ the result is true for
dimensions lcss than X.

(o]
By Lemma 39 choose Y. Z ¢ M such that X c ¥ N 29,

where
7€ 2% - m + 2, by Lemma 39
< K, by the hypothesis 2x < m + k - 2.

Therefore 7 is incssontial in M. But z < 2 by the hypothesis

x<m - 3. (This is one o/ the places where codimension » 3 is

4

o
crucial). Therefore 7 is contained in a ball in M by induction.

¥

By Lemma 37 so is Y. Therefore¢ we have put a ball round X, and
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the proof of Theorem 19 is complete. We deducs some corollaries.

Corollary 1. If M is closed and k-connected, k < m-3;

then any subspace of dimension € k is contained in a ball.

The corollary follows immediately from Theorem 19.

- . s 3 -
Corollary 2. (weaK P01nca:gicongecture). If M is

a_homotopy m-spherec, m > H, then M is topologically homeomorphic

to sf,

Remariz., We call this the weak Poincard Conjecture because
although the hypothesis assumes that M has a polyhedral manifold
structure (we always assumc this), the thesis gives only a topological
homeomorphism, nct a polyhedral homeomorphism. The reason is that
the proof that we give here is Stallings' proof, which depends upon
the topological Schonflies Theorem of Mazur-Brown. In Chapter 9
we shall give Smale's proof, using combinatorial handlebody theory,
which does not depend upon the Schdénflies Theorem, and which gives
the stronger result that M is in fact a polyhedral sphere, m » 6.
The stronger result for m = 5 is also true, but we shall not give
it in these notes, becausc the only known proof depends upon
smoothing, and deecp results from differential theory, including

5 L

67 =T = 0.

Procf of Corollary 2.
Let x = [m/e2] &and xz=m-x -~ 1.
Then since m » 5 we have both X, X, €< m - 3. Choose a triangulation

of M, and call this complex M also. Let X be the x-skeleton
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of M, and X, the dual =x,-skeleton (which is defined to be the
largcst subcomplex of the barycentric first derived of M, not
meeting X). Now a homotopy m~sphere is (m-1)-connected. Therefore
by Corollary 1 both X, X, are contained ia balls B, By, say.

We can also assume that X, X, are in the interiors of
balls (by taking regular neighbourhoods of B, B, if necessary).

We now want the interiors of the two bal.ls to cover M,
and if they don't already then we stretch them a little until they
do, as follows. Let N, N, be the simplicial neigzhbourhocds of
X, X, 1in the second barycentric derived complex o M. Then
M=NuUN,. UNow pick a regular neighbourhood of . in ﬁ, and
ambient isotope it onto N. The isotopy carries B into another
ball, A say, whose interior contains NW. Similariy construct a

(o] o]
ball A,, whose interior contains I,. Thercfore il = A UA,.

Now let C = M - A,. Then G is a collaied (m -1)-sphere
in the interior of A) (by the Corollary to Lemma 24). Therefore by
the topological Schdnflies Theorcm of ilazur-Brown C is a topological
ball. Thercfore M = A u C 1s the union of two topulogical balls
sewn along their boundaries; in other words M d1s & topological

sphere.

Corollary 3. If M is closed and [m/rl-comected, r > 2,

then N is the union of v beglls. Consecgucntly M 1is of

Tusternick-Schirrelman category < r.

Proof. Let M be k-connected.
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Now [m/r] <k <=>n/r <k + 1

<=>m < r(k + 1)

<=>m+1 < r(k+1).
Thereforc the condition [m/r] < k is cquivalent to saying that the
set {0, 1, ..., nl can be partitioned into r disjoint subsets
G.y i =1, vev; T, each containing € k+1 intcgcrs.

Choose a triangulation of M, and let M' denotc the
barycentric derived complex. Divide thcvertices of M' into r
disjoint subsets Ji’ by putting the barycentre of a g-simplex of M
into J, if ¢ & G;. Let K, be the subcomplex of M' consisting of
all simplezes, all of whose vertices lic in J,. The Ki's will then
play the role that the complemcntary skeletons played in the proof
of the preceding corolliary. Let Ni e the simplicial ncighbourhood

of X, in M", the sccond derived. Then M = UNi. By construction, for

-
Ts

gach i, dinm ;isjks and so Ki lies in a ball Bi by Corollary 1.

Lmbient isotope Bi onto a ball A, containing Ni. Then M = UAi, as

5
deairvad,

Yo noy turn to the question of showing by examples that
the hypotheses x € m-3% and 2x < m+k-2 in Theorem 19 arc the best
possible. PFirst suppose X = n-2.

Examnle 1. Whitehcad's Example.

1 1947 Whitehead produced the following example of a
Z
contactible opcnt 3-menifold M~ (open means non-compact without boundary
A
The manifold is remarkable in that it contains a curve S' thet is

insgscntial (since 10 is contractible) but is not contained in a ball
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in M”. The manifold is constructed as follows. Inside a solid torus
Ty in S3 draw a smaller solid torus Ty, linked as shown; then inside

To draw T3 similarly linked, and so on.

e A e
g ""*—\\

e e
e — T

e S e
s .
S

\: T e -//‘/ -
‘\\ _,‘.»-/- P
//
,-/‘wf"'_
\w\_\_wmﬁvw”—d —
Z -z 2 '4! 1
Define M7 = 7 - 1T,. IL S 1links T,, then § 1is not contained in
1 ——-

-~

a hall in K. Fo omit the oroof, because the proof of the next
cxample is simpler.

Bxamolc 2

.
o o wien

Mezur

Pocnaru (1960) and Magzur (1961) produced examples of a
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compact bounded contractible u-manifold with non simply-connected
boundary. For a decscription of iMazur's example Mu see Chapter 3,

prage 10.

1
In particuvlar ¥ has as spine the dunce hat D2. Then D2

is inesscntial, bul not contained in a ball for the following rcason.

Suppose I2 waere conteined in a ball B. By replacing B by
a regular neighbouyrhood if nccessary we may assume D2 lies in the
interior of B. Lit ¥; be a regular neighbourhocod of D2 in B. There
is a homeomorphism M - M; kceping D2 fixed (Chapter 3, Theorcm 8).
Let By, My be the images of B, M, under this homeomorvhism. Therefore
we have

MoH>EM 2B ol o Dz.

By the regular neigtbourhood annulus theorem (Theorem 8, Corollaries

2 and 3), we have

. .
B-B, =8 xI

N o) R o M

M- M 2M-¥;, 2N xI

Therefore in the commitative triangle induced by inclusions

. o
Ty (My ) —» my (M - M)

~

A} ) <
751(3 - B:L)

the top arrow is an isomorphism, and the bottom groun zero, contradicting

7y (M) # O. Therefore D% is not contained in a ball.

Remarkk

- &
e

It is significant that in the two examples above

one 0! the manifolds is open, and the other is bounded. It is
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conjectured that no similar example exists for closed manifolds.
More precisely:

Conjecture. Corollary 1 is true for X = m-2.

Observe that this conjecture is true for m > 5, because
the Poincaré Conjcecturc is true for m > 5. In the missing dimensions
m = 3,4 the conjccture is eguivalent to the Poincare Conjecture, which
is still wuwusolved. For, if the Poincaré Conjeccturce is true, then
an (m-2)-connected m-manifold, m > 3, is a sphere, and so any proper
subpolyhedron is contained in a ball. Conversely if the above
conjecture is true, thon the proof of Corollary 2 works for the
missing dimensions m = 3,4, because there are complementary skelctons
of codimension » 2.

Bing has shown that in dimension 3 a mnore dclicatc result
will suffice: he has proved that if M3 is closed manifold in which
every simple closed curve lies in a ball, then MB = 83.

t

Exammle 3, Irwin's Example,

We noxt give an example to show that the hypothesis
. . . 1
2X € 1+kK-2 1s nccessary in Theoren 19. Let M = 8 x Sm, nz 2, and
let X = Sn, cmbedded in M by first linking two little n-spheres

locally, and then connccting them by a pipe running around the S'.
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Notice that m = 2n+1, % = n, k = 0, and so the hypothesis fails by
one dimension
2x £mn+ k - 2.

Next observe that we can homotope s to a point by pulling one end
acrosgs the other and back around the 81.

Therefore S© is inessential. On the otherhand s% cannot
be contained in a ball, for ctherwise we qould unknot it in this
ball (by Theorem 9 since n<m-3) and span it with an (n+1)-disk.

en or g % 5% the disk would 1ift to a

In the universal cover R x 8
countable set of disjocinat disiis, nonc of whose Loundaries could
therefore link. But by construction s™ 1iTts to a countable set of
spheres, any one of which links its two neighbours. This contradiction

showe that Sn cannot be contained in a bHall.

Definition of a core.

There is a t-dimcnsiocnal cbestruction in the last cxample,

which suggests that i1f we cannot wmbed X in a ball, we might try to
t

i

engulf it in some soprt of 1-dimensional "core' of M.

More proeciscly define a closed subspace C to be a k—-core
of M if the pair (M, C) is k-connected; that is to say the relative
hometopy groups xi(M,C) vanish for i1 < k. This condition is
equivalent to saying that the inclusion C < M induces isomorphisms
xi(C) 3 xi(M), i <z, and an epinorphisn wk(c) - 7 (M),
Exampic 1. If M is k-connected, then a point, or a ball,

or any collapsiblc sev in M is & k-coro.
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Bxample 2. The k-skclcton of a triangulation of M is

a k-core.

Example 3. The k-skcleton of a triangulation of a

k-core is anothcr k-core.

ixample L., A regular neighbourhood of a k-core is another

k-core.

Example 5. If DM C then C is a k-core 1f and only if

D is a k-core.

r

Bxample o6, If p € g then 5P x point is a (gq-1)-core of

sP x s8¢

Definition of cnpulfing.

Let X, C be compact subspaces of M. We say that we can

cngul? X by pushing out a foeler from the core C, if therec exists D,

gucn that
X ¢ D~uC
dim (D-C) < x+1.

More briefly we describe this by saying engulf X, or engulf X from C,

Pocitbed 55 Bt

or ¢ngulf X in D. The fecler is D-C, and it is important for

applications that it be of dimension only one more than X (and in
special cases of the same dincnsion as X). Por cxample in the next
chapter we shall engulf singularitiecs of maps, and the feeler itself
may introduce new singularities, but these will be of lower dimension
than the ones we started with, and so can be absorbed by successive
engulfing. Rewriting Thcorem 19 from this point of view, the core C

would be a point, and X would be engulfed in a collapsible set.
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The proof that this statement is equivalent to Theorem 19 is given
by the following lemma.

Lemma 40, Let C, X be compact subspaces of M. Then X can

be engulfed from C if and only if X is contained in a regular

neighbourhood of C.

Proof.,. If X can be engulfed in D, then it is contained in
regular neighbourhood N of D, which is also a regular neighbourhood
of C, because N ~D ™~C. Conversely given X ¢ N ™C, triangulate N
so that ¥, C are subcomplcxes, and subdivide if necessary so that N
collapses simplicially to C. Order the elementary simplicial collapses
in order of decreasing dimecnsion, by Lemma 411. Perform all those
elementary collapses of dimcusion > X+2, leaving D, say. Then
dim (D—C) < x+1, and D o X because we have only recmoved simplexes of
dimension » x+1. Performing the rest cf the elementary collapses gives
D ~uC.

Non-compact collansing and excision.

We shell always assume X compact, but it is sometimes useful
to have the core C non-compact, as for example in the prcof of Theorem
22 bclow. So far collapsing has only been defined for compact spaces,

and we extend the definition to non-ccmpact spaces as follows. Define

wmsea

D-C compact, and
D ‘\;.LO i f Jl

oo

T ~D-Cnce

tJ

where the right hand side is compact collapsing. If C, D are

non-compact the definition is new; if they are compact then the
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definition agreces with compact collapsing, because, given the right
hand side, we can triangulate and perform the same sequence of
elementary simplicial collapses on D, since C does not meet the free
face of any elementary collapsc. /(n immediate conseguence of the
definition is the gxcision property

ASNANMNDE <=> 4 U B™NB
because the condition for both sides is 4~B MA4-B n 3. Whenever we

use this property in either direction we shall say by_excision.

Given D C, when we say iriangulate the collapse we mean choosec a

s

triangulation of D-C such that D-C collapses simplicially to
D-C n C, and choose a particular seguence of elenentary simplicial
collapses.

The definition of engulfing from a ncn-compact core C

remains the same, with the new interpretation given to the symbol ™Sy .

Remark.

Stallings introduced a different point of view of engulfing.
He envisaged an open sct of M moving, amocba like, until it had
swallowed up X. Rewriting Theorcm 19 from this point of view, the
cpen set would be a small open m-cell, and we could isotope this onto
the interior of the ball containing X. The following lemma illustrates
the connection between our definition of engulfing and Stallings'
point of vicw.

Lemma 41. Let M be a nanifold without boundary, and X a

compact subspace. Let C bs a closed subspacc (not necessarily compact),
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and U any open set containing C. If I can be cngulfed from C, then

ther: is a (piecewise lincar) homeomorohism h : M - M, isotopic to

ety S

the identity by an isotony kecwing C fixed and supported by a compact

set, such that hlU o 7T,

Proor. If C is compact the proof 1s easy, for choose one
regular ncighbourhood of € in U, and another containing X, by Lemma LO,
and ambient isotop one onto the other keeping C fixed.

If C ig non-compact, confine attention to a regular
neighbourhood My, of D-C in M, which will be compact. Let
Co = CnMg, Do =D n My, Let Ny, %y be second derived neighbourhoods
of Cy, Dy in somec triangulation of ,. Then ﬁ;fﬁg is contained in
the interior of My, and so we can arblent isotop NC into ND keeping
Co U ﬁo fixed, by (the proof of) Theorem 8(3). BExtend the isotopy
to M by keeping the rest of M fixed. If the triangulation was

sufficiently finc, then U o T

He and so U will be isotoped over X.

Remark.

In gencral hU A U in Lemma l41. For example consider the
case when X U U = M., Thereforce the amocba approach is no good for
successive engulfings, because each new engulfing may mess up what
has already been engulied. The advantage of the feeler approach is
that the core C stays fixel while successive feelers are added. The
price that ws have to pay for this adﬁantage is that the core must

satisfy a certain collapsibility condition (see the definition of

]
o

c

g-collapsibility below). 4 further advantage of the fecler approach

G

is that it can hsndle boundary problcms which present certain



- 18 - VII

difficulties. Before handling the general case, however, we
consider the special case of a collapsible core. As in the case
of Theorem 19, we shall be able to deduce the following Theorem 20
from the general Theorcm 21, but again it 1s worth giving a short
proof separstely.

Theorem 20. Let be a k-connectcd manifold, k < m-3,

Let C be a collapsible subspace and X* a compact subspace, both in

the interior of M. If x < k, then we can engulf X in a collavsible

subspace D in the interior of M; that is to say X ¢ D™~C and

dim (D--C) < x+1.

Proof. Triangulate C u X, and subdivide if necessary
so that C is simpliclally collapsible. Order the elementary
simplicial collapses of C in ordcr of dGecreasing dimension. e
claim that it is possible to perform gll those of dimension > X on
the complex C y X, collapsing it to X, say, dim X, = x, as follows.
There is no trouble during collapses of dimension > x+1, because X
cannot gut in the way. There looks as though there might be trouble

. N . . . ] X+1
with those of dimension x+1, for consider a collapse across A +

from the face FK. It is possibic that ¥ c X, but since F is
principal in X, I is still a free face of A, and so the collapse is
valid.

Now X, is contained in a ball in ﬁ by Theorem 19 Corollary 1.

o
Therefore by Lemma 37, C u X is also contained in a ball, B say, in M.

O
We may assume C u X < B by taking a regular neighbourhood if necessary.
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Now a ball is a regular neighbourhood of any collapsible set in its
interior, by Theorem 8 Ccrollary 1. Therefore X lies in the regular
neighbourhood B of C. By Lemma LO we can engulf X. This completes
the proof of Theorem 20. We now show how the dimension of the
feeler can be improved by one in special cases.

Definition of furling.

w o : X . ~ -
Let C, W' < M. If there exists X such that W™X, % < w,

and X n C=Wn C, then we say W can be furled to X relative to C,
or, more briefly, W can be furled. The term comes from sailing,
where C is a ship, and the 2-dimensional sails W can be furled to
the 1-dimensional masts X.

Cerollary to Theorem 20,

o ;
Lot M be k-connected, k g m-3, C collapsible in M, and W' _compact

O
in M, If W can be furleld to X, X s k, then we can cngulf W c D C

[+]
in M, such that dim (D-C) g w.

Notice that there is no restriction on the dimension of W,
and that the fecler has the same dimension as W. To prove the
corollary we necd a lemmz2, which is a more delicate version of Lemma. 37.
We take the opportunity while proving this lemma, to prove a sharpened
version, sharper than is needed hore, vhich will be uscful later for
TSR

boisiCery provlems.  or thic we neod some cefinitions.

Interior, boundary and admissible collapsing.

Let X ™Y in the manifold M. Write
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ALY if XY c ¥
x L. Y ir xYcun
X~ v if xS (Xan) uvy-~Ev.
The ambient manifold M is not included in the notation but is always

i o . Y he]
understood. We call ™y an interior collapse,‘\gﬂ a boundary collapse

and “99 an sdmissible collapse. At the end of this chapter we shall

define inwards collspsing ”Nl which is in a scnsc opposite to

admissible. Admissible collapsing was introduced by Irwin, and inwards

collapsing by Hirsch, both for cngulfing spaces that mcet the boundary.
Notice that all three relations are transitive. The

transitivity of O, g is obvious, and that of o depends ugon the fact

. F <0
that two elementary simplicial collapscs Ki‘\éﬂ Ko ™ K5 can be

interchanged, because the free face of the second renains free in K,
o o Y, .

since it lies in M. Thercfore given A‘\Q$ y~&, 7, tricngulate and

push all the intericr collapses to the front, leaving all the boundary

collapses at the end, X‘\gﬁ L.

Exemnle 1. If N is a derived neighbourhood of X in M

then N &, X.

Example 2, If 2 ball B in M meets in M in a face, then

B ig admissibly collapsible, B‘\QgﬁO.

Example 3. It X \Q$ 0, then a derived neighbourhood of

X in M is a ball mecting M in a face.

Bxanple L. A ball properly embedded in a manifold is not

admissibly collapsible.
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Ir % Y < 7 in M, then 7 is ambient isotopic to Z. kceping Y

fixed such that X y Z.~% 7.

Remarks.
1. The spaces are not nccessarily compact.

2. X-Z., c XY,

3.,  din(X-2Z,) < din(X-Y), by 2.

L. The lemma is truc if o is replaced by O or B, again
by 2.

Triangulate a neighbourhood of X-Y in M, and by subdividing

if necessary, triangulate the collapses

T ™ I oK) v (FTan)~L TF a v
As in the proof of Leama 37, by induction on the numbsr of
elementary simplicial collapscs, it suffices to consider the case
when XY 1s an elecmentary simplicial collapse, across the simplex

A from the face F, say. There arc two cases according as to whe ther
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o *

X ™+ Y or X‘\EB Y. In the first case A, F £ M, and in the second
case A, P c M. (The purposc of the admissibility in the hypothesis
was to exclude the third possibility 4 £ M, F ¢ M).

First casc: A, F A M. As in Lemma 37 we do not assume %

to be a subcomplex of the triangulaticn, because 7 is going to be
isotoped around during the induction, until it reachcs the position

Z.. Therefore we may expect A n Z to be an arbitrary subpolyhedron

Of .i:a. .
7
A
A
Let B be the barycentre of F, and let A' be a subdivision of A

A
containing aF and A n Z2 as subcomplexes. Choose a point b in the
A
interior of the segment aF, and suflficicently closc to the point a
for there to bec no vertices of 4A' in abP other than those in aF.

We clalim that
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To prove this, recell that Z oY o aé, and so the icdea is to
collapse abé onto aﬁ9 but leave sticking up those bits lying in Z.
More precisely, let P be a2 simplex of A' meeting bé and not contained
in Z. Let Py =P n abég P =Pn bﬁ. Then P, is a2 convex linear
cell with face Py, and so we can collgpse P, from Py. Moreover this
collapse is interior, becausc §1 U %2 c E c ﬁ. Perform collapses
for all such P, in order of decrcasing dimension, and this gives the
required collapse. By excision

abF U 7 2, Z.
Since F £ ﬁ, the link of I is a sphere, and so we can define the
homeomorphism g:M - M described in the proof of Lemma 37, throwing
abé onto A, Let Z, = gzZ; then Z is ambient isotopic to Z, keeping
Y fixed. The image under g of the collapse aué U Z\\: Z is a collapse
Ay Z, ° Z,. But Ay Z, = X U %, because X = A U Y and Z$ o Y.
Therefore we have the reqguired collapse X U Z*\\iﬁ Zig o

Second cass ¢ L, P o M,

In this cass the construciion of ab¥F is as in the first
casc, but the definition of g is differcnt because the link

-

L = 1k(F,M) is no longer a sphere but a ball. Let A be a simplex

0]

of dimension 1 + dim L, and let T bec a top dinmcnsional face of A,

A
with barycentre I's Let h be a honmecomorphism given by mapping
A A
Fos7, L -

L] Q 0 -
A - T, and joining linearly. Then hb € T', because A c M.
Al
There 1s a homeomorphism of A determined by napping hb - I', keeping

o
A - T fixed, and joining linearly. A4As before this homecomorphism
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determines a homeomorphism of I, isotopic to the identity, throwing

abé onto A and keeping Y fixed. The rest of the proof is the same

as the first case. The collapses this time are all boundary collapses.
The proof of Lemma 42 is complete. Notice that the

reason for avoiding the third case A & ﬁ, Fc ﬁ is that otherwise

the requircd isotopy would have had to push stuff off the boundary

of ¥, which is impossible.

Procf of Corollary to Theorem 20,°

We have to show that if W can be furled, then 1t can be
engulfed with a feeler of the same dimension. Recall that furling
means there exists Xx, X < w, such that ™ X and X nC =W n C.

This implies that Wy C™~X u C.

Since X <€ k, we can engulf X ¢ E™aC, such that

dimn(B - C) €« x + 1 € w, by Theorem 20. Apply Lemmna 42 to the situation
Wyl ~wXuCct

(the collapse being interior because all subspaces are interior to M),

we can ambient isotoﬁ I to B, keeping X y C fixed, such that

(# UC) uETSE Let D = (7 u C) U B,. Then W c D>4E,, and

*‘
,~»C because the pair (E,, C) is homeomorphic to (B, C). Therefore
W c D™ C. PFinally we heve to check the dimension of the feeler :
by the Remark after Lemna L2,

din(D - E,) < dinf[(Wu C) - (X v C)]

N

dim(W - X)

i

W

A
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dim(E - C)

o
’:h
~~
’—:I
t
Q
S
!

<z + 1

< W,
Therefore dim(D - C) < w, and the proof of the Corollary is complete.

We have now completed the proofs of the engulfing theorems

that we shall necd in the ensuing chaptcrs, apart from the pining
lemna (Lemma U8). For thc rest of this chapter we shall go on to
prove the generalisation that allows for more complicated corcs, and
permits both C and X to meel the boundary of M. To state the
generalisation we need two definitions.

Definition of g-collapsibility.

We describe the collapsibility condition on the core, that
was mentioned in the Remark after Lemma 41. Let C be a closed subspace

of M, not necessarily compact. Dcfine C to be g-collapsible in M if

. - . -~ . - 2
ther¢ is a subspace 7 such thet C ™y @ and dim(3 n #) < g.

Example 1. If dim C £ g then C 1s g-collapsible.
]
Ixample 2., o collapsible subspace of I ieg O-collapsible.

.

Example 3. lny closed subspace of X is g-collapsible for all q.

Exemple L. If C is compact and g-collapsible, then any regulap

neighbourhood of C, that meets I in a regular neighbourhood in M
of C n i, is also g-collapsible.
Exzample 5.,  in arc properly cmbedded in a 3-ball is not O-collapsible.

Definition of C-inessential

o

Let C, X be subspaces of ¥. We call X C~incssential in M

T4

if the inclusion map X < il is homotopic in M, keeping X n C fixed,



to a map X -» C,

Bxample 1., If C is a point the definition reduces to X inessential

in M. Therefore the coacept is a generalisation.

Lxample 2, If C is a X-core and dim X € k then X is C-inessential;

for if X is triangulasted so that X n C is & subcomplex, then there is
no obstruction to deforming into C each simplex of X - C, keeping its
boundary fixed, 1in order of increasing dimension.

Bxamole 2%, If C is the northern hemisphere and X the southern

. n v s . .
hemisphere of 5§, then X is pot C-inessential.

Theorem 21. Let C be a g-collangibie k-core of the

. ) +X . .
manifold M ., g s m-3. Let Y~ be compact and C-inessential, and supposc

X satisfies (1) or (2):

(1)  dim (X o) < xand x <m-3

(2) X c M and X < m-l

2% < m+k-3

a+X € m+k-2.

Then we can engulf X: that is to say there exists D such that

~ ..
P D e\ g
e o navi R

s a

dim (D-C) < x+1,

Dnii=(Xuyug) nM.

e

Hotice that the converse is trivial: 1f we can engulf X then X is
C~inessential, because the collapse D ~C gives a deformation

retraction of D onto C, which ahcmotops X into C, keeping X n C fixed.
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Before proving Theorem 21 we give some examples and corollaries.

©

Dxample 1, Let I be k-cconected, let C be a peoint in M, and let

Q
X be inessential in M. Then we cen engulfl X in a collapsible set D.

Q

]

)

A regular neighbourhood of D is &z ball, and so we deduce Theorem 19.

o

s - ) . . - s o
Ixample 2, Let M be x-connected, If C is a collapsible set in M,

S © . ‘ . o .
then C is an x~core. If X ¢ 4, there is no obstruction to deforming

X into C; keeping X n C fixed, and so X is C-inessential. Therefore

Tx B

we can engulf X, and so deduce Theorem 20.

Bxample 3, Consider Irwin's example, which was described above in

- m hd by f‘x.1
Example 3 after Theorem 19. We have M = 5 x S

2n <
2

and X = S embedded

. GChoose C = S1xpoint in

wa

in M by being self-linked ecround the

s! « Szn° Then C is a 1-collapsible (2n-1)-core. Theorsm 21 tells

0

us that X can be engulfed; by Lemma 39 this is eguivalent to saying

X is contained in a regular neighbourhood of 81. Of cowrse this can
be easily seen by elementary methceds - but the purpose was to
illustrate how Theorem 21 can be applied in situations where Theorem
19 fails.

Example L, We give an example to show that the hypothesis

g+X € m+k~-2 in Theorem 21 is the best possible. Let

M=t gt 2T, s 3, 0= 8" 8T, x = 8™« 0, where
1

n-14 . . . . .
g* contains S in its intericr.
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Then C is an n-collapsible 1-core of M (it is not a 2-core
because ng{M,C) = =, (C) = Z).

Putting x =n -1, g=n, m =2n + 1, X = 1 we see that
e+ x4m+ X -2 by one, but all the other hypotheses are satisfied.
X is trivially C-inesscntial because it can be shrunk to a point of C.
Supposc we could engulf X.

Let A be a regular neighbourhood of S1 in E®, Then ﬁ X En"1
is an open set containing C, and so by Lemma 41 there is a homcomorphism
h moving this open set over X. Let W = h{(A x En°1). Since xn(N) = 0,
X lies in aball in ¥ by Theorem 19. Spun X with a disk Dn in this ball
by Theorcm 9. By Theorcem 15, isotope D" in N into general position
with respcet to C n N keeping X = aDn fixed (which is possible since X
does not mect C). Then C n D" is 1-dimcnsional, oriented by orientations
of C, X, and thercfore possesses a fundamental class in H,(C n D™). Let
£ ¢ H; (C) be the image of this class under the inclusion homomorphism

n . n R ‘o
c C. Then E is independent of D7 becausc it is the linking class

of C, X in E2n"1. We verify that E # 0 by spanning X with the unique

. . n . . 2 . .
disk in B x 0. But £ = 0 from the commutative diagram of inclusion

CndD

homomorphisms
1 (G 1 D7) sy (O7) = O
i )

H,(C) -3 Hy(N) = Z.
The contradiction shows that X cannot be engulfed.

1t

Bxample 5. We give an examplc to show that the hypothesis 2Xx sm+k -3

is thc best possible in the case that X < M. Let M = 81 x BB+

and in the boundary M = S1 X 82n let X = 8™ be as in Irwin's example.

;) Doz 2,

Let C be a point, which is a O-collapsible O-corec. Then all
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the hypothgses arc satisfied, excebt that
2x £ m+k-3 by one dimension. We cannot engulf X, for if we were able
to, then X would be contained in ball by Lemma 39, ancd so would span
a disk in M. This disk would 1lift to a countable set of disjoint

2n-+1

disks in the universal cover R x B of M. The boundaries of these

disks would therefore be homolcgically unlinked in R x S2n, but by
construction we know that adjacent boundary spheres are linked.

The contradiction shows that X cannot be eagulfed, and that the
hypethesis 2x € m+k~-3 is best possible.

Example 6. I do not know whether x < m-4 is best possible in the case
that X ¢ ﬁo It would be the best possible if the following conjecture
were true.

!
Conjecture. Letvm% be a compact contractible manifold, and

A . Y 1 . . -
let 5 Dbe essential in ML. Then 5 _does not bound g disk in Nu.

serve at S does bound a singular disk ause M~ 1 n ible.
Ob that 31 d b 1 a singular disi bec e it s contractibl

A good candidate for this conjecture is Mazgur's manifold M'4 (see
Chapter 3, page 10), and for the curve choose st « point c (SJl X BB)',
drawn so as to avoid the atteched 2-handle. This curve bounds a disk
with one self intersection, which scems impossible to remove.

Before proving Theorem 21, which will require several lemmas,
we state and prove two corollaries.

Corollary 1 _to Theorem 21.

Let C, X be as in Theorea 21. If W can be admissibly furled to X,

then we can engulf W with a feeler of the same dimension.

The procf is the same as that of the Corollary to Theorem 20, with the
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proviso that it is nscessary to verify admissibility at each stage.

Corollary 2 to Theorem 21 (Irwin).

Let W be a k-connected manifold, k g m-3, and let Qm"1 he an

n-conuected submanifold of M, b < mel.  Let G %0 in M, and

. o o]
CnMc G, Let X becompact in M, x sk, and let X n M c 9 with

&im(X n M) < h. Then we can engulf X q‘D'MQQOJ such that

im(D-C) < x+l and D M = (X u C) n M. Conscquently X is contained

. Q
in 2 ball that meets i in a face in 7.

. L] O
Proof. Apply Theorem 21 to X n M, C n M in @ and engulf
° . [¢]
ZnMcE~~Cni, where din(B-C) < dim(X n ¥) +1 and B < Q. Then
LucC “%9 ~E¢O Now apply Theorem 21 tc X, B y C in M to engulf

c D B y C, where dim(P-(B u C)) s x+1 and Dn = (X UuBuC)nM=E.

Pd

Because of the last remark, the collavse DI y C is interior,
. a
Therefore D < C.

Therefore D ~39 0, and so a derived neighbourhood of D is a

*
Q
ball meeting M in a face in Q.

We now proceed to the proof of Theorem 21, The last statement
the thesis is taken care of by the following lemma.

Lemma_.3. Given X, C if we can engulf X c D™aC, “hen we can

Pesu

chooss D so that D n M = (X y C) n H.

Proof. The idea is to isotop D inwards a 1ittle, keeping X y C

[AE RS

fixed. Let Y = X uyu C. We can assume M compact by confining attention to
a regular neighbourhood of D-Y, Let ¢ : M x I - M, c(x,0) =%, x e M
be a collar given by Lemma 2. Corollary. Choose a cylindrical

triangulation of M x I (that is one such that the projection onto M
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is simplicial) such that ¢y is a subcomplex. Define an isotopy

of ﬁ x I in itself as follows. For sach vertex v € ﬁ n Y keep

v x I fixed. For each vertex v e ﬁ ~ Y isotop v x O along v x I

and stop before hitting (v x 1) u c'1Y; extend to an isotopy of

v x I in itself keeping v x 1 and thc interscction with ¢y fixea.
Now extend the isotopy cylinderwise to each prism A x I, A e ﬁ

in order of increasing dimension, keeping A x 1 and the intersection
with o—1Y fixed. The image under c extends to an isotopy of U
keeping Y fixed and moving ﬁ - Y into the interior. The restriction
to D gives what we want.

Definiticn of trails

We introduce a notion due to Moe Hirsch, which will be
ussful in the proof of Theorem 21. Let s denote the simplicial
collapse

K = Kg™a By~ °'°\\”K¢~1\%£ﬂn = L.
The symbel s includes the given ordering of clementary simplicial

collapses. Let W be a subcomplex of K. We define the trail of W

under s as follows, by induction on n. If n = 0, define trails W = W.

~

suppose inductively trail, W has been defined for the collapse t:
LY

KO\:}K:L\::‘ I T Y I{n—"1‘

and suppose K, K, is across the simplex A from the face F.
Define

trail, W, F #£ trail, Wy

trail W =
Ay trailt W, P < trail

% W.
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When there is no confusion we shall drop the suffix s.
Geometrically the trail is the track left by W during
the deformation retraction K —» L associated with the collapse
K™>L. We leavc the reader to verify the elementary properties:
(1) trail K = X, trail L = L.
(ii) trail (W, u W) = trail W, u trail W,.

(iii) +trail (trail W) trail #.

Thercfore "traill

is a closurc operator on the set of all
subcomplexes of K, and the trails form a sort of combinatorial
fibering of the collapse.

Remark

Notice that the trail depends upon the triangulation and
the order of the elementary collapser. If the same elamentary
collapses are re-ordered to give a different simplicial collapse
K~L then the trails turn out to be the same, but if different
elementary collapses arc used to define a simplicial collapse
K—~=1L then the trails are different. Therefore the trail is not
a piecewise lincar invariant.

However trails can be rcelated to pilecewise linear invariants.
Por example admissibility is a piecewise linear invariant. If
X ~+Y is an admissible collapsc (in a manifold now) then we can
triangulatec so that the trail of anything in the boundary remains
in the boundary. Thercfore admissible collapsing is equivalent

to "boundary preserving" in terms of trails. For Lemma 53 below
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we shall introducc another piecewise linear invariant called
inwards collapsing, which is equivalent to "interior preserving"
in terms of trails.

We now prove two important properities of trails.

Lemma L. If K~uL is a simplicial collapse and WV c K, then

dim (trail W) < w + 1

dim (L n trail W) < w.

Proof Let s denote the collapse

K = KO\RJKl\\g...‘w;Kn = L. The proof is by induction on n,

starting trivially with n = 0. Let t be the collapsc KOMs,K$ 4
of length n - 1, and 1lct T = trailtW. By induction dim T < w + 1,
and dim (Kﬂ g 0 T) < w. Suppose K I Kn is across A from F.
ii= Tl
If F£T then trail W=7, and TnX, =T n K _,, and so both

results hold for s. If P ¢ P then F < Kn—1 N T, and so dim P < w.
Thercfore dim A € w + 1, and so dim {trails W) =dim (AU T) <w+ 1.
Also L n trail W =L n (A uT)

which is of dimension < w.

Lemma L4B. If K~ L is a simplicial collapse and W ¢ K,

then K —~<L y trail W ™.

Proof For each eclementary collapse, across A from F, say,
either both A, F are in the trail, or neither are. Perform, in
order, all those elementary collapscs for which neither A, F are

in the trail, giving K™L y trail W. These elementary collapses
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are valid, because if A principal in Ki, and A £ trail W, then

A principal in Ki u trail W; also if F a free face of A in Ki,
and F £ trail W, then P is a free face of A in £, U trail W. Now
perform, in order, the rest of the elementary collapses, giving

L u trail W™~1L.

Corollary to Lemma L5. If K~ 1L is a simplicial collapse

and Wg c Wy c X, then L y trail W, L y trail W,.

Proof Let s decnote the collapse K™~=L. Let t denote

the induced collapse L y trail W, L given by the lemma. Then
je g Y1

trailt Wy = trails We because Wy < W, . Now apply the lemma to t

to obtain

Ly trailg Wy s L ou trail, W,

t
Substituting s for t in the right hand side gives what we want.

The relative mapping cylinder

Corrcsponding to the gencralisation in the theorems from
inessentiality to C-inessentiality, it is nccessary in the proofs
to generalise from the cone on X to the mapping cylinder of
X - C. It was for a similar purposc that Whitehead introduced
the mapping cylinder in 1939. We need a relative version of the
mapping cylinder here beccausc X n C is kept fixed. As it was
pointed out in Chapter 2, the mapping cylinder is a simplicial
rather than a piecewise lincar construction: it is a tool rather
than an end product,.

Let K, L be complexes meeting in the subcomplex X n L,
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and let f:X -» L be a simplicial map such that £lK n L = 1.

-

The relative mapping cylinder of £ is a complex pK u L defined

as follows. For each simplex A € K - L choose a new vertex, a say.
(Since our complexes always lie in some Euclidean space, choose
one of sufficiently high dimension so that thc new vertices are
linearly independent of K y L and each other). If AeX n L
define pA = 4. If A « X - L, define

uh = a(ph u A U £A)
inductively in order of increasing dimension, where
MA = U{uB; B e A}. Define

ukK = UfpA; & e K}.

The relative mapning cylinder is pK u L. In particular it contains

Ky L as a subcomplex.
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Let XK be the 2-simplex, abc, and L be the 1-simplcex, ad. The
diagram shows the relative mapping cyiliinder of the simplicial map
f:K - L given by fa = fo = a, fc = d.
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Lemma L6. (Newman) If A" « K — L then pA is an

(n + 1)-ball with facc A.

Proof For this proof only we shall use chains modulo 2
in the complex pK. The symbol pA will stand ambiguously for a
subcomplex and an (n + 1)-chain. To emphasise the chain point of
view we replace the statemcnts ph = 3, £|A is degenerate by the
formulac pA = 0, fA = 0, respectively. We replace u by +, and
write o0 for boundary. Therefore pA = a(poA + A + TA). We deduce

o = po + 1 + F

by verifying inductively on simplexcs, and extending additively to
chains., If B is a ball, then 0B is the chain of the complex é,
and so by the ambiguity of our notation, 6B = é. (Of course for
a general chain C, oC is defincd but é is not).

The proof is by a double induction. Let 1, 2 denote the
following statements:
1(n): if A" € K - L then pA is an (n + 1)-ball.
2(n): if ABeXk, AeX - L, dim AB = n, O <€ dim A < n,

then (A9B) is an n-ball.
Notice that the lemma follows from 1{(n) because A occurs with
non-zero coefficient in opA. Both 1, 2 are trivial when n = O,
and A is a vertex (A # fA because A £ L). We shall assume 1, 2
for dimensions < n, and prove first 2(n) and then 1{n).

The proof of 2(n) is by induction on dim B. Let 2(n, q)
denote the statement of 2(n) when dim B = g. The g-induction

begins with 2(n, C) trivially implied by 1(n - 1). We shall prove
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2(n, ¢ - 1) => 2(n, q), 0 < g < n.

Given AP 18Y £ K, write B = x¢%!.  Then

i

LASB = pas(xC)

MAC + pAxaC

il

=X + Y, say
wherc X, Y are n-balls by 2(n, 0), 2(n, q - 1), respcctively.
Then X + ¥ is an n-ball provided that X, ¥ meet in a common face.

Now X n Y = 0X n Y, because X = adX, a £ Y

(L(0A)C + pAdC + AC + TAC) n piAxoC
= pAdC + (FAC n fAxC)
c oY,
Therefore X n Y = 90X n o8Y. There are four cases.
(1) fAC = 0.
(ii) fAxC £ 0. Thercfore FAC n £AxoC = £ASC.

(iii) fAC £ 0, fx e fA. Thercfore fAx3C = O.

fi

il

(iv) fAC # 0, fx ¢ £C. Therefore fAxdC = FfAC.
In each of the first three cases X n Y = uAdC, which is an
(n -1) vall by 2(n - 1). In the last case X n Y = phoC + FAC,
which is the union of two (n - 1) balls meeting in the common
face fAIC (becausc TAC £ 0), and consequently X n Y is a ball.
Thercfore X, Y meet in a common face, so that X + Y is an n-ball,
and 2(n, q) is proved.

We now have to prove 2(n) => 1(n). Given A" ¢ K - L,

Jl

. - .
write A = XB s, X ¢ K - L., Again therc arc four cascs.
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(i) B e K.
(ii) B £ K, £fA £ O.
(iii) B £ K, fA = 0, B £ 0.
(iv) B £K, fA = fB = 0.
In the first case we prove, by a separate induction on n, that
phA = (xyB)', where y = fx, and the dash means take a first
derived complex modulo xB + yB. For if this is true for
dimensions < n, then

pA = LxB

a(pxoB + xB + yB), since uoB = O

i

i£hd

a((xyoB)' + xB + yB), by induction
a(a(xyB))'
(xyB)'.

In case (ii) uB is an n-ball by 1(n - 1). Thercfore

i

114

B + fA is an n-ball, because pB n fA = fB, which is a common
face. Also uxdB + (uB + fA) is an n-ball, because uxoB is an
n-ball by 2(n, n-1) and

uxoB n (pB + fA) = poB + fxoB

i

R

udB + B, by a homeomorphism,
= ouB + B,
which is (n - 1) ball, because it is the complementary face to
B of the n-ball B, by 1(n - 1).
We have shown that

WOA + FA = pxoB + (puB + FA)
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is an n-ball. But o6(poA + fA) = 8A. Therefore pdA + A + fA
is an n-sphere, and joining to the point a gives pd an
(n + 1)-ball.

Case (iii) is simpler than case (ii) because fA = O.
Therefore poA = uB + uxoB, which is an n-ball because pB, pxdoB
are n-balls meeting in the common face

pB N pxoB = uoB + B, since £x9B = B,

i

(n - 1)-ball as above.
Then udA + A is an n-sphere, and pl an (n + 1)-ball, as before.

Case (iv) is yet simpler because this time

i

uB n pxob wOB,

ouB + B, since fB = O,

i

(n - 1)-ball as vpefore.
The proof of 1(n), and Lemma 46 is complete.

Corollary to Lemma L6. uK y L L.

Proof Collapse across pyA from A, for cach simplex
A eX - L, in order of decreasing dimension.

Lemma L7. Topologically the relative mapvping cylinder

WK U L of £:K —» L can be obtained from K y K x T u L by identifying

X = x x 0, X e K
fx = x x 1, x X
x=fx = x x t, xeKnl, tel,
Proof We construct a continuous map
p:KuUuKx I yL ———spKul

onto the mapping cylinder, that realises the identifications. We



- b1 - VII

emphasise that the proof (of this lemma only) is topological

and not piecewise lincar. Decfine ¢|K u L to be the inclusion,
and for A ¢ K - L construct olA x I ¢ A x I - pd by induction in
order of increasing dimension, as follows.

Por the inductive step, let S* = (A x I). We shall show
that therc is a pseudo-isotopy ht:Sn - S8" such that hy = 1, ht
is a homeomorphism for O < t < 1, and h, recaliscs the identification.
Assume for the moment that this pseudo-isotopy exists. By induction

cpISn has already bcen constructed so as to realise the identification,

and so this map can be factorecd
n

st - ¢ 3 (?p«A).

N

N S

By \\\\\\ P
e
e

where ¥ is a homeomorphism. Using Lemma 46 that pA is a ball,
the pseudo-isotopy cnablcs ¢ to be extended to a map of a collar
of A x I onto a collar of pA. By filling in the complementary
balls, we obtain a map of A x I onto puA, such thmt the interiors
are mapped homeomorphically. This is the required map ola x I,
because under the identification no point of (A x I)Q is identified
with any other point.

We now construct the pseudo-isotopy. Let B be the simplex
spanning the verticcs of A n L (possibly B = 8). Then fb = b for
gach vertex of B, and so
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We first construct the pscudo-isotopy on B x I by defining

h,:BxI->BxI [t, 1]

t
to be given by mapping the segment x x I linearly onto
X x [t, 1], cach x € B. Thercfore h, keeps B x 1 fixed, hy = 1,

ht is a homeomorphism for 0 € t < 1, and hy is the required
identification B x I - B x 1. Next we construct the pseudo-isotopy
on A x 1, as follows.

Lift A - fA; that is to say choose a simplicial embedding
g:fA - A such that fg = 1, and B ¢ gfA. Given a vertex a € A,
and t € I, define a,_ = (1 - t)a + t(gfa). Let A, be the simplex
with vertices iat; a € Af{, and define the simplicial map

ht:A x 1 - At x 1.

Thercfore ht keeps gfA x 1 fizxed, hy = 1, ht is a
homeomorphism for 0 € t < 1, and h, is the required identification
s x 1 -» gfA x 1. Moreover ht is compatible with pseudo-isotopy
alrecady defined on B x I, becausc both keep fixed the intersection
BxInAx1=2Bx1. ‘We can show by elemcntary gecometry, that
given ¢ > 0, there exists 6(e) > 0, such that given 0 < s < t < 1

such that t - s < &, then the isotopy from hs to h, of

t
Bx I uyuAdx1 can be extended to an eg-isotopy of Sn, keeping fixed
outside any chosen neighbourhood of hS(B x I uAx1).

Choose strictly monotonic sequences gy 0 and ti - 1
such that ti+1 - ti < 6(81). Choosc a sequence of neighbourhoods
Vi such that ﬂVi =B x I uAx 1. Suppose inductively that we

have chosen the isotopy ht of 8% for O £t g ti. Now extend the
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isotopy ht of Bx I uAx1for ti £t < ti+1 to an si—isotopy

or " keeping fixed outside h, (Vi). Thercfore {ht } is a
i i
Cauchy sequencc of homeomorphisms of Sn, and consequently the

limit map h,; exists, making {h 0 <t <4} a pseudo-isotopy.

+7
Any point of Sn outside B x I U A x 1 has a neighbourhood outside
Vi’ for some i, which is kept fixed for ti £t € 1. Thercfore
the point is not identified with any other point under h,.

By construction h, makes the required identification on

Bx I uAx1, therefore on Sn. Thercfore the construction of

the pseudo-isotopy, and the proof of Lemma L7, are complete.

Definition of cylinderlike

Let V be a manifold, and V x I thc cylinder on V. Let
W = (ﬁ x I) u (Vx 1), the walls and basc of the cylinder
(perversely we regard V x O as the top and V x 1 as the basc of
the cylinder).

1

We call a triad XX, J§ c JX+ of compact spaces cylinderlike

if there exists a manifold V and a map £:V x I - J such that
g(VxO)CX
EW < J,
and £ maps (V x I)-W homeomorphically onto J - J4.

V x O X

}

<
X
)
wu:ﬂnm‘-ﬂw P
(A3
. -

=
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Bxample 1.

X
X+ the cone on X, and J, the

Let XX be a complex, J
subcone on the (x - 1)-skeleton of X. Then X, Jo ¢ J is
cylinderlike. For let V be the disjoint union of a set of
X-simplexcs {Ai} in 1-1 correspondence with the x-simplexes {Bi}
of X. Define E by mapping Ai x O isomorphically onto Bi’ and
extending to a homeomorphism of Ai x I onto the subcone on Bi’
for each i. We have already used this example in the proof of
Lemma 39 above.

Example 2.

i C

Let g:X" » C7 be a simplicial map betwecn two complexes,

-

X b " - s s . ] o
' be the relative mapping cylinder of g.

and suppose C < xX. Let J
Let g, be the rcstriction of g to the (x - 1)-skeleton of X, and
let J§ be the submapping cylinder of go. Then X, Jy ¢ J is
cylinderlike. PFor chcose V to be the disjoint union of a sect of
x-simplexes {Ai} in 1-1 correspondence with the x-simplexes {Bi}
of X - C. Define g by mapping the pair Ai x I, Ai x O
homeomorphically onto pB,, B, (by Lemma 46) for each i.

In the special casc that C is a point, not in X, example
2 reduces to example 1.

Lemma 48  (The piping lemma)

m . ~E 4K X+
ct_ M~ Dbe a manifold, and let T, Jo c J

v

be cylinderlike,

o

!

m - 3, Let £f:dJ - M be a map in general position for the pair

W
A

o
X uJdo_and such that £(J - Jo) ¢ M. Then there exists a map

ey

2Jd - M, homotopic to T keeping X y J, fixed, and a subspace J, < J,

i




- 45 - VIT

such that
[*]
£,(J - Jo) c H
S(fi1) < d,

dim J,_< 2x - m + 2

dim (Jo 0. J4) 2% - m + 1

J\‘ Jo U'Ji\';‘J()

Remark

The meat of the lemna is the combination of the collapsing
condition d~J, U J, together with the dimension dim J, < 2X - m + 2.
In ordecr to achicve this the homotopy f - £, has to be global,
rathcer than local like the homotopies of simplicial approximation
and general position.

Before proving the lemma we introducce notation. The proof
will then follow, and involve threc sublemmas.

Cylindrical triangulations.

Let V be compact. We call a triangulation of V x I

cylindrical if thec subcylinder through each simplex i1s a subcomplex.

Given any triangulation, wc can find a cylindrical subdivision by
Theorem 1, by mercly making the projection «:V x I -» V simplicial.
Given & cylindrical triangulation we can choos¢ a cylindrical
derived complcex by Lemma 5.

In a cylindrical triangulation therc are two types of

simplex: call A horizontal if x|A:A -» mA is a homeomorphism, and

call A yertical if xA = wA. In an arbitrary triangulation of V x I
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it is possible to have simpnlexes that are ncither horizontal nor
vertical, but in a cylindrical triangulation, or any subdivision
thereof; every simplex is cither horizontal or vertical.

Cylinderwise collapsing.

Let K be a cylindrical triangulation of V x I. For each
simplex A8 e ®K, the subcylinder A x I consists of horizontal

a-simplexes and vertical !

g

(a + 1)-simplexes, arranged

alternately. Removing the

interiors of thc top horizontal

and the top vertical simplex is

an elementary simplicial collapsc. \\\\\\\\\\\\

Proceeding in this way we obtain

a collapse A x I™ (A x I) u (& x 1).
Do this for all simplexes A € =K, in some order of decreasing
dimension, and wc have a simplicial colliapse V x I ™~V x 1. We

call this collapsing cylindcrwige.

Let P be a subcomplex of a cylindrical triangulation of
V x I. Call P solid if P contains every simplex bencath a simplex
of P. Equivalcntly P is solid 1f 2 = trail P under a cylinderwise

collapse.

Example 1. A subcylinder is solid.
Example 2. The interscction and union of solids are solid.
Example 3. If V is a manifold and W the walls and base of V x I,

then W is solid.
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Corollary 2 to Lemma U45. If P, @ are solid subcomplexes

such that P o 9 2V x 1, then P~u@ cylinderwisc.

The result follows immediately from Corollary 1 because
P = trall P, Q@ = trail Q under a cylinderwise collapsc.

Proof of Lemma L8

Without loss of generality we can assume M compact, for
otherwisc roplace M by a regular neighbourhcod of £J in M. Let
7 = 2Xx - m+ 2. Let E:V x I = J be the map given by the cylinderlike

hypothesis, and let ¢ = fE.

VxI——2 > M

Let 2 = £—1S(f). Then Z has the propertics
(1) dim Z < =z.
(2) dim [Z2 n (Vx I)] <2 - 1.
These properties follow from three facts: firstly £ is in general
position, implying dim S(f) < z, and dim (S(f) n (X U Jy)) < 3 - 13
secondly £ is non-decgcnerate because EI(V X I)O is a homeomorphism;
and thirdly 5—1(X U dy) = (Vx I).
If we could now find a subspace Q@ D Z such that
din{(Q n W) < dim Q < z
Vox I~W y QW
then the proof would be finished by defining £, = £ and J, = EQ.

In particular the collapses J ™=wdy U dy ™~y dy would follow from
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Lemma 38 because W o S(E). However in general no such Q exists.
What we heve to do is to homotop £ to f;,, and replace Z by

2y = g"1S(f1), so that there does exist a J convaining Z; and with
the above propertics.

)

Ligresgion., We digress for a moment to explain the

obstruction to finding a @ containing Z, and to describe the
intuitive idea behind the proof. Let m:V x I - V be the projection.
Then =Z2 x I is the subeylinder tnrough 72 and we can ceollapsc
cylinderwise

Vx I~ u(xZxI).
It is no good putting @ = % x I bcecause this is one dimension too
high. And the troutle is that if we start collapsing ®Z x I
cylinderwise tc try and reduce the dimension by one, then the
horigzontal z-simplexes of Z form an obstruction to collapsing away
the (z + 1)-dimensional stuff underncath them. Thercfore the idca
is to punch heles in these simplexes in order to rclease the stuff

"sunch holes™ in the singular set

underncath. How the only way to
of a map {(which is cssentially what Z is) i1s to alter the map.
Roughly speating we alter £ to £, and Z to Z, so that Z,; equals

% minus the punch-holcs. More precisely we shall describe =
homotopy from ¢ to ¢, kceping (V x I)" fixed, which will detcrminc
a homotopy from f to f, keeping X u J, fixed, becausc E[(V x 1)°
is & homeonorphisn.

. . 4 . -
The way to punch holes in a simplex A ¢ Z is as follows.
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Since A is a top--dimensional simplex of a singular set, it arises
from where two sheets of ¢(V x I) cross one another., Choose an
interior point of A, and a neighbourhood N of this point in the
sheet containing A. Then pipe N over thc frec end of the other

sheect. The "free ond™ mcans ¢(V x 0). The "piping"

is done by
dividing N into a central disk N' surrounded by an annulus N", and
replecing oN by

1N = @ N U g I".
Where ¢,¥" is a long pipe running along a path in thc second sheet
to the free end, and ¢.N' is a cap on the cnd of this pipe, whose
interior docs not meet the rest of ¢(V x I). The reason that we
had to have @(V x I -~ %) in the interior of M was to make room for
the pipe and the cap over the cad. Define ¢4 = ¢ on the rest of
V x I. The following picturcs illustrate the idea when z = 1, and
show how the piping enables us to perform the collapse that we

want. Of course the picturcs are inaccurate in that x £ m - 3.
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free end
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i
path!
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Collapse obstructed by Z
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!
v

Collapse now possible
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A technical difficulty in the proof is that in gencral
it is impossible to find a cylindrical triangulation of V x I
with respect to which the map ¢:V x I » M 1s simplicial. The
rcason is that we cannot make both ¢, n simplicial, as is shown
by Examplc 1 after Theorem 1. As the proof progresses we shall
sometimes want ¢ simplicial, and other times ®, and so it will be
necessary to switch back and forth.

Continuing the proof of Lemna L8.

Let X, L triangulate the pair V x I, Z. We shall construct
successive subdivisions K;, Kgs ... Of K, and Ly, Lg, ... will
denote the induced subdivisions of L. First let K; be a cylindrical
subdivision of XK. Next let K; be a subdivision of X, such that
p:Ky » ¥ is simplicial (for a suitable triangulation of ¥). Then
L, has the properties:

(1) dim Ly < z.

(2) The z-simplexes of L, are interior to XK.

(3) o identifics the z-simplexes of L, in pairs, and
identifies interiors of those simplexes with no other points.

The properties (1), (2) follow from the properties (1), (2)
of 7Z above. Property (3) comes from the general position and
Theorem 17.

Sublcmma 1.

We can choose E, K so that La satisfics the further property:

(l4) If A is a horizontal z-simplex of L, then
nh N m(Z - A) ¢ wA.
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Proof. Although Ky 1s cylindrical, L, does not in
general satisfy (4) because two horizontal z-simplexes of L, may
lie in the same subcylinder, and therefore have the samec image
under x. If they do, then we can move one of them, A say,
sideways out of the way as follows. Let XK' be a first derived
of K, modulo the z-skeleton. Choose a point v, e st(4, K')
such that y £ mh, which is possible becausc dim A = 2 < X = dim V,
since X € m - 3. (This is one of the places where codimcnsion
> 3 is esscntial.) Since both v, and A lic in a simplex of X',
the linear join vAA is well defined. By property (2) A lies in
the interior of X', and so there is a homcomorphism ¢ of st(4, X')
throwing 4 onto VAA, and keeping the boundary fixed. Extend ¥ to
a homeomorphism

YV x I -V xlI
cixed outside st(A, K'). Since ¥ keeps Z - A fixed, and since
TV £ (z-skeleton of wK'), we have

myh n (2 - A) < WWA.
Wow choose a point v, for each horizontal z-simplex A € L,, such
that the images {WVA} are distinct. Siance the stars {st(a, K')}
ere disjoint, we can define the homeoriorphism ¢ so as to shift
all the A's simultaneously. Let

£ = gw“ﬂ:v x I = J,
which is a valid alternative for the cylinderlike hypothesis,
because ¥ kecps (V x I) fixed. Let
% = £78(¢) = vz.
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Let R = yXK,, £ = yIL,. Then X, T is a triangulation of the pair
Yy Yhy s

R

V x I, %. Morecover by construction L satisfies property (L),

and consequently any subdivision of @ also satisfies (4). Therefore
if we rcplace £, K in our original construction by &, ¥ then L.

will automatically satisfy (4). This completes the proof of
Sublenma 1.

Construction of one pipe.

8o far we have constiructed a triangulation Kz, L, of

V x I, 2 satisfying properties (1, 2, 3, 4). Let K, be the

5
barycentric first derived of X;. Let Kh be a cylindrical subdivision
of K3' Let K5 be a ¢ylindrical sccond derived of Ku.

Let &, A, be two z-simplexes of L, ideantified by ¢, by
property (3). Label them so that one of the following cases
occurs:

(1) both vertical

(ii) both horizontal

(1ii) A horizontal and A vertical.
One of these casecs always occurs because every simplcex of Kp is
either horizontal or vertical, because K, is a subdivision of the
cylindrical K, (this was why we botherecd with Ky). 1In casc (i)
there is no need to do any piping, beeause neither A nor A, will
have eny (2 + 1)-dimensional stuff underneath them that we want to
get rid of. Thercfore we can assume & 1s horizontal.

Let A be the barycentre of 4, and let P (P stands for path)

be the vertical interval sbove A joining A to ®A x O. By
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construction 4 is a vertex of X, and P is a subcomplex of Ku, and

3

so the second derived neighbourhoocd

p*  onp, x

il

5)
is an (x + 1)-ball meeting V x O in a face, p* say. Let

DZ = A n :DX‘..1

y
which is a z-ball, being the closed star of A in A5 (A5 being the

subdivision of A induced by 15),

9
(&

o
4

<.

U‘X\/\/\/\/\/\/\/\/\/\/\‘”“
\
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Let
D% = 4, n ¢ gD?
which is a z-ball by property (3) abovc, but is not in general
a subcomplex of K5, because ¢ is not in general simplicial on K5.
Both P and n(Z - £) x I are subcomplcxzes of K, , and are
disjoint by property (4). Their second derived neighbourhoods are

disjoint in K Therefore DT A 2 = DZ. Thercfore cp]DX'Vl is an

5°
embedding, and
(5) @u1¢DX+1 - Dx+ﬂ U Di-
Let Ké be a subdivision of K5, and MS a triangulation of
M such that ¢3K6 - M6 is simplicial. Consequently Di becomes a

subcomplex of K6. Let K7, M7 be barycentric sccond deriveds of

K6’ M6. Then ¢3K7 - M7 is simplicial because ¢ is non-degenerate.

Let
3 = w(ep™tt, i)
Bx+1 - N(DX+19 K7)
5+ - w(p?, K.).

Notice that these arc three balls, because they are second derived

-

neighbourhoods of balls. Also BX+/l mects V x O in a face, BX say

X+

(because D aid); B§+1 lies in the interior of V x I (because

Di did); and B" lies in the interior of M (because @DX+1

aid).
From (5) we deduce
(6) qg—1(Bm> _ pE+l U B§+1

¢—1<Bm) (Bx+1 3 ﬁx) U B§+1.

i
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X+1)

By Theorem 6, V x I is homcomorphic to closure (V x I - D s

and so we can choose an embedding

heVx I -»>VxTI

. : . . |
that is the identity outside T ; and maps V x I onto closurc

(VxI- DX+1). The two maps

@lBX, mhlezBX - Bo
are both proper and agree on the bcundary. Therefore they are
ambient isotopic by Theorem 9, because x £ m - 3, and so there

m

. . . m . . .
exists a homeomorphism k:B - B, keeping the boundary fixed, such

that

o|B* = k¢h|B*

:B* - 8%,
Extend k by the identity to a homcomorpnhism of M. Define ¢, to be

the compositicn

Vox T et s Vox T =

Q1

X+ x+1 o
B U B, s and the only differcnce

M > M

~

s

Notice that ¢ = ¢4 outside

X+

between ¢, ¢, is to altcr the embeddings of BX+1, B

in Bm.

Therefore ¢, is homotopic to ¢. Also ¢, = ¢ on (V x I)', because

the only placc where they might not agree is BX, and here they

agree by choice of k. Thercforc ¢ ~ ¢ keeping (V x I) fixed.
Remari.

ilc have completed the construction of one pipe. Notice

that the neighbourhood N rcferred to in the digression above is
X+

bl

B . The pipe was thrown up indirectly by the homeomorphism Xk,

rather than by drilling directly along the path ¢P (which might be
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pretty rugged if x = m - 7, becausc the embedding @IDX+1:DK+1 - M

could then be locally knotted along P).
Gonstruction of f.

s s AR L

ccall the comautative diagran

Vv ox I LU Y,
\‘\ // A
E ‘\\, /'/ f
- J 4

X+ S+ - . .
Let B = 3 U B, . Since ¢, = ¢ outside B, and since £ maps B

homecomeorphically onto ES, anc maps no other points into B, we can

define £4 = @15—1 unambiguousliy. Thercfore
Pa
V x I ————1
. s
N ’/é
g 1
\\N y,

J/

. 2]
is commutative. Since £ = £, outside £B, and £(J - Jo) ¢ M, and

O O
c M, we have £, (J - J,) < il as required. Let

it

£,(2B) ¢ B
-1
24 = § S(f1>‘

0 o
Sublemma 2.  hZ, =% - (D2 u D7),

In other words we hove punched holes in the simolexes A, A,

“

1 X+ .
o« « Then I, £, agrec outside

Proof. Let B = B y B
EB. Thercfore
7 r? T - 3 0
Zg = (2 - B) v g 's(ry[EB).

Since h kceps Z - B fixed,
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Now

ne~'s(f, |£B)

1l

ne”s(kenz™ 1 |£B), by definitions of i, f4,

it

S(ko |hB), beccause hg"1|£B:gB - hB is a homeomorphisnm,

I

S(p|hB®), becausc k is a homcomorphism,

(8% - %) u (B2 - T%).

it

N 27 4 ;
Therefore hZ, = %2 - (D u Dj), as rcquired.

Simultancous construction of all the pipes.

Let {(Ai, A*i)} be the sct of pairs of z-simplexes of Lg
of type (ii) or (iii), where i runs over sone indexing sct. TFor
each 1 we construct a pipe as above, using the same subdivisions
KB’ .oy K7 of Kyz. We now verify that the constructions are mutually
disjoint.
Pirstly the paths {Pi} are mutually disjoint, and disjoint

from UA%i by property (i) above. Also thesc are subcomplexes of Ku
X+

end so their sccond derived neighbourhoods {Dj

} are mutually

disjoint, and disjoint from UA,,. Thercfore, using (5) above, the

. ey R N o

images {¢u£+ } arc mutually disjoint subcomplexes of M6. Therefore
. . - n Cox s

their second derived neighbourhoods §Bi} are mutually disjoint.

Therefore we can define h, kK so as to construct a pipe inside cach

B? simultaneously. As before define ¢, = koh, £; = @15”1,
Sublemma 3.
Let T be the subeylinder through the (z - 1)-skeleton of
Lo.  Then

Vx IS0y Ty oy~ W,
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Proof. Since h is an embedding it suffices by Lemma 38
to show that
n(V x I)~:n(W u T u Zy) ~hi.
By property (L) each path P, is disjoint from W u T, and thercfore

3+ X+ . s
£+ , Bi+ are also disjcint from

£y

the sccond derived neighbourhoods D

1
It

W u T, Therefore h keceps W y T fixed, becausc h only moves inside
+1

the {B? }. Thercfore it suffices to show

h{(V x I)™=W u T u hZ,~.
Now h(V x I) is the subcomplex of the cylindrical triangulation
K5 obtained by removing thc open simplicial e ighbourhoods of the
{Pi}. Therefore h(V x I) is solid because if a simplex does not
mcet UPi, nceither doesg any simplex bencath it.

For each horizontal z-simplex A € L,, let A' denote the

i

ot

subcomplex of K5 bencath 4, and let A" = A' n h(V x I). Let

' is solid, amd so is A"

£ = A", the union for all such A. Then A
being the intersection of solids, =2nd so is & becing the union of
solids. Thercforc Wy T u E is solid. We have
N(VxI)oWyTuUuE>V x 1 and so
MV x I)™SWuyuTubB
cylinderwise by Corollary 2 to Lemma L45. Next we have to show
WyuTuyulb~7uTuhZ,.

We do this by examining each A" separatcly. There are two cases,
according to whether 4 is the first or sccond member of a pair.

Case (i) A is the first member of a pair. Now A' is a
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(z + 1)-ball, because A4 is interior to the prism =& x I by
prooerty (2), and so A' triangulates the convex lincar (z + 1)-cell
bencath i. The subball st(h, 4') mecets A' in the common face D%,
and so the complcment

AT = AY - st(A, A')
is also a (z + 1)-ball with face F = 1k(4A, A'). Therefore we can
collapse across A" from F.
Casc (di). A, is the sccond mewber of a pair. In this case
AY = A} end so we can collapsc Al from DZ. What is left after all
these collapscs is W u T u hZ; by Sublerma 2.
Next collapse W u T u hZz,~W u T by collepsing
A - f}z '\,a['a.

Ay - B% ~s A,
for all horizontal z-simplcxes 4 or A, in L,. Finally collapse
Wy T~ W cylinderwisce. We have shown

h(V x I)™W u Ty hZ;~SW

ag required,

Complcetion of the proof of Lemma 48.

Definc Jy = 8(f,.) u (T ~ W). We must verify that J, satisfiir
the throce conditions:

(1) dim J, < 2

(ii) dim (Jo 0 Jy) < 2z - 1

(ii1) J~J5 U Iy ~J,.

To prove (i) obscrve that dim S(f,) < z and din T < z.
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To prove (ii); Jo 0 Js = (Jo n S(£1)) u (Jo n E(T =)
(Jo n 8(£)) u (BW n (T -W))

(Jo n 8(F)) UE(W N T = W).

it

i1

t

dim (Jo n S(f)) < z, by gencral position of f.

dim (WnT-W) <dim T < z.

Thercfore dim (Jo n J,) < z.
To prove (iii); J = &g(Vx I)
Jo UJdy = EW U E(T - W) u EZy

= EWuTuZ)
Jdo = EW,
Therefore the collapse J~J, U Jy ~J, follows from Sublemma 3
by Lemma 37 because W o 3(£). The proof of the piping lemma is
complete.
Lemma 49  (¢.f. Lemma 39)

PR . o
Let C be a closed subspace of ¥ _, such that dim (C n M) < q.

X . . y
Let X be compact, C-inessentizl and X n M ¢ C. Then these are compact

spages Y. o 7, such that

o ke o g

XuCecYyuC-22 y

ITnMdcl

dim Y £ X + 1

Procf. Fotice that the interiorness of the collapse

P

follows trivially from the other results, because

(LuC)nM=(YuC)ni=(2uUC)ni=Cn M
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The lemma is trivial if max (q, x) > m - 3, because then
choose X =Y = Z. Therefore assume q, Xx <m - 3. Let
z = max (g, X) + X - m + 2. There are two cases according as to
whether x < g or X 2 Q.

Case 4 x < g.

Therefore z = ¢ + X - m + 2. Without loss of generality
we can assume X = £ - G, because if we prove the result for X - C,
then trivially it follows for X. The C-inessentiality means that
the inclusion X ¢ M is homotopic tc a map f:X - C by a homotopy
h:X x I -» M keeping X n C fixed. Both £, h are continuous-maps,
not necessarily piecewise linear, but before we make h piecewise
linear we first want to factor it through a mapping cylinder.

Wwithout loss of generality we can assume M to be compact.
Por if not, replace M by a compact submanifold I, containing a
neighbourhocd of h(X x I). (Construct M, by covering h(X x I)
with a finite number of balls and taking a regular neighbourhood
of their union). Replace C by C n M,. If the result holds for I,
then using the same ¥, Z it also holds for M, by excision.

Therefore asssume that M is compact, and conseqguently the
ralr ¥, C is triangulable. By the relative simplicial approximation
theorem, we can homotop f:X - C to a piecewise linear map keeping
X n C fixed. Triangulate X, C so that £ is simplicial, and let
J = pX u C be the relative mapping cylinder. Since h realises the

identifications of the topological relative mapping cylinder, we
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can factor h through J by Lemma L7,

h

XA x 1 > M

where g|X u C is the identity.
Again using the relative simplicial approximation theorem,

make g:J - M piecewise linear keeping X u C fixed.

Let Y = g(uX), which is one of the spaces to be found.
Then ¥ o X and dim ¥ € x + 1. Let Yo = X u £fZ = g(X u £X). Then
Y, ¢ Y. In particular g|Y, is in general position, because it is
the identity, and so by Theorem 18 we can homotop gluX into general
position keeping Y, fixed. At the same time we can ensure that
g(uf - Yo) ¥. Therefore ¥ - Y, ¢ M. Therefore Y n M = Yorwﬁ c C,
by the hypnothesis X n ﬁ < C. The homotopy extends trivially to a

homotopy of g keeping X u C fixed, because uX n C = fX. Since
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dim (pX) < x + 1, the general position implies
dim S(gluX) < 2(x + 1) - m
<z -1,
because x < q. What we want is dim 3(g) < z - 1, but as yet
Y = g(pX) may intersect C in too high a dimension, and so another
general position move 1is necessary.
Let C, = closure (C n ﬁ). The.. dim Co € ¢ by hypothesis.
Since Y - Yy C© ﬁ, by Theorem 15 we can ambient isotop Y keeping
Yo fixed, until ¥ - ¥, is in generol position with respect to C,.
Therefore
dim ((Y = Yo) nCo) < (2 + 1) + g = m

The isotopy of Y keeping Y, fixed determines a homotopy of g keeping
“r

X u C fixed, that does not alter S(gl|pX) but does reduce S(g),

because

1

g(uX) n g(J - uX) =¥ o (C - £X)

t

(Y - fX) n C

it

(Y ~ £fX - X) n C, since XnCcfX

1
1

,Y-—Yo) (‘:C

it

t

o
(Y = ¥Y5) nCp, since ¥ - Yo < M.

Therefore, since

&

is non-Cegenerate.
. -1 o . e .
dim g (g(pX) n g{(J - pk)) €« 2z - 1.
Writing J = pX u (J - uX), we see that

5(g) = 8(gluX) U 8(gld - px) U clusure g~ (g(uX) n &(7 - uX)),
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of which the second term 1s empty, and the other two terms wzs have
made of dimension < z - 1. Thercfore

dim S(g) <2z - 1.
Now triangulate the collapse J ~=C of thec mapping cylinder (given
by the Corollary to Lemma 46), and let T = trail S(g). Then
J~~T u C by Lemma 45. Therefore gJ~—g(T u C) by Lemma 38, because

T o 8(g).

Let 2 = g7 n ¥, which is the other space that we had to find.
Then
dim Z < dim T
<1 + dim 8(g), by Lemma Ll
< Zo
Now YUC=gJ, and Zu C= (g7 nY)ucd
=(gTuC)n (YucC
=g(TuC)negd
= g(T u C).

Thercfore
XHulCacYul~2ZuydQC,
which completes the proof of case (1)

Case ‘25 X 2 Q.

Therefore z = 2X ~ m + 2. This time we ghall need to use
the piping lemma. 48 before ascume M, C compact, make £:X - C
simplicial, and let J = uX u © be the relative simplicial mapping
cylinder of f. Without loss of generality we can assume

. . X
dim C g x; for otherwise Jet C( ) dznnte the z-skeleton of C.
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Then fX c C(X), and if' we prove the lemma for C<x>:
xuct® cyycl®g gy,
then it follows for C by excision, because C - C(X> c M by the

3]
hypothesis dim {C n M) € g < z.

L4

Therefcore assume dim C <€ X. Hence dim J € x + 1., Let
Xo be the (x - 1)-skeleton of X, and J, = uX, u C the submapping
eylinder of £|X,. As before construct from the homotopy h o
piecewise linear map g:J - M such that glX u C is the identity.
In particular g|X u C is in general position, and J DX u J; o X U C,
and so by Thecrem 18 Corollary 2 we can homotop g into general
position for the pair J, X u Jo keeping X y C fixed. At the same
time we can ensure that g{J - X - C) cvﬁ. Therefore g(J - C) ﬁ,
because X - C ¢ N by the hypothesis X n ﬁ c C.

This time let Y

i

gJ., Then Y o X, dim Y € x + 1, and

YnMcC because ¥ - G

H

gl - gC c g(J - C) c M. Now the triple
3%, 3% <« 3 is cylinderilivs, g(J - Jo) c M and z < m - 3.
Therefore by the piping lemwe (Lemins 4.8) we cen homoton g keeping
XudJ, fixed and g(J - Jp) &, and chocse J; o S(g) such that
dim Jy <€ 2
dim (Jo N Jy) € 3 = 1
J™~sdg U Iy~ Jg.
Triaucgulate the mapping cylinder collapse Jo~-, C given by

Lemmz 16 Corollary, and let T

i

trail (Jo n J4). Then by Lemma Lk

Adm T o< 4 o+ dim (Tg n JTy)

-t

S Zﬁ
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Al50 Jo~T U © by Lemma 45, Therefore J, U J;——aT U C U J,
because J, n J; ¢ T. Therefore
J~~do Udy™ T u dy uC.
Therefore by Lemma 38, gJ ~g(T u J, u C), because J, o S(g).
Now let Z = g(T w J.); then dim Z < z bscouse beth

dim T, dim J, < z. We have gJ =Y =Y U C, and g(T v J; uC) = %3 u C,

ZuCcYulC—~ZuC,
which completes the proof of Lemma L8.

Admissible reguler neiphbourhoods.

Definition: a :regular neighbourhood N of X in M is called

admissible if the collapse N™>»X is admissible.

Lemma 50, Let i pe an admiseible rezular neighbourhood

£ Zin M, et P be the frontier of M in M, If Y c N - ¥, and

e e

X Svory~&Y¥, then N is also an admissible regular neighbourhood

of ¥ in M.

Proof. 1f X~%Y the resul: is trivial because then
N4 ~&Y, Therefors assume Y ~%X. There arc two cases: the

o .

avsolute case when X < M and the rel:aitive case when X meets 1.

o L]
T

In the absclute case both N, ¥ must also lie in }, and so F = 1I;
therefore the result follows from Theorem & Corollary L.

The relative case ig similar, and we indicats the steps
of the proof, leaving the details to the reader.

(i) A derived neighbourhood is admissible (c.f. Corollary

to Lemma iL4).
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(ii) Any two admissible regular neighbourhoods are
ambient isotopic (c.f. Theorem 8 (2)).

(iii) £ N, 1s another admissible regular neighbourhood
of X in M, and N, ¢ N -~ ¥, then there is a homeomornhism

©0:F x I >N ~ N, such that ¢(x, 0) = 0, x e P and o(F x I) = Mn(N -1%),

(c.f. Theorem 8 Corollary 2).

Now, given the situation in the lemma, let N, be an
admissible regular ncighbourhood of ¥ in N - F. Then N, is also
an admissible regular neighbourhood of X in M because Ni“iiY‘iix.
Heuce N*#ZNi cylinderwise by (iii). Therefore N is an admissible
regular neighbourhood of Y because N~4%Y1-SY. The proof of

Lemma 50 is completc,

m

We now prove Thecrcem 21 in the special case that X n M ¢ C.

< D,.
In particular this covers the case vwhenr X < M.

It
o
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Lemma 51, Let_C be a g-collapsible k-core of M, and let

V.
el

X . .
X .be compach, C-inessential, X n M ¢ C. Let

2%, g+ X <M+ X - 2

- D 8 0
Thea we cen engulf X ¢ D0, such that dim (D - C) <% + 1.
o]
Prooil Let ¢ = aim(C n ). The g-collapsibility means

[ [« 3N N -
that C~y3, vhere dim (@ n ) € g. Of course ¢ > ¢ in general.

We consider separately the three cases: (1) c < q (2) ¢ > g > x

PN
LN
~—
Q
\'4
i
N

X.
Causg (1): ¢ £g (c.f. the proof of Theorem 19).

Thiy proof is »Hy induction on X, starting trivially with

= -1, Assume thc result true for dimensions < X. By Lemma U9

o
choose ¥, Z such that X oY uC™2Z2 uC, ZnilcC, and

g

= dim 2 < max (g, X) + X - m + 2.
Therefore z < k by the hyvothesis X + max (g, %) €< m + k - 2,
Therefore¢ Z is C-ineesential. Also z < X by the hypothesis

X

N

0
m - 3., Therefore by induction we can engulf 2 ¢ BE~0C,
with dim (8 - C) € 2 + 1 €z, and B n i = C n M. Apply Lenma 42
to the situztion
'O_ N )
YuC™~2uCck
and anbient isotop & to E, keeping 7 u C fized so that
N Q
(Y u C) uE,~E,. Since arbient isotopy preserves interior
O -
colle psibility we huve Z,™%C. Thorecfore putting D =% ¢ C u E
o O .
we have D™ B, ——30, and s0

o

Alse dim (D ~ C) < x + 1 because D = C = (Y - B ) v (B. - C),

o ?
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dim ¥ < x + 1, and din (E, - C) = dim E - C < X.

Case (2): ¢ > g >x

o]
Let C™~@Q be given by g-ccllapsibility. We can choose

0 so that X n C =X n 9; for if not let T = trail (X n C) under
some triangulation of the collanse C‘\:AQ. Then dim T € ¥ + 1 € ¢
by Lemma L, and C~—q y T by Lemma 45. Therefore @ u T is as
good a candidate as Q@ in the definiticn of g-collapsibility. In
fact it is better because ¥ n C = X n (R u T).

Therefore we cen suppose X N C = X n 3. Therefore
Xu C-\iﬁx U 4 by excision, and X n ﬁ c 2. The deformation
retraction C -» 4 cnsures that if X is C-inessential then X is
Q~inessential also. Therefore by case (1) we can engulf X c E'\i,g.
Avply Lemma L2 to the situation

XuC~%Xuact
and ambient isotop & to I, keeping X u J fixed; so that
(X uC) uB,™E,. Let F=XuyuCuE, Then F'“inw‘Nng, because
E ~=3. Therefore F o C 5 9, F——q and C ~=q.

If we could deduce thnt F-3;c we should be finished, but
this cannot be deduced, as is shown by the example at the end of
Chapter 3. Therefore we have to get round the difficulty by taking
a regular neighbourhood of F; but it is necessary first to restrict
attention to a compact subset in order that the regular neighbourhood
should exist.

Let M, be a regular neighbourhood of F-Tin M. Let

Cys Fyy @ denote the intersections of My, with C, F, 3 respectively.
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Then Fl\\i;Qi and Ci*\; G4y in M, because none of the collapses

meet the frontier of ;. Let I be an admissible regular neighbourhood
of ¥, in ;. Then C, does not meet the frontier of I because

C, ¢ F,. Since F,~— G, —7C, in M, we also have N an admissible
regular neighbourhood of C, in M;, by Lemma 50. Therefore N ~—~C,.
Adding C - C; to both sides, N u C—C by excision. Now

XcFcPF, uCclNuyC. Let D= trail X under some triangulation of
the collapse N y C™=C. Then X ¢ D~C by Lemma L5, and

dim (D - C) £ ¥ + 1 by Lemma L4h. By Lemma 43 isotop D keeping

X u C fixed so that D n N = (Xut)n M= C n M. This completes

the proof of case (2).

Case (3): c > g < X

Let C —s be given by the g-collapsibility. Triangulate
XuC - Q so that X is a subcomplex, and subdivide if necessary so
that C ~— § collapses simplicially. Let T™ be the trail of the
(x - 1)-skeleton of C - 4. Then C—~4Tu Q by elementary simplicial
collapses of dimension > x + 1. It is valid to perform these on
X u C because although an x-simplex of X may occur as the free face
of some elementary collapse, it is nevertheless principal in X,
and therefore remains a free face when X is added. Therefore

XU C™=X, u Q

where X, = (X = (C - (Tu 8))) uT. iWe now want to engulf X, from
Q.

Observe that dim X; < X because dim T < X. Also
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X, 0 ﬁ c(XucC)u ﬁ = C n ﬁ = 2 n ﬁ c ?. Since X is C-inessential,
so is X u C, and therefore so also is X;. The deformation
retraction C -» 9 ensures that X; is Q-inessential. Therefore by
case (1) we can engulf X, c E“\i,Q. Apoly Lemma 42 to the situation
XuC’\ZXiuQcE,

and proceed as in case (2). The proof of Lemma 51 is complete.

The problem of proving the general case of Theorem 21 is
-that the deformation of ¥ into C may involve some boundary-to-interior
type collapses, and so the engulf involve the inverse process
interior-to-boundary type expansions. But when we try to expand
interior-to-boundary we hit an obstruction, because there is no
room to push other stuff out of the way. We drew attention to this
situation at the end of the proof of Lemma L2. Therefore we
introduce a device of Moe Hirsch to cope with the difficulty.

Inwards collapsing.

Definition: Let K o L, J be complexes. We say that an (ordered)

simplicial collapse K~L is away from J if J n trail W = J n W for
every subcomplex W c J.

Example Let X be a cylindrical triangulation of X x I.
Then any cylinderwise collapnse K ~sbase X x 1 is away from the top
X x 0.

Let X~=1, be 2 simplicial collapse away from J, and lect

N ¢ K. Then the induced collapse K~~TL y trail W is also away from J.
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Proof. Let s denote the collapse K~L, and t the
induced collapse K~L u trail W given by Lemma 45. The clementary
simplicial collapses of t are o subset of those of s, with the
induced ordering. If V c XK, trailB V 1is obtained by adding to V
an ordered set of simplexes, while trailt V is obtained by adding

a subset; therefore trail, V ¢ trails V. Therefore

t
JnVeacdn trailt Vecdn trailS V=JnV,
because s is away from J. Therefore t is also.

Definition. Let X ~~Y in the manifold M. We call the

collapse inwards, and write %Y if, given any trisngulation of

X'—J?g there exists a subdivision and 2 simplicial collapse

X -3y VX -TTnYaway from X = ¥ n ¥, It follows at once from the

definition that y is invariant under exciaion:
X"~I;X NnY <=> Xy Y"l;Y
Example.
Let M be compact, X a collar on M, and Y the inside boundary
of ths collar. Then X-NIjY, because given any triangulation of X
there exists a cylindrical subdivision and a cylinderwise collapse
away from ﬁ.

Lemma 5% (Hirsch)

. . Z
Let G be a g-collavsible k-core of M. Suppose ¥V, 2% are

compact, ¥ o Z, Y y C~—X:7% y C, 7 is C~inessential, and 2 n M ¢ C. Let

Q.+ 2z Y+ smrk -2,
Then we_can engulf Y ¢ D——»C such that dim (D - C) < max(y, z + 1).
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Proor. The proof is by induction on z, starting trivially
with z = - 1, for then choose D = Y y C. Therefore assume the lemma

true for dimensions less than z.

Since z € ¥y, the hypothesis of Lemma 51 is satisfied for Z,
and so we can engulf Z c E‘\igC, dim (X - C) € 2 + 1. By Theorem 15
ambient isotop K, kecping C u Z fixed, until B - (C v Z) is in
general position with respect to Y.

Let W = closure (Y n [E - (C u 2)]). Then

dim ¥ <y + (z + 1) - m.

Wow ¥ ¢« (Y U C) = (% u C). Therefore triangulate (Y U CJ -~ (Z U G)
s0 that W is a subcomplex. By the definition of vy there exists a
subdivision and a simplicial collapse Y u C—~wZ u C such that if

T = trail W, then T n M = W n M.
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‘We claim that Y, T, E satisfy the hypotheses for Y, Z, C
in the lemma. Once this claim has been established, we can appeal
to induction, because t = dim T
£ 1 + dim W, by Lemma ULl
£y + 2 + 2 -nmn
< 7z, by the hypothesis y < m - 3.
Therefore by induction engulf Y ¢ D™~E. Therefore ¥ ¢ D™~~»C because
E'\iéC. Therefore ¥ ¢ D™=C because D~~E~~C. Finally
dim (D - C) < max (y, z + 1), because
dim (D - E) < max (y, t + 1), by induction, and
dim (E - C) € z + 1, by choice of E.
There remains to establish the claim about Y, T, E
satisfying the hypotheses.
First B is g-collapsible because E —~C. Next B is a
k-core becausc ﬂi(E, C) = 0, all i. Next T is compact, because W
is compact. Next Y o T because Y o W and so, taking trails under
the collapse Y u C~~Z u G,
Y = trail Y o trail W = T.
Next Y y E~~L T u E by excision, because Y y C—LT u 2 u C by
Lemma 52, and
(YuC)u (TUE)=YUE
(YucC)n(TuE)

1l

i

[Yn(TUE)JuC
Tu(YnE)ucC

=Ty [fuzu(¥ncClucC

Ty Z u C.
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Next T is E-inessential because E is a k-core, and
t=y+2+2-m
< k, by the hypothesis y + z € m + k - 2.
Finally the dimensional hywnotheses are satisfied because the only
change is to substitute t for z, and t < z. Therefore the proof
of Lemma 53 is complete.

Relative collars,

Let ¥ be compact, C c ¥, V c ﬁ. We construct a collar on

Vmod C in M as follows. Let c:ﬁ x I »M, c(y, 0) =y, 7 € ﬁ be
a collar on M. Choose a cylindrical triangulation of ﬁ x I, and
a triangulation of M such that V, C arec full subcomplexes and ¢
simplicial. (This can be done as follows: Tfirst triangulate the
triple M, V, C, next take a first derived, mnext subdivide to make
¢ simplicial, then subdivide to make ﬁ x I cylindricael, and finally
extend the subdivision to M). Choose & > 0 such that ﬁ x {0, e]
contains no vertices. Let £:V -» [0, ¢] be the simplicial map
determined by mapping vertices of V.n C to 0 and vertices of
V - C to e. Define

V, = fe(v, t); veV, 0t < fv}

Ve = fe(v, £v); v e Vi.

We call V, a collar on V mod C in M, and we call Vp the inside

boundary of the collar.
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M

Suppose, further, that we are given %X c M such that

dim (X n ¥) <

x, and that we chose the triangulation of M so as

t2 have X a subcomplex.

Lemma_ 54,

1) VaGC=V,nC=vVenC=Vs M,

ii) v, =YL v,.

1i1) V,——V y (X A Vs).

iv) _dim (X n Vo) < X.

Proof.

i) If v e V- C, then v € i, some simplex 4 £ C. The

fibre v x [0, £v] < int [st(A x O, M x I)] because
the triangulation is cylindrical, and because of our

choice of e&. Therefore the image c(v x [0, fv])does
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not meet C. Therefore V;, n C =V n C. Xext

i

Vz n C VnChbhecause VN C c Vg < Vg, Finally

Vo n ﬁ f-10 =V n C, because V n C is full in V.

ii) v, ~Y,V, because take a cylindrical subdivision such
that V, is a subcomplex, and collapse cylinderwise
away from V.

iii) Let p:ﬁ x I - I denote the projection. If A® c M
meets V; - V then pA is 1-dimensional, and A n Vj
is a convex linear cell of dimension a - 1 separating
A into two components, one of which is A n V,.
Collapse across A n V, from A n V, for all such
simplexes A not in X, in order of decreasing dimension,
and we have the collapse'Vi‘\iﬁV u (X n V).

iv) If A e X, then either A n Vy ﬁ, whence
dim (& n V5) < dim (X n ﬁ) < X, by hypothesis, or
else A n V,; contains an interior point, whence

dim (A n Vg) < dim 4 < x. Therefore dim (X n V) < x.

Proof of Thcorem 21. Casec (2).

We arve given X < ¥ to cengulf, where X is C-inessential,
C is a g-collapsiblec k-core, and
g<m-

~r
Fis

i -

N
HOFE W

0
-{.
]
V/aN

n 4+

N3
M
N
<3

- 3.

m +
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Let Y be a coller on X mod C, with inside boundary Z. We now
want to apply Lemma 53, and so let us check the hypotheses. First
vyucoc~XzycC by excision, because Y ~IQZ and Y n C =2 n C by
Lemma 54 (i) and (iv). Next Z is C--inessentiszl because the collar
furnishes a homotopy from Z to X keeping X n C = Z n C fixed, and
because X is C-inessential by hypothesis.

Next Z2nC=1Y2n B - ﬁs by Lemma 54(i). Finally the

dimensional hypotheses are satisfied because y z + 1, 2 = X.

Therefore by Lemma 53% we can engulf ¥ ¢ D™—=C. Therefore
X ¢ D™C because X c ¥. HNext
dim (D - C) < max (y, 2z + 1) = x + 1.
Finally we can choose D so that D n M = (Y n C) n M by
Lemma 43%. The proof of Theorem 24 Case (2) is complet=.
Lemma D55,

Let X, C c M, X comozct and C-inessential, and dim (X n M) <x.

Then there exist ot , ¥, 7% 811 C-inessential, such that

X oWy C Y U O‘*L,LZ u C

ZnM="nM=¥ni

ZnMcC.
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...........

Y'\\\\\ 2

R

emark. The important part of the lemma is to get

pSemeiepiie s =Y

Z n M c C and the y-collapse.

HgJ

roof, Without loss of generality we may assume M

compact, for otherwise replace ¥ by a regular neighbourhood of X

in M, and perform all the constructions therein. Let

Xo = (X n ) -C

i

Co = %o n C.
We assume X, # @, otherwise the lemma is trivial: X =W = Y = Z,
Triangulate ﬁ such that X, and ﬁ n C are subcomplexes and take a
first derived. Let V, be the closed simplicial neighbourhood of
Xo - Cys in other words V, is the union of all closed simplexes
of M meeting X, - Cg. (otice that V, may not be a manifold at
points of Cqp, and is therefore not a regular neighbourhood in

general). Ve deduce
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(1) Vg~Xos by Lemma 1L Corollary.

(2) Vo, n C = Cu, because of the first derived.
Let V, be a collar on V, mod C ia M, with the proviso that we have
X a subcomplex during the construction (so that Lemma 54 is
applicable). Let X; be the subcollar on X,, and let Vy, X, denote
the inside boundaries of the collars. We claim:

(%) Vi n X -V, = Xn Vs

(L) dim (X n Vg) € x - 1

(5) 7, uXuC~XuC.

(6) v, ~Lx, U V2N\2*X1
To prove (3), let Fy = frontisr of V, in ﬁ, and let ¥, be the
subcollar on Fo. Then

Fo n X = Fog n X,
= Gy, because V, 1is a neighbourhood of
Xy = Cp in ﬁ
= IFy n C.
Therefore by construction F is a collar mod X as well as mod C.
Thereforc F; n X = C, by Lemma 54 (i). Therefore
Vi n X - V; =X n (frontier of V, in M)

n (Fy u V)
Co U (X n Vg)
Xn Vs,

1

!

i

(I4) follows from Lemma 54 (iv). To prove (5) observe that

Vi~~Vy U (X n Vy) by Lemma 54 (iii). Next Vo u (X n Vo )™SX n V,y
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by excision from (1), because Vo n (X nVy) =X n Vy, = X,
Therefore V,~X n V, by composition, and so V, u X u C+X u C
by excision, because
Vyn(XucC)=(Vy, nX)u (Vs nC) by Lemna 54 (i)

= (Vy nX) uGy, Dby (2)

=V, nX.
To prove (6) observe that V,~YyX, u Vy cylinderwise away from V.
Next Vyo~—~X; by (1), because the pair V,, X, is homeomorphic to
Vo, X0« Also Vg n ﬁ =V, n ¢ by Lemna 54 (i)
Co by (2)

X, 0 M, again by Lemma 54 (1).

i

Thefefore Vg‘*iaxz. Thercfore X, U Vg\*S»X1 by excision because
¥, n Vs = X;. The proofs of (3, U4, 5, 6) are complete.
Let Ty = trail (X n Vy), Tp = trail (X n Vp) under some
triangulation of the composite collapse (6). Let
We=X uTy u(X-Vy)

Y

X, UuTs U (X - Vy)
A

i

Xz UTZ U (X"Vj_)‘
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We must now show that W, ¥, Z satisfy the properties in
the Lemma. First dim W € x + 1 and dim Y, Z < X because
dim X; < 1 + dim X,, because X; is a collar on X,
< X, by the hypothesis dim (X n ﬁ) < X.
dim X; € x - 1, because Xz is homeomorphic to X,.
dim T, < 1 + dim (X n V,), by Lemma Lb
<1+ x
dim Tg < 1 + dim (X n Vy)
x, by (4).

Next V, u X u C is (X u C)-inessential by (5), and therefore is

N

C-inessential because X is C-inessential. Thercfore W, Y, Z are
also C-incssential because they are subspaces of Vy u X u C. Next
X ¢ W because

X=(XnVy) u(X=Vg) cTy U (X =-Vy) cW.

o]
Next we have to show W u C~~Y u C. Pirst observe that
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X, u T~ X, u Tz by Lemmz 45 Corocllary; moreover this collapse
is interior for the following reasons. If T = trail (X n V,)

under the first part of (6), then

™ nM=(XnVy) nM, by the property v,
= }{0.

Also Ty - T{ ¢ X, U Vg, because it comes from the second part of

(6), and so (T, - T4) n M c (X, u V) n M = Xos by Lemma 54 (i).

Therefore (X, U Ty) N ﬁ =Xo = (X, UTg) n . Therefore

X, UT 3% UTs. We can add C u X =V, to both sides because
Ty nCcVy nC

= Co, by Lenma 54 (i)

T, N X =V, c Vs nX = Vyq
=X n Vg by (3)
c Ty
Therefore W u C “3¢Y U C by excision.,
Wext X, —L, X, by Lemma 54 (ii). We can add
CuTg U ?fjwV? to both sides because
X, n C=Co ¢ X3, by Lemma B4 (i)
21 nTs ¢ X nVy = X5,
X, N X -V, cX n Vs = X, by (3).
Therefore Y u C ~X2Z u C by cxcision.
Next X, W, ¥ all aect ﬁ in the same set because X N Vg,

X3 UTyy X, u T all meet M in the same set, namely X,. Finally
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Z N ﬁ c C because
(%, U Tp) 0 MV, N
= Vo n C Dby Lemma 54 (i)
c C, and
(X-V) abc(X-%X)nk
c C, by definition of X,.

The proof of Lemma 55 is completes.

Proof of Theorem 21 Case (1.

We are given X < ¥ to engulf, where dim (X n ﬁ) < X.
X is C-inessentinl where C is a g-collapsible k-core, and
g, X €m - 3
qQ+ X, 2x <m + k - 2.

] X X .
By Lemma 55 choose W“+1, Y, 7% such that X c W U C"idYLJC~x,Z u C.

»

Since Z is CU-inessential and Z n M < C we can engulf ¥ ¢ D—C

¢}
by Lemma 53. Apply Lemma 42 to the situation W y C ™Y u C c E,

and awbient isotope E to E,, keeping (Y u Q) u ﬁ fixed, so that
(WucC)us~—E.. LetD=WuyBE = (WuC)uE;. Then
X ¢ D~~C becausec D™~E —C, Also dim (D - C) < x + 1, because

D~-L,cW-Y,

dim (D - B,) < dim W = x + 1,

E, -C=zE-C,

dim (B, - C) = dim (E - C)

s mex (y, 2z + 1)

=X + 1.
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Finally we can choose D such that D nlf = (X u C) n M by Lemma L3.
This completes the proof of our main engulfing theorem,

Theorem 21.

. Ao . . n
The unigueness of piecewise linear structure of & .

We conclude this chapter with an application of engulfing,
a theorem of John Stallings which implies the uniqueness of structure
of En. More preciscly, given two piecewise linear structures
(= polystructures) on B" (there arc obviously infinitely many) then
they are piecewisc linearly homecomorphic, provided that they are
piecewise linear manifold structures, and n #Z 4. The case n = 1 is
trivial, n = 2 is classical, and n = 3 is the Hauptvermutung Theorem
of Moise. We shall prove the case n > 5.

fuestion 1., Is the result true for n = 4?7

e

The proof below fails for the samec reason that the Poincaré
Conjecture proof fails.

- . n . . . .
fuestion 2. Has T~ a non-piecewise linear manifold

structure, n > 42

This is the Hauptvermutung for manifolds. The obvious case

to look at is:

Question 3., Is the double suspension of a Poincaré sphere

topologically homcomorphic to 85?

By a Poincaré sphere we mean a closed 3-manifold MB, which

-y

is a homolegy 3-sphere, but not simply-connected. The double
3 L)

suspension of M~ is the same as the join S *M~. This cannot be a
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polyhedral spherc, because the link of a 1-simplex on the

. N B 3 3
suspension ring S is ¥-, not S5-,

Call a manifold M open if it is non-compact without
boundary, and its structure has a countable base. This is
equivalent to saying there is a triangulation of M by an infinite
complex, in which the links of vertices are (m - 1)-spheres.

The key idea of Stallings is the following definition.

Let M be 2-connected. We call M 1-connected at infinity if given

compact P ¢ M there is a larger compact 3 c M (R is not necessarily
a subpolyhedron) such that M - Q is 1-connected. This is equivalent,
by the exact homotopy scquence, to saying that the pair (M, M - Q)

is 2-connected. The property is topological, independent of any

structure on M.

m

Example 1. Ifm» 3, B is 1-connected at infinity.
Bxample 2. Whitehead's example MB (given in Bxanmple 1

after Theorem 19 Corollary 3) is a contractible open 3-manifold not
1-connected at infinity. In fact, if SAl is the curve not contained
in a ball, and Q@ is compact o 81, then the fundamental group of

M - @ is not finitely generated.

Examplec 3, The interior of Mazur's example MLL (given

after Whitchead's example) is a contractible opcn L-manifold not
{1-connected at infinity. In fact, if D2 is the spine, and Q is
compact O Dz, then the fundamental group of M - Q must contain

ﬂi(Mu) as a subgroup. The dimension 4 is not significant in
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Mazur's examples, because Curtis has given similar examples for
dimensions 2 5.

It is no coincidence that we use the same examples to
illustrate non-engulfability and non-connectedness at infinity; in
fact the idea behind the proof of Stallings theorem is that
connectedness at infinity implies a certain engulfability.

Theorem 22. (Stallingsl

Let M be a contractible open manifold, 1-connected at

infinity. If m > 5, then M = E..

Proof. Let P be a compact subspacc of M. The main step
of the proof is to show that P is contained in a ball. We cannot
engulf P directly because it is not in general of codimension z 3.
Therefore we have to start indirectly by engulfing a 2-skeleton of
M "away from P". So choose a triangulation of ¥ by an infinite
complex,

By hypothesis, choose compact @ D P such that M ~ Q is
1-connected. It is important to observe that @ is not a
subpolyhedron in general (in order that the definition of
{-connectedness at infinity be a topological invariant). Forget P

for the moment. Let

H

X union of all 2-simplexcs meeting Q

Y union of all 2-simplexes not meeting Q.
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In the diagran the 2-skeleton is represected by a 1-skeleton.
Since (i, ¥ - §) is 2-conneccted the inclusion X ¢ M is
homotopic in M, keeping X n ¥ fixcd, to a map £: X - M - Q. We can
assume f is piecewise linear, oy using the relative simplicial
approximation thecrem in ¥ - @, keeping X n Y fixed. (Since ¥ - Q
is open in ¥ it is also a pieccewise linsar manifold). By Thcorem
15 ambient isotop the image £X in i -- ) keeping X n Y fixed; so
that fX - (X n ¥) is in general position with respect to X n (i - 3).

Since both are 2-dimensional in > 5 dimcnsions, they are disjoint.
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Therefore f X Nn X =X n ¥, ITet C = fX u¥. Then Cc M - Q.

G is connected because it is the image under f U 1:X U Y > fX Uy Y

of X u Y, which is connected, being the 2-skeleton of connected M.
Therefore me(C) = 0 and x, (M, C) = 0. Therefore C is a 2-collapsible
1—-core.

Now X 1s C~inessential in M because X n C =X n Y, and
the inclusion X ¢ M is homotopic to £:X - C keeping X n Y fixed.
Putting ¥ = 1, ¢ = x = 2, m > 5 the hypotheses of Theorem 21 part (1)
are satisfied. Thercfore we can engulf X from C.

Let U =M - P. Then UD ¥ - 9 o C. Therefore by Lemma L1
there is a homeomorphism h:ll - M isotopic to the identity keeping
C fixed, such that hU o X. Therefore hU D> X yC o2 X y Y. Therefore
hP does not meet the 2-skeleton X u ¥. We have achiecved our first
objective of pushing P off the 2-skeleton. This makes hP "effectively"
of codim 3, and so we can now start engulfing hP in a Dball.

More precisecly, notice that since hP is compact it does not
necet a neighbourhood of X y Y. Choose a second derived of M such
that hP does not mect the second derived neighbourhood of X u Y.
Therefors hP is contained in the complementary second derived
neighbourhocod of the dual (m - 3)-skeleton. Again using the
compactness, hP is contained in the second derived neighbourhood N
of some compact subspace Z of the dual (m - 3)-skeleton. N is now
a regular neighbourhood of Z, because Z 1s compact, and so N™~Z.

By Theorem 19 Corollary 1 Z is contained in a ball.
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Therefore N is contained in a ball, B say, by Lemma 37. Therefore
P c h-1B, because hP ¢ ¥ ¢ B. We have completed the main step of
the proof, which was to show that any compact subspace is contained
in a ball.

We now use this result to cover M by an ascending sequence
of balls {Bi§ as follows. Choose a triangulation of M. Since M
is connected the triangulation is countable, and so order the
simplexes Ay, Az, ... . Define B, = st(d;, M). For i > 1, define
Bi inductively to be a reguler neighbourhood of a ball containing
A, U B, 4+ Then {Bi} is an ascending sequence of balls, each
contained in the interior of its successor, such that
UBi = UAi = M. The proof of Theorem 22 is completed by:

Lemma 56.

1f Mm is the union of an ascending seguence of balls, each

in the interior of its successor, then Mm o Em.

Proof. Let BY = UAi, the ascending scquence of m-~-simplexes,
each in the interior of its successor. Choose a homeomorphism
f,:B;, =» Ay, and inductively extend fi-1 to f‘i:Bi - Ai by the

combinatorial annulus theorcm (Theorem 8 Corollary 3) which says

e PR T |
that Bi - B, = Ai - A = S

i1 i1 x I

The two corollaries to Theorem 22 are also due to Stallings.

Corollary 1. The piecewisec linear structure of Mm

m > b, is unique up to homeomorphisnm.
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Corollary 2. Let Mm; Qg be contractible open manifolds.

If m+ g >5 then M x Q = e,

This result is interesting in view of the non-trivial
examples above.

Proof., It suffices to show that M x @ is 1-connected
at infinity, and this is done using algebraic topology. First,
if m > 2 then M has one end because H}(M) = Hn-1(M) = 0.

Therefore if both m, g > 2 we can find arbitrarily large
compact subspaces A c M, B ¢ & such that M - A, @ - B are connected.
Therefore

(Mx Q) ~(AxB)=lx(@-8)u (M-24)x29
is 1-connected by Van Kampen's Theorcm, becausc in the free product
with amalgamation both sides are killcd by the amalgamation.

On the other hand if m > g = 1, then Q@ = the real line, and
so chocse B to be an arbitrarily large interval. Then (M x Q) - (Ax B)
is homotopy equivalent to two copies of M sewn along M - B, which
again is J-connected by Van Kampen's Theorem.

While discussing Em, we mention the analogous result to
Theorem 10 for spheres.

Lemma 57.

. . . . mo, .
Any orientation preserving honcomorpnism of K is ambient

isotopic to the identity.

Proof. Given a homeomorphism f, first ambient isotop

f to g, wherec g kecps a bell B™ fixed, as in the proof of Theorem 10.
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Now embed ET - % in a simplex A" onto the complement of the
barycentre B. The restriction gIEm - % extends to a continuous-
homeomorphism h:A -» A by mapping A - 5, that keeps A fixed and is
piecewise linear except at A. By ilexander's Theorem (Lemma 16)

h is isotopic to 1 by an isotopy H:A x I - A x I that keeps A and
g Tixed, and is piecewisc linear except on A x I. Therefore the
restriction of H to A - Z determines a piecewise linear ambient
isotopy of jone moving g to 1.

Remark. Let P denote the group of piecewise linear
homeonmorphisms of Em, and let L denote the subgroup of linear
homcomorphisms, which deformation retracts onto the orthogonal
group. Therefore both P, L have two components, corresponding to
the two orientations of Em. However this is a deceptive remark,
becausec the Lie group topology on I, is not the same as the topology
induced from P. The highcr homotopy groups of P arec not known,

but they are known to differ from those of L.
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Chapter 8 : EMBEDDING AND UNKNOTTING

In this chapter we wish to classify embeddings
of one manifold in another. “Classify" means sort
into equivalence classcs and then list the classes.
The natural equivalence rclation to use is ambient
isotopy, because this has the same geometric quality
as the embeddings. In Chapter 5 we saw that ambient
isotopy was the same as isotopy. Listing is done by
mecans of algebra, and the way to pass into algebraic
topology is via homotopy theory. Geometrically the
notion of homotopy is a horrible idea, because during
a homotopy a nice embedding gets all mangled up. But
the virtue of homotopy theory is that the homotopy classes
of maps are often finite or finitely generated, and
frequently computable, and so out of the mess we get

something interesting. Therefore our classification



-2 -

technique will be to map the ambient isotopy classes

of embeddings (geometry) into the homotopy classes of

maps (algebra). If this map is an isomorphism then

the algebra classifies the geometry; if not then we

have a knot theory to play with.

Definition. Let M be a closed manifold and Q a

manifold without boundary (open or closed). We say

M unknots in Q if any two embeddings M < Q are
ambient isotopic <==3 homotopic.

Otherwise we say M knots in Q.

Example (i) The classical example is s! xnots in s°.

A knotted curve is homotopic, but not isotopic, to a

m+2 1 > 1, and this

circle. Similarly ST knots in S
kind of knotting is characteristic of codimension 2.

Dxample (ii) If q - m > 3 then ST unknots in Sq,

by Corollary 2 of Theorem 9 in Chapter L.

It is the latter example that we want to generalise
to arbitrary manifolds, and in Corollary 1 below we
give suificient conditions for M to unknot in Q. While
proving an unknotting theorem it is natural to prove
an embedding theorem in the same context, the relation

between the two being explained as follows. Let



Iso(McQ) = ambient isotopy classes of embeddings (geometry)
[M, Q] = homotopy classes of maps (algebra)
[M ¢ @] = homotopy classes of embeddings (hybrid).

There are natural maps
A

Tso(M € Q) srstermve (M © Q) msorive (M Q-

To say that M unknots in @ is the same as saying that u
is bijective. The main results of this Chapter are
Theorems 23 and 24 below, which give sufficient conditions
for » and u to be bijective. In other words conditions
for there to be a classification isomorphism

Iso(M c Q)-—§~9[M, QJ.
Remark. We think of a "knot" mapwise, as an isotopy
class of embeddings. Other authors, notably Fox, prefer

to think of a "knot" setwise as an isotopy (or homeomorphism)

class of subsets. Clearly the mapwise definition is
finer than the setwise, because potentially it gives
more knots. Therefore our mapwise unknotting theorems
are stronger. However our preference for a mapwise
rather than a setwise approach is dictated by our aim
to classify knots in terms of homotopy.

Statement of main theorems. Let Mm, Qq be manifolds

(with or without boundary). We shall always suppose that

M is compact. We shall state the theorems in relative
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form; the absolute form can be deduced by putting
M = f. Throughout this chapter let

d =2m - q.
The letter d stands for double-point dimension because
this would be the dimension of the double points were
an arbitrary map M — Q put in general position.

Embedding Theorem 23. (Irwin) Let f£:M = Q be a map

such that £|Ii is an embedding of I in Q. Then f is
homotopic to a proper embedding keeping M fixed, provided

-3

I
}M is d-connected

(Q‘is (d+1)-connected.

Remark, As usual we always assume everything to be
piecewise linear, unless we explicitly draw attention
to the contrary. However Theorem 23 1s an exception.
Because of relative simplicial approximation, it is only
necessary to assume that £ 1is a continuous mapr such that
flM is a piecewise linear embedding; we can still deduce
the existence of a piecewilise linear embedding homotopic
to £f. In other words this is the strongest way round:

continuous hypothesis =piecewise linear thesis.

In the following theorem everything is piecewise linear.
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Unknotting Theorem 2L. Let £, g:M = Q be two

proper embeddings such that £|M = g|il. If £, g are

homotopic keeping M fixzed then they are ambient isotopic

keeping o) fixed, provided
ms g -2

L

JM@;s (d+1)~-connected

LQ is (d+2)-connected.

In the absolute case the two theorems can be combined
to give.

Corollary 1. Let M be closed and @ without boundary.

R

Then M unknots in Q, and Iso(M < @) & [M, Ql, provided

[ELjiiL;;dé

/M is (d+1)-connected
‘ ‘ :

{ﬁggggigiajeqonnected.

The proofs of the theorems are a mixture of the
ingredients of the last four chapters, namely unknotting
balls, covering isotopy, general position and engulfing,
and we give the proofs at the end of this chapter. But
before we give them, we deduce some more corollaries,
make some remarks about further developments, suggest
some problems, and give counterexamples to show that the
dimensional restrictions are the best possible. We also

illustrate in Theorem 25 how the theorems can be used to



classify certain links of spheres in spheres, and knots
of spheres in solid tori. First the corollaries: they
follow immediately from the statement of the theorems,
and are obtained by specialising M or Q. In the first
corollary we put @ equal to Euclidean space.

Corollary 2. Any closed k-connected manifold M?L
2m-k

k <£m - 3, can be embedded in E ,..and unknots in one

higher dimension.

In particular any homeomorphism M - M can be realised

by an ambient isotopy of E2m—k+1, in the same way that

J‘

o

01 can be embedded in Ez, and any homeomorphism of S
can be realised by an ambient isotopy of 5o (but not of E7).
The next corollary is obtained by putting M equal
to a sphere, and is a higher dimensional analogue of the

Sphere Theorem.

Corollary 3. 1r 09 is (2m-q+1)-connected, where

ms< g - 3, then any element ofAﬂm(@l_can be represented

by_an m-sphere embedded in_é. If @ is one higher

connected then ﬂm(g) classifies the ambient isotopy_classes

of g™ o %i,provided,m > 1,

By Theorem 244 the ambient isotopy classes are the
same as the homotopy classes, and since m > 1 there is

no base point trouble. If m = 41 then the isotopy classes
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are classified by the free homotopy classes, in other
words the conjugacy classes of ﬂ1(Q). A special case
Qf Corollary 3 is:

Corollary L. If Qq is m-connected, m < g - 3,

O
then any two embeddings.sm C Q are ambient isotopic.

The next corollary is obtained by putting M equal
to a disk, and is in some ways a higher dimensional

analogue of Dehn's Lemma and the Loop Theorem.

m-1

m-1 - & and suppose S is

Corollary 5, Let S

inessential in Q. If Q is (2m-g+1)-connected, where
1

ms<gqg -3, then s " can be spanned by a properly

embedded disk D" c Q. If 9 is one higher connected

then ﬂm(Q),classifies the ambient isotopy classes of

such disks, keeping O fixed.

The correspondence between isotopy classes of disks

and elements of ﬂm(Q) is not natural as in Corollary 2,

but is obtained by choosing a base disk, D? say, and

associating with any other disk D™ the difference element

of m () given by p™ U DT, This time the case m = 1 is

not exceptional because we can choose a fixed base point
0

on S .

We now make some remarks about the two main theorems.



Remark 1: Hudson's improvements.

John Hudson has improved both theorems by
weakening the hypotheses: instead of requiring the
manifolds to be connected he requires only the maps
to be connected. We say that the map f:M - Q is

k-connected if the pair (F, M) is k-connected where

F is the mapping cylinder of f. This is equivalent

to saying that f induces isomorphisms Wi(M)-§—9ﬂi(Q)
for i < k, and an epimorphism ﬂk(M) - WK(Q)- As before
let

d

2m - q = double-point dimension

t

i

m - 29 = triple-point dimension.

Hudson's improvement in the Embedding Theorem 23 is to

replace
M d-connected } { f (d+1)-connected
b
Q (d+1)-connected ¥ (t+1)-connected.

and in the Unknotting Theorem 24 to replace
M (d+ﬂ)—connecteda . f (d+2)-connected
Q (d+2)-connectedj 4{M (t+3)~connected.
In both cases the connectivity of M implies the same
for Q because t € 4 -3 and so f induces isomorphisms

of homotopy groups in the range concerned.

Hudson's proofs are too long to give here, and so



we content ourselves with proving the theorems as
stated. His main idea is combine the techniques

given here with those developed by Haefliger for the
smooth case. Another basic idea is to use concordance.

Two embeddings £, g:M = Q are called concordant if there

is a proper embedding F:M x I & @ x I that agrees with f
at the top and g at the bottom:; there is no requirement
that ¥ should be level-preserving in between, as there

is in isotopy. In codimension 2 concordance is strictly

weaker than isotopy: Tfor example the reef knot

is concordant to a circle by a locally flat concordance,
because it bounds a locally flat disk in the L-ball, but
the reef knot is not isotopic to a circle by a locally
flat isotopy. However in codimension > 3 Hudson has
shown that two embeddings are

concordant &= 1sotopic,
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and so the unknotting theorem becomes a corollary
of the embedding theorem. However we shall prove the
two separately.

Remark 2. Codimension 1.

Our results are essentially unknotting results
in codimension 2 3. The situation in codimension 2
is fundamentally different, because knotting occurs and
is detected by the fundamental group. In codimension 1
the situation is again different, because of orientation.

1

Sn knots in En+ because two enmbeddings with opposite

orientation are homotopic but not isotopic, and therefore

Tso(s™ c git!

) contains at least two elements. We do

not know whether there arec more than two elements because
the plecewise linear Schénflics Conjecture is still
unsolved for n = 3, In fact the Sch&nflies Conjscture is

equivalent tog

Conjecture: Iso(S™ c Ep+1) has two elements.

Remark 3. Codimension 0.

Again the situation in codimension zero is quite
different, and there are many more unsolved problems.
If M is a closcd manifold then Iso(M < M) is a group,
namely the quotient of the group of all homeomorphisms

of ¥ by the component of the identity. It is called the
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homeotopy group of M. Only three examples of homeotopy

e ey

groups are known.

Example (i). The homeotopy group of s™ is 22 by Theorem 10
of Chapter L. The isotopy class of a homeomorphism is
determined by the degree I4. In other words

Iso(s™ c s™)

IR

[s" < &"] = z,.

Example (ii). Gluck has shown that the homeotopy group
of 81 X 82 is Z2 X 22 X Z2. The first two factors correspond
to orientation reversals of 81 and 82, and the third factqr

1 2 1 2

Z2 is generated by the homeomorvhism h:S x S~ = 8 x 8
given by h(e, x) = (0, pex), where pg is rotation of 52 through
angle O about the poles. Recently Browder has proved

(unpublished) the same result for st « s, n > 3.

sxample (iii). It follows from a theorcm of Baecr that

the homeotopy group of a 2-manifold is isomorphic to the
automorphism group of ﬂ1(M) modulo inner automorphisms. In
cach of thesc three cases the manifold unknots in itself, but

the following example shows that this is not true in general.

Example (iv). Browder has shown that S° x S° knots in
itself, although the homeotopy group of S3 X S5 is not yet
3 5

known. He gives a homcomorphism h of S~ x 87 onto itself
that is homotopic but not isotopic to 1. We sketch the proof.
Choosc an element g e ﬂ3(50(6», = Z, choose a smooth

representative £ € o, and use f to twist the fibres of the
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3

product bundle 57 x S5

- SB. The result is a smooth

3 5

fibre-homeomorphism h of 57 x 87 onto itself. We claim

that if o is a multiple of 24 then h is fibre-homotopic to 1,
becausc if F5 denotes the space of maps of 85 to itself of
degreec 1, then WB(F5) = W8(85) = Z,),, and so o is killed

by the homomorphism ﬂB(SO(6)) - WB(F5). To place outsclves
in the piecewise-linear category choose a piccewise linear
homeomorphism h1 concordant to h. Browder then shows that

h is not topologically concordant to 1, and therefore hJl

is not piccewisc linearly isotopic to 1. To prove the

non~-concordance let Th denote the mapping torus, obtained

from S3 « g° x I by identifying (x, 0) = (hx, 1) for all
Z

x € 57 x 85. If h were concordant to 1 then Th would De

S3 X 85 X S1. But it

topologically homecomorphic to T1 =
transpircs that a € Z classifies the Pontrjagin class

p1(Th)’ and so if a Z 0 then the rational Pontrjagin class
of Th is non-zero. But the rational Pontrjagin class of
3

5 1 . . . .
S” x 87 x 8 1is zero, and is a topological invariant, and

so we¢ have a contradiction.
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BExample (v).

In smooth theory it is well known that a manifold
can knot in itself. For example the piecewise linear
homeotopy group of S6 is Z2, but the smooth homeotopy
group of 86 is the dihedral group D28’ The orientation
preserving subgroup ZZ8 corresponds to exotic 7-spheres,
by using the homeomorphisms of S6 to glue two 7-balls
together. 1In piecewise linear theory, on the other hand,
there are no exotic spheres (at any rate in dimension » 5)
by the Poincaré Conjecture, which we shall prove in the

next chapter.

Remark L. Higher homotopy groups %i(M c Q).

Qur so called classification of embeddings of M in
Q@ has only touched the surface of the problem. More
generally we can study the space (M < Q) of all embeddings
of M in Q, regarded either as a piecewise linear space
(as in Chapter 2) or as a semi-simplicial complex. In
particular we can study the higher homotopy groups
ﬂi(M C Q). So far in Theorem 2l we have only said
sonmething about the zero homotopy group

WO(M c Q) = Iso(M c Q).

For example we might generalise Theorem 9 the unknotting

of spheres by

Conjecture. ﬂi(sm c s = 0, provided i+m < q - 3.
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Remark 5. An obstruction theory.

In the critical dimension, when the map is Just

not sufficiently connected for unknotting, Hudson has

developed an obstruction for homotopic maps to be isotopic,

a quotient of
with the obstruction in/the first non-vanishing homology

group of the map (with certain coefficients). One
would like to develop a more general obstruction theory,
and fit it into an exact sequence, perhaps including
the terms ﬂi(M c Q) - xi[M, Ql, i = 0. 1In Corollary 2
to Theorem 25 below we give a non-trivial example that
locks as though it ought to fit into an exact sequence.
We now discuss counterexamples to show that the
dimensional restrictions in the two main theorems are
the best possible. In each of the six cases we relax
a single hypothesis by one dimension, and show that the

theorem then becomes false.

g 2] EX
Embedding§ Codimension 2 M only Q@ only
theorem % | (a+1)-connected | d-connected
LT 5] 5]
UnknottinQ”Codimension 2 M only Q only
theorem ; d-connected (d+1)-connected.
|
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Countercxample 1. This is the only one of the six

cases where the counterexample is conjectured rather
! .
than proved. Let D2 be a disk, and Q* a contractible

L-manifold with non-simply connected boundary. Let

f:D2 = Qu

be a map such that £ embeds bz onto an essential curve

.

n

in Q.
in @ . By the Conjecture in Example 6 after Theorem 21

Such a map exists because the curve is inessential

in Chapter 7, the curve does not bound a non-singular

disk in QLL and so f cannot be homotopic to an embedding
keeping the boundary fixed. Notice that D2 and QLL satisfy
the connectivity conditions because they are both
contractible.

Counterexample 2. Let m be a power of 2 and m 2 L.

Let M = P®, real projective space, and let Q = E-R 1,

Then d = 1 and P just fails to be 1-connected. Meanwhile

Q is 2-connected and the codimension is 2 3. Since P&

cannot be embedded in EZm-1’ no map P - gon-1 can be

homotopic to an embedding.

Counterexample 3. (Irwin) Let m > 3, and let f:Sm - 82m

be a map with exactly one double point, where the two
sheets of g™ cross transversally. We shall show that

such a map exists in a moment. If m were allowed to
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equal 1 then the figure 8 would give a correct picture.
Let QQm be a regular neighbourhood of £s™" in S2m. We
claim that fzsm - sz cannot be homotopic to an embedding.
Notice that & = 0 and ST is O-connected, but Q just fails
to be 1-connected., In fact ﬂ1(Q) = %, generated by a

loop starting from the double point along one sheet and

back along the other. ©Notice also that the codimension

is 2 3,
Proof that f exists: Write S = Dy U s 10 DT.
Embed the two disks transversally as D? x 0 and 0 x D? in a

2m

little ball Dg X D? c SZm' et B be the complementary

ball, and extend the embedding of the boundaries of the

1 2m 2m

m-1 x I = B, Now use

disks 877 x I = B°™® to a map S

Theorem 23 to homotop this map into a proper embedding,
keeping the boundary fixed. The result gives what we want.

Proof that f # embedding. Suppose on the contrary that
2m

f was homotopic to an embedding g:Sm - sz. Let P
denote the universal cover of Q, which consists of a
countable number of copies of s™ x Dm, plumbed together
in sequence. We can 1ift £, g to a countable number of
maps f., 8123“ - P, i € Z. By construction each f, is an
embedding, and, for each i,fiSm cuts fi+1Sm transversally

once. Meanwhile giS is disjoint from gi+1S because g



- 16 -

was an embedding. Here we have a contradiction, because

the intersection of the f's is homological, and must
algebraically
be/the same as the g's because fi - each 1i.

A . . . I
Hore precisely, if E is a generator of Hm(S‘

), and
= m .
D:Hm(P)-w~—>HC(P, P)
is Poincaré Duality (where H, stands for compact cohomology)

then in Him(P, P) we have the contradiction

0 = Dg;& U Dg, ,& = Df,E U Df, 4E #£ 0.
m , m+2
Counterexample L. S _knots in S ., m =1,
1 m-1 . 2m
Counterexample 5. (Hudson) S x S knots in 87, m > 3,
Notice that d = 0 and ' x 8% just fails to be

(d+1)-connected.

Proof of the knotting. Given an embedding f:S1x g1 ., gom

we shall define a knotting number k(f) € Z,, and prove
that it is an invariant of the ambient isotopy class of

. We shall then describe two embeddings T £, with

07 =1

knotting numbers 0, 1 respectively.

Let T = £(8? x 5™ "), the embedded torus. Given

m-

a e 81, let 8 = f(a x S }, an embedded (m-1)-sphere.

. 2 .
Lemma 58. There is an m-ball A in S 1, spanning Sa

and not meeting T again.
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_L2m
XD—B D

Proof. Since m 2 3, Sa is unknotted in ng, and so

can be spanned by an m-ball, D say. By Theorem 15
ambient isotop D, keeping D = 5, fixed, until D is in
general position with respect to T. Therefore ﬁ meets
T in s finite number of points, which we can remove
one by one as follows. Let x be one of these points.
Choose y € Sa’ choose an arc o € T joining xy, and an
arc B in D joining xy. We can choose the arcs so as
to avoid the other points of T N ﬁ and so as to meet
Sa only in y. Let A2 be a 2-disk in 82m spanning

o U B, and not meeting T U D again (this is possible
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by general position since m > 3). Triangulate everything

and take a second derived neighbourhood B2m of A2 in

s which is & ball since A° is collapsible. Consider

the set

- 3°0 (T U D).

X
Now X consists of three m-balls glued together along the
common face B2m N Sa’ and embedded in B2m with one self
intersection at the interior point x. Let

k = %7

n (T u D)
which consists of the three complementary faces glued
together along the common (m-2)-sphere B°T A 5, Let

Y be a cone on X in B2m.

If we replace X by ¥, behold
we have removed the intersection point x; but we have
moved the torus meanwhile, and so we must now move it

back. We can write

X:XTUXD,

where XT’ XD are the m-balls B2m n T, B2m N D. Similarly
Y = YT U YD

where YT’ YD are the cones on the (m-1)-sphere EZm n T

and the (m-1)-ball 8™ A D. Since Xps Yp are two m-balls

in B2m with the same boundary, and since m 2 3, by Theorem 9

Corollary 1 we can ambient isotop YT onto XT keeping

E2m fixed. This moves the torus back into position.
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Meanwhile the isotopy carries YD to Yﬁ say. Then

replacing D by
(D - XD) u Yl

has the effect of reducing the intersections of
T N 5 by one. After a finite number of steps we obtain
A as required. This completes the proof of Lemma 58,
and we return to the construction of the knotting number
k(f).

Choose three points a, b, ¢ & 81. By the lemma

S S

b’ ¢

respectively, and not meeting the torus again. We can

choose three m-balls A, B, C spanning Sa’

choose the balls in general position relative to one
another, and so each pair cuts transversally in a finite
number of points. Let AB denote the number of intersections
of A and B, modulo 2. Define

k(f) = AB + BC + CA.
We have to show that k is independent of the choices

made. First we show kX is indevendent of A. Let [bec]

denote the interval of S1 not containing a, and let S

BC
denote the immersed m-sphere

U C.

s m—1)

ng = B U £([vc] x 8

Then the homological linking number mod 2 of 32‘1 and

S in S2m is given by

m
BC
L(S,» SBC) = AB + AC,
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because A does not meet f£([bel] x Sm_1). Therefore

k(f) = L(S SBC) + BC,

a’

which is independent of A. Also k is independent of a,
because if we move a (without meeting [be]), then the
resulting isotopy of Sa does not alter the linking

number L(S_, SBC)' Similarly k is independent of

B, C, b, ¢c. Therefore k is well-defined. Clearly k is
an ambient isotopy invariant, because any ambient isotopy
carries with it the whole construction of A, B, C.

Finally we have to produce embeddings fo, f, with

Jl
different knotting numbers. Define the embedding

f‘O:S1 x g1 5 gom to be the obvious one given by the

1

boundary of an embedded S x Dm. Then we can draw

A, B, C disjoint as in the picture below. Therefore

k(fo) = 0.

Construct the embedding f :SJl X Sm_1 - 82m as

1

follows.
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Pirst link two (m-1)-spheres in the equator g2m-1
with linking number 1. Then collar each of these
into each hemisphere. Finally connect the tops of
the two collars by a cylinder I x s in the tropic
of Cancer, and connect the bottoms of the two collars
by similar cylinder in the tropic of Capricorn. The
only moment of doubt oceurs as to whether two linking
spheres can be connected by a cylinder, but this doubt
is resolved by glancing at the image of the diagonal x I
under the identification map

x I =8 em-1

= 5
To compute k(f1), choose 8, to be one of the (m-1)-spheres
in the eQuatory and choose Sb’
bottom of the other collar. Form B by joining S

SC to be the top and
| b to
the north pole, and C by Jjoining Sc to the south pole.
Then L(Sa, SBC) = 1, because we can compute it by spanning
Sa with an m-ball in the equator, that meets the other
(m-1)-sphere and hence also SBO’ in exactly one point.
Meanwhile BC = 0 because B, C are disjoint. Therefore
k(f1) = L(8_, SBC) + BC = 1.
This completes the proof of Counterexample 5.

Remark on knotted tori.

Hudson has shown that if the codimension is even,

then his knotting number described above is in fact
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sufficient to classify the knots, but i1f the codimension
is o0dd then an anclogous knotting number in the integers
Z is required. More generally he has proved that
Iso(s? x 8P < ng"p+1) & r7Z,, codimension even
{ Z, codimension odd

provided m 2 3 and 1 € p <m - p. This is the critical
dimension for knotting tori, because they unknot in all
higher dimensions, by Corollary 1.

The case p = 0 turns out to be exceptional. Here

m

the torus SO x S consists of two spheres, and the ambient

isotopy classes of links of spheres in the critical
dimension are classified by their linking number, as
we shall show belows:

Tso(s? x s® ¢ 521y 2z, m > 2,

Counterexample 6. s® knots in 81_x Szm, mz 2,

Notice that d =-1 and S x S°® just fails to be

(a+2)~-connected.

Proof of the knotting. We shall give two embeddings

s™ S1 X 82m such that one bounds a disk and the other

doesn't. Therefore they cannot be ambient isotopic,

but they must be homotoplic because any two maps are
homotopic. It is trivial to choose the first one.

For the other choose the embedding described in Example 3

after Theorem 19 in Chapter 7. It consists of two little



T

linkéd m-spheres connected by a pipe round the S1.

We showed in Chapter 7 that this embedding cannot

bound a disk.

Remark. We shall shortly furnish a large class of
alternative counterexamples by giving conditions for

s™ to knot in the solid torus s¥ x 89477, The conditions
are given in terms of homotopy groups of spheres, in
Corollary 2 to Theorem 25 below. The simplest example
is that S knots in 87 x EY. We shall show there are

an infinite number of knots, although WM(SB) = Zy-
Notice that here d = 41 and 83 X ELL just fails to be

(d+2)-connected.
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This completes the six counterexamples that were
designed to show the dimensional restrictions in

Theorems 23 and 2L were the best possible.
next
We want/to classify the links of two disjoint

p

spheres Sm, S¥ in a larger sphere Sq, up to ambient

isotopy. The classical situation of two curves linking
in 83 is somewhat deceptive because knotting is confused
with linking, but it does illustrate the three types

of linking that can occur.

(1) Homological linking.

Each curve is non-homologous to zero in the complement

of the other. By duality this is a symmetrical situation.

/

(2) Homotopic linking.

Here A, B are homoligically unlinked, but A is essential
in the complement of B. This situation can be unsymmetric,

because, as we have drawn them, B is inessential in the
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complement of A.

(3) Geometric linking.

Two curves are geometrically unlinked if they can be
ambient isotoped with opposite hemispheres. We illustrate

geometrically linked curves that are homotopically

unlinked.

/ TN
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Summarising we have:

o

/homologically\==z¢ homotopically>;===$éeometrically
|
linked linked / 4 linked.

In higher dimensions we shall stick to codimension 2 3, so

as to separate knotting and linking and be able to concentrate
on the latter. Therefore we shall assume

m<p < q -3
so that each of Sm, sP is unknotted in s,

There are three cases.

Case (i) _m +p < g - 1. Then ST, Splare geometrically

unlinked by Corollary 1 to Theorem 2.

Case (ii) m + p = g = 1. In this case homological linking

can occur, and this is the only case in which it can occur.
We shall show in Corollary 1 to Theorem 25 that the 1link 1is
classified by the linking number, which is an integer. To be
more precise there are two linking numbers which differ only

S)®+1  However we shall not bother to define

by the sign (
the 'homology linking numbers, because they are special cases
of the more general homotopy linking numbers.

Case (iii) m + p > g - 1. Homotopy linking can occur in

both this and the previous case. We shall define the homotopy
linking numbers, and show in Theorem 25 that one of them classifies

the link, provided 2m + p <€ 29 - L.
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The homotopy linking numbers of Sm, Sp,cJ§?.

Since each sphere is unknotted we have

s® « g% _ gP = g2-p-1  pP+1

12

sP ¢ 5% - gt = g2m-1 g+

*

We assume that all three spheres Sm, SP, s? are oriented,
and so orientations are induced on Sq—p—1’ 5a-m-1 (we shall
examine these induced orientations more carefully inh a moment).

Therefore the link determines homotopy linking numbers
SQ“p‘1)

a ﬁm(
B e xp(Sq—m—1).
Notice that both these are in the (m+p-g+1)-stem, and we
shall show in Lemma 62 that they have a common stable suspension
(to within sign). We call a, B stable if they lie in stable
homotopy groups. Recall that ﬂi(Sj) is stable if 1 < 2j - 2.
Therefore
a is stable if m + 2p < 2q - L4
B is stable if 2m + p < 29 - L.
Since m € p, we can have o unstable while B is stable, and
this will be a particularly interesting situation; for example
83 SM 7

5 c 8', Let 2 denote the suspension homomorphism, and

3P the composite suspension

-D- -1 -1
ﬂm(Sq P 1) - 7cm+1(Sq Py 5 ... = wp(Sq ).

When there is no confusion we shall abbreviate sP~T to 2.
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Theorem 25, Let 8", sP c 8% ve a 1ink such that m < p < g - 3.

T T

If B is stable then o classifies the 1ink. TIn other words
Iso(s™, sPcsd) Sox (547F
Also g = (-)BtP+Q+Dly .

Before we prove the theorem we deduce a corollary and a couple
of examples and prove two lemmas.

Corollary 1. Ifm+p=9g-1, then

Iso(s”, 8P cs® =z x (s™) 2 H (s7) =7,

and the homological linking number classifies the link.

Example (1). Two 50-spheres can be linked in 101, 100, 99, 98

dimensions, but in 97, 96 they become unlinked, and then can be
linked again in 95, 94, ... 2?2? ..., 52. The explanation is
that the words

link/unlink & nonzero/zero
of certain stable homotopy groups, and the unlinking is 97, 96
correspond to the vanishing of the stable L4, 5 stems.

10 _ 16

Example (2). There are exactly two links of 89, c s,

One is geometrically unlinked, and the other is half-homotopically
linked as in the second diagram above, because
oy
o £0, a€ ﬂ9(S ) = Zg -
B =0, B e 71:10(86) = 0.
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Lemma 59. If,Sm is unknotted in Sq, then an orientation

prescrving homeomorphism of g4 kKeeping s® fixed is isotopic

to the identity keeping S= fixed.

Proof by induction on g, keeping the codimension fixed,
the induction beginning trivially with m = - 1. Let

h:s¢ - s? ve the given homeomorphism. Choose triangulation
K, L of Sq, s™ and a vertex x € L. Choose subdivisions such
that h:K, - K, is simplicial. Let B4, B™ be the closed stars

of x in Ky L Then h maps Bq, B® linearly into st(x, K), st(x, 1.)

5
and so by pseudo radial projection (see Lemma &, Chapter 3)
we can ambient isotop h to k, keeping g™ fixed, such that
kBL = B2, wWow B™ is unknotted in B%, since S™ is locally
unknotted, and klEq is orientation preserving, and so by
induction we can isotop leq to the identity keeping Bm Tixed.
By Alexander's trick (c.f. the proof of Lemma 16) we can extend
the isotopy to each of Bq, sd - %q keeping g™ fixed, and so
isotop k to the identity.

For the next lemma we want to compare links in spheres
with knots in golid tori. Write
s o g2 P-TugP,

Let g:Sp - 8% genote the embedding onto the
right-hand end of the join, and let e 21 o g1 L g4
denote the embedding onto the complement. Then any embedding
pig™ - g4 Pt

determines a link

o(f) = (ef, g):s™, sP - s4,
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Lemma_60.. If p < g - 3 (with no restriction on m) then

¢ Induces an isomorphism

1s0(s™ ¢ 4P  wPH) 2 145(s", sPc 59,

Proof. Let ~ denote ambient isotopic. If £ ~ f', then we

can choose the ambient isotopy to have compact support, by
Theorem 12 in Chapter 5, and it can be extended to s4,

Therc?t ~ . £ i 9 say,of igoto
ercfore o(f) p(£') Therefore ¢ induces a map, ¢ say, igotopy

o

@ is injective: for, given ¢(f) ~ ¢(f'), then the end of

the ambient isotopy gives an orientation preserving homeomorphism
keeping g fixed, which by Lemma 59 is isotopic to the identity
keeping S¥ fixed. The restriction of this to the complement

b

fa

of &% gives f ~ f', PFinally ¢ is surjective: for given a
link k, ambient isotop the embedding of s® onto g (using
P <qg - 3), and hence k¥ = (ef, g) for some f.

Proof of Theorem 25.

s™ unknots in Sq‘p—1 X Ep+1 because
d+2=(2m-q) + 2
< q ~p - 2 by the stability of j.

-1 & Ep+1) by Lemma 60

Therefore Iso(ST, P c %) 2 Iso(s™ ¢ %77
= ﬂm(Sq'P"1) by Corollary 2 to Theorem 2,
There remains to show that B = (—)m+P+Q+mp2a9 but first we

aust be more explicit about our orientation conventions.

. . . m LD
Suppose we arc given orientations of 8§, 5%, s, we
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define the induced orientation on 8% ™P~1 in

s _ 8P = g9 01 5P o5 follows. At a point of s¥

choose a local coordinate system in which Sp appears ag a

linear subspace. Choose axes 1, ..., ¢ to give the

orientation of S% so that 1y oeey D gives the orientation

of 8¥. Then Pp+1y, ...; q determine an orientation in a

transverse disk qupg and hence induce the require orientation

on DIP _ g20-1 < g P-1 . gP*1 15 see that this is a

topological invariant definition, observe that it can be

expressed homologically: if x € Hq(Sq), v E_Hp(Sp) are the

given orientations, then Oy € Hp+1(8q, Sp) and the cap product
xNn oy e Hq—p-1(8q._ Sp)

gives the induced orientation. We use the given orientation

on 8™ and the induced orientation on %P1 to define the

linking number a € ﬁm(Sq_P'1). Similarly define 8.

Suspended links, Suppose that we are given a 1link Sm, s < Sq,

with linking numbers a, B. Let 38%, 8P < 389 denote the link
formed by suspending s™ and Sq, while keeping gP the same.
Orient the suspension ss4 by choosing axes 0, 1, ..., g at a
point of s% g0 that 0 points towards the north pole and

15 eseey g gives the orientation of s, Let a,, B, denote the
linking numbers of the suspended link.

Lemma 61. Q. = (-)P3q and B, = B.

e, M 3BTRS

Proof. First look at B,. At a point of s™ we can choose
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axes so that 0, 1, ..., m orients %8 ana 0 1y eess g
orients 384, Therefore m+i, «.., Q@ orients the same transverse
disk as in the unsuspended link. Meanwhile sP is unchanged.
Therefore B is unchanged.,

Now look at a,. At a point of s® we can choose axes
so that 1, ..., p orients sP and 0, 1, «e+.5 g orients zs<,
By the prescribed rule we must reorder the axes so that
1y «vsy, D come first. Therefore this introduces a factor of
(-)® into the orientation induced on the transverse disk by
0, p+1, +¢.5 q. For the transverse disk we can choose ZDq‘P,
the suspension of the transverse disk D%P in the unsuspended
link. In the unsuspended link the class & € wm(Sq"p'J') is
determined by homotoping the embedding,Sm c s? - sP into a map
r;8™ - peP say. In the suspended link we can homotop
58™ ¢ 389 - 8P into the suspension 2£:38™ - 3DYP wnich
determines the class Ja € wm+1(sq‘P). Adding in the factor
(-)® we have

a, = (-)%sa.

e

A

Lemma 62. If we are given a link such that m = p<g - 3

and a, B are stable then 8 = (-)9a,

Proof. The link consists of disjoint embeddings r:8™ - s¢
and g:Sm - Sq, where
a is the class of f:Sm - g% gSm

B is the class of g:Sm » g2 _ s,
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write 8% = Sm*Sq-m—1’ and let j:Sm -+ 8% pe the inclusion of
the left hand end of the join. Ambient isotop g onto J,

and assume from now on that g = j. Then rs™ 1ies in the

complement S% - g™ = gttt g1 e @™t 591 L, g2t

denotes projection, then ef:sT - Sq—m—1 represents a. Tet
s X Sq—m—1 denote the torus half-way between the two ends

of the Jjoin. Let P(ef):Sm - g™ g4-m-1 denote the graph of
ef. Then both f and T'(ef) represent o, and since B is stable
a classifies the link, by the part of Theorem 25 that we have

proved already. Therefore we can ambient isotop f onto I'(ef)

keeping gSm fixed. Consequently assume f = T'(ef) from now on.

We have reached a situation where both spheres are
cnd,
embedded in the complement of the right hand/ s%- s¥™-1 _gm, pd-m,

More precisely

£:8™ 5 g™ x B g given by fx

g:Sm - g g4 is given by gx = (x, 0).

Let T be the antipodal map of Sq'm_1. There is a homeomorphism

it

(x, efx)

h of 8T x Eq—m, isotopic to the identity such that

hf = g
hg = (1 xT)f. {\
If we were content to have a topological ; /:\fx
homeomorphism, then h would be easy to '“': A .?e; ?
describe: for each x € ST merely translate N N =/
-

x x g™ by the vector - fx. However such
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an h is not in general piecewise linear and so the best way
to construct h is as follows. First ambient isotop g to
(1 x T)f keeping f£s™ fixed, which is possible because they
are homotopic in the complement of me, and the stability
of o, B ensures unknotting. Then ambient isotop f to g
kxeeping (1 x T)rs™ fixed, for similar reasons. Since the
ambient isotopy can be chosen to have compact support, by
Theorem 12, it can be extended to Sq, and so the link is
unchanged. In the new position we see that, removing hme,
B = [ehg] = [e(1 x T)f] = [Ter] = T[ef] = Ta,
But the antipodal map T of 5311 s degree (-)4™. Therefore
B = (-)¥"a.

Completion of the proof of Theorem 25,

We are given Sm, Sp c 8% with linking numbers a, B. Suspend
the smaller sphere p — m times, to give a link Zp_mSm, g? < 3P Mgl
with linking numbers a,, B, say. Then
oy = (-)P(p-m)sp-m,
By = B
by Lemma 61, and
B, = (_)(QP+~m)“P@$

by Lemma 62, because B is stable. Therefore
g = (-)Lm+p(p-m)sp-m
- (-)PHIHQ+PMED-M

This completes the proof of the theorem.
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Remark. If neither of a, B are stable then we can show
they have a common stable suspension to within the sign
(—)™PTA*PM 4y suspending both sides of the link sufficiently
and applying Lemmas 61 and 62.

Knots of spheres in solid tori.

Consider embeddings s™ < s¥ x 54T, Keeping m fixed, let
us plot against coordinates q and r the three regions in which
different types of knotting can occur. As usual we restrict

attention to g 2 m + 3.

. ~
m+3 -~ q
pd N L
S~ K Loy

unstable metastable stable range
range range

V
\
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1. Unknotting. Region {f} is bounded by q +r 2 2m + 3,

which is the condition by ST to unknot in 8* x EXT by

Theorem 24 Corollary 1. Therefore the classes of embeddings
r

are classified by Wm(S ).

2. Homotopy-stable knotting. Region (é} is bounded by

g+r< 2m+ 3 and r 2m/2 + 1. We call these homotopy-stable
because the condition r > m/2 + 41 is exactly the condition for
wm(Sr) to be stable. In the next corollary we classify

homotopy-stable knots.
3. Homotopy-unstable knotting. Region (3} is the complement.

Here we can tie knots like the knotted Sm C 82m X EJl described

in Counter example 6 above.

Remark. It is interesting that region Cé} lies entirely

in the unstable range. Thercfore all the knots that we classify
in the following corollary lie in the unstable range. 8o far
there are no analogous results in the smooth category; the
smooth situation is complicated by the presence of sphere knots
in spheres, and it is difficult to disentangle them from the

situation.

Corollary 2 to Theorem 25. Homotopy-stable knots are

classified by the diagram

Iso(8™ ¢ s¥ « Eq‘-r)

. ~&_

" r
ei; //;gés),
7: (sB-T-1y 2
q-r-1

Therefore Sm unknots in Sr X qu? if and only if the suspension

2 is a monomorphism.
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Proof. Notice that conditions for region <§) imply
g-r-1 < (2m-r+2) -r-1, because 2m-1r > q -2
<m, Decause m € 2r -2.
Also it is easy to show r > 2., Therefore
Iso(s™ c 8% x BTy 2 1s0(s™, 597" < 5%) by Lemma 60

Iso(Sq—P_1, g™ < Sq) putting the smaller
sphere first.

R

i

(Sq—m—1)9 b{ g?eorem 25 since B
stable.

%q—r—1
Define the isomorphism 6 = (_)(q—r—1)+m+q+(q—r-q)ma. Then,
by Theorem 25, 20 = B and so the diagram is commutative.
Finally we can write B = Ap where

Iso(s® c 8% x BTy P S [s®cs¥ x 8% M g (sT).
surjective injective

Therefore S° unknots in 5° x B3 T === L injective
«==3 B injective
== 2 monomorphism.

This completes the proof of the Corollary.

Examples of homotopy-stable knots.

isotopy classes homotopy classes
sphere C torus —_—
of embeddings of maps

‘ :
st o 8% x 2" | 7 2= 1,
510 < 56 4 10 | 7y —— 0

S _ .
st ¢ 58 x B0 f Dy s T,
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In the last example there are three knots all homotopically
trivial, and no realisation as an embedding of the other
homotopy class.
Problems.
It would be interesting to extend the results to:

(i) the region {3}.

(ii) knots of S™ in arbitrary g-dimensional regular
neighbourhoods of Sr, rather than just the product neighbourhood.

(iii) knots of 8™ in an (r-1)-connected manifold, where r
is not big enough for unknotting. This would be the beginning
of an obstruction theory.

We now return to the task of proving Theorems 23 and 24,
which occupies the rest of this chapter.

Proof of the Embedding Theorem 23 when M is closed,

We are given a continuous map f:M - Q which we have to homotop
into a pilecewlse linear embedding in the interior, and we are
given that

ms<q-3

M is d-connected

Q is (d+1)-connected,
where d = 2m -~ g.

The first step is to make f piecewise linear by simplicial

avproximation. Next homotopy f into the interior of Q as

follows. Let Q1 be a regular neighbourhood of fM in Q. Since
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M is compact so is Q1, and therefore Q1 has a collar. By
shrinking this collar to half its length (the inner half)

(o) o) e}
homotop Q1 into Q1. This homotopy carries fM into Qs © Q.

Now homotop f into general position in @ by Theorem 18
Corollary 1 of Chapter 6. Therefore singular set S(f) of f
will have dimension

dim S(f) < 4,
the double point dimension. The next main step of the proof
is contained in the following lemma.
Lemma 63. There exist collapsible subspaces C, D of M, é

respectively, such that S(f) c C = f—1D.
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Proof., The main idea of the proof is to use the engulfing
Theorem 20 or Chapter 7 several times in an inductive process.

Since M is d-connected, we can start by engulfing S(f) in

a collapsible subspace C?+19
s(f) < c, ¢ k.
Of course when C, is mapped by £ into @ it nc longer remains

1
collapsible, because bits of S(f) get glued together to form
non-bounding cycles. Nevertheless, since Q is (d+1)-connected,
we can cngulf fC1 in a collapsible subspace D?+2,

£C, ¢ D, c Q.

1 1
We are not finished yet, because although f—1D1 contains C,>»
it may contain other stuff as well. The idea is to move D1 80

as to minimisc the dimension of this other stuff and then engulf

it. More precisely we shall define an induction on i, where

th

the 1 induction statement 1s as follows:

There exist three collapsible subspaces Ci in M and
Di D Ei in é, such that

(1) s(f) c Cy

(2) £ 'B, c o, cr7'p,

(3) dim (Di - E;) <d-1+3.
The induction begins at i = 1, by constructing 01, D1 as

above, and choosing E, to be a point of fC1. The induction

1
d +4, because then Di = Ei and so we have

f_1Di as required.

ends at 1

S(f) c Ci

1l
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There remains to prove the inductive step, and so
assume the ith inductive statement is true, where 1 > 1.
Then £C, U E, ¢ D, by (2). Let
F =D - (fci U Ei).
Then
dimFP<d -1+ 3
by (2). Using Theorem 415 of Chapter 6 ambient isotop D, in
Q keeping fC; U B, Tfized until ¥ is in general position with
respect to fM. Then
dim (Fn fM) € (d -i+3) + m -q
<d -1, because m € g - 3.
Therefore aim £ < a - 1,
because £ is non-degenerate, being in general position.
Let Ei+1 denote the new position of Di after the isotopy.
Then Ei+1 is collapsible because it is homeomorphic to Die
Since M is d-connected, we can engulf f-1F (or more precisely
the closure of f_1F) by pushing out a feeler from C,. That
is to say there exists a subspace Ci+1 of M such that
f_1F < Ci+1 I Ci
dim (G, , - oi)s a - 1i+1.

Then Oi+ is collapsible becausc Ci+1\” Ci\s 0;

1
s(f) C;,4» because 8(f) < C;» by induction

< Ci+1'
1

r Ei+1

1 1

-1 - -
c Ci+1, because f Eiq = Ci I if Ei uf F
c, v £~ '9, by induction

C Ci+1’ by engulfing.
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Since Q is (d+1)-connected we can now engulf f(Ci+1 - Ci)

by pushing out a feeler from Ei+1' That is to say there

o

exists a subspace Di+1 of Q@ such that

£(Ci,q = C3) €Dy 4 T Ey

dim (Di+1 -E, ,)<d-1+ 2.
Then Di+1 is collapsible because Di+1‘\s Ei+1\\* 0. We have

constructed the three spaces, and verified all the conditions

of the (i+1)th inductive statement except C, , < f_1Di+1‘

This follows because fCi o Ei+1’ since the isotopy kept fCi

+1

fixed, and so

fCi+1 = fG:.L U f(Ci+1 - Ci)
c Ei+1 U Di+1’ by engulfing
= Diiqe

This completes the proof of the inductive step, and hence the
proof of Lemma 63.

We return to the proof of Theorem 23. Choose a compact
submanifold Q, of Q containing fM u D in its interior.
Triangulate M, Q. such that T is simplicial and C, D are
subcomplexes. If we pass to the barycentric second derived
complexes then f remains simplicial because f is non-degenerate
(being in general position). Let Bm, Bq denote the second
derived neighbourhoods of C, D in M, Q, respectively; these
are balls by Theorem 5, because C;, D are collapsible. Then

Lemma 63 implies S(f) < BT = #7182, In fact the lemma implies



more : it implies that

{ maps B - B4

f % embeds B - B4

\_embeds M- B" > Q - B4,
Now we see our way clear: we have localised all the
singularities of f inside balls, where it is easy to straighten
them out. More precisely let g:Bm - 4 be an embedding such
that g|B® = £|B™, obtained by joining the boundary to an
interior point in some linear representation of BY, Extend
g to an embedding g:M - Q by making g equal to f outside Bm,
Then g =~ £, Notice that the homotopy is global, but takes
place inside the ball BL. This completes the proof of Theorem 23
in the case M closed.

Proof of Theorem 23 when M is bounded.

We are given a continuous map £:M - Q such that |1 is a

piecewise linear embedding of M in Q. First make f piecewise
linear keeping M fixed by reliative simplicial approximation.

The next thing to do is to straighten up the map near the

boundary. Call a map g:M - Q proper (as in the case of embeddings)

ir g71g = .
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Lemma_6l. f is homotopic to a proper map g:M - Q keeping

I fixed, such that S(glg_@

Before After

Once the lcmma is proved we can apply the same arguments as
in the unbounded case to eliminate the singularities of g,
working entirely in the interior of Q. The proof of the
theorem will therefore be complete.

Proof of Lemma 6l. Since M is compact we can choose a

collar by the Corollary to Lemma 24, that is to say an embedding

cM:M x I = M,

such that c,(x, 0) = x, for all x € M, Let My = closure(M-im ﬁm),
" be a homotopy
Let ht:M - M/that starts with the identity and finishes with a

map h1 that shrinks the collar onto the boundary and maps MO
homeomorphically onto M. Such a homotopy can be easily defined
by stretching the inner half of a collar twice as long. In

particular
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h1CM(X, u) = x,
for all x € M, uw € I. Then h, keeps M fixed, and therefore

£ ~ fh, keeping Il fixed.

1
Now let Q1 be a regular neighbourhood of fi in Q. Since
M is compact so is Q1, and we can choose a collar
CQEQ"I x I -+Q1
such that c(y, 0) =y for all y € Q1. Let Q, = closure(q1—ﬁan),
Let kt:Q1 - Q1 be the homotopy shrinking the collar onto its
inner boundary and keeping QD fixed. More precisely for
0 £t £ 1 define
- < -

kth(y, u) = ;CQ(y’ t+u), 0 sus<i-t 1 '

’i joet

KtIQO = identity.

CQ(Y9 1)9 1=t < u <1

We now use kK to construct a homotopy gt:M - @ that moves MO
into QO and sketches the collar cM out again compatibly with

c More precisely for 0 < t € 1 define

Q.
g0 (%, u) = { ey (fx, u), 0 < u < ty
cQ(fx, t), t €£u <1

gthO = k, fh, |¥

1' 0°
Notice that 8¢ keeps Il fixed. Define g = 845 and we have

1 = gO = g1 = g
all keeping M fixed. Meanwhile gMO C QO’ and the collars

c ¢, are compatible with g in the sense that the diagram

M e
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: “u
M ox I ———sN

£ 1ix 1 g

. c N

Q1x I——»—-@—»aQ1
is commutative. Therefore gﬁ c é1 C @ and gM = fil ¢ Q, and
so g is proper. Also the restriction of g to the collar is
an embedding, and so

[o]
S(g) < closure QO = Qy ¢ Q1 c é.

This completes the proof of Lemma 6l and Theorem 23.

Proof of Theorem 24 when M is closed.

We are given homotopic embeddings £, g:U - é, we have to show
they are ambient isotopic kecping Q fixed, provided

ms<gq-3

M is (d+1)-connected

Q is (d+2)-connected.
Without loss of generality we can assume that M is unbounded,
because if we prove the result for the unbounded case then
f, g arc ambient isotopic in é. Then, by Theorem 12, it is
possible to choose an ambient isotopic with compact support,
which is therefore extendable to an ambient isotopy of Q keeping
Q fixed. Therefore assume Q unbounded.
Remark. If we had Hudson's concordance ==>isotopy result available,
then the theorem could be deduced immediately from Theorem 23,

as follows. The homotopy gives a continuous map
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F:Mx IT-=Qx1
such that F|(M x I) 1is an embedding in (Q x I) . The
connectivities of M, Q have to be increased by one each,
because the double-point dimension of F is

2(m+1) - (g+1) = (2m-q)+1 =4 +1.

By Theorem 23 homotop F into an embedding

G:M x I—»Qx1T
keeping (11 x I)' fixed. In other words G is a concordance
between £ and g. Therefore they are ambient isotopic. However
as we have not proved the concordance = isotopy in these notes,
we give a separate proof of Theorem 24, similar to that of
Theorem 23 above.

Begin the proof by ambient isotoping g into general position
with respect to fll;, by Theorem 15. The given homotopy is a
continuocus map

hel x I = Q
which we can maeke pieccwise linear keeping (M x I)' fixed,
by relative simplicial approximation.

Lemma_65. After a suitable homotopy of h keeping (M x I)'

fixed, we can find collapsible subspaces C, D of M, Q such that

S(h) € C x I = n'p.

We prove the lemma in two stages in order to make the proof
more translucent. In the first stagc we prove a weaker result

by assuming the stronger hypotheses
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m<gq-5

M is (d+2)-connected

Q is (d+4)-connected.
The proof follows the pattern of the proof of Lemma 63.
In the second stage we show how to sharpen the proof as
various points in order get by with the correct hypotheses
of Theorem 24, namely

m<qg-3

M is (d+1)-connected

Q is (d+2)-connected.
We achieve the sharpening by using the piping techniques of
the last chapter.

Proof of Pirst Stage. Let m:M x I - M denote projection.

Notice that h|(M x I) is in general position because we have
alrcady isotoped g into general position with respect to fM.
By Theorem 18 homotop h into general position keeping (M x I)'
fizxed. Therefore

dim S(h) < 2(m+1) - g

=d + 2.

There is an induction on i, as follows. There exist collapsible
subspaces Ci in M and Di - Ei in @ such that

(1) 8(n) c C; x I
1 1

(2) BBy €0, x I €h” D,

(3) dim (D; - E ) £d -1+ 6.

i
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The induction begins at i = 1. BSince under the stronger

hypotheses we are assuming M to be (d+2)-connected, engulf

78(h) in a collapsible subspace C?+3 of M. ©Since @ is assumed

to be (d+4)-connected, engulf h(C

a+b5
1 1

and the conditions for i = 41 arc satisfied.

4 X I) in a collapsible

subspace D of Q. Choose E, to be a point of h(C1 x 1),

For the inductive step, assume true for i. Obtain Ei+1
by ambient isotoping Di in Q keeping h(Ci x I) U Ei fixed,
until the complement F is in general position with respect to
h(lf x I). Then

dim 7h P < dim hOOF

1

dim [F n n(M x I)]

N

(d-1i+6) + (m+1) - q
sd -1+ 2

because we are assuming m € g - 5. Engulf in M
1

t™h F C Ci+1 ~ Ci

, _ < q _
dim (Ci+1 Ci) d - i+ 3.
Therefore
in . ~-C, £ d-1 .
dim (C1+1 x I-C, x 1) i+l
Engulf in Q
n(C, 4xI -C; x I) eDy ;™ B,
i - E. < — i .
dim (Di+1 1+1> d-1+5
Verify the (i+’i)th induction statement as in the proof of Lemma 63.
The induction ends at i = 4 + 7 with Di = Ei’ and consequently

S(n) < C, x I= h‘1Di, as required.
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Proof of the Second Stage. When homotoping h into general

position, the full strength of Theorem 18 was not used. We
now use the additional information that h is in general position
for the pair M x I, (M x I) . 1In particular this implies
that the (d+2)-dimensional stuff of S(h) all lies in the
interior of M x I, at places where exactly two sheets of M x I
cross one another. The trick now is to punch holes in this
top dimensional stuff, by piping one of the sheets over the
free—-end M x 0. MNMore precisely we use the piping Lemma L8 of
Chapter 7. The triple M x 0, M x 1 c M x I is "cylinderlike"
in the sense of Chapter 7, and Q has no boundary by assumption.
Therefore by the piping lemma, we can homotop h keeping (M x I)'
fixed, and then find a subspace T of M x I such that

(1) 8(h) T

(2) dim T < 4 + 2

(3) dim [(Mx 1) 0T} <a+1

(L) Mx I ~(Mx1)uT ~Mx1.
By being a little more precise in the proof of Lemma 48 at
one point, we can factor the first of these collapses

(5) Mx IS Mx1)Uu(aT xI)~(Mx1)umT,
Since M is (d+1)-connected it is possible, using (3), to

d+2

engulf (M x 1) N T in a collapsible subspace R of M x 1.

a+2

Define Cj = ®"(R U T). Notice that compared with the dimension

of C1 in the proof of the first stage, we have scored an
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improvement of 1. Then

C, x I = (mR x D) U (%T x I)

1
~R U (T x I), cylinderwise
R UT by (5).
Therefore h(C1 x I)™ h(R U T) by Lemma 38 and (1) above.
But
dim h(C1 x I) £da+ 3
dGim h(RUT) <4 + 2.
Therefore h(C1 x I) can be "furled" in the sense of Chapter 7.
Since Q is (d+2)-connected engulf h(C1 x I) in a collapsible
a+2 .

subspace D1 of

Corollary to Theorem 20. As before define E1 to be a point of

Q, of the same dimension, by the furling

h(C1 x I). Notice that we have scored an improvement of 2 in
the dimension of Dy .
We can write this improvement into the ith inductive
statement by replacing condition (3) by
(3)" aim (D, - ®;) <d -1+ bk
We now have to do some more piping and furling for the inductive
step. As before obtain L.

i+1
h(Ci x I) u Ei fixed, until the complement F is in general

by ambient isotoping Di keeping

position with respect to h(M x I). Let W = closure(h—1F). Then
dimn W < dim W

= dim [F n n(M x I)]

N

(@ -1 +U4)+ (m+1)-q

£d -1+ 2
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because m € g - 3. We now want to engulf 7«W from C, but

,1
with a feeler of the same dimension, and the way to do this

i1s to furl nW. We furl «W by punching holes in the top
dimensional simplexes (of some suitable triangulation), by

Piping the rclevant top dimensional piecc of F off the end

h(M x 0) of h(M x I).

- Before | After v{ pipe

NN N \\\\\11/
N\ NV
C; ™ ihle

Notice that S(h) c C, x I, and T does not meet h(C:.L x 1),
and so that the self-intersections of h(M x I) do not get in
the way of the pipe.

More precisely, we can adapt Lemma 48 to give the following
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result. We can find an ambient isotopy of Di keeping

n(C; x I) u B; fixed, such that in the new position ayd-i+2

can be furled to a subspace xd-1+1

rclative to Ci’ and
(C; x I) u (7 x I)>(C; x I) U (X x I)uW.
By the Corollary to Theorem 20, engulf in M

W C Cl+1\ C.

i
i - < - 1 -
dim (C:.H_JI Gi) a 1d+ 22
d-i+3 _ -i+2 .
Let Y = closure (Ci+1 x I -0, x I), Z = (XxI) U&IU(Ci+1x

Then Y can be furled to 2 relative to Ci x I because

(C; x D UY=0C, , xI

~(C; x I) u (7w x I)U(C:i x 1) cylinderwisc

+1
\s(Ci x I) U Y by above.

Thercforc hY can be furled to hZ relative to h(Ci x I) by

Lemma 38, because S(h) < Ci x I. Moreover hY can be furled

to hZ relative to Ei+1’ because

nY 0By 4 © h(M x I) nE; ,
= h(ci x I) U hw
chznBE ,,

and thercfore hY¥ n Ei+1 = hZz n Ei+1' Therefore engulf in @

hY < Di+4

X 7 <4 _
dim (Di+1 Ei+1) d -1i + 3.

~ Ei+1

Verify the (i+1)th inductive statement as in the proof of the

first stage, and the proof of Lemma 65 is complete.
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Lemma 66. There exist balls B" c i, B ¢ Q such that

o]
fmabs %m,x I — Bq
h

embeds BY x I - p%

}. embeds (1 - B®) x I = g - B,

N

Proof. The obvious way is to take derived neighbourhoods
of the collapsible subspaces C, D of Lemma 66. However we
run into the technical difficulty of not being able to find
triangulations such that both maps

Box T —P2 30

jx

M
are simplicial (as is illustrated in the Example at thc end
of Chapter 1). Therefore first choose triagulation K, L of
M x I, M such that ®m:K - L is simplicial, and C is a full
subcomplex of L. Let A:L = I be the unique simplicial map
such that h-10 = C. Choose €, 0 < &€ <1 of a smallness to be
specified later. Define B = K_1[0, e] which is ball, because
it is a regular neighbourhood of C by Lemma 1l4.

Now choose a subdivision K,| of K, and a triangulation Q1

of a regular neighbourhood of h(M x I) in @ such that
X Q2 are barycentiric first
- Q2 remains simplicial because h is

h:K1 = Q1 is simplicial. If K

deriveds then h:K2

non-degenerate. Now choose & such that & < A%y for all vertices

v &€ K2 not in € x I. Call a simplex of K2 exceptional if it

meets C x I, but is not contained in C x I. Then (h%)’18 meets
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only exceptional simplexes, and meets each exceptional simplex
in a hyperplane.
Let K3 be a first derived of K2 obtained by starring all
exceptional simplexes on (hﬂ)'18, and the rest barycentrically.
Since S(h) ¢ C x I, no exceptional simplex is identified with
any other simplex by h. Thercfore we can dcfine a first derived
QB of Q2, such that h:K3 - Q3 remain simplicial, by starring
images of exceptional simplexes at the image of the star-point,
and the rest barycentrically. Define BY = N(D, QB)’ which is
a ball, being a second derived neighbourhood of the collapsible
subspace D. Then
n'8% - n(c x I, Ky) = (ze)~ Mo, ] = B® x 1.
h—1éq‘ = Bm x I
s(h) ¢ B® x I.

The proof of Lemma 66 is complete.

Continuing the proof of Theorem 24,

So far we have the pictures



MxI

Since h|M - B® is a proper embedding of M - B" in @ - BY,
this means that £|M - B is isotopic to gl|M - B®. fTherefore
by Theorem 412 Corollary 1 of Chapter 5 they are ambicnt
isotopic. Extend the ambient isotopy of Q - %q arbitrarily
over B% to give an ambient isotopy of @. The latter moves

£ to £', say, where f' agrees with g except on ﬁm’ and f'le,
g|B" are proper cmbeddings of BT in BY that agree on the
boundary. Since m < g - 3, by Theorem 9 Corollary 1 of
Chapter L we can ambient isotop Bq keeping B4 fixed so as to
move f'iBm onto ngm. This ambicent isotopy extends trivially
to an ambient isotopy of @, moving f' onto g. Hence T and g

are ambient isotopic. This completcs the proof of Theorem 24

when M is closed.
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Proof of Theorcm 24 when M is bounded.

We arc given embeddings £, g:M — Q that are homotopic

keeping M Tixed, and we have to show they are ambient isotopic
keeping € fixed. The first thing to do is to make them agree
on a collar.

Let Q1 be a compact submanifold of Q containing the

image h(M x I) of the given homotopy h. Choose a collar Cy

cg of

of M. By Theorecm 410 of Chapter 5 choose two collars cf a

Q’

Q1 such that c cf are compatible with f, and o cg arc

M TQ
compatible with g. By Theorcm 13 there is an ambient isotopy

k of Q1 keeping Q1 fixed, moving cg onto c%. Since Q1 is kept

fixed,; k extends trivially to an ambient isotopy of Q kceping
¢ fized. Therefore if we replace T by ks and write c, = c%,
QJ

1

with both £ and g. Let M, = closure (M- im CM), Q

Then fMOs gMO c QO. The picture now looks like:

then £, g agrees on the collar im Sy and Cyp 2 cQ are compatible

= closure(Q1—imc

Q)

0

//f’—ﬁ
\\E?f;
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Lemma 67. The maps ﬁJMO, g[MOiyO :%QO are hgmotopic'iQ”QO

keeping,ﬂo fixed.

Proof. Let et:MO -+ M be a homotopy starting with the

inclusion and ending with a homeocmorphism that stretches a

0
all x e M, t € I. Let j:Q) - Q, be the rctraction that shrinks

collar of 1l  over that of M. In particular eth(X, 1) = CM(X, 1

@
all y € Qj, t € 1. Then the required homotopy is obtained by

the collar c. onto its inner boundary, jcQ(y, t) = cQ(y, 1)

timewise composition of the three homotopies
jfet, jhte1, jge1_t,
This complctes the proof of the lemma.
The purpose of what we have done so far is to push the
singularities of the homctopy into the interiors of M, Q so

that the boundarics do not interfere with the engulfing.

However there is the trivial technical difficulty that a constant

homotopy of the collar is of course a singular map of (collar)x I.

Nor can we ambient isctop glim %

reasons: firstly we have got to keep M fixed, and sccondly there

away from f|im cy for two

is an obstruction in ng'2m(Q). Thercfore we get round this
difficulty by defining the homotopy to be a map of a rcduced
product M # I, obtained from M x I by shrinking x x I to a

point for each x € inm Cy e
More precisely, identify the collars of M x 0, M x 1

(but not the complements of the collars) and define M # I to Dbe

’t)y
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the relative mapping cylinder of the homeomorphism

Mx 0-Mx 1., Let Ty :M#I - M denote the projection.

M# I

collar

If X € M, define X#1 = x'X. Then

MHI = (MoiiI) U (collar).

Define h,:M#I- Q by mapping MO# I by Lemma 67
{:mbedding the collar by fﬂ#.
Then W#S(h#) c M, c M.
h#S(h#) c QO c §1 c a.

Thercfore we can apply engulfing arguments in the interiors
of M, Q, as in the unbounded case, and obtain balls Bm c ﬁ,
B4 ¢ a, such that

{maps B%# 1 - B2

hy Jom‘beds g1 - B4

Lembeds (M - %m)#:l - q - B%,
Therefore, as before, £ and g are isotopic keeping M fixed.
By Theorem 12 they arc amblent isotopic keeping Q fixed.

proof of Theorem 24 is complete.
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