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INSTITUT des HAUTES ETUDES SOIENTIFIQ,UES 

1 9 6 3 

Seminar on Combinatorial Topology 

by E.O. ZEEMAN 

INTRODUCTION 

The purpose of these seminars is to provide an introduotion to . 

combinatorial topology. The topics to be covered are : 

1. The combinatorial category and subdivision theorems, 

2. Th~,polyhedral category, 

3. Regular neighbourhoods, , 
4. Unknotting of spheres, 

5. General Position, 

6. Engulfing lemmas, 

7. Embedding and isotopy theorems. 

At first sight the unattractive feature of combinatorial theory a3 

applied to mtinifolds is the kinldll9ss and unhomogeneity of a complex as 

compared "Uh the roundness and homogen"Uy of a manifold. However this is 

due to a confusion betvleen the techniques and subject matter. Vie resolve this 

confusion by separating into tl<D different categories the tools and objects of 

study. The tools in the combinatorial category we y~ep as special as possible, 

namely finite simplicial complexes embedded in Euclidean space. 

These possess two crucial prop3rti.es : 

i) finiteness, and the use of induction 

ii) tamene ss, and nicene 8S of intersection. 

Meanwhile objects of study lfe make as general es possible. Our definition of 

polyhedral category contains not only 

" (J G " " • 
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polyhedra; i) 

E) manifolds (bounded or not, compact 'or not), . , 

but also the following spaces, which have not been given a oombinatorial 

structure 'before : 

iii) non-paracompact manifolds, for example the Long Line; 

iv) infinite dimensional manifolds, f~r example th~ orthogonal group, 

v) joins of non-compact spaces; for example the suspension of an 

open interval. 

vi) function spaces; for example the space of all pieceldse linear 

embeddings of compact manifold in another manifold. 

As the examples show, a polyhedral space need not be triangulable, 

and if it is, it dOes not have a specific triangulation, but is a set with a 

struoture. The structure is, roughly speaking, a maximal family of subpolyhedra, 

and the structure determines the topology. 

Our theory is directed tOlVards the study of manifolds, and in 

particular of embeddings and isotopies. Recently it has become apparent that 

combinatorial results differ substantially from differential results; a striking 

case is ,S3 in S6 , which knots differentially, and unknots combinatorially. 

In ,fact combinatorial theory seems to behave well in, ana to have techniques 

to handle, most situations with codimension ~ 3'. Just as differential theory 

behaves well and can handle most situations in the stable ran~e. 

We shall therefore concentrate on geometry in codimension ~ 3 

This means we shall neglect a number of interesting and allied topios that 

depend more on algebra, for example i) codimension 2 

ii) immersion theory 

iii) relations with differential theory. 
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Ghapter I THE COMBINATORIAL CATEGORY, 

Simplexes 

Let ~ denote Euclidean p-space. An n-simplex (n,~ 0) A in ~ 

is the convex hull ~f n + 1 linearly independent points. 

We call the p~ints vertices, and say that A spans them. A is closed and 
• 

compact; A den~tes the boundary, A the interior. A simplex B spanned by 

a subset of the vertices is called a face of A, written B < A Simplexes 

A,B are joinable if their vertices are linearly inde"jiendent. If A, Bare 

joinable we define the ,join AB to be the simplex spanned by the vertices of 

both; otherwise the join is undefined. " 
, ! 

Complaxes 

A finite simplicial complex, or complex, K in ~ is a finite 

collection of simplexes such that 

(i) if A e K , then all the faces of A are in K, 

(ii) if 'A, B E K ,then A (\ B is empty or a common face 

The .§ill! and link of a simplex A K are defined : 

st(A,K) = {Bl A <. B 1 lk(A,K) = [B; ABEK} • 

Two complexes K,L in EP are ,joinable provided: 

(i) 'if A E K , BEL then A,B joinable 

(ii) if A,A' e K and B,B' cL, then AB f\ A'B' is empty or a 

, common face • 

If K,L are joinable, we define the join KL = K v L IJ [ABlA': K, B E. L] 

otherwise the join is undefined • 

The underlying point set ,I K I of K is called a euclidean polyhedron 
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L is called a subdivision of 'K if I L I = \ K \ , and every simplex of 1 

is containod in some simplex of K • 

A 0 -> ~ Examl21es, 1) Choose a point A e A Let 
A 

1 = (K - st(A,K» u A A lk(A,K) • 

Then 1 is a subdivision of K, and we say 1 is obtained from K by 
A 

starring A (at A) • 

2) A first derived K(l) of K is obtained by starring all the 

simplexes of K in seme order such that if' A> B then A preceedes B 

(for example in order of decreasing dimension) • 

. Another way of defining K(l) is to define the subdivision of each simplex, 
A • 

induoti vely in order of increasing dimension, by the rule At = A A' • 
(1) A A A ' 

Therefore a typical simplex of K is A-U A
1
, • • Ap ,where Ao ,If. Al (.,. (. Ap 

in K. An rth deriverl K(r) is defined inductively as the first derived 

of an (r_l)th. derived. The barycentric first derived is obtained by starring 

at· the barycentres. 

Convex linear cells 

A convex linear cell, or cell, A in EP is a non-empty compact 

subset given by ) linear equations 

lunear inequalities 

fl = O, ••• ,fr = 0 

gl ~ 0, .. , ,g >.. 0 
'/ S ' 

and 

A~ B of A is a cell (i.e. non-empty) obtained by replacing some of the 

inequaties gi ~ 0 by equations g. = 0 • 
~ 

The O-dimensional faces are called verti'oes. It is easy to deduce the 

following, elementary properties: 

1) A is the convex hull of its vertices 

2) A is a closed compact topological n-cell, ,There n + 

is the maximUm number of linearly independent vertices, 
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3) A simplex is a cell. 

4) The interseotion or product of two cells is another. 

5) Let x be a vertex of the cell A, and let B be the union 

of faces of A not containing x. 

Then A = the oone x B • 

A convex linear cell oomplex, or oell complex, K is a finite cOllection of 

cells such that 

Lemma 1 

Corollary 

(i) if A E:: K , then all the faces of A are in K, 

(ii) if A, B c K, then A nB is empty or a common faoe 

• 

A oonvex linear cell oomplex can be subdivided into a simplic~ 

complex without introducing any more vertices. 

Order the vertices of the cell complex K. 

Write each cell A as a cone A = xB ,where x is the first 

vertex. Subdivide the cells induotively, in order of increasing 

dimension. The induotion begins trivially with the vertices. 

For the inductive step, we have already defined the subdivision 

A' of A, and so define A' to be the cone AI = xB' • 

The definition is compatible with subdivision C' of any face 

C of A containing x, beoause sinoe x is the first vertex 

of A, it is also the first vertex of' C Therefore each cell, 

and hence K, is subdivided into a simplicial oomplex 

The underlying set of a oell complex is a euolidean polyhedron. 

Corollary 2 The intersection or produo~ of two euclidean polyhedra 

is another. 

For the intersection or produot of simplioial oomplexes is a 

cell. complex • 
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. A map f: K -:'>L is a continuous map \ Kf ~ I L \ 

Call f simplicial if it maps vertices to vertices and simplexes linearly to 

simplexes. Call f an isomorphism. written f: K;:;:- L , if it is a simplicial 

homeomorphism. The graph r f of f is defined as usual 

r f = i (x, fx) ; x C:. I K J } C \ KI x I tic. EP+1 • 

Call f piecewise linear if either of the tl~o definitions hold 

(~) The graph r f of f is a euclidean polyhedron 

(2) There exist subdivision K' , L I , of K,L with respect to 

. which f is simplicial • 

Notice that condition (2) clearly implies condition (1), because tl::c 

graph of a linear map from. a simplex to a simplex is a simplex, and so the 

. graph of a simplicial map K -"> L is a complex isomorphic. to K. vie shall 

prove the converse, and therefore the equivalence of the two definitions, in 

Lemma 7. Definition (1) is the aesthetically simpler, ,/hile definition (2) 

is the one which is used continually in practice. 

The reader is warned against the standard mistake of confusing 

projective maps with piecerrise linear maps. For example the projection onto 

the base of a triangle fro\ll the opposite vertex of a line not parallel to the 

base is not piecewise linear • 

Infact the graph r f in the square I K I x I L\ is part of a 

rectangular hyperbola • 

L 

L K. 

I 
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Lemma 2 The composition of two piecewise linear maps is another , 

Definition 

Ive use definition (1), Given [~L ~ M let 

Then r consists of all points (x, f'x, gfx) • x E \ [\ 

Therefore the projection -rr: if? x Eq x Er ---+ if? x Er 

maps r homeomorphically onto r (g f) 

Since f,g are piecewise linear, r is a euclidean polyhedron· 

by Lemma 1 Corollary 2 • The image under the linear projection Ti 
~f any complex triangulating r gives an isomorphic complex 

triangulating r' (gf) Hence r (gf) is a euclidean polyhedron, 

and gf is piecewise linear • 

Lemma 2 enables us to define the combinatorial category e with 

{

objects : finite simplicial complexes 

maps : piecewise linear map.s. 

vie shall al so need the subcategory of embedding,s t. with 

~ the same· objects 

L maps : . injective piecewise linear maps. 

We proceed to prove some useful subdivision theorems , 

Lemma 3 If K:J 1 then (i) anY subdivision [I et K induces a subdivision 

L' of 1 and (il) any subdivision L' of L can be extended to 

a subdivision [' of K. 

(i) is obvious 

(H) subdivide, inductively in order of increasing dimension, . . . 

thOse simplexes of [-1 that meet L , by the rule A' = A A' 
• 

where A is an interior point • 
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Given a simplicial embedding f: K -':> 1 , and a subdivision K' 

of K! there exists a subdivision l' of 1 such that 

f : K'-» l' is simplicial 

1emma 4 If I K I :) J 1 I ! then there exists an r th derived K(r) of K and 

a subdivision l' of 1 such that l' is a subcomplex of K(r) 

By induction on the number of simplexes of 1. The induction 

, starts trivially when 1 = p. If A is a principal simplex of 

L (principal means not the face of another), then by induction 

'choose K(r-1) to contain a subdivision of L-A 

Choose a derived K(r), by starring each simplex at 
o 0 0 o 

a point in 
Then K(r) 

AnB if A meets B, and arbitrarily othervTise • 

contains subdivision of L-A, A and hence of L. 

Corollary 1. If I K I - I L \ then K, 1 have a common subdivision • 

,; 

Corollary 2. If I K I:) 11, I 
l 

i - 1, .•• ,r, then there exist subdivision K' 

such that all the L I. are subcomplexes of K' • 
l 

Corollary 3. The union of two euclidean polyhedra is another • 

For subdivide a large simplex containing them both, so that each 

appears as a suboomplex • The union is'{I,1.9o a subcomplex 

1eIJ'.ma 5 Given a simplicial map f: K-),L , and a subdivision 1t of 1, 

then there exists a subdi.rision ](I of K such that f: K 1-') L' 

is simplicial • 

Proof 
, -1 

Let K1 = f L' , which is a cell complex subdividing K. 

By Lemma 1 we can,choose a simplicial complex K' subdividing 

K1 ' introducing no nCl< vertices. Then each simplex of K' is 

I 

I 

L' 
i 



( 

" , 

- 9-

mapped linearly to a simplex of L I , and so f K'·-,> L' is 

simplicial • 

I. 

Defini tion A map f K --'> Et! is linear if each simplex is mapped linearly.· 

Lemma 6 Let e be the inclusion L C Et!. Given a map f: K -7 L , such 

that ef: K-'>Et! is linear, then there exist subdivisions K', L' 

of K L with respect to l~hich f is simplicial • 

Proof If A. IS K ,let B. '" fA. • 
~ ~ ~ 

By linearityBi is a cell, possibly of lOI~er dim(msion than \' 

and jB. \ c. I L I • By Lemma 4 Corollary 2, choose simplicia1 
l. 

subdivisions L', B' of L, B. 
i. l. 

such that each B,' is a 

subcomplex nf L'. Then for each it 

subdividing A. , and the union f- 1L' 
l. 

-1 l. 
f B! is a cell complex 

l. 

is a cell complex 

SUbdividing K. By Lemma 1 choose a simplicial subdivision 

K' rf f- 1L' , introducing no nel; vertices. Then f: K' -'> L' is 

simplic ial • 

Lemma 7 The two definitions of piecelrise linearity are equivalent 

We have observed (2) =:;,.( 1) trivially. Therefore we shall prove 

(1) ::::.c;> (2) • Suppose K in ~,L in Et! and let f: K -'7 L 

be a map whose graph r f is a euclidean polyhedron. In other 

words, there exist a complex M in EP+t! such that I M I '" 1- f 

The projection ~ x Et! -~). ~ maps M homeomorphically 

ont~ K, and linearly into ~ ; therefore by Lemma. 6, there exist. 

subdivisions M', K' with respect to .which 111 is simplicial • 

Hence TT1 : M' ---:7 K' is an isomorphism. Similarly 
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Tr 2 : # x E
q -+ Eq maps M into L (not neoessarily 

homeomoI1>hioally), and linearly into E
q

; therefore there exist 

. subdi vi sions M" , L' with re speot to whioh 112 is simplicial. 

Let K" be the subdivision of K' isomoI1>hic to M" • Then f 

i.B the oomposition of the simplicial maps 

.,... -1 
d 1 

K" ~ 

Henoe, f: K ~ L is piecewise linear by definition (2) 

LetT be a finite subset of e , such that if a map is in T so 

is its range and domain • The dia~rRm of T is the 1-ccmplex obtained by 

replacing each complex by a vertex and each map by an edge. Call T a 

. C tree :m., if its diagram is simply-connected. Call T one-way if each 

complex is the domain of at most one map. Therefore in a one-vi ay tree there 

is exactly one comp~ex that is the domain of no map, and every other complex 

is the domain of exactly one map . Call T simplicial if every map of T is 

simplicial • Call Tt a subdivision of T if it has the same diagram, and 

each complex of T' is a subdivision of the corresponding complex of T, 

and each map of T' (gua map between the underlying polyhedra) is the same 

as the corresponding map of T. 

Theorem 1 If T is a one-,Ill¥ tree in C 'C' or a tree in .. ' then T has 

a simplioial subdivision 

Proof by induotion on the number of maps in T. Let T be a one-1fay tree 

in C. 
The induction begins trivially ,Iith no ;naps. 
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Suppose T has at least one map. Then there exist complex K 

and a map f: K ---, L in T, such that K is not the range . 
or domain of any other map in T • 

By Lemma 7 • there exist subdivisions K', L' of K , L with 

respect to which f is simplicial • Let T* be the one-way tree obtained 

from T by omitting K and f, and replacing L by L'. By induction 

there is a simplic ial subdivision T' 
* 

of T* In particular' T' 
* 

contains 

a subdivision L" of L' . By Lemma 5 there exists a subdivision K" of K' 

such that f : K"-... L" is simplicial. Let T' - T' - * together'with K" ans 

f • Then T' is a simplicial subdivision of T . 
Now suppose T '''' . is a tree in c, not necessanly one-way. There 

is a complex .~ which is the range or domain of exactly one mar • If K is 

the domain, proceed as before. If K is the range , let the map be f: L ~ K • 

Proceed as before, except that we can use the Collorary to Lemma 3 instead 

of Lemma 5 to form K" , since f is an embedding . The proof of Theorem 1 

is complete • 

The following two exsmples show that the hypotheses of Theorem 

are necessary as well as sufficient 

Exsmple 1. It- is necessary' that a tree in C be one-way I 

otherwise it contains a subtree 

f L 

K 
~7 

~M 
We can ohoose f. g so that there exists no simplioial subdivision as 

follows: 
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Let K =.L = M = I , the unit interval, and let 

f map 

g map 

o -.-'-7 0 

1/3 :> 

1 ----'>' 0 

[ 0,1/3) , (1/3,1 J 

o 
2/3 

1 

--.".". 0 

__ .,.. 1 

--~O 

[ 0,2/3] , (2/3, 1 J 

linearly, 

linearly • 

,Suppose there is a simplicial subdivision, containing Kt • 
, ' 

r. 

Let p, q,r be 'the numbers of vertices of Kt between, respectively, 0 and 

1/3, 1/3 and 2/3, 2/3 and 1'. 

Since f is simplicial on K' , we have p = q + 1 + r 

From g similarly, p + 1 + q = r. Hence q = -1 a contradiction • 

Therefore there is no simplicial subdivision 

Example 2. It is necessary that the diagram in tj be a tree, 

otherwise it contains a circular subdiagram 
\ 

K f 
L 

We can choose the maps so that there is no simplicial subdivision as follows 

Let all the complexes be I, and all the maps be the identity except f, 

and let 
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° ---? ° 
1/3 _) 2/3 

1 

[ 0,1/3 ] 

I. 

linearly. 

Suppese there is a simplicial subdivision containing f: K' --':> l' • Going 

round all the other maps Vie have the identity map simplicial, and so K' ",1 t • 

Using the same notation as in Example 1 ,sinoe f is simplicial, Vie deduce 

p == p + 1 + Cl. Hence Cl == -1 , again a contradiotion. Therefore T has no 

simplioial subdivision. 

Remark. A "commutative diagram" in t: has simplicial subdivision if the 

maps are determined by a maximal tree. For example 

is determined by 

\ 

> 
but , 

\ is not determined by a tree. 
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Cha::;tcr 2 T,lE POLYHEDRAL CATEGORY 

II. 

In this chapter l~e give mainly definitions and examples to desoribe 

the category.. We omit the proofs to most statements to make the reading easier, 

and because lat~r chapters do not depend on them', 

Let X De a set (vlithout &s yet any top~logy). A 1iQ.lyhedron in X 

is an injective function f: K -7 X where K is a finite simplicial oomplex 

By a function ve mean, as usual, a funotion from the set of points of the 

underlying euolidean polyhedron IKI to the set v ... vie vri te 

dom f '" K , imf=fK. 

THO polyhedron f
l

: IS. -1' X ~r.d f
2

: K2 ---?> X are related if there is a 

third f 3 : K} -}- X, suoh t:Oat 

i) hI f3 = :i.In fl 0; il!! f2 

ii) -1 -,1 
E. t, fl f3 , f2 f3 

8 
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11 family 7 of polyhedra in X is a set in which any two are related • 

Write :im r{ = [:im f ; f E' '7· J 

n. 

11 nolystructure, (or more briefly a structure), 'j on X is a family such· 

that 

i) :im 7 covers X 

ii) :im r:r is a la+.tice of subsets of X • 
iii) '] {~ - 7-

,~ - j 

The last corLiition means that given K ~ L ~ X with fE r;. and g 

a piece1Vise linear embedding, then fg f. f 
11 polyspace X '" (X, 'J.) is a set X together with a poly structure 1- on X. 

Top 0 1 .0 g y 

The topology of the structure :f. is the identificaticn 

topology 

X = dom ? / r:; 
r~ 

Here dom ,-f DCe8ns the disjo~n'c un!.on of the euclidean polyhedra 

{dom f ; f E '1 }, c.nd ti13 identification is given by ~J: dom '] .-+ X • 

Vie can deduce (non .. i;riviQlly) : 

i)·· Each f : X -> X is Qhomeomorphism into 

ii) A set U C X is open (or closed) if and only if U t'! f K is 

open (or closed) in f K , each :: E. "J- . 

If X is a topological space, then a polystruoture on X is one ;rith the 

same topology . 

E~lPpk-1. The .M.S2.J:'o!.c. structure on a set X is given by maps 

of points into X. This gives the discrete topology • 



( 

n. 
- 3 -

Exa~ple 2. The natural structure ~ (En) on Euclidean space En 

is the set of all piecewise linear embeddings K -'> En .. This gives the 

natural topology • 

Exa~ple 3 The natural structure ')- (K) on a complex K is the 

set of all piec0~lise linear embeddings L -'> K. The natural structure on 

the euclidean polyhedron I K I is the same • 

Example 4. Suppose f:, K I -+ X is a homeomorphism from a 

euclidean polyhedron onto a topological space X. Then f '::f (K) gives a 

polyhedral structure '1- (X) on X. 

rle call X, with this structurE>, a polyhedron • 

Notice that ~ (X) contains the triangulation ·f and all related 

triangulation~. Conversoly the structure is uniquely determined by any 

triangulation in it 

llemark 1. 11'e have used the word pOlyhedron in three ways 

i)euolidean-polyhedron 

ii) polyhedron-in-a-set 

iii) polyhedron. 

The usage is cohorent, because (i) ldth its. natuxal structure is an example 

of (Hi) , and the image of (ii) with its induced (80e below) struoture is an 

example of (iii) • 

Remark 2 It is possible to have many structures on a set; 

more exa~ples are given below. HOl'lever it cen be shown (non-trivially) that 

1) Any structure is maximal ;Iith respect to its topology : the 

topology of a strictly smaller structure is strictly finer (more open sets) • 

2) The natural structure~ of' En and of polyhedra are maximal. 
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S 'u b s p 'a c e s 

Let ]); = (X ,,)) be a polyspace • If Y C. X I we define the 

induced structure on Y to be 

']/Y=[fE'j ; imfC Y} • 

It is easy to verify that ~ I Y is a poly structure on Y 

VIe call Y = (Y ,'::f \ Y) a polysubspe.ce if it has the induced topology 

T ('1 t Y) '" T ('J) I Y 

In general T ('if. I Y) has a finer topology 

Example 1 • En is a polysubs)!ace of Sn. 

n. 

This is a particularly satisfactory exal1ple , because combinatorially it is 

always a little embarrassing to regard t~8 infinite triangulation of En as , 
a satisfactory "substructure" of the finite triangulation of Sn. 

Vie state elementary properties of polysubspaces, leaving the proofs 

to the reader : 

i) Any open set of X . is a polysubspace • 

ii) Any polyhedron in X is a polysubspace 

iii) A polysubspace of a polysubspace is a polysubspace 

iv) The intersection of two polysubspaces is a polysubspace • 

Therefore the notion of polysubspace substantially enlarges the concept of 

"tame" set to include both polyhedra and open sets. 

Exa'!lple 2. The union of tHO polysubspaces is not necessarily 

poly • For exa'!lple let A = open disk in E2 

B = a bou~dary point 
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Then AV B , with struoture '1 \ Av B is 100 ally oompaot; a oompaot 

neighbourhood of B in A U B is a olosed disk D, having B on 
• 

its boun~ary , and with D - BC A. But with the induoed topology 

A UB is not looally-oompaot, because B has no compaot neighbourhood. 

Example 2' A cirole in E2 is not,a polysubspace , beoause'the 

induoed stru.oture is disoret0 " 

Exe;nple '4. A olosed disk. in E2 is not a polysubspaoe. vlith 

the induoed struoture it is non-oompact ; any subset of the bou.ndary being 

closed • It is like th!J PrUfer manifold with each attaohed disk shrunk to 

a point • 

.! . 

1'1 a '0 s 

A funotion f: X ~ Y bet;:een hlo polyspaoes is oalled a 

polymap if f '} (X) c. 'j (Y) e . 
In other words, given, g E'j'(X) , then fg can be faotored through the 

structure of Y, fg = e'f' for some g' E S' (Y) ,'1ho1'o fl is piec8V1ise 

linear, 

K 
f' 

L' l-

ie g' 
Yj 

'" X 
J. 

Y > 

It is easy to deduoe 

1) A polymap is continuous l~Ph r8S?0ot to the struoture topologies, 

and is therefore a map bet\;een the tL"lderlying copologioal spaoes' • 

2) f K ~ 1 is a polymap if and cnly if it is piecel;ise linear. 
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3) Identities and compositions of polymaps are polymaps. 

Therefore we can define the polyhedral category <f to consist of polyspaces . 

and polymaps • 

Call a polymap a polyhomeomorphism written f X "-' Y , 

if f 'J (X) = r;(y) • 

l'ie deduce 1) it is a homeomorphism, and 

2) f-l is also a polyhomeomorphism 

·Call a polymap a polyembedding , \iritten f: X C. Y , if it is 

an embedding , (i. e. a polyhomeomorphism only a polysubspace of Y) 

\'le deduce 3) f: X -7 Y is a polymap if and only if its graph 

1 x f: X --) X x Y is a polyembedding • 

Remark 

It vlOuld be natural to call a polymap f : X-')o Y injective if 

f '1(X) = r:r (Y) ) f X. This definition is weaker than polyembedding , 

because it does not require the image f X to be a polysubspace of Y 

But it is of interest for the follwing reason. Consider the categories 

(1) space and embeddings 

(2) polyspaces and injective polymaps 

(3) polyspaces and polyembeddings. 

Then (1) 1'\ (2) = (3) • Nmr some constructions such as join and mapping 

oylinder are functorial in (2) but not in (1) , and therefore not in (3) 

For these constructions the pOlystructure is more natural than its 

accompanying topology 
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B a s e ,8 • 

" , 

A base D) for a polystructure on a set, X is a family of 

polyhedra such,that im ~~ covers X ,(i.e. only the first structure axiom) 

As vlith structures, the topology T (6'~) is the identification topology 

X = dom 0) / '£ We say 'O"J is a base for "j if 

i) 6~) c "J-

ii) every set of im 7 is contained in a finite union of sets 

of im '03 

i'le can deduce 

1) Every structure has a base (trivially) • 

2) Every base is the base for a unique structure; and the base 

and structure have the same topology 

EX2mnle 1. Any polyepace has a base of simplexes, 

(f-'J = { f f '1 ; dom f = si;'plex } . 

Example 2. 
n ' 

E has a base of, all n-simplexes 

Exmnnle 3. A polyhedron X has a base of one element , namely a 

triangulation f: K -,~ X . 

EXGlllple 4 • The 1'Ioven S auar~ • Let 
2 

X be the s~::are I • 

Let ~~ be the base consisting bf all horizontal and vertical interyals, or, 

mcre precisely, all horizontal and vertical Unear embeddings of I . The 

resulting structure is smaller than tne natural structure, because it' contains 

no 2~dimensional polyhedra • The re sill ting tC'!,olof'Jis filler than the natural 

topology, and is therefore Hausdorff, but is not locally compact; nor simply

connected. A typical open neighbourhood of a point looks like a maltese cross. 

Any subset of the diagonal is a closed set • 

Example 5. (The pathological Iloven Square). Il'e enlarge the 

structure of the Vloven Sc.uare by v18aving in one more thread so badly, that 
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it produces a non-Hausdorff tcpology • Let d: I -')-1
2 

be the diagonal map; 

and let e: I ---? 1 be the function that is the identity on the irrationals, 

but reflects tho rationals about the mid-point vie add to the base of the 

structure of 

1-712 

the Woven Square one more element , the polyhedron f = de : 

The topology of the \'Ioven Square is thereby coarsened 

ends of the diagonal cannot be separated by disjoint open sets • 

, so thst the 

(The proof 

uses measure theory, and depends upon the non-countability of the base) • 

Definitioll' \'le call a base ,B topolo12:i9al if it is also a base 

for the topology T(~J) in the following sense: given x E: X , there exists 

f E ~ such that im f is a ,(closed) neighbourhood of x in X in the 

topology T('M) For j.nstance , in Example 2 above , the set of all 

n-simplexes in En is a topological base But in Example 4 , the base 

for the ,;Dven square is not topological. The structures for infinite 

manifolds and function spaces that '[9. give below will not be topological 

T r i a n g ul ab 1 e Spaces 

The pathological examples 4 a~d 5 above indicate some of the 

consequences of the definitions of polyspace • However since our interest 

lies towards manifolds, 11e do not stress the pathology, but rather use it 

to obtain insight into the s~r~~ture of important polyspaces such as function 

spaces. One of the advantages of polyspace is that it is more general 

than the triangulable space , even if we use infinite triangulations • In 

fact ,Te avoid infinite triangulations , because 'fB regard them as alien to 

the subject , being too diffuse a tool , and defining toe restrictive a space , 

The algebraic elegance of infinite complexes should not be confused with 

their geometric limitations. H01fever it is worth mentioning the relationship 

. bet.;een :)olyspaces and triangulable spaces. 

Given a polyspace X, then there are six possibilities : 

i) X is a polyhedron, i.e. its structure contains finite triangulations. 
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ii) x is not a polyhedron , but we can enlarge the structure of X to be 

a polyhedron - for exaT<ple the woven square 

iii) There is a locallY-finite infinite triangulation f : K -'; X , w]1ose 

restriction to any finite subcomplex is in the structure - as for 

example in En 

If X is connected , then a necessary and sufficient condition for 

this is that the structu.~e have a countable topological base • A 

consequence is that the topology is paracompact , Hausdorff , and 

locally compact • 

iV) The structure can be enlarged to give (iii) • 

v) The structure is maxi'.1al , but (i) and (iii) are not true 

for example the Long Line (see below) • 

vi) The structure is not n:axir.lal , hut (ii) and (iv) are not true 

for example tr;o pathological vlOven squar:, o:'.p -dimensional 

manifolds, or fU':lction e::;>aces (sGe belo,,) • 

C 0 m p act n e s s 

Question 1. Is a compact polyspace a polyhedron? The answer is yes 

if it has a countable base , or if it' has a topological base , but is 

unsolved otherdise • 

Question 2 Does the lattice of compact subsets of a polyspace 

refine the lattico of polyhedra ? 

. 
The question is important for studying the hcmo~cpy struct1::::-e of function 

spaces • 

M ani f old s 

An .D::.Tl.'2.!y]2all is a pOlyhedron trimlgulated by an n-simplex • 

An n-polysoher~ is a poly'::tdron triangulatocl by the boundary of an {n+1)-simplex. 
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Definition: an n-nolymanifold M is a polyspace , each point of 

which has an n-polyball neighbourhood 

More precisely, each point has a closed neighbourhood (with respect 

to the structure topology) which is a polysubspace , and ~Ihich, with the 
• 

induced structure , is an n-polyball • The boundary l<l is the closed 

polysubspace of those points which lie on the boundary of their neighbourhoods , 
o • 

and is an (n-1)-polymanifold • The interior M '" M - l<l is the complementary 

open polysubspace • 

11e call M closed if compact and . ~l '" f'; 
bounded if compact and M ~ f'; 

open if non-compact and ~J = f'; 

If M compact then any triangulation in the structure is a combinatorial 

manifold (i.e. the link of every vertex is an (n-1)-sphere' or ball according 

as to whether the vertex is in the interior or boundary ; the proof is by 

verifying that the property is invariant under subdivision, and true in an 

n-simplex) • 

Exa~ple 1 • The Long Line i; obtained by filling in (with unit 

intervals) all the ordinals up to the first non-countable , and is given 

the order topology. Then it ce.n be' shown (non trivially) that the Long Line 

has a 1 - polymanifold structure, although it is non-paracompact, and therefore 

non-triangulable • 

Example 2 The PrUfer-manifolds are non-triangulable n-manifolds , 

n>,.2. 

r e c t L i m its 

Suppose X , n = 0, 1,2,eo~, is a sequence of polyspaces , such n 
that, for each n , X is a polysubspace n of X 

n+1 
• Define the limit structure 
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= U j (X) 
n 

The topology of :t is the same as the limit topology , 

Example 

L t X En A En C En+1 e = • SSllJ"'e 
n 

linearly 

II. 

Then E "'" = U En is Euclidean' or.::> -space • This is not to be confused with, 

nor homeomorphic (in either topology) to , R 06 , Rilbert space , which is the 

product of countable copies of the reals 

Example 2 
t, 

Let BO 

n-polyball , and 

= point Bn ;; S' Bn- 1 , the suspension, Then Bn 
is an 

B t>O = U Bn 

with, nor is homeomorphic to , 

Example 3 

the cP -polyball • 

ICY>', the RH bert 

This is notto,be oonfused 

cube. 

Let So = two points; sn = Ssn-1 , the suspension. Then Sn is 

an n-polysphere, and soO = US
n the 00 -polYS'Dhere. It is true that B """ 

has S """ as a closed subpolyspace" vIi th complementary open subspace 

B<Y-J _ S "", ~ E 00. Nevertheless we do not call 'these boundary and interior 

because it is fairly easy to show polyhomeomorphisms 

Therefore B pO is homogeneous without boundary ,because S v" is'. 

of 0 
n 

define 

Exa'llple 4 

Let 0 = U 0 
n 

can be extended 

a polystruc ture 

be the infinite orthogonal group • Any ,triangulation 

to a triangulation of 

on O. 

o 
n+1 

Tho resulting structures' 
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Infinite manifolds. The above definition is good for n = 00 • 

The above examples are all infinite manifolds. Similarly other classical 

n. 

groups, and the infinite Grassman and Stiefel manifolds. We observe that ! 
an 1;)0 -manifold has no boundary because an or.:> -ball has no boundary I 

Products 

" , 

1et K,1 be complexes in EP , Eq • Then K X. 1 is a cell 

complex in Ef+q, and so the natural structure ~. (Kx L) is uniquely 

defined • Given now two polyspaces X, Y, define the produot strvotu:r<:1. • 

d- (X x Y) = i (r x g) h; f E 'd (X) , g E rJ. (y), h f: 'J (domf x domg) 

o f x g 
---->' 

vie can ded uoe 

1) The prod uot is funotorial on §' . 

2) A furiction f : X "7 Y is a pol;nnap if and only if the graph 

1 x f: X --..y X x Y is a pOlyembedding • 

'Joins 

The topological Jo~n X * Y of tv/O spaces X, Y is obtained 

from X v (X x I x Y) v Y by identifying x = (x, 0, y), y =(~, 1, y) 

all x ~ X , Y ~ Y , and giving the identifioation topology • 
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If X, Y are polyspaces we define the join structure :1 (X * Y) as follows 

Given K in 

];I' x 0 x 0 ,Ox E
q 

x 1 

L in Eq
, ~le identify 

in EP x Eq x I , c; ];I'+q+1 • 

The images of K, L are joinable in ];I'+q+1, and we define K * L to be their 

join • The complex: K"* L has a natural structure d- (K * L) • Define 

'J: (X * Y) = {(f * g)h; f E: ,]-(X) , g E. '1 (Y) , hE:; (domf *domg) • 

We can deduce that the topology of ?f (X * Y) is the S8IDe as tele topology 

of the join X * Y above. 

Remark 

The join * is functorial on the category of maps, but not ·on the" 

subcategory of embeddings • Give X' ex, Y' c Y then X' * Y' does not 

always have the topology induced from the inclusion X' * Y' C X * Y • 
o 

For example let X = I, X' = I, and Y = Y' = a pOint. Then the cone on 
o 0 

I is not a subspace of the cone on I ; the cone on I has a finer topo'.OIl"J 

than the induced topology, and is locally compact at the vertex, vrher3as 

the induced topology is not (cf. the polysubspace Example 2) • 

On the other hand the join is functorial in the category of poly

subspaces and injective polymapsj the naturality in the category dictates the 

topology to be chosen on the join , which is then not functorial in the 

subcategory of polyembeddings • The explanation is that the concept join is 

essentially a combinatorial idea, and so as vre should expect, in this conteJ;t 

the polystructure is more basic than the topology • 

. , 

Function Spaces 

Let X be a polyhedron , and Y apolyspace. Let yX be the eet 

d polymaps X -? Y. i-le define the function space structure 'J (yX) 0::1 yX 
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as follows. If f: K~yX is an injective function, let fl: 

be the associated function given by fl(x, k) ~ (fk) x. Define 

XxK-?Y 

'1 (yX) ~ {f fl is a pOlymap} • 

Lemma (Hudson) Any hlo such f I are related • 
s, 

Therefore j. (yX) is a family of polyhedra in yX and the three 

axioms for a polystructure are easy to verify. Ive can deduce the following 

properties 

1) The structure of yX is functorial on X, Y in T . In other 

words if f: \ ~ X and g,: Y -7 \ are polymaps, then the induced funotion 

f 
g : 

is also a polymap • 

2) If X, Y are polyhedra and Z a polyspace, then there is a 

natural polyhomeomorphism 

YxX 
Z 

Remark 1. If X not a polyhedron (not compact) then the 

definition does not give a polystrUcture • For example if X ~ E' , 

above 
2 Y;;.E 

then Hudson I s theorem fails; there exist two f I s that are not related • 

Remark 2. The topology of the structure is striotly finer than , , 

the compact open topology , and is therefore Hausdorff • If Y is a polyhedron 

or a manifold then both topologie s give ths same hornotopy struoture on yX. 

(Question: is this true for general Y?) 

lsotop:\!: 

Let (X c Y) denote the 

wi th strur:ture induced from yX. 

polyspace of polJom~eddings of X in Y, 

(Que stion : is it a polysubspace of yX?) 

, 
! 
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One of the main reasons for the way we have developed the theory is that 

the following four definitions of isotopy are now trivially equivalent • 

A polyisotopy of X in Y is 

i) a point of (xc Y) I 

ii) a polymap I -1 (X c: Y) 

n. 

iii) a polymap X x I.-;rY , which is a polyembedding at each level, 

iV) a level~pTeserving polyembedding X x I ~ Y x I 

If f,g: X-,-Y are the beginning and end points of the isotopy, we say the 

isotopy .!!loves fX onto gX, and that f, g are isotopic • 

Let H(Y) denote the polyspace of polyhomeomorphisms of Y onto 

itself, with structure inducec from yY. An ambient polyisotopy of Y is a 

polyarc in H(Y) starting at the identity, and finishing at e, say. If 

X is a polysubspace of Y we say the ambient isotopy moves X onto eX 

If f: X -> Y is a polyembedding (or polymap) l;e say f, ef are a'1ibient 

isctopic • Later Vie shall prove a theorem of. Hudson , which says that the , 
notions of isotopy and ambient isotQPy coincide for manifolds of codimension 

::;. 3. In codimension 2 they are essentially different, because ordinary 

mots in E3 can 'be untied by isot''lpy , but not by ambient. isotopy • 

Remark 
, . 

n If Y = E , there is another definition of isotopy favoured by 

some Vlriters , Vlhieh Vie call linear isotopy. and it is 1'lorthVlhile analysing the 

differenoe • A linear homotopy of X in En is oonstruoted as fol101'ls : 

choose a fixed· triangulation K ef X, and for each vertex v E K , a 
n ' . n polymap fv: I --; E • For each t, let gt : K -'1 E be the ;Linear map 

determined by the vertex map v-tfv(t) • Then ~gt} or g: K x I-TEn 

is the linear homotopy • If g is an embedding at each level 1;9 oall g a 

. linear isotopy, 'lIe make the follolfing observations: 
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i) Not every linear isotopy is poly, because in general the track 

g(K x I) left by the linear isotopy is a curvilinear ruled surface rather than 

a euclidean polyhedron • 

ii) Wot every pOlyisotopy is linear, as sho~m by the example below • 

iii) If two polymaps are linearly isotopic then they are polyisotopic • 

The converse is also true (non-trivially) if X is a manifold of 

codimension ~ 3 • 

iV) 1inear isotopy is not functoriai. We justify this last statement 

by defining a polystructure on (X C En) that exactly captures linear isotl'py; 
H 'X 

mne preciselY ,le shall construct a polystructure, '.:11 say, on (En) such 

that linear homotopies are the polymaps I ~(En)X with respect to '1
1

; 

and linear isotopies are the polymaps r -? (X c En) with respect to the induced 

structure 

Define 'j{1 as foll?ws: if K is a triangulation of X with k 

vertices, then the set lfl<: of linear maps K -+E
n 

can be given a 

polystructure ''1<: ~Ekn If K' is a subdivision of K, then ~ C ~, 
is a polyembedding 

(En)x = U MK ' Therefore = the union taken over all triangulations in the 
K 
~ 1 structure "f X, and 01 i3 defined by the limit polystructure • We shal 

show that if En -'l En is a polyhomeomorphism, then the induced function 

(En)X --'" (En)x , which is a polyhomeomorphism with respect to the function 

space structure, is not even cont'inuous with respect to 'J 1 • 

, 2 
Exemple 1 • Let X" r and Y '" E , and consider the isotopies 

I -';> (r C E2) performed by a caterpillar crawling firstly along a straight 

tlfig , and secondly along a bent twig • The first isotopy f say, is 

linear , and therefore also poly • The second isotopy , g say, 'is poly 

but not linear, because we cannot describe it in terms of a fixed 
= 

triangulation of X" L. This shows 'J f. 'J 1 • NOlf suppose the caterpillar 

I 
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performs g by starting with his nose, and finishing ~lith his tail, at the 
o 

bend in the twig • Then g I is a closed set in the topology of, '1
1

, 

whereas fI is not • There is an obvious polyhoJ:leomorphisn '1 of E2 

bending a straight twig into a bent twig , and the induced map of (I C E2) 
o 0 

into itself maps f1 into g1. Therefore it cannot be continuous with 

re spect to the topology of ':J L • 

IL 

The' explanation is that J. is functorial on X, Y r:: S", whereas 

J L is functorial only on . X f [;?> and Y in the subcategol"J of euclidean 

spaces and linear maps • Since our theory is directed towards isotopies of 

manifolds in manifolds, we favour 'J and reject '1 L • 

Example 2. Let If denote the set of polyhomeomorphisrns of En 

onto itself having compact support • The hypothesis of compact support enables 

us to define on If, as above , both a function space polyshucture ':1
1

" 

and a linear polystructure ~2' Let ~', H~ be the resulting topological 

spaces, both having Rn as underlying set. Then it appears that R~, H~ 

hav? different homotopy structures. By Alexander's Lemma on isotopy I it is 

easy' to show that H~ is contractible • H~wever Kuiper has used the queer 

differential structures on S 
7 

to sh0~1 that either 11 0 (H~) '* 0 

or TT 1 (H;) '* O. This is essentially a phenomen on of codimension zero 

Degeneracy 

Lflt f: X -7 Y be a polymap .' Define the non-degenerate structure 

/~ (f) of f by 

"I. (f) = { g E 'J(X); fg E "1 (Y) } 

Note that in general 

dClSSncrate if '1 (f) 

fg <fo. 'J (Y) because it is not injective • Call f lliill:::. 

is a base for 7 (X) • Otherwise f is deger.c~pJ;.Q. 

Example 1 • A polyembedding is non-degenerate • 
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EXPJI1ple 2 

EX8nnle 3 

A polyirnmersion (local embedding) is non-degenerate • 

A simplicial map is non-degenerate if and only if, it 

,maps each simplex non-degenerately • 

Example 4. We shall show that any map of a polyhedron of dimension 

~ n to an n-manifold can be put into "general position" where it is non

degenerate • 

The m a p pin g c y 1 i n d e r pro b I e m 

The problem is to define a natural structure on the mapping cylinder 

c; of a map f: X --> Y. We explain why this prob:em is, in a sense, 

insoluble 

1. Topological. The topolo~cal ,mapping cylinder C is obtained 

from X x I U Y by identifying (x,1) '" f J( I all J( f X I and is given the 

identification topology • Then (; is functorial on the category of maps • 

2. Combinatorial. Suppose f: K -» L is a simplicial map • 

vlhitehead gave a rule for defining the simplicial mapping cylinder, G say, 

of f I which is a triangulation g: G ->C of the topological mapping 

cylinder. This rule is functorial on the category of simplicial maps, but 

no~ on the category of piecewise linear maps • For suppose K', L' are 

subdivisions of K, L, giving rise to the simplicial cylinder g': G I • .." C • 

Then , although G, G I are piece,rise linearly homecmorphic , g , g'are not --
in general related • Therefore the identity maps K'~ K , L'-> K induce the 

identi ty C --7 C , but only a piecewise projective map G I -4- G • 

3. Polyhedral.. The inclusionC ex * Y of the mapping cylinder 

in the join induces a natural polystructure :F(C) on C that is functorial 

<-n the category of polymaps • However ':J (C) gives the ~rrong topology (too 

fine a one) • 

Example 1 The identity on I has mapping cylinder a square , and 

poly structure the Woven Square (of example 4 above) • 
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Example 2. The mapping' cylinder 'of a simplicial map of a 

2-simplex onto a l-simplex epitomises the problem, because when embedded 

in E3 it looks like the prow of a ship • 

n. 

The structure ~(C) has a base consisting of a:l horizontal sections, and 

all vertical sections going athwartships , but no 3-dimensiorial stuff • 

Example 3. If f is simplicial , then the simplicial mapping 

cylinder G ...,."C is related to '? (C) • In other words, 'J (C) can be 

enlarged (non-naturally) to contain any simplicial cylinder, and is the 

intersection of all the structures determined by the simplicial cylinders 

Example 4 On the subcategory of non-degenerate polymaps the 

natural structure '1 (C) can be enlarged to a structure r:J
1 
(C) that (i) 

is functorial on this subcategory (ii) contains all simplicial cylinders , 

and (iii) gives'the correct topology. A base for :;;:1 (C) is 

u [ (g xl) h g ~ ~ (f) , hE'] (dom b x I) J 

~: 
! 
J G on c 1 u din g Rem ark s 

t 

We can enlarge or change ff by enlarging or changing the tool e 
Example Enlarge e to contain piece~lise prOjective 'maps. 

Example 2 Further enlarge (:;, to contain piecewise algebraic 

complexes and piece~lise algebraic maps. Then algebraic varietie3 in En 
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• ;Quld become polysubspaces • 

Example 3. Replace C by the category of Open subsets of En 

and differential maps • Then ,-C:P would be the category of differential 

manifolds and differential maps. 

n. 

Gabrielle has pointed out that a polyspace is equivalent to a 

contravariant fuctor from ~ to the' categcry of sets and functions , obeying 

t<lO axioms of intersection and .union; a polymap is a natural transformation 

bet<leen t<lO such functors • 

-:-:-:-:-
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Chapter 3 REGULAR NEIGHBOURHOODS 

IIL 

From nOi< on ,re shall omit the prefix "poly", and I'lhenever \1e say 

spaoe, map, manifold, etc., we mean polyspace, polymap, pclymruLifold. eto ••• 
,! ' 

Lemma 8. A convex linear cell is a ball' 

Proof : Given a convex linear cell B we have to exhibit a specific' 

pieoe\'lise linear homeomorphism from a simplex t:::,. onto B Since B is in 

B 

<0 
~ 1 (I X B1 , 

t:, I Radial . 

some Euclidean space, \Ve can choose b. J B • Let -;r.. be 

a point in § Then radial projeotion from x gives a . . 
homeomorphism 6 --'> B , but this is not piecewise linear 

by the Standard 11istake. We get round this difficulty by 
• I 

defining a .l2.§.§udo raMal projection as follows. Let 6, 

be the oell subdivision of 6. consisting of all cells 

L 1 re t:, ,B 1 E: B. Let t:,,, be a simplicial subdivision of . . 
projection of t:," determines an isomorphio subdivision B" of 

B , and radial projection of the vertices determines the simplicial isomorphism, 

whioh is of course pieoewise linear. Joining to x. gives the required 

homeomorphism A -7 B 

Corollary 

i) BPB'l ~ BP+'l+1 

Joins of spheres and balls obey the rules: 



" 

( 
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Proof. Since the structure of a join isfunctorial, it suffices to 

prove one example • 

i) The join of two simplexes is a simplex 

ii) In EP+'l+1 choose BP, 'B'l+1 to be simplexes crossing at their barycentres. 

Then BPil'l+1 is a convex linear cell. 

Hi) Take the boundary of H) 

We call a complex J a combinatorial n-manifold if' the link of 

each vertex is an (n-1)-sphere or an (n-1)-ball. 

Lemma 9 Suppose I J '" M. Then J is a oombinatorial manifold 

if' and only if 11 is a manifold 

RE22!. One way is trivial; for if J is a combinatorial manifold , 

then the closed vertex stars of J give a covering of M by balls, such that 

each point of M has some ball as a neighbourhood 

Conversely' suppose 1,1 is an n-manifold, and let :x. be a vertex 

of J in ?r. By the definition of manifold (polymanifold), there is a 

pieoewise linear embedding 

where 6 is an n-simplex 

f: 6 -+ J covering a neighbourhood of ),' 
, 1 

, such that f- -Y. E Z • Subdivide sO that 

f: 6 I --')0 JI is simplicial; ,le have piecewise linear homeomorphisms 

IVhere the middle arrow is an isomorphism and the other two arrows are pseudo 

radial projections. Hence lk(r,J) is an (n-l)-sphere 

. that 

. 
If .:x:: is a vertex of J in X I there 

Cl E: A , and so it follws that lk(:x;,J) x 

is a similar situation except 

is a ball. 
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CorollarY 1. Let I J I ~ ~I be an n-manifold. If A is a 

p-simplex of J, then 

either lk(A,J) ~ (n-p-1l-sphere and i c ~ 

or lk(A,J) 
. 

~ (n-p-l)-ball and A CM. 

vie show the link is a sphere or ball by induction on p , 

the induction starting at p = 0 by the Lemma. If p > 0 1 ~lrite A = x.B I 

and then lk(A,J) = lk(x,lk(B,J)), vrhich is the link of a vertex in an 

(n-p)-sphere or ball, by induction, and is therefore an (n-p-l)-sphere or ball 

by the Lemma • 

Any point of ~ has A llc(AiJ) as a closed neighbourhood , and ' so 
o • 

lies in 11 or M 'according as to vrhether it lies in the interior or boundary 

of this neighbourhood, i.e. acoording as to vrhether lk(A,J) is a sphere or ball. 
o 0 

Therefore if the link is a sphere then A c:: 11 , and if the link is a ball then . . 
A C 11 , since M is closed • 

Corollary justifies the follovring definition: if J is a . 
com.binatorial manifold, define the boundary J to be the subcomplex 

j = {A E. J; llc(A,J) ~ ball J 
o • 

and the interior to be the open subcomplex J = J - J • 

We deduoe at once : 

Corollary 2. If I J! ~ 11 ~ manifold. then J I = 11 

Definition. If B
n
-

l 
is an (n-l)-ball contained in the boundary 

n-manifold 
n n-l n 

~j , vre call B a fao~ of 11 and vlri te 

vie are particularly interested vrhen I1
n = B

n 
a ball also. Let 

6. n den·Jte an n-simplex. 

n-l n 
Theorem 2 • If B < Band A n. -1 / A n 

w "" w then alJ.Y. 
n-l A n-l 

homeomorphism B -, -~ w can be extended to a homeomorphism 
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Corolla:r:y If tHO balls moet in a common face·, then their union 

is a ball • (For by Theorem 2 the union is homeomorphic to the suspension of 

a simplex) • 

. n n n n . 
Theorem 3. If B C S then S -B ~s a ball 

Remark 1 • 

The original proofs of Theorem 2 and 3 Here given by Ne"~an and 

Alexander in the 1920's and 30's and used "stellar theory" instoad of 

combinatorial theory • The essential notion ef the proof is to replace the 

finite simplic~al structure of a ball by some ordered finite structure, and 

then use inductien on the number of steps in the ordering (the induction 

starting trivially ~rith a simplex) • NeHman and Alexander used an ordering 

by stellar subdivisions; >le give a nel'T proof here, based on ordering by 

collapsing. The collapsing teclmique Has invented by \fhithehead in 1939, and 

is more p01{erful than stellar theory because it includes thG theories of 

regular neighbourhoods and simple homotopy type • Notice that some concept 

of an ordered structure seems vital, because Hithout it >10 cannot prove: 

SchOnflies Con.iectur<:t : 
r,...l n 

If S '- S th9n the closures of e8ch 

component of the cOffiDlcmcnt is a ball 

Tho conjecture is true for n·{ 3 , but unsolved for n> 3 • 

It is kn01m by ~Iorton Brovffi' s re suI t that they are triangulated topolor.:ical 

balls, but not knolm 1'{hether they are polyballs • Our ignorance of lvhether 

they are polyballs 1'Ihen n '" 4 implies oux ig.10"'MCO of ·1{l~,)'vher '!;hey are even 

polymanifolds 11hen n '" 5 (the links of boundary vertices may go hay.{ire) • 

Remark 2 

The proof of Theorem 2 and 3 is done togeber by induction on n. 

The induction starts trivially 1'Tith n '" 0 ':le shall sho>l first that 
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Theorem 2 is equivalent to Theorem 3 l' The inductive step is achieved 
n n-

by shovling that 

Theorem 2 , r ~ ,n 1 r 
.. } Theorem 3 

J n 
Theorem 3 , r -;:: n 

r 

The inductive step is long, involving Lemmas 10 - 17 and Theorems 4 - 8 , 

during which we shall often have to make inductive use of Theorems 2 and 3 • 

However we can avoid going round in a circle by 

i) 

ii) 

assuming everything to be of dimension ~ n 

avoiding the use of Theorem 3 
n 

until Theorem 3 n is proved . To emphasise vlhich statements are involved in 

the induction, and at the same time avoid repetition, 'we put a star againnt 

all those lemmas or theorems "hich depend upon Theorem 2r and its Corollary , 

r {. n , and Theorem 3r ' r < n .• 

Lemma 10. Any homeomorDhism bet1<een the boundaries of two balls 

can be extended to the interiors • 

Choo se triangulations gi 

. diagram 

. . . 
Define h [::, _~ [::, by the commutative 

Extend h cooovlise to a homeomorphism h': [::, '_'1 [::, • 

Then the required homeomorphism f' : B 1 -+ B2 is given by the comlllutative 
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diagram 

h' 6 
----''» 

Theorem 2 is equivalent to Theorem 3 , 
n n-l.. 

Assw~e Theorem 2 n _ 

to a point x, ~1e have Bn- l < xSn
-

1 

Given Bn- 1 C Sn-l , then joining 

Let 6 n be a simplex with face 
A n-l '. 
w and opposite vertex y Choose a 

. n-l n-l 
homeomorphlsm B -->- 6 , and 

n-l n 
extend it to xS -0> 6 Therefore Sn-l Bn- l ishomeomorphic to the 

ball y b. n-l • 

n-l n 
Conversely assw~e Theorem 3

n
_

l 
• Given B .( B ,then we lmOVI 

n-l A n-l 
Therefore given e. hC?E'80m2EJ2bism B -'> w , lie can 

'n n-l . n-l 
to e. hcmeomorphism B -B --+ y 6 , by Lemma 10 • 

iln_ Bn-l is a ball • 
, . • n-l • n-l 

extend B -6 
. n . n n n 

Therefore vre have defined B -'T6 " and can extend to B -'T 6 I again by 

Lemma 10 • 

Stellar sub d i vis ion 

Recall from Chapter 1 that an elementary stellar subdivision of K 

is given by 

K' = (K - st(A,K)) LJ a A lk(A, K) 
o 

vrhere a c:: A, A E: K • 

A stellar subdivision of K. ~Iritten er K , is the result of a finite 

number of elementary ones . 

Examples ,) A th d . d' t 11 ~ n r erlve lS a sear • 

ii) If K ~ L , then any stellar subdivision of K 

determines a unique stellar subdivision of L, and conversely • 
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is .!l2.L§. stellar subdivision of a triangle ' . 

• 

Collapsing 

If K J L , ,le say there is an elementary simplicial collapse from 

K to L if K - L consists of a principal simplex A of K together 

1'1ith a free face • TrBrefore if A = aB, then 

B 
K 

. 
aB=LIIA 

lye describe the elementary simplicial collapse by saying .£.0.lapse A onto aB, 

or collapse A. from B. 

. s 
)'le say K simnlicial1v collapses to L, 'ilritten lC"'-"·~L I if there is a 

sequence of elementary sim"plic:i:al collapses going from K to L If L is 

a point we call K sinmliciallv collapsible, and "rite K -~O • 

Examnles 

i) A cone simplicially collapses onto arry subcone • For just oollapse 

all the other simplexe s in twards the vertex • 

/\ 
110re precisely let a K be the cone on K, and a L be the subcone on L , 

11here L c. K. Then order the simplexe s 

decreasing dimension , and collapse aB. 
l. 

Bl, ••• ,B of K - L i~ order" of . r 
from B. , i := 1 t 41 •• ,r , 

l. 

il) A ccne is simplicially collapsible • 

iii) A simplex is simplicially collapsible Bcth these are special 

cases of i) •. 
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ile now repeat the definition for polyhedra. If X':) Y are pOlyhedra' 

He say there is an elementary collapse from X to Y if there exists Bn>Bll-
l 

such that 

X 

\'Ie describe the elementary collapse by saying 
n n-l 

collapse B onto B ,or collanse Bn from -;n _ Bn- l • 

We say L collaps8sto Y, \;ritten X ';.Y , if there is a sequence of elementary 

collapses going from X to Y. If Y is a point ;16 call X collapsible , 

and write X ---..,,0. For example a ball is collapsible 

ile nOH investigate the relationship betlleen simplicial collapsing 

and collapsing. \le \'Iri te K .....",L if I K I '-;,\ I L I The significance of this 

last definition is that the balls across \,hich the collapse takes place may not 

be subcomplexes of K. It is trivially true that 

but the converse is unlmown • v:llat ,le can prove is 

* The 0 rem 4. .::I.::f_",K_~.....:",L"-.,;,-,t",h",e.::n:....:;t",:r_",c=-r",e ...;e",x",l",' s",t",s":-"a:..."s",u",b,,,d.::i v=i ",-8 10.;' o",n"--,K,,,,' .... -:,L:....' 

of K L such that K' --.Q.-,.,\ L' • 

* Corollarv 1. If X ~ Y then there exists a triangulation such 

that K ~ L • 

* Corolla.ry 2 If X is collapsible. then there exists a 

triangulation that is simnlicially collansible • 

Before proving Theorem 4 we digress a little to ir~icate the 

consequences of the definition of collapsing. 
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SimDle h 0 m 0 t 0 p Y t Y p e 

The relation X----, Y betv""en X and Y is ordered • If 1fe forget 

the ordering, then vie generate an equivalence relation betvloen polyhedra called 

simple hcmotoDY ~~e. Since a collapse is ~ homotopy equivalence, this is a 

finer equivalence relation than hOnlotopy type • It is strictly finer, because, 

for example, the lens spaces L(?, 1, L(? ,2) are of the same homotopy type 

but not of the same simple homotopy type • But for sir.lply-connocted space s 
homotopy type = sinlply homotopy type , and there are simply-connected non

homeomorphic manifolds of the same homotopy type • 

The Dun c e Hat. 

If vie preserve the ora.er X ->"y then the relation betvleen 'X, Y 

is much sharper. Trivially if X is collapsible then X is contractible 

(homotoPY'1ise) But the converse is not true. For example consider the 

c 

b 

Dunce Hat D which is defined to be a triangle V1ith its sides 

identified ab = ac = bo. Then' D is oontractible 

(although the contraotion is hard to visualise) , and SO D 

is the same simple homotopy type as a point; but D is not 

collapsiblo beoause there is n010lhere to start. Although 

D 7~0 , it can be shown that D x I ___ ~ 0 . 

Con.jecture • 
2 

If K is a contract<.ble 2-oomDlex then K x I~,O 

This oonjecture is interesting because it implies the 3-dimensional 

P0incare Conjecture, as follo;ls. Let M3 be a com?aot oontractible 3-manifold; 

it is sufficient to ShOV1 that ~13 is a ball Call X is a sllin~ of 1·\ if 

M ~X. NOI'1 M3 has a oontractible spine 12 By the conjeoture 

M3 x I '-:l-K2 x 1---,,0 , and 'lie shall show in Theorem 8 Corollary 1 that this 

implies t13 x I = B4 H6nce M3 C. B 4 = S3 , and by the Sch<lnflios Theorem 

M3 = B3 b 11 - ,a a . 
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In partioular the conjecture is true for the Dunce Eat , and so any 

Nn , n '" 3 , having D as a spine is a ball. This is also true for n ~ 5 
. . 

because D unknots in ~ 5 dimensions. However it is ll2i true for n ~ 4 

because there is an 144 =1= B4 (in fact Te 1 (~14) ;# 0) having D as a spine • 

Tr£ construotion of M4 is due to Mazur, and defined by attaohing a 2-handle to 

S' x B3 I by a curve in the boundary that is homotopic I but not isotopic, to 

. the first factor : 

S' 

--- --

s 
Lemma 11 • If K""'o\. L , then "e can reorder the elementary 

collapses so that thev are in order of decreasing dimension • 

Proof. Suppose K1 ~ K2 "" ~ are consecutive elementary collapses, 

the first being across AP from BP- 1 , and the second across C
q 

.from D
q
-

1
• 

vie shall show that if p.( q then vie can interchange the order of the collapses 

(Vlhich is not true if p ~ q) 

number of such interchanges • 

The lemma folloVls by performing a finite 

Sinoe p < q , C
q 

is not a face of AP or BP-
l 

Therefore C
q

, 

Vlhich is principal in K2 I remains principal in K1 • Also D
q
-

1 
'-cj: A or B 

beoause A, B do not lie in K
2

, and so D
q
-

1 
cannot be a face cf A or 
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Therefore D remains a free face of C in K2 • 

Therefore, if' K; = K1 - (C U D) , then there, is an elementary collapse 

K '::;l K* across' C from D. Meanl,hile A remains principal in 
1 2 

* K
2

, and 

B remains a free face • Therefore there is an elementary collapse K* '>I K 
2 1 

across A from B. The lc~~a is proved • 

Remark. Although Lemma 11 indicates a certain freedom to rearrange 

the order of collapses, ~le canr.ot rearrange arbitrarily. For example if B3 

is a simplicially co11ap sible . 3-ba11 ) if vle start collapsing B3 carelessly 

we may get, stuck before reaching a point - for' instance the dunce hat is a spine 

of B3 ) SO that by mistake we might get stuck at the dunce hat. This problem 

is the reason ;1hy the methods ;1hich classified 2-manifolds failed to classify 

3-manifolds • 
s 

Again, if K ~ L and K' is an arbitrary subdivision of K, 

then trivially K I '0,) L' but ;1e do not know if K' ~ L' • HOv1ever we can 

prove a more limited result: 

Lep'.Jll'LiS 

crK of K. 

If K ~s.'L ~h ~K,-s'~L ..." ,.,en v "" 'J for any stellar subdivision 

Proof. By induction 11e may assume both the simplicial collapse and 

stellar subdivision to be elementary Suppose 

a B = L n A , and suppose 

0- K is obtained by starring C at c. There are three oases 

(iY If C ~ A) then the lemma is trivial 

(ii) If' C -K B ) then the cone a(<JB) collapsesto the subcone a(cr B) 

(iii) If C";A but C{B,let C=aB
1 

,B=B
1
B2 • 

Tl'.en er K '>I u L v cone a(c B 1B2) , 

)1 (r L u subcone a(o B1B/= o-L. 
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*Lemma 13 If K'" L is an elementaEX collanse , then there exists, 

a subdivision such that K' ~L' and l' is stellar (but K' may not be) • 

Proof • 1et A=K-L and B =AI"lL Then A is an 

n-ball,and B a face Let <1, r be an n-simplex and an (n-l)-face 

By Theorem 2 choose a homeomorphism 
n 

h : A,B -+ D, I r . 

K 

L r 

Choose subdivisions so that h is a simplicial isomorphism h: A',B' ~ 6,', r' 
Let TI : 6, ___ , r be the linear projection, mapping the vertex opposite f~ 

to the barycentre of r. Choose subdivisions 6," , r" of 6,', r I SO 

. that 

6,". r" -7 

is simplicial • Call such a subdivision of 6, cylindrical , 

the isomorphic subdivisions of A' , B ,. Let B'" be an 

Let A" ,B" be 
th 

r derived of B , 

subdividing B" , and let r" , the corresponding subdivision of r". By 

Lemma 5 , choose a subdivision 6," I of 6," such that TI 6, '" -')- r," 
simplicial , and let A'" be the corresponding subdivision of A". Then B "' 

is a stellar subdivision of B I and induces a stellar subdivision l' of L. 

Define K' = A'" u L'. Since 6," , ib cylindrical I 

cylinderwise , in decreasing order of dimension • Hence 

K' ~L' • 

s 
6,'" ~r'" 

A" ,~ B'" , and so 
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Proof of The 0 rem 4 

vie are, given a collapse X '::> Y 

elementary collapses 

Ill. 

that is to say a sequence of 

I K I ",X '>IX 1"'''' \) X ",/LI • r r- 0 

By Theorem 11e can find a subdivision 

there is a subcomplex K covering X. 
i ~ 

elementary collspses 

K~K l'.". ... ~K r r- 0 

K of. K , such that , for each 
r 
. Therefore ~/G may write the 

i , 

If r = 1 the result fOllows by Lemma 13 If r). 1 vTe show the re sul t by 

induction Assume;re have found a subdivision K'r_l of K
r

_
l 

such that 

K' 1 ~j. K' .By Lemma 3 extend K' 1 to a subdivision K' of K 
r- 0 r-. r r 

Apply Lemma 13 to the elementary collapse Kl
r 
~K'r-l ' to obtain a 

simplicial collapse K" --Z, K" l' vThere K" 1 is a stellar subdivision r .;;,,1 r- r-
of K' l' The latter fact enables us to appeal to Lemma 12 to deduce 

r-
s 

and so K" -.." K" 
r 0 

K" 
o ' 

F u lIs u b c 0 m p 1 e x e s 

If K C. J are complexes , ;re say K is full in J if no simplex 

of J - K has all its vertices in K. vie can deduce the elementary properties 

of fullne ss : 

(i) If KC. J , and J 1 a first derived complex of .T then K' is 

full in JI 

(H) If K full in .T, and J* any subdivision of J, then K* 

full in J* 

(Hi) If K full in J, and A a simplex of J, then A r. K is 

empty or a face. of A. 
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(iv) If K full in 

J -7 I (the unit interval) 

J , then there is a unique 
-1 

simplicial map 

f such that f 0 = lC • 

:; e i g h b 0 u rho 0 d s 

Let J be a complex and let X C I.J I. The sirnplicial 

neighbourhood N (X,J) is the smallest subcomplex of J containing a 

topological neighbourhood of X. It consists of all (closed) simplexes of 

J meeting X, together with their faces 

Now suppose X is a polyhedron in an n-manifold M. lie construct 

derived neighbourhood s of X in 11 as follO\'/s • If 11 is compact choose a 

triangulation J, K of N, X. If 1>1 is not compact choose a triangulation 

J , lC of M " X l{here 
0' 

neighbourhood of X in 

M 
o 

11 • 

is a subpolyhedron containing a topological 

No~/ in general N ,rill not be a manifold round 
0' 

the edge s , but it ,rill be 

More precisely , if A E N 

a manifold near X, ,/hich is all that Datters 

(X, J) then lk (A,J) = f Sn-l, AC fl , 
(nn-l, A C M 

For simplicity of exposition "e identify M = I J I ,X '" IlC 1 o 

Choose no" an rth derived complex J(r) of J. 

Call, N = N (x,J(r)) an rth n0~ived neighbourhood of X in M • 

If r '" 1 and lC full in J we call N a deri ved neighbol~rhood_ of X in M • 

A fortiori if r) 2 , then any rth derived neighbourhood is a derived neigh-

bourhood, because" lC(r-l) full in J(r-l) If JI ,J" denote first and 

second deriveds, it is easy to shOl{ that 

(i) N (X, JI) '" LJ 'st (x,J'), the union ta.\cen over all ver,tices 

::x:EK, 

(ii) N (X, JII) = U st cA ',J"), the union taken over all simplexeo 
A 

A E lC ,;/here A denotes the point at v/hich A is starred in J 1 
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Lerr.ma 14 '. Any hro derived neighbourhoods of X in M are 

homeomornhic ! keeping X fixed. 

Proof. Let Nl ~ N (X , J \) , N2 ~N ( X , J '2) be the two given 

neighbourhoods • If M is compact , let J be a common subdivision of 
o 

J
l 

' J
2

• If 11 is not compact choose subdivisions of J
l

, J
2 

that intersect 

in a common subcomplex , and let J be this subcomplex. Choose a first o ' 
derived J I of J and let N ~ N (X , J I ) • 

o 0 0 0 

Let f: J
l
-? I be the unique simplicial map such that f-10 = X I 

Hhich exists by the hypothesis of fullness. Choose C, > 0 and such that 

E- <. f X, for all vertices x E J ,':le r£ X. Let J~ (i ~ 0 ,1) denote 
0' k 

a first derived of J, obtained by starring AE 
k 

and arbitrarily othenli.se. Then I N (X , J~ ) I 
k 

The f N ~_ N, (X, J
l
£) re ore 1 isomorphic 

-1 
J i on f C if f A = I 

1 - '\ = r lO,6),i=O,1. 

,.. N (X ,JE.) homeomorphic by identity map 
0, 

~ N , isomorphic 
o 

~ N2 ' similarly • 

Remark. Lemma 14 fails for first derived neighbourhoods 1~ithout 

the fullness corilition, \-lhich indicates the reason for having to pass to the 

second derived in general to obtain a derived neighbourhood. For example 

suppose X is the boundary of a l-simplex in J. Then the first derived 

neighbourhood is connected, but the second derived is not .' 
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Corollary. Any derived neighbourhood of X in M collapses to X, 

Proof. By Lerr~a 14 it suffices to prove for one particular derived 

neighbourhood. Therefore choose a triangulation 

K is full in J, and let N = N (X , J& ) where 

proof of Lemma 14 • 

J ,K of M, X such that 

J E is defined as in the 

Order the simplexes ~, .", Ar of J - K that meet K in 

order of decreasing dimension • Each Ai meets N in a 

11 B ·th f CAr. f-
E

l There '8 oonvex ce . ,w~ a ace . = ." • 
~ ~ ~ 

an elementary collapse of B. from C. I and the sequence 
~ ~ 

of collapses' i = 1 , "., r determines the collapses 

N ~ X • 

Lemma 15. Let h: K -? K be a homeomorphism of a complex that maps 

each simplex onto itself, and keens a subcomnlex L fixed, Then h is 

ambient isotopic to the identity keeping L fixed 

f!QQ!. The obvious isotopy moving along straight paths is not 

pieceYlise linear by the standard mistaJ:ce • However it is easy to construct a 

? piecewise linear isotopy H; K x 1-7 K x I inductively on the prisms 

A x I , A E K , in order of increasing dimension • For each prism " I H I 'A x I 

is given by imuction, H I A x 0 is the identity, and H (a,l) '" ha • 

Therefore H I (A x I)' is, already' defined, sO map the centre of the prism to 

itself and join linearly. By c ,·,truction H keeps L fixed. 

Corollary 1 • The " rnhism betl'leen anY tl<O first derived 

complexes is ambient isotouic ~.,;he identity 

Corollary 2. Any tvlO derived neighbourhoods of X in M are 

ambient isotopic, keepiniS X fixed. If X C ~ the isotopy can be chosen . 
to keep 11 fixed 
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For in the proof of Lemma 14 the home amorphism ,/as achieved by 

t1{O isomorphisms oot\;een first deriveds , both keeping X fixed, The first 

deriveds can be chosen to agree outside the neighbourhoods, and so the isotopy 

keeps M fixed if X C I~ 

-><'rheorem 5, A derived nei!(hbourhood of a oollapsible polyhedron 

is an n-manifold is an n-ball • 

Proof, By induction on n, starting trivially vrith n = 0 • 

By Lemma 14 it suffices to prove the theorem for one particular derived 

neighbourhood, and so Vie choose a second derived neighbourhood N = N (X,J"), 

"here 

of J 

X = I KJ , K C J , and J" is the second 

Since X is coliapsible, vre can choose 

barycentric derived complex 
s 

K such that K '" 0 by 

Theorem 4. 

Let r be the nu~ber of elementary simplicial collapses involved 
s 

in K -....., O. vie sho;I N is a ball by induction on r. The induction starts 

trivially vrith r = 0 , for then K is a point, and N its closed star, 

"hich is a ball by Lenwa 9. For the inductive step , let. K ">\ L be the 

first elementary simplicial collapse, collapsing a simplex A from n , say , 
'" ,... A A 

"here A = aB. Let A, B denote the barycentres of A, B. No" 

N = N (t.: , J") = P LJ Q v R 

• • 
",here P.= N (L , J") , Q = N (A , J") , R = N (B , J") • 

Novr P is a ball by induction , and Q, R are balls since they are closed 

steers of vertices. If \-Ie can shm'I that Q is glued onto P by a commcn 

face, then P ~Q is a ball by the Corollary to Theorem 2 similarly if 
n 

R is glued onto P LJ Q by a common face then N is a ball Therefore the. 

proof is ,-'educed to shovling the P n Q , and (p u Q) "R are (n-l)-balls 

because if they are balls then they must be ccmmon faces , since ·the interiors 

of P , Q ,R are disjoint • 
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a 

• A 

Now .P () Q c. Q ,:, lk (A JII) , . Let 

J = lk (A', J') = A' (lk(A,J)) I 

* 
where the prime thought this proof always denotes the barycentrio first derived 

complex. There is an isomorphism 

.A. '" 
determined by the vertex map A C -'-7 C, for all C €: J *' Under this 

isomorphism 

'" p n Q, -=-> N (a B 

Now a B is collapsible , being a cone and (a E) I 

is an (n-l)-sprere or ball , by Lerrma 9 • Therefore 

derived neighbourhood of a collapsible polyhedron, 

ir~uction on n. Hence P n Q, is an (n-l)-ball 

is full in J * ' ;Thich 

N (a B I J ,) is a 

and is an (n-l)-ball by 

Sim"ilarly (p v Q) () R c: it , and if ,re now ohoose J * = lk (n , J I) I 
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an isomorphism R :;;'> J' * ,throvling (p U Q) () R onto 

For the same reason as before we deduce (p U Q) n R 

(n-l)-ball • This completes the proof of Theorem 5 

is an 

*Theorem 6 SUDpose the manifold M
n 

and the ball B
n 

meet in 

a common face. Let X be a closed subset of l'I
n 

not meeting- B
n 

Then 

th 'h h' l-n Mn Bn k ' ere lS a cmeomorp lsm '1 -:, \) eeplng X fixed • 

Since X is closed, Mn..; X is a manifold Let B
n

- l 

be the common face , and let An be a derived neighbourhood of B
n
-

l 
in 

, vlhich is a ball by Theorem 5 • 
on on n-l 

Since A C!Vi ,B does not meet 

n-l n n n 
and so B is a fsce of A • Since A ,B meet 

n-l 
in the common face B , 

their union is a ball by the Corollary to Theorem 2n 

which is a ball by Treorem 3 1 n-

n-l • 11 °n··l 
Let Bl = B -B 

We n01-1 const ruct 

on (Mn _ An) U (An _ ~n-l) 
the homeomorphism h. Define h to be the identity 

In particular h is the identity on X Extend 

h = 1 : Bn-l_-+ i3n-l 
1 

, ' n-l n-l 
to a homeomorphlSll B --7Bl by Lemma 10 

Similarly extend h: An --'> (An U Bn)' to the interiors. Then h has the 

desired properties • 

Lemma 16 • lill:L homeomorphism of a ball onto itself keening thQ. 

boundary fixed is isotopic to the identity keeping the boundm;::y fi~g£ • 
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.t!:Q.Qf.. It suffices to prove for a simplex. Given h : b. ---+ b. • 

we construct the isotopy f: b. x I b. x I as follovlS. Let 

1 
h:x:, t=o 

f (x , t) = 
x, t = 1 or x: E b. , 

'This gives f level preserving on (6 x I)' • Define f level preserving 

on b. x I by mapping the centre of the prism to itself, and joining to the 

boundary linearly. Then f is the desired isotopy 

*Lemma 17. SUPDose M
n 

C. Qn are manifolds , and that M
n 

is a 

closed subset of qn 
n n 

Then Q - H is a manifold. 

n n n 
Proof. Let Ml = Q - 11 • Vie have to show that every point 

:x: 13. 11~ has a ball neighbourhood in 11~. If X E. Qn - Mn, then -:x: has 

a ball neighbourhood~n Qn that is contained in M~, because M
n 

is 
. n n n on 

closed In . Cl. • If, on the other hand I :x. e 11 () Ml ' then :x. f< Cl. by 

bypothesis , and SO X lies in the interior of a ball in Qn. Triangulate 

this ball so that X is a vertex , and SO that its meets M
n 

in a 

subcomplex. If Sn-l is the link of x, then Su-l (\ Mn is a ball by 

Lemma 9. Therefore the closure of the complement, Sn-l 11 M~, is a ball 

by Theorem 3n-l' Hence x has a ball neighbourhood in M~ 

"'rheorem 7 

closed subset of Qn 

SUDDose 
'n n 
l1 C Cl. are manifolds , and that 

be an n-ball in 
)n n 
Q meeting 11 

common face. Let X be a closed subset of Qn not meeting Bn . 

n 
M is a 

in a 

'rhen 

there is an 8Jll bient isotopy ef Qn 
n 

moving 11 onto and keeping. 

x vet fixed. 
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Let Bn-l be the common face ; and let B~-l", nIl _ ~~l , 

which is a ball by Theorem 3n_
l

• Let M~", rl - (an U B") , 'Thich is 

a manifold by Lemma 17 ,'since Mnu Bn is a manifold by Theorem 6 • 

111. 

Let Dn be a derived reighbourhood of Bn in the menifold Qn _ Qn -X. 

Then Dn is a ball by Theorem 5. Let An = Dnn ~f , A~ = Dn(t M~ • 

If Hhen constructing Dn we choose a triangulation that meets ~, Bn in 

subcomplexes , this ensures that An, A~ are respectively derived neigh-
n-l n-l n n n bourhoods of B ,B

l 
in M ,M

l 
and therefore are balls. ,A 

xi. n-l n n B in the ccmmon face B ,and Al , meets B in the common face 

Therefore An U Bn An U Bn are balls by Corollary to Theorem 2 " , 1 ; n 

h of Dn onto itself as 

meets 

Bn-l , 
1 • 

Next we construct'a homeomorphisrn 

follows. Define h '" 1 on Dn U(An _ £n-l) E ·~ d h"'B'n-l B'n-l to x oen • '. ,-';> 1 

the interiors by Lemma 10 • Similarly extend 'An __ ~(An U Bn)' and 

(Bn V A~)' --7 i\ to the interiors, &/ Lemma 16 the identity is isotopic 

to h, keeping Dn fixed, Extend this to an ambient isotopy of Qn 
n on 'n 

keeping fixed Q - D (in particular X U Q) • By ccnstructi?n this 

isotopy moves Mn onto Mn 
U Bn • 
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Regular neighbourhoods . 

The definition of regular neighoourhood is more pmlerful than that 

of derived neighbourhood be.cause it is intrinsic I and leads at once to an 

existence and uniqueness "theorem 

Let X be a polyhedron in a manifold M. A regular neighbourhood 

N of X in M is a polyhedron such that 

i) N is a neighbourhood of X in M. 

ii) N is an n-manifo1d (n = dim M) 

Hi) N'>l X , 

*Tr.eorem 8 

(1) Any derived neighbourhood of X in M is regular • 

(2) Any hlo regular neighbourhoods of X in ~l are homeom@rphic 1 

keeping X fixcd , 

o 0 
If X CM? then any tvro regular ne ighbourhoods of X in 11 . 

are ambient isotopic keepin'l' X U 11 fixed. 

Remark • 

Clearly (3) is stronger than (2) • RoV/ever it is valuable to have 

(2) in cases V/here (3) does not apply • For example suppose X is a spine" of 

M in the interior of M; then by (2) M is homeomorphic to any regular 

neighbourhood N of X in M. But obviously M and N are not ambient 

isotopic 

Proof of Theorem 8 • 

Pait (1) • Let N = N (X ,JI) be a derived neighbourhood 01" "t-

in M. We have to verify the three conditions for regularity. Condition (i) 

follo;;s from the definition, and (Hi) from the, Corollary to Lemma 14 • To 
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verify (ii) we check the link of eaoh vertex X ~N. Let L", lk (x, JI) , 

If :le lE X , then lk (:x:;, N) '" L , which is a sphere or ball • If :le (! X , ' 
o 

then X SA, Vlhere A is a unique simplex in J - K , K being the 

Bubcomplex of J comrering X. By the fu,llnesB of K in J , A () K '" B 

a face of A. 

. 
NoVl L '" A'S where S is isomorphic to (lk (A,J))', and so is 

a ball or sphere • Si.nce S lies in the interior of st (A,K) it does not 
• 

meet X, and therefore L ri X '" A I () X '" B' • Therefore 

lk (:JC,N) '" N (BI,L) 

'" N (B',A'S) 

'" N (B',AI)S 

Y1hioh is e'ball ,because N(BI,AI) is a ball by Theorem 5 , being a derived 
• 

neighbourhood of B in A The proof of part (1) is complete. 

For part (2) it suffices by Lemma 14 to Sh01-T that sny regular 

neighbourhood is homeomorphic to a derived neighbourhood I keeping X fixed. 

If N is the regular reighbourhood , use Theorem 4 to choose a triangulation 

J , K of N, X such that J col).ap(les simplicially to K 

Let J" be the barycentric second derived of J, and let N. '" N 
J. 

Then N iB a derived neighbourhood of X in M, and N = N • 
o. r 

(K. , JII) 
J. 

As in the 

proof of Theorem 5, N. is obtained from N. 1 by glueing. on tVlO balls. 
J. l.- . , 

Neither of these balls meets X, because N. 1 is a neighbourhood of 
J.-

so by The orem 6 there is a homeomorphism N. 1-7 H. keeping X fixed • 
J.- , J. 

Composing these , VIe have the desired homeomorphism N --~ N 
o 

X'I 

For part (3) VIe make tbe same construction as for part (2) , and 

instead of Lewma 14 and Theorem 6 VIe use Corollary 2 to Lemma 15 and 

Theorem 7 to· show that the tvlO neighbourhoods are ambient isotopic keeping 

x u i~ fixed The proof of Theorem 8 is complete • 

and 
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Proof of The oram 3 
n 

At last ,le come to the end of our mammoth induction , We recall that

in the proofs of Theorem 4 - 8 ,re have used Theorem 2 ,r ~ n and Theorem :3 
r r 

r < n , but not Theorem:3 • We now-use Theorem 8 to prove Theorem:3 • This n _ n 
will make Tmorem 2 - 8 and the accompanying lemmas valid for all n. 

Given 

a homeomorphism 

point y E ~n • 

n n "'n u B C S we have to show that S - B is a ball • Choose 

f ; n+l Sn thr" t f n+1 t : W -r wlng a ver ex x 0 /:; on 0 a 

Let An = f (st(~-,-1 n+T)) Then the balls An, Bn are 

both regular neighbourhoods of y in Sn I and so by Theorem 8 Part:; are 

ambient isotopic • Therefore the closures of their complements are 
n n n 0+1 homeomorphic. But S - An = f /:; ,where /:; is the face of 6 , 

opposite x. Hence Sn - Bn is a ball • 

vie conclude the chapter with some useful corollaries to Theorem 8 • 

Corollary 1. A manifold is collapsi~le if and only if it is a ball • 

For if it is collapsible , then it is a regular neighbourhood (in itself) of ~<Y 

point , and therefore a ball by Theorem 5 • 

Corollary 2 • 
o 

If X C. H , and N, NI are regular neighbourhoods 

of: X in M, such that 

~ Construct hlO derived neighbourhoods as in the proof of 

Lemma 14 • 

where 0 <: S ( & <. :l. Then 

Therefore the re sul t is true for N~', N* 1, By Theorem 8 (2) choose a 
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homeomorphism h: N*-7 N keepiOgoX fixed. Now h N~ , Nl are both 

regular 'neighbourhoods of X in N, and so by Theorem 8 (3) we can ambient 

isotope 11 N~ onto Nl keeping N fixed. Therefore 

o *' 0* . -1(_ It 

N - N ~ N - N = N'x I = N xl, • 
11· 

Corollary..2 

t;12 n-balls suoh..iJ:lA.t 

The combinatorial annulus theorem. If A, Bare 
Q 0 n-l 
A :JB ~en A - B 'v S x I. Proof by Corollary 2. 

o 
'porollar:,! 4. §.~)2J?ose,--.:.;X,-,-. -,Y!;.;;;c,-",N'-1.......:a",n",d!--"s",u",1)p)f.:qse X is a spine 

S?.f M (Le.. ~!" xl If X ~d Y or Y \, X then Y is also a spine of M, 

1):QO:('. If X ~Y the result is trivial, because then 11 \i X \i Y 

If Y ~ X , let N be a regular neighbourhood of Y in ~. Then 

N ~ Y "" X, and so N is also a regular neighbourhood of X. By Corollary 2, 
'l • 

N - N '? l1 x I and so ~1;" N. Tl.1creforG 11 \i N ~ Y , and so Y is a spine 

of M. 

E2['l~lU. Coroll2.:;:'y 4 is a f.orm of faotorizB-tion of the collapsing 

process. HOl;eYCr such factorization is only true for manifolds I and not true' 

for polyhedra in general Fm:, instance 

x'>. 0 

} .. ,." 

y ~O '=f-? X,':; Y 

X :::>Y 

Consider the follo;/ing eXBm?le. Let <c y z be a triangle, and let y', z' 

be two interior points not conc\.~rront wi ":h x. Let X be the space obtained 

by identifying the intervals X y '" X"J' 1 xz '" xz' , and lot Y be the i'1lsge 

of y z in X. 
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y z 
y 

Then X ~ 0 conewise, and y.\, 0 because Y is an arc. But X >si Y because 

any initial elementary simplicial collapse of any triangulation of X must 

have its free face in Y, and SO must remove part of B. Similarly can build 

examples to show that 

X~O 

Y '--J..O =/--> X u Y ':,.t 0 

Remark 2. Corollary 4 is useful for simplifying spine s. For 

example the spine of a bounded 3-manifold can be normalised in the following 

sense we oan find a spine , ;lhio)1 is a 2-dimensional cell complex in vlhioh 

every edge bounds exactly 3 faces , and every vertex bounds exactly 4 edges 

and 6 faces. For choose ,a spine in the interior; expand each edge like a 

banana and collapse from one side; then expand .each vertex like a pineapple 

and collspse from one face. By Corollary 4 any sequence' of expansions and 

collapsesleaves us with a spine, and the process desm'ibed makes it normal • 

-:-:-:-:-:-
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Seminar on Combinatorial Topology 

by E.C. ZEEMAN 

Chapter 4: UNKNO'I'l'ING BALLS AND SPHERES 

Suppose If C MG. are manifolds; we SB:! the embedding is proper 

IV. 

• (I 0 0 
if If C MG. and !? C. MG.. A (g,rr.)-manifold pair Mq,m=(Mq,Mm) is a pair 

such that Ifc }lq properly. The codimension of the pair is c = 'l - m • 
''lm ''l'.JU The boundary M' = (M ,~ ) is a pair of the same codimension • We write 

MP,nC. Mq,m if r? C M'l and Mn = MP (l rf . 

In this chapter we are interested in sphere F!~ s'l,m and ~l. 

pairs B'l,m. The Qoundary of a ball pair is a sphere pair. If 

B'l,m C MG.+l,m+l we call BG.,m a face' of ~!iJ:tl,m+l. 

The standard (G.,m)-ball pair is 6. q,m = ( ~ q-m 6 m, 6. m) where t;,. nI 

is the standard m-simplex, and 2: q-m denotes (q:-m)-fold suspension. 

The standard (q,m)-sphere pair is 1, q+l,m+l We SB:! a sphere or ball pair 

is unknotted if it ,is homeomorphio to a standard pair • The cone on an unknottsd 

(q,m) ball or sphere pair gives an unknotted (q+l,m+l) ball pair. 

Theorem 9. Any sphere or ball pair of codimension.>. 3 is unknotted. 

Remark 1. In codimensi'on 2 the theorem fails for both spheres 

and balls. The (3,1) sphere pairs give classical knot, 

theory, and in higher dimensions knots can be tied for 

example by suspending and spinning (3,1) knots. 

&06000 

" 
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Conjecture 1 • The snhere pair (SCl,SCl-2) is unknotted if SCl_SCl-2 

is a homotopy Sl If Cl = 3 the result is true by a theorem of Papekyriako-

poulos. If Cl ~ 5 an analogous topological theorem of Stallings says that if 

the sphere is topologically locally unlmotted .then it is topologicaIyunknotted. 

Conjecture 2. Snr9re aDd ball pairs u~J)ITot in codim&nsioll..l. This 

is the Schonfiles conj8cture \ThiGh is true for Cl ~ 3 , a:nd unsolved fo:' Cl?- 4 

Conjecture 3. If Lis a ballJ2?,ir conta!.ned in an \1:"llmotted s-onore 

~ 3 by Theorem 9. It j.s true for codimension 2 vthen Cl = 3 by tr.e uniCllla 

factorization of classical k1WG tboory (an uiikr.otted cu:",-;) is not th3 S'.C-:l of t,tO 

knots) • It is true for codjmensioCl 1 when q ~ 3 by the SchoClflies Theo:"o:n • 

But otherwise in oodimensions 1 a:nd 2 is unsolved • 

A modified result is that BC S are both unknotted th8n the 
._--

complementary ball pair S - B' is also un.1crlotted • This proved by Theorem 8 

part 3 generalised to L\lldiYQ regalar neighbourhoods • 

Remark 2. In differential theory Theorem 9 is no longer true bace.use 

Haefliger has knotted S4k-l differentially in S6k Above this critical 

dimension, in the stable ra:nge, he has unknotted all pphere pairs. 

PIa n 0 f the proof 0 f T h a 0 rem 9 

Most of this ch8pter is devotee; to provine> T~lce:cc:c: 9. 'ihe ;::::)c·~ 

is by induci;ion on m keeping the codimonsion c = Cl .• m fixed 

show ·tha~ 

Theorem 9 1 1 q- ,m- ==""> Theorem 9 q,m 

.iTe eventually 
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The induction starts trivially with m = 0 

pair is a ball BC with an interior point 

standard pair • 

; for, 

BO , 
given c, then a(o,O) ball 

whioh is homeomorphio to a 

Next we observe thet : 

Unknotting of (g,m)-ball pairs implies unknotting of (g,m)-sphere pairs • 

vsrtex 

ProQ£.. Given 
m 

x If: S • Let 

If 
m+l 

!:;, = y !:::. m is the standard simplex, then 

/::, (J.+l,m+l A (J.,m 
= W lJ Y 

/::, (J.,m 

By hypothesis choose an unknotting homeomorphism B(J.,m ~ /::, (J.,m ; 

t d t d l ' 1 t nkn tt' sq,m A q+l,m+l x 0 y an ex en ~near y 0 an u 0 ~ng -+ W 

then map 

• 

Lemma 18. Let (B q, Bm) and (C
q, cm) be hio unknotted ball pairs. 

Then .allY homeomorphisrns f: ilq 
--'> Cq and g: Bm -loo Cm that agree on :Bm 

can be extended to a homeomorphism h: Bq ~ Cq • 

Lemma 10 

'm Then e keeps C 

we can suspend e 

h '" ef : Bq~ Cq 

Extend f conewise to fl Bq-~ Cq as in the proof of 

e 

fixed , since f, g agree on 

to a homeomorphisrn e: C
q 

-7 C
q 

> 
• 

• m . 
B • By the unknottedness 

fixed on Cq .' Then 

agrees with both f and g I and proves the Lemma • 

-~~--'.---~-.--........ -. -~"-.~ 
• 
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Corollary, Any hcmeomorphism behleen the boundaries of two 

unknotted ball pairs can be extended to the interiors • 

IV. 

Lerrma 19, Asswne Theorem 9 1 l' Then if two unknotted (g,m) 
q- ,m-

ball pairs meet in a common face thei.r union is a unknotted ball pair , 

Proof Let B
1

,B
2 

be the ball pairs meeting in the face F. 

Let 2. !:::. be the suspension of the stande.rd ('l.-l,ill-l) ball pair !:::. , with 

suspension points xl' x
2 

say ChOOSe an unknotting F --!>!:::. by hypothesis. 
... 11' 0 ~ 

Extend F ->!:::. to unknottings B. - F ---+ x. !:::. by the above corollary • 
~ J. 

Similarly extend 13 i ---'t (xi!:::. ). to the interiors. Then Bl t.J B2 is 

unknotted by the homeomorphism onto ~!:::. 

Lemma 20 If (B'l.,Bill)is a ball pair of codimension >,. 3 'then 

Remark Lerrma 20 fails in codimension 2 ; for example a knotted 

arc, properly embedded in B3 is not a spine of B3. Too, proof of Lemma 20 

involves some geometrical construction, and we postpone it until after Lemma 23, 

"hich is the crux of the matter , First let us sho" ho" Lemma 20 implies 

Theorem 9 • 

Proof 0 f The 0 rem 9 ass u m i n g L e m m a 20 

We assume Theorem 9 1 l' where 'l.-m >,. 3 • 'l.- ,m- ' 
By the observation 

that uWcnotting balls implies unknotting spheres, it suffices to sho" that a 

given ball pair B = (B'l.,Bm) is unknotted • 

Choose a triangulation J ,K of B'l.,Bill such that K is simplicially 

collapsible 

K = K .........,. K l~ ... ~ K = point • 
r r- 0 
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Let JII be the second barycentric derived of J, and let' B. be the ball pair. 
~ 

We show inductively that Bi is unknotted • 

The induction starts with i ~ 0 , because Bo is a 

cone on the ball or sphere pair (lk(K ,JI!) ,1k(K ,Kit)) 
. 0 0 

For the ,thich is unknotted by Theorem 9 1 l' 
. ~,-

inductive step assume B. 1 unknotted. 
J.- , 

As in 

Theorem 5, lie notice that B. is obtained by 
J. 

glueing on two more ffiuall ball pairs, each by a 

. common face , and each of vthich beiriB' unlmotted like 

B Hence B. is urilmotted by Lemma 19, At the end of the induction B o J., ' r 
is unknotted , 

Ithere N<i is a regular neighbourhood of Bm 

in B<i. But by LemlUa 20, B<i itself is another regular nej.ghbourhood • 

Therefore by Theorem 8 Part 2 there is ahcmecmorp:.lisrn B <i_·rN<i keeping 

Bm fixed, or , in other words, a homeomorphism B -.,.B , shewing B 
. r 

unknotted 

Conical subdivisions 

vie shall need a lemma about subdividing cones. Let C = vX be a 

cone on a polyhedron X, with vertex v. If Y Co C , the subcone through Y 

is the smallest subset of C containing Y of the form vZ ZC X, For 

example a subcone through a point is a generator of the cone A triangulation 

of C is called conical if the subcone through each simplex is a subcomplex • 

Lemlna 21 • Any triangulation of .0 has a conical subdivision. 
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Proof. Let C also denote the given triangulation. Let f: C --,>'::: 
-1 ( ) -1 ( ) . denote the piecelvise linear map such that f 0 = v ,f 1 ,; x, 811d cuch 

that f maps each generator linearly • Choose C > 0 , and such that S t... fx 

for every vertex :X., "' C , :~ -:;~ v. Choose s first derived C I of C such 

that eaoh simplex of C meeting f- l (",) is starred on [1 (6) Then 

f - 1 [C,lJ ,f-1(C) b 1 l' L f C' d G U are su oomp exes, " say , 0 , an 

Let g:K->yL 

map and not pieoevTise linear • 

homeomorphism , 

v 

be radial projeotion , Nhich is a projeotive 

'Chen f x g : K --'l> ( E,. ,I} x L is a projeotive 

L 

that maps K projectively onto an isomorphic complex, say , triangulating 

[6, 1 J x 1. The projecti,n Ti': IS. -) L onto the s8cor,d factor is 

piecmd.se linear, and so there are subdivisions such thatlT": K' '--) Lt is 
, _ 1 -1. 

simplicial. Let Kt = (f x g) - K{. Then K' is a subdivision of z: 
containing L' as a subcom;Jlex , bec a".80 Tf (f x g) : L ~:.. is the identity 

Let C" = K' V v L'. Then C" is a subdivision of C , 811d is conical 

because 1) is cyEndricD.l 

ShadoNs 

Let Iq, be the q-cube 'rle single out the laGt coordinate for 

speoial referenco and ;Trite 
q, q,';'l 

I = I x I. Intni tivcly ~Te regard 1 as 

,. 
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vertical , and I~l as horizontal , and identify rq- l with the base of the 

cube. Let X be a polyhedron in rP • Imagine the sun vertically, overhead , 

causing X to cast a shad 0'1; a point of rP lies in the shadovl of X if it 

is vertically belo\,l some point of X. 

Definitior,. Let X* be the closure of the set of points of X that 

lie in the same vertical line as some other point of X (i.e. the set of points 

of X that either overshadow , or else are overshadovled by , some other point 

of X) • * Then X is a subpolyhedron of X. 

Lemma 22. Given a ball pair (Bq,Bm) of codimension ~ 3 then 

there is a homeomorphism Bq.Bm --) Iq, X such that 

i) X does not meet the base of the cube 

ii) X meets each vertical line finitely 

, iii) * dim X ~ m - 2 • 

Proof. First choos8 the homeomorphism to' satisfy i) , which is 

easy. NO,1 triangulate Then shift all the vertices of this triangulation 

by arbitrary small moves into general position , in such a way that any vertex 

in the interior of IP remait:; in the interior, and any vertex in a face of 

rP remains inside that face . If. the moves are sufficiently small, the new 

positions of vertices determine an isomorphic triangulation, and a 

homeomorphism of rP onto itself. The general position ensures that condihons 

(ii) and (Hi) are satisfied, because m ~ q - 3 , 

and so dim X* :;:;; (m + 1) + m - q ~ m - 2 • 

Remark. The" general po si tion" of the above proof may be analysed " 

more rigorously as f 011 0\,1 s • Each vertex is in the interior of some face , 

and has coordinates in that face. The set of all such coordinates of all 

vertices determine a point X sorr.e high dimensional' euclidean space , and 
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the sufficient smallness means that ::r- is pBrmi tted 

U say To satisfy the conditions (ii)' and (Hi) 

to vary in an open set , 

lie merely have to 

choose ;x. E U , so as to avoid a certain finite set of proper linear subspaces , 

colla psi n g 

. Suppose we are given polyhedra let:::> X ::J Y , such that X '>I Y is 

an elementary collapse 

lies in the shadw of X 

vie call this collapse sunnv if no point of X - Y 

\'le call a sequence of elementary sunny collapses 

a sunny collapse and if Y is a point we call X sunny collapsible 

Corollarv to Theorem 4. If X is sunny colla1Jsible then some 

triani\Ulation is simpliciallv sunny collapsible • For each elementary sunny 

collapse is factored in a sequence of elementary simplicial sunny collapses. 

Lermna 23. If (rq.x) is (g,rr.)-hallpair of codimension ~ 3 

satisfying the conditions of Lemma 22 then X is sunnv collapsible 

Reme.rk Lemma 23 fails I'rith codimension 2. Tne classical example 

of a lalotted arc in r3 givos a good intuitive feeling for the obstruction 

Definition 

to a sunny collapse : locking dO\m from above it is 

possible to start collapsing aI'ray until we hit 

underpasses " vrhich are in shadovr and so prevent 

any further progress • 

A princ ipal le-complex is a complex in vrhich every 

principal simplex is k-dimensional 
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Proof of Lem~a 23 • 

'lIe shall construct inductively a decreasing seCJ.uence of subpolyhedra 

and , for each i, a homeomorphi&~ 

. .m-i-l 
f. : X--,,;> v l\. 

). J. 

onto a cone on a principal (m-i-l)-complex, satisfying the three conditions 

* 1) f. X. does not contain the vertex of the cone , and meets each 
l l 

generator of 

2) 

3) 

the cone finitely 

* dim X (. m-i-2 
i """. 

There is a sunr,y collapse X. 1 l-

The irduction starts YIHh X = X 
o • 

~ X. 
l 

Condition (2) is by hypothesis and. (3) is vacuous. Choose a 'homeomorphism 

f : X -7 6, ,1>7here 6, is the standard m-simplex. Since f X* is a sub-
,0 . 0 0 0 

polyhedron of dimension ~ m-2 , ,le can choose a point v ~ 6, - f t* , and 
o 

in general position relative to 
~

f X 
o 

Starring 6, at v makes 6, into 

the cone v .on "hich is princ ipal • Condition (2) is satisfied by 

our choice of v .. 

The induction finishe s vii th X '" a point , and 80 1>7e shall have 
m 

a sunny collapse 

... ~ X 
m 

which v/in prove the lemma 

The hard part is the inductive step • 

Suppose VIe are given f. 1 : X. l-->v j(ll-i , satisfying the three conditions, 
l- l-
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we have to construct 
. .rr.-i-l ' ' 

f. , X. , l\. and. prove the three conditions r" 
l J.. 

. .m-i " Let C, L triangulate v l\. ,f. 1 X. 1 • By Lemma 21 we can 
l.- l-

choose C to be conical. In particula.r C contains a subdivision 

(If-i), of If-i. Define 

If- i - l '" the (m-i-l)-skeleton of (rn-i) I , whioh is a 

prinoipa.l oomplex since If- i was prinoipal • .Let C be the subcomplex 
. .m-i-l 0 

of C triangulating thesuboone v l\. • Let e C -? 0 be the o ,0 

inolusion map. ile shall construct another embedding 

e:C ,-")0 
, 0 

that differs slightly, but significantly, from e • Having chosen, e , then 
, 0 

there is a unique subpolyhedron X. , and homeomorphism f. , such that the 
, l 1, 

diagram 

Xi 
c. > x. 1 l-

j fi f. 1 l-

W 
e C ___ ._) C 

0 

is commutative 

" * It is no good ohoosing 

would be of too high a dimension 

e = e ,because then X. = X. ) which o 1 l-

In fact this is the orux of the matter 

we must arrange some device for oollapsing a\jay the top-dimensional shadows 
.* 

.of X. l' The first thing to observe 
l-

f. 1 X~ 1 is in no \jay related to the 
l- l-

is that the triangulation L of 

* q embedding of X. 1 in the oube I 
l-

The inverse images of simplex8s of L may vrrap around and overshadoVTeaoh 

other hopelessly, so our next task is to take a subdivision that remedies 
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this confusion. We have piecewise linear maps 

L 

-1 
f, '1 
~-

> X* -r() ICJ:-l 
, 1 
~-

IV. 

;There the first is a homeomorphism , and ir is vertical projeotion onto the 

base of the oube I'l.. By Theorem ;le oan ohoose subdivisions L' of L I 

(I'l.-l). of I'l.-l and a triangulation M of X~ 1 suoh that the maps 
1-

f, 1 
1-

L' (.t---- M 

are simplioial 

Reoall that dim M ~ m-i-l , by induotion on i. Let Al 

A
l

,A
2

, ••• ,A
r 

be the (m-i-l)-simplexes of M. Eaoh Aj is projeoted non

degenerately by .,-(, because of LeD'.ma 22 (ii). If j 1= k there are tlW 

possibilities either IT A, ;f Tr A or -ri A. '" I( A • In the first case 
o 0 J k J 0 -1: 0 

11 maps Aj I A disjointly and sO no point of A. V A overshad01<s any 
,k 0 J 0 -'k 

other. In the seoond case either A. overshadOl<s A, or vioe versa • 
J K 

Consequently'overshadowing induces a partial ordering amongst the A' , 
s 

and ';Te ohoose the ordering \' A
2

, ••• ,Ar to be compatible with this partial 

ordering. l'le summarise the conclusion : 

Sublemma 

in -. Ut 
J 

We now pass 

proof is to construot 

in the oone C • The 

o 
All points of X that overshad011 ~ 

to L' . Let Bj '" f, l' E- l' • The 
J,-, J 

a'little (m-i+l)-dimensional blister 

are oontained 

next step in the 

Z, ab0ut each' B j 
J 

blisters are the device that enable us to make the sunny 

collapse, and the fact that there is just suffioient room to oonstruct them is 

an indioation of "Thy codimension >-- 3 is a necessary and sufficient condition 

for unknotting • 
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"-
Fix j. Let B. 

J 
be the barycentre of B .• Since the bas~ of the 

'. .J 
cone is principal , there 

contained in the subcone 

is simplex Dm- l E (~-l), such that B. is 
• J 

vD. There are t11'O caS0S depending on "hether or 

not 

point 

B. , 
J 

pair 
~ 

• • 
B. lies in D ) in the base of the oone • If B.CD, let b

j J 0 A J 
in D near B. and Jet a. be a point in the generator v B. 

B: 1 D , 
J J 0 A J 

If let b. be a point in vD near B. ) and let a. 
J J ~ ~ J J 

of points ori the generator through B j' near B. and either side 
J 

be a 

near 

be a 

of 

B. In either case define the blister 
J 

Z. :0 a.b.B. 
J J J J 

He choose the points suffioiently near to the 

barycentres so that no t"o blisters meet 

more than is neoessary (i,e. Z (l Z = 
j k 

= E. () E,) , The bottor;} of tae blister 
J ..:: 

is a.B. a'1d the .iQ:Q. is 
J J 

0j ne th9 map 

a.b.B. 
J J J 

e.:a.B. _) a.b.B. 
J J J J J J 

Let· 

that raises the blister, and is given by 
A 

mapping B .-> b . 
J J 

Nw 0 meets each blister in its bottom • Therefore \Ve oan define o 
the embedding e 0 -70 by choosing e = El. on the interseotion lfith each 

o J 
b.lister , and e = 1 otherlfise . In other "'OTds e is a map that raises all 

the blisters. Having c.efill0d e, He ,1ave oompleted tile definition of 
. .In-i-l 

and f X, -'-7- v l\. • i ~ 

X. 
l 

There remains to verify the three conditions Oonuition (2) holds 

'beoause by our construction X:' = x. 1 (l X. 
1 l- l. 
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Condition (1) holds, because 

* 'k 
f. X. '" f. 1 X. 

J. J. J.- J. 

;(. 

C f. 1 X. 1 
J.- J.-

for vlhich the condition holds by induction. 

Finally Vie oome to condition 

(m-i)-simplex D E (r(1-i). , v D - £ 
(3) Let Z = U Z.. For each 

J 
is a ball because it is a si~plex 

with a few blisters pushed in round the edge, and D - Z is a face • Therefore 

oollapse eaoh v D - Z from D - Z vTe have collapsed 

C\jeCUZ 
. 0 

and the inverse image under f. 1 J.-
determines a sunny oollapse 

-1 
X. 1 ~ X. U f. 1 Z 

J.- J. J.-

* sunny beoause vie have not yet removed any point of X. 1 • 
J.-

vTe novl collapse the blisters as follows • Eaoh blister meets e C o 
in its top, and SO by collapsing eaoh blister onto its top in turn, j",l, ••. ,r, 

vie effect a oollapse 

eC vZ\.\eC 
o 0 

-1 
If Y. '" f. 1 Z. , then the inverse image of this oollapse determines a 

J J.- J 
sequence of elementary collapses 

I' 

X. u \...j 
J. 

1 

I' 

U 
2 

X. 
J. 

Each of these elementary collspses is sunny by the Sublemma, because by the 

time we oome to oollapse 
o 

shadow are those in -\:' but the se are sunny for ,le have already removed 

Y
k 

' say , the only points that might have been in 
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everything that overshadovls them • We have demonstrated the sunny collapse 

X. 1 '" X. , vlhich complete s the proof of Lemma 23 • 
~ 1 . 

Proof of Lemma 20 • 

\'Ie can nOvl return to the proof of Lemma 20 , which will conclude 

the proof of Theorem 9 • Given a ball pair (Bq,B
m

) of codimension~ 3 , 

we have to shO\'1 B q \1 Bm. By Lemma 22 it suffice s to show for a ball 

pair (Iq, X) satisfying the conditions of Lemma 22 

By Lemma 23 and the Corollary to Theorem 4 \;e oall choose a 

triangulation K of X that is simplicially SUllilY oollapsible •. 

"" K '" a point • r 

IV .• 

Let L. be the polyhedron consisting of Iq-lu X together with all point~ 
1 

in the shado;1 of K. • Vie shall show that 
1 

The first step is as fol101'IS • Choose a cylindrical subdivision (Iq), 

of It). containing a subdivision l' of L. Then collapse (Iq), ~I L' 
o 0 

prismwise from the top, in order of decreasing dimension of the prisms • 

The last 

by a single arc • 

step is easy , 
'1.-1 

Collapse I 

because 

onto the 

L consists of . rq- l 
U X joined 

r 
bottom of this arc, and then 

collapse the arc • There remain the intermediate steps L
i
_

l 
\{ Li ' 

i = 1 , ••• , r • 

L o L 
r 

:x: 
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---~ 
b 

B 

L. I 
~-

Fix i 

T 

and suppose the elementary simplicial sunny collapse 

K. I ~ K. collapses A from B, when A = aB. Choose a point b 
~- 1. ,... .... 

belo" the barycentre 'B of B, and sufficiently close to B for bA n X = A 

(this is possibly by Lemma 22 (ii)) Let T = L. together with all points . ~ , 

in the shado;; of ab B. Since the collapse is sunny, no points I'lf K. 
o 0 ~ 

evershadoVT, A U B , and so T n b A = a(b B) 0, Tv b A = L
i
_

l 
° In other 

? words collapsing b A from b B gives an elementary collapse 

L. I ~ , T • 
~-

° 
Finally collapse T ~ Li P7ismwise dOVTnwards from a bB, as in the first 

case ° This completes the proof of Lerrma 20 and Theorem 9 0, 

, , 

Isotopies of balls and spheres 

Recall that Lerrma 16 proved that any homeomorphism of a ball onto 

itself keeping the boundary fixed is isotopic to the identity keeping the 

boundary fixed • 
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Oorollary 1 to Theorem 9 

embeddinf!;s Bm C B
q that a,,:ree on 

If q-m >< 3 , then any hlO proper 

Bm are ambient isotopio keeping Bq 

IV. 

fixed. 

Let 
-1 

gf 

f,g be the embeddings • By Lemma 18 we oan extend 
m m 'm 

: f B -? gB, whioh agree on B ,to a homeomorphism 

;,et'fleen the ball pairs 

By construotion hf ~ g , and, by Lemma 16, h is ambient isotopio to the 

identity keeping Eq 
fixed • 

Theorem 10. Any orientation preserving homeomorphism of Sn is 

isotopio to the identity 

Proof : by induction on n, starting trivially vlHh n ~ 0 JJet 

f be the given homeomorphism Ohoose a point ~ E Sn , and ambient isotopic 

fx to .Y- This moves f to ~ say , where f 1 ;y. ~ ;y:. "1 , 

Oho"se a ball B containing X in its interior. Then B,flB are regular 

neighbourhoods of X , and so by Theorem' 8 ambient isotope fIB onto B 

This moves f 
1 

to f' 
2 

, say , where f2B ~ B • The restriction f2 lE 
preserves orientation, and is therefore isotopic to the identity by induction 

Extend the isotopy conewise to Band Sn - B I making it into an ambient 

isotopy, that moves f2 to, f3 ' saYvlhere f3 I B ~ 1 Apply Lemma 16 to 

each "f B , Sn - B to ambient isotope f3 into the identity 

Oorollary 2 to Theorem 9. If g-m >/ 3 then any tvro em~g9ci,n.lt~ 

sm c sq are ambient isotopic • 

Proof. If (sq,Sm), q> m , is an unknotted sphere pair, then S<l 

is the (q-m)-fold suspension of Srn, and so there is 

(1) an orientation reversing homeomorphism of sq, throlring Srn 



( 

- 17 - IV. 

onto itself, and 

(2) an orientation preserving horneornorphisrn of sq, throwing Srn 

onto itself YTith reversed orientation 

Let f, g : Sm~ sq be the two given ernbeddings . Since q - m ~ 3', 

the unknotting gives a homeomorphism (Sq,fSm) ---7 (SCJ.,gSm), vlhich vie can 

choose to be orientation preserving on S2 ry (1) , and Vlhich is therefore 

isotopic to the identity by Theorem 10 Therefore f is ambient isotopic 

to f
l

, say , .such that flS
m

.= gSm. Let h= gfll m m 
flS ~. flS • By 

(2) above and Theorem 10 , YTe can choose fl SO that h is orientation 

preserving • 

Now apply Theorem 10 to the smaller sphere Sm, to obtain ru1 isotopy from the 

identity to h; suspend this isotopy of Srn into an 8.Jl1bi.ent isotopy of sq 

moving fl into g. 

Remark The above two corollaries are also true for unknotted ball 

and sphere pairs of codiffiension 1 and 2. The aim of .the next four chapters 

is'to obtain similar results for arbitrary manifolds. 

-:-:-:-:-:-
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Seminar on Combinatorial Topology 

by 'B. C • ZEEJI1AN 

Chapter 5 I SCtr Opy 

The natural way to classify embeddings of one manifold in another 

is by means of isotopy. But there are several definitions of isotopy, and the 

purpose of this chapter is to prove three of the definitions equivalent. The 

three that \'re consider (of which the first two were mentioned in Chapter 2) 

are : 

,(1) Isotopy, sliding the small~r manifold in the larger through a 

family of embeddings ; 

(2) Ambient isotopy, rotating the larger manifold on itself, carrying 

the smaller wit,h it ; 

(3) Isotopy by moves, maki.ng a finite number of local ~oves, each 

inside a ball in the larger manifold, analogous to moving a complex in 

Euclidean space by shifting the vertices, like the moves of classical knot 

theory 

Since any homeonlorphism of a ball keeping the boundary fixed is 

isotopic to the identity it follm'Ts at once that 

isotopy by moves :::::c_) ambi"mt isotopy ::='> isotopy. 

In Theor"ms 11 and 12 Vie shall show that these arrows can be reversed. 

To reverse the second arrow, that is to cover an isotopy by an ambient isotopy, 

it is necessary to impose a local unknottedness condition on the isotopy. 



v. 
- 2 -

For othervlise the knots of classical knot theory give counterexamples of 

embeddings that are mutually isotopic but not ambient isotopic. However the 

results of Chapter 4 shoYl that this phenomenon occurs only in eodimension 2, 

and possibly eodimension j • 

Throu.ghout this chapter we shall be considering embeddings of a 

,£.Qmpact m-manifold 11 in a q-manifold Q, Vlhieh mayor may not be compact 

vie restrict attention to BrOt",;:, embeddings f: N -?Q; recall that f is' 

proper provided .. f-1Q = 14; in particular if ~! is closed I then any embedding 

of N 
o 

in Q is proper • By a homeomorphism of Q I we mean a homeomorphism 

of Q onto itself; in particular a homeomorphism is a proper eml;>edding • 

D 0 fin i t ion s of Isotopy 

Recall definitions that have been given in previous chapters • 

(1) A h0r.18omorphism h of 11 is a homeomorphism of N onto itseif 

If ' Y C. M and h I y = the identity Vie say h keep s Y fixed • 

(2) An isotopy: of 11 in Q is a proper level preserving embedding 

F:NxI-'7QxI 

Denote by Ft the proper embedding 11~Q defined by F (x,t) '" (Ftx,t) , 

all x E: M: 

isotopy • 

The sub space U F tJ1 of Q is called the track left by the 
tE I 

If XC: N I Vie say F keeps X fixed if F(x, t) = F(x, 0),. all x c X and 

tEl. 

(3) The embeddings f, g ~! -? Q are isotopic if there exists 

an isotopy F of 11 in Q ,/i th F 0 = f , F 1 = g • 
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(4) An ambient isotopy of Q is a level preserving homeomorphism 

H : Q x 1-+ Q x I such that Ho = the identity, v/here as above Ht is defined. 

by H(x, t) = (Htx, t), all x i', Q. iTs sa,y that H covers the isotopy F if 

the diagram 

is commutat:i.ve; in other words Ft = Hlo ' all t E. I • 

(5) The embeddings f, g : M -1- Q are ambient isotopic if there is 

an a~bient isotopy H of Q such that Hlf = g • 

Remark. If H = Q , then a proper embedding M x 1--7 Q x r is the 

same as a homeomorphism Q x I -t Q x I. Therefore sin0e we have restricted 

attention to, proper embeddings , the only difference betv/een an isotopy of' 

Q in Q, and an ambient isotopy of Q, is that the latter has to start 

with the identity; .consequently t1W homeomorphisms of Q are isotopic if Iilld 

only if they are ambient isctopic • 

(6) A homeomorphism or ambient isotopy of Q is said to be 

supported by X if it keeps Q - X fixed • By continuity the frontier 

X n Q - X of X ,in Q must also be kept fixed • 

(7) An interior move of Q ,is a homeomorphism of Q 'supported by a 

ball keeping the boundary of the ball fixed • A boundary move of Q is a 
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homeomorphism of ~ supported by a ball that meets ~ in a face ; the 

comp18mentary face is the frontier of the ball that is kept fixed by continuity • 

• 

(8) The embeddings f,g are isotopic by moves if there is a 

finite sequence \,h2, ... ,hn of moves of ~ such that \ ~ ... hnf '" g • 

L 0 C all y u n k not t e d e m bed din g s 

Let f 

neighbourhood of 

that f: K -7 L 

: M -7~ be a proper embedding • Let ~ be a regular 
o 

fN in ~. Let K, L be triangulations of N, ~ such 
, ' J 

is simplicial. vTe say that f is a locally_uDJ:n.ottcil 

&&bedding if, for each vertex vE K , the pair 
,! ' 

(lk (fv,L), f(lk(v,K) ) 

is unknctted • Notice that since the embedding is proper, the pair is either 
o • 

a sphere or ball pair according to whether v E M or v EM. 

Corollary 3 to Lemma 9 Any proper embedding of codimension4 3 

is locally unknotted • Therefore then vre say "locally unlmotted" in future 

vie refer only to the cases of codimension 1 or 2 • 

Remark 1 • The definition is independent of ~ , and the 
o 

triangulations, because if all the links are unknotted, then the same is true 

fot' any subdivisions of K, L , and hence also true for any other 

triangulations • 

Remark 2. An equivalent condition is to say that the clossd stars 

of vertices are unlmotted ball pairs, but in codimensions 1 and 2' the 

equivalence, for a boundary vertex, depends upon' a result that vie have 
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quoted, but not proved, that if an unknotted ball pair has an unknotted face 

then the complementary face is also unlmotted • 

~emark 3. If f: M-7Q is locally unl-notted embedding, then so 
• 

is the restriotion to the boundaries f: N -T Q • 

Remark 4. Vie say a ball pair (Bq,Bm) is 100 ally unknotted if the 

inolusion is so ; for example this always happens in codimension ~ 3 or in 

the classical oase (q,m) '" (3,1) • Suppose (Bq,B
m

) is loo ally unlmotted , 

and let N
q 

be a regular neighbourhood of Bm in B
q

• Then although 

(Bq,B
m

) may be (globally) knotted, it can be shown that (Nq,Bm) is unknotted , 

by adapting the proofs of Lemma 19 and Theorem 9 • 

L 0 c all y u n k not t e d i sot 0 pie s 

" , 

lie say an isotopy F: H x I -T Q x I is locally unknotted if 

(i) each level ]'t: M-) Q is a locally unknotted embedding, and 

(ii) for each subinterval J Cl, the restriotion F: M x J -+ Q x J 

is a locally unknotted embedding • 

Remark 1 If F is a looally unknotted isotopy, then so is 
• • 

the restriotion to the boundaries F: M x' I ~ Q x I. The proof is non-trivial 

. (as in Remark 2 above) and is 'omitted • As we need to use the faot in 

Corollary 1 to Tr.eorem 12 below , ;Ie should either acoept it ~Iithout proof , 

or else add it as an additional condition in the definition of locally 

unknotted isotopy • 

:lemark 2 Any isotopy of codimension ~ 3 is locally unknotted 

Remark 3. The above definition is tailored to our needs. 

There is an alternative definition as follOl'1s ; we say an isotopy is locally 
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trivial if , for eaoh (x, t) E' 11 x I , there exists, an m-ball neighbourhood A 

of x in 11, and an interval neighbourhood J, of t in I, and a 

commutative diagram 

AxJ ____ c ___ ;;.-(. A x J 

IY F 1 G c 

11 x I >- QxI 

lrhere is denotes (q-m)-fold suspension , and G is a level preserving 

embedding ont~ a neighbourhood of F(x,t) • It is easy to verify that 

F is a locally trivial isotopy 

F is a locally unlmotted ,isotopy 

~t 
F is an isotopy and a,locally unknotted embedding. 

We shall prove in Corollary to Theorem 12 that the top arro~1 can be reversed .' 

Therefore a locally trivial isotopy is the same as a locally unknotted isotopy. 

lve conjecture the bottom arroy; can also be reversed - it is 'a problem depending 

upon the Schonflies problem, and the unique factorisation of sphere knots • 

We no,1 state the theorems , and then prove them in the order stated • 

Tlieorem 11 Let H be an ambient isotopy of Q vii th oomDact 

supDort keepj.nll;' Y fixed. Then H1 can be eXllressed as the pr~duct of a, 

finite nu~ber of moves keelling Y fixed. 



( 

! 
\ 

v. 
- 7 -

Addendum. Given any triangulation of a neighbourhood of X, then 

the moves can be chosen to bo supported by the vertex stars • Therefore the 

moves can be made arbitrarily small • 

Coro~. Let 11 be compact , let f: H ? Q be a proper locally 

urucnotted emb&dding , and let g be a homeomorphism of H that is isotQP-i2-12 
• 

the identity keeping I~ fixed Then g can be covered by a homeomo:!J2Qism 
• h of Q k0eping Q fixed in other 'lords the diMram is commuta.lli!l. ! 

h 

Q ~ Q 

fl 
f I g 

M .-l> 11 

Remark. 

In fact the corollary is improved by Theorem 12 be 10'1 , to the extent 

of covering not only the homeomorphism but the V1hole isotopy. HOvlever we 

need to use the corollary in the proof of Theorem 14 , in the course of 

proving Tl:eorem 12 • 

Theorem 12 • (Covering isotopy theorem) • 

• 
Let. F: ~l x I -=--z Q x I be a locally urucnotted isotopy keeping M fi:)sed, 

and let N be a neighbourhood of the track left bv the isotopy • Then F can . 
be covered by an ambient isotopy supported by N keepinl: Q fi}:c.~ 

• 
Addendum. Let X be a compact subset of Q and· N a n9i~hbourh2o~ 

• of X in Q. Then an ambient isotopy of Q supported by' X can be e~terrccd 

to an ambient isotopy of Q, supported by N. 
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• 
Corollary 1. Theorem 2 remains true if "Je omit "keeping M fixed"· 

• 
from the hypoths8is and "keeping Q fixed" from the thesis. 

Corollary 2 Let f, g : M -7 Q be hlo proper loc ally unknotted 

embeddings • Then the follOl'ling four conditions are equivalent: 

(1) .f,g are isotopic by El looallv unknotted isotopy 

(2) f,g are ambient isotonic 

(3) f,g are ambient isotopic by an ambient isotopy ~Ti th compaot 

support 

(4) f,g are isotopio by moves 

C oro 11 ary 3 

locally unknotted 

An isotopy is . locally trivial if and only if it is 

Proof of The orem 11 

l'ie are given an ambient isotopy H: Q x I -+ Q x I with oompact 

support, and have to show thatH
l 

is a composition of moves We first prove 

the theorem for the case ~Ihen Q is a oombinatorial manifold , namely a 

simplicial complex in En, say • Then Q x I is a oe11 complex in En x I 
n 

\1e regard E as horizontal and I as vertical. 

Let K, L be subdivisions of Q x I suoh that H: K·~ L is 

simplioial (in faot a simplicial isomorphism) Let A be a prinoipal simplex 

of L, and E a vertical line element in A Define (1 (A) to be the 

angle behleen H-
l 

(E) and the vertioal : Since H: K'-7 L is simplicial, this 

does not depend up'on the choioe of E • Sinoe H is level preserving , 

e (A) <.. IT • Define () '" max El (A) , the maximum taken over all principal 
2 

simplexes of L. Then 9 < TI 
2 
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Now let W denote the set of all linear maps Q --,?oI (i.e. maps 

that map each simplex of Q linearly into I) • Let' 

• 

v/ b '" {f E W ; max f '" min f < ~ }. 

If feW, denote by f* the graph of f I given by 

* f '" 1 x f : Q.-t Q x I • 

Then f* maps eaoh simplex of Q linearly into En x I • .Let if (f) be the 

maximum angle that any simplex of f* Q makes with the horizontal • 

Given f., > 0 , there exists b > 0 , such that if f E iT$' then er (f) .( S I 

for choose 6 sufficiently small compared with the l-simplexes of Q. 

Choose E, < :!! - e ,and choose 5 accordingly, 
2 

Now let f be a map. in Wf,' and '1 a po~nt of Q. Consider the 

intersections of the arc H-l('l x I)' with f* Q; ~le claim there is exactly 

one intersection • 

Q x I Q x I 

---- H '> 'lxI 

f* 

* * * For since f is a graph, f Q separates the complement (Q x I) - f Q ·into 

points abo'fe and belmr the graph. If there were no intersection , then 

. arc would connect the belou-pointH-1('l, 0) to the above-point H-1 (q,1) 

contradicting their separation. At each intersection, since er (f) + f3 

the 

I 

(Is 
2 
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the arc , oriented by I / passes from belo~1 to above. Hence there can be at 

most one interseotion • 

Let p: ~ x I--?~ denote the projeotion onto the first factor. 

Then 

is a 1 - 1 map by the above olaim , and so is a (piecewiss linear) . 

homeomorphism of ~. 

By the compactness of ~ and I, choose a sequence of maps 

fo/f l ,·; .,fn in WC, such that fo(~) '" 0 , fn(~) '" 1 , and for each, 

f~land fi agree on all but one, vi say" of the vertices of ~, Define 
-1 

ki = P H f~, Then kO = HO = the identity, and kn = Hl • Define hi = ki\_l' 

Then h. is a homeomorphism of ~ supported by the qall k. (;t(v. ,~» , 
~ ~ ~ 

keeping k. (lk(v.,~» fixed, and so is a move. Therefore HI'" h h l".h I 
~ ~ , n n- ~1. 

a composition of moves 

If H keeps Y fixed 

each move h. keeps Y fixed, 
~ 

and are supported by X 

/ then ki I Y = kO , Y I for each i, and SO 

In particular ,the moves keep ~ - X fixed I 

Suppose now that ~ is a compact manifold ; let T -+ ~ be a 

triangulation in the structure 

it also follows for ~. 

We have proved the theorem for T and so 

Suppose now that Q is non-compact. Let N be a'regular 

neighbourhood of X in Q Then N is a' compact sUbmanifold / and 

N n (~- N) C Y Therefore HI N x I is an ambient isotopy of N keeping 

N n Y fixed, and by the compact case Hll N is a compositi.on of moves 

supported by X keeping N 0 Y fixed. The moves oan be extended by the 

identity to moves of Q keeping Y fixed, and so HI is composition of 

moves of Q. The proof of Theorem 11 is complete. 
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,'roof of the Addendum to Theorom 11 

" , 

We are given a triangulation T -t N of a neighbourhood of X, and 

have to show that the moves chosen to be supported by the vertex stars of T • 

Without loss of generality we can assume N is a regular neighbourhood , 

because any neighbourhood contains a regular neighbourhood • Therefore T 

is a combinatorial manifold • Let f.> ' denote the open covering of N x I : 

/!; '" {st (w,T) xl; WET} , 

where w runs over the vertices of T. Let'A be the Lebesgue number of 
. -1 the covenng H (~ of N x I. Choose a subdivision T' of' T such that 

the mesh of the star covering of T' is less than A /2. In the above 

proof of Theorem 11 use T' instead of Q, and choose $ with the additional 

restriction that ~ I.. 'Ah . 

H 

-----
') 

~-----" 

at (wi"~) 

Continuing with the same notation as in the proof of Theorem 11 , for each 

i the ball f~ (st(v., T I)) , is of diameter less than A. I and so is 
1. 1. 

contained in h'l(st(w., T) x I) for some vertex w. €: T. Therefore 
1. ~ 

support h. C. k. (,rt(v., TI)) C st(w
i

, T) 
1. 1. 1. ' 

as desired. 

, 
I 
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Proof of the Corollary to Theorem 11 

g f 
Given N ------? 11 ---7 Q. ,where g is isotopic to the identity 

• 
keeping N fixed, we leave to cover g by a homeomorphism h of Q.. 

Let N be a regular neighbourhood of fl1 in Q., and choose 

triangulations of 14, N - call them by the same names - such that f: M-rN 

is simplicial By the Addendum we can write 

where g. 
l. 

m -
is supported by the ball Bi = st(v

i
,11) , for some vertex Vi If 11 • 

q -Let B. = st(fv., Q.) • 
J. J. 

Then the ball pair (B ~ , f B~) 
'J. J. 

is unlmotted , because 
-1 

f is locally unknotted , and therefore the homeomorphism fg
i 

f of the 

smaller ball can be suspended to a homeomorphism , h. 
J. 

say, of the larger' ball • 

Since 
• 

g keeps N fixed, 
'm g, keep s B. fixed, ,and so 

.... '~ Cl 

Therefore hi extends to a move of Q. 

h = ~,h2 ••• hn covers g. 

keeping Q. fixed • 

Collars 

h. keeps B~ fixed. 
l. J. 

The composition 

Before proving Theorem 12,H is n~cessary to prove a couple of 

theorems about collars of compact manifolds. The theorems can be generalised 

to non-compact manifolds, but we shall only need the compact case , Define a 

collar of 11 to be an embedding 

c:l1xI-+M 

, . 
such that c(x,O) = x, all xf 11 • 

Let f: H __ .Q. . be a proper locally-unknotted embedding between two compact 

manifolds, and let c, d be collars of M, Q.. lie say c ,d are 
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comuatible ldth :t if the diagram 

d 
Q x I 

f x I .1 
M x I 

is commutative and im d n im f = im fe • 

Lemma 24. Given a prousr locally unknotted embedding between 

comDact manifolds, there exist comDatible collars • 

v. 

Corollary. J.ny comDact manifold has a collar , (For in the lemma 

choose the smaller'manifold to be a point) • 

. Proof of Lemma 24 

Let M+ denote the mapping cylinder of 11 C. ~I. Thim 
• 

N+ = M x I V M , lfith the identification (');., 1) " 'X., and the induced 

structure. Then If" has a natural collar • The given proper embedding 

f : ~I ->, Q induces a proper embedding f+: M+-". Q+ with which the natural 

collars are compatible • 

Let ~ denote the retraction maps of the mapping cylinders , 

shrillicing the collars ; then the diagram 

Q+ f )Q 

f+ i 1 f 

. M+ .,.,. 11 
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is commutative vie shall produce homeomorphisms c,-d (not' me~ely maps) 

such that 
• 

Q+ d 
> Q 

,+ 1 1 f 

, 
M+ 0 

'> ~l 

is com'l1utative, and such that c,d agree with f on the boundaries. 

The restrictions of c,d to the natural collars "ill prove the lemma. 

Choose triangulations of M,Q - call them by the same names -

v. 

such that f is simplicial, and let M I , Q I denote the barycentric derived 
,! ' , 

complexes. For each p-simplex At. /Il , let 

more precisely A* is the (m-l-p)-ball in M' 

Af.
o 

= 1"1 st (v,l~') 
ve A 

* . A denote its dual in ~l; 

given by 

• 
Using the linear struc ture of tLe prisms A x I , A ~ 11 I define the m-ball 
+ • 

A C. 11 x I to be the join 

• 
The set of all such balls cover M x I and determine a triangulation of 
• 
M x I ; the latter egrees with 11' on the overlap, and so together with 

/Il' + determines a triangulation of M 

Order the simplexes A
l

,A
2

, ••• ,A
r 

of K in an order of locally 

increasing dimension (i.e. of Ai'~ Aj t4en i ~ j) • Similarly order the 

simplexes BI , B2, ••• ,B
s 

of L such that 'fAi = Bi ' 1 ~ i ~ r • 

Define irductively I 
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11. = N. 1 V A+i ~ ~-

"" B+. "'4 = ... 1 () 
~ ~- ~ 

We have ascending sequences of subcomplexes 

~ C •• f •••••• t ......... ~, •••• t •• 

v. 

such that f+N. c.. Q. , for each i 
~ ~ 

We shall show inductively there exist 

homeomorphisms c.,d. such that 
~ ~ 

d. 
~ 

"is commutative, and such that c.,d. 
I . ~ ~ 

The irrluction begins trivially vlith 

"That 'we ",ant • 

N 

agr~e with ? on the boundaries • 

c = d = identities, and ends \;ith 
o 0 

For the inductive step, fix i , and assume c. 1 I d. 1 to be 
1 1.- 1.-

defined. Ther~ are' two case s '. 

. , 
Case I. ) i <. I' • For j = 0,1 let a. denote the barycentre ,1. ? 

J 
of A. x j , and let b. = f+ a. • Let P denote the (q - 1, m - 1) ball 

~ J J 
pair 

\;hich is unlmotted because by hypothesis f N-"-7 Cl. is l.ocally unlmotted 
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and SO by induction f+: M. 1--7. Q, I is also. Then blP is the cone 
l- l-• • 

pair on P I and b
o 

b
l 

P the cone pair on b
l 

P • 

• 

v. 

--------'---------------

Sublemma. There exists a homeomorphism 

maps b 0 --'/ b
1

, is the identity on P and maps 

• 
h : b b}:P U b P -. b1P that o --1--· 

• • 
bP··"" b P linearly. o ): 

Proof. If P were a standard ball pair I and b P a cone on 'P , 
o , 

the barycentre of (the- smaller of the pair) bP 
o 

, toon the proof_ 

would be trivial by linear projection • - An unknotting homeomorphism from P 

onto a standard pair maps the given set-up onto the standard set-up , and 

the sublemma foll011S by composition • 

• 
Returning to the proof of the lemma, notice that boblP is none 

other than the ball pair (B: , f+ A:) and so h extends by the i.dentity to 
l l 

a homeomorphism of manifold pairs 

+ -
h ~ (Q"f 11,) 

l l 
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( +)-1 + Define c. = c. 1 f hf 
~ ~-

and d. = d. 1h • 
~ ~-

Then c
i

' d
i 

are homeomorphisms 

satisfying the commutativity condition 

Finally we have to 
+ + points outside A. , B. 
~ ~ 

Sh01'/ that c. ,d. 
~ "-

agree ~/ith ? on the boundaries· 

this fol101'1S by induction' For points in 

+ A. , 
~ 

B~ it follows from the diagram 

1ihich is commutative by the linearity of the sublemma • 

Case (h) i' > r 

manifold Q is concerned 

This case is simplex, because only the larger 

gives a homeomorphism 

In case (i) ignore the srnaller ball 

h : Q.'---7 Q. 1 
~ ~-

keeping ~!. = M. 1 
~ ~-

fixed 

the proof 

Define c. = c. 1 and d. = d. 1 h. The proof of Lerr~a 24 is complete 
~ ~- ~~-

Our next task is to improve Lemma 24 in Theorem 14 to the extent 

of moving the smaller collar from the.sis to hypothesis • First it is . 

nece ssary to shov , in Theorem 13 that any tv/O collars of the same manifold 

are ambient isotopic , and for this ve need three lemmas • Lemma 24 is about 

shortening a collar ; Lerr,'1la 25' is about isotoping a homeomor,phism which is 

not level preserving into one vrhich is level preserving ovel a small 

subinterval ; and Lemma 26 is about isotoping an isotopy • In each lemma an 

isotopy is constructed, and ''le must be careful to avoid the standard mistake 

and make sure that it is a polymap (i,e, piecevise linear) , 

Notation, Suppose 0 <. C' ~ 1 Let I c denote the interval 
c. 

Given a collar c of 11 , define the shortened co..l1..§1: , 
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by Cc (x, t) = c (x, et), all x EM, t Go I 

• 
Lemma 25. The collars c c E. are ambient isotopic keeping M 

fixed • 

Proof. First lengthen the collar c as follws, The image of 

c is a submanifold of M, and so the closure of the complement is also a 
• 

submanifold (by Lemma 17), 1dth boundary c (M x 1) • Therefore the latter 

has a collar , which 1'le can add to c to give a collar ,d say, of M 

such that 

By Le~~a 16 there is an ambient isotopy G of I, keeping I 

fixed, and finishing with the homeomorphiam that maps (0, 1/2], [1/2, 1J 
linearly onto Io, E/2J [£/2, 1] Let 1 x G be the ambient isotopy 

• 
of M x I , and let H be the image of I x G under d. Since 1 x G keeps 
• • 
N x I fixed, v/8 can extend H by the identity to an ambient isotopy H of 

M keeping 11 fixed. Then HIe = cc' proving the lemma • 

LerrL~a 26. Let X be a polyhedron, and f: X x I I:. -}X X I 

an embedding such that f I X x 0 is the identity. Then there exists 

b, 0 <: § < E. and an embeddina: g: X x I ~ X x I such that : 

(i) g is level preservin~ in I( ; 
0 ," 

(ii) ,g is ambient isoto12ic to f kee12ing Xx I fixed ; 

(Hi) If ye X , and fly x 1£ is already level 12reservin~, then 

He can choose g to a~ree \'Iith f on Y x le' and the ambient isotopy to 

kee12 f(Y x It.) fixed. 

12:2.Qf.. Let K, L be triangulations of X x lE' X x I such 

that f K -> L is simplicial (in fact a simplicial embedding) • Choose $ , 



( 

- 19 -
v. 

, SO small that no vertices of K or L 

Choose first deriveds K I , L 1 of K I L 

X x ~. 

lie in the interval 

according to the rule 

if the interior of a simplex meets the level , then star it at a point 

on X x &; othe!'l;ise star it barycentrically. Let g: K' ---). L' be the first 

deri ved map. ile verify the three propertie s : 

Property (i) holds because by construction g is level preserving 
, 

at the levels 0 and b , and any point in bet>leen these tifO levels lies on 

a unique interval that is mapped linearly onto another interval, both 

intervals beginning (at the same point) in X x 0 and ending in X x t 
To prove property (U) define another first derived L" of L by 

the rule : if a simplex lie s in f K then star it so that f: K' -? L" is 

simplicial: othemise star it barycentrically. The isomorphism L" -+ L' 

is isotopic to the identity by Lemma 15 Corollary 1 , and so f, g are 

ambient isotopic • The isotopy keeps fixed 'any subcomplex of L on >Thich 
• 

L' and L" agree, and in particular keeps X x I fixed. 

To prove property (iii) >Te put extra conditions on the choices of 

K and L I. Choose K so as to contain, Y x I~, as a subcomplex. Having 
'I 
'chosen K, K I , and therefore L", then chooseL 1 so ss to agree vii th L" 

on f(Y x 1<,) I this being compatible with the condition of starring on the ~ -
. L ' 

J3",el because flY x I c is already level preserving • Therefore H keeps 
'-

f(Y le IS) fixed. 

, , 

Lemma 27. Let p;: X x I........,. X x I be an ambient isotopy of X. 

Let h be the ambient isotopy of X that consists of the identity for half the 

time follo>led bv f!. at tiiice the sneed. Then g! h are ambient .isotopic 

keep in/!; X x I fixed. 
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Then (i) G is a level preserving homeomorphism, and 

(E) G is piecevTise linear, because the graph r G of G is the 

intersection of t1VO subpolyhedra of (X x 12) 2 : 

v. 

( 2 2 2 2 
vThere 1 x u) denote s the map (X x 1 ) -" (X x 1) , r g is the 

graph of g, and 1-1 is the graph of the identity on 

Therefore G is an isotopy of X x 1 in itself. By the 
• 

construction of u, G moves g to, h keeping X x I fixed. Therefore 
• 

g , h are ambient isotopic keeping X x I fixed. 

Theorem 13. If M is compact,then any h,o collars of N' are . 
ambient isotopic keeping ~! fixed. 

Proof. Given two collars, the idea is to (i) runbient isotope on~ 

of them until it is level preserving relative to the other on a sm'all interval, 

(ii) isotope it, further until it 8{,rrees 1'1ith the other on a smaller interval, 

and then (iii) isotope both onto this common shortened collar • 

"'." ~- ~"".- • • •• • •• -"<" ., 
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• 
Let c,d : 1'1 x I -+ M be the hID given collars. Since each maps 

• 
onto a neighbourhood of M in 11, l;e can choose E. .'> 0 , such that 

c(ifJ x lc.)e d(M x' I) • Since c,d are emboddings, Vie can factor c = d f , 

"here f is an embedding such that the diagram' 

• 
M x le 

'-

f 
~-,; 
~l~ 

IV 

~l x I 

is commutative, and f I ;1 x 0 is the identity. 

I 

1 

. 
By LerrmJa 26 there exists S, 0 < 2 S < £, ,and an ambient isotopy F of 
• • • 

11 x I moving f to g keeping M x I fixed, and such that g is level 

.. ""," ".,.-,;,,", 
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preserving for O.{. t .$ 2 S • The reason for making g level pro serving 
• 

is that ;10 can noy! apply Lemma 27 a~d o~tain an ambient isotopy G of N x I2& 

moving g I £1 x I2 to h keoping ~1 x 1
2

(, fixed.l and such that h is tho 
S u 

idontity for 0 I\. 't{ S • Extond' h to an embedding h: tl x I r ,...". M x I by 
c, 

by making it agree with g outsido ~1 x I , and extend G by the identity 
, 2 S 

to an ambient isotopy' of N x I • 

. . 
Then GF is an ambient isotopy moving f ,to h keeping 1>1 x I 

, 
fixed • Let H be the image of G F under d • Since GF keeps H x 1 

fixed , we can extend H by the identity to an ambient isotopy H of H 

keeping H fixed. Let e '" Hlc. Then e is a collar ambient isotopic to 
, 

c , and agreeing vii th the beginning of d , because of x (:: Hand t E. I then 

€J 6 (x,t) ~ e(x,b t) 

'" Hlc(x, {, t) 

'" d G1Fld-1c(x, S t) 

= d Gllf(x, 5 t) 

= d h (x,5 t) 

= d(x, b t) 

= d& (x,t) 

Therefore e ~ = db' and SO by LemmSl 25 there is a sequence of ambient 

isotopic collars c, 0, e b ' d 'rhe proof of Theorem 13 is complete , 
" 

Theorem 14, Given a prcner locally unknotted embedding 

f : N ~-'; Q bet1'TS8:1 CO!CDact manifolds. and a collar c of i-T, then there 

exists a compatible collar d of ~" 

Proof " Lemma 24 furnishes compatible collars, 

of ~!, Q, By Theorem 13 there is an ambient isotopy G of H keeping 

'* ' M fixed, such that G
l 

c = c. By Corollary to Theorem 11 I<e can cover G
l 

by a homeomorphislll h of Q keeping Q fixed • Le t d '" hd * . 
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Then the commutativity of the diagram 

f:x: 1 

• M :x: I 
c 

and the fact that 

* imd0imf = imhd (\ imhf 

= h (im d* (\ im f) 

= h (imf c*) 

= im fc , 

f 

ensure that the collars c ,d are cOl1ll?atible Vlith f. The proof of 

Theorem 14 is complete 

v. 

vIe no;/ prove the crit ical lemma for the covering isotopy theorem , 

Theorem 12 • 

Lemma 28 Let N', Q be compact, and F a locally unknotted 
, . 

isotopy of 11 in Q keecins; 11 fixed • Then there exists E :> 0 • end a 
• 

short ambient isotopy H: Q, x IS----t Q x If.. of Q U.at keS',p~_Lf;il.Q.'L~'\::;l 

covers the be[;inning of F In other Vlords the diagrem 

F :x: 1 
o 

Q :x: I . 

. 
It,~ I QxIG. 

. ' -; 
J.1xI ~F 

t. 
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is oommutative • 

Proof. For the oonvenienoe of the proof of this lemma Vie assume 

that F = F o 1 
For , if not , replaoe F by F*Vlhere F 

* t ( ~/2 
Ft = \FFt 

1~ l-t t ~ 1/2 

Then, sinoe 
.* 

F Vlhioh 

.* * 
Fo = Fl ' 

is the same 

the proof belOlV gives Hoovering the beginning of 

as the beginning of F if f. ~ 1/2 • 

Therefore assume F 0 = F 1 • 'This means that the t"ro proper 

ombcddings F, F x 1 of M x I in Q x I agree on the boundary (M x I) 
o . 

because F' keeps 11 fixed. Choose a oollar 0 of M x I , and then by 

v. 

Theorem 14 ohoose collars d, d of Q x I such that 0, dare oompatible o 
~Ii th F, and 0, d 

o 
are oompatible Vlith F xl. Ive have a commutative 

o 
diagram of embeddings 

( Q x I)' x I 

// I~"~ 
Q x I M x I)'x I Q x I 

~ Jo' ,~ 
',xl ~ .. , /-

11 x I , , 

Notice that both the collars d, d maps 
o 

(Q x 0) x 0 to Q x 0 • Therefore 

im d contains a neighbourhood of Q x 0 in Q x I , and so contains Q x I~ , 

for some (.-\ "> O. Similarly do d-1(Q x 1/;» 'contains a neighbourhood of 

, Q x 0, and SO oontains Q x I-x: ,for some ~ , 0 < 0< ::; (\ • 
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Q x 10( -+ Q x I~ • Then G has the properties: 

v. 

G Q x I - identity, because d, d agree on (Q x I) • x 0 ; 
o 

G Q x 0 " identity. 

(iii) G covers the beginning of F in the scnse that the diagram 

F xl o T"~,. I ',,- Q x If., 

MXI~ 
C>< 

. is commutative • For if x c:. M and t E 10( , then by compatibility 

(F x, t) ';' im (F x 1) (\ im d '" im (F x 1) c • o 000 

Therefore for some y E (M x I)' x I ,. 

(F x, t) ,,(F xl) cy '" d (F x l)'y 
000 
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Therefore 

G (F xl)(x,t) = (dd-
l

) d (F x 1) y 
000 

= d(F x 1) Y 

"" F cy 

= F(F xl)-l (F xl) cy 
o 0 

= F(F xl)-l (F x,t) 
, 0 0 

= F(x,t) • 

In other 'lords G(F xl) = F , which proves (hi) 
o 

By Lemma 26 there is an E. , 0 < ~ < <>( and an embedding 

v. 

H : Cl, x I , ,~ Cl, x I n, ambient isotopic to G, such that H I Cl, x 0 = identity, 
. V<... i._ 

and H is level preserving in I:: • Further, since G is already level 

preserving on (Q \) F N) x I eo< , we can by Lemma 26 (iii) choose H to agree 
o 

,lith G on this subpo1yhedron In other words, the restriction 

H : Cl, x If. -7 Q. x I E. is a short ambient isotopic covering the beginning of . . 
F and keeping Cl, fixed. 

Proof of Theorem 12 , the covering isotopv theorem. 

We are given a locally unknotted isotopy F: 11 x I -'> Cl, x I 
• 

keeping N fixed, and a subdivision N of the track of F', and we have to 
, 

cover F by an anbient isotopy H of Cl, supported by N keeping Cl, fixed. 

'I1e are given that' N is compact and we first consider the, "aSG when Cl, is 

also compact and N = Cl, 

If 0 < t < 1 , the definition of locally unknotted i.sotopy ensures 

that the restrictions of F to [0, tJ and [t, 1J are locally 

unknotted embeddings , and therefore ,le can apply Lemma 7 to both sides of 

the level t, and cover F in the neighbourhood of . t. Hore precisely, 

for each t 0 I , there exists a neighbourhood J(t) of t in I , and 8. 
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level preserving homeomorphism H(t) of Q. xJ(t) 

Q fixed, H~t) = 1 , and such that the diagram 

F xl 
t ~ 

'XJet)/ 

v. 

such that H(t) keeps 

is commutative. By compactne ss of I we can cover I 

of such intervals J( t) • Therefore I,e can find values 

by a finite number 

o = 8 1 < s2 < ... < sn+l = 1 
, (t,) 

\"rite Hl. = H 1. 

\,t2, ... ,tn ,and 

, such that for each i, [sl.' , s, l CJ( t) 
Hl_ 

\'le now define H by induction on i, as follO\'IS • Define H = 1 
o 

Suppose Ht: Q. --'> Q has been defined for 0 (., t ~ si such that Ht F 0 = Ft 

Thsn define' 

Therefore 

At the end of the induction vIe have Ht defined and Ht F 0 =' Ft' all t "_ I • 

, , 
< : 

.. , "-~ ',;"'" ... 
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Horeover R is piecevrise linear, because it is composed of a finite number of 
• 

piecewise linear pieces, and R keeps Q fixed because i 
R does. Therefore 

the proof is complete for the case \'/hen Q is compact and N = Q : 

lie now extend the proof to the general case ,v/hen Q is not 

necessarily compaot , and N c Q • 'de may assume that N is a regular 

neighbourhood of the tracl , because any neighbourhood contains a regular 

neighbourhood. Therefore N. is a compact submanifold of Q. By the 

compact case , cover F by an ambient isotopy of Q covering F supported 
• 

by N and keeping Q fixed. The proof of Theorem 12 is complete • 

Proof of Addendu~ to Theorem 12 

• 
'lIe have to extend a given ambient isotopy R of Q with compact 

'* support X to an ambient isotopy R of Q supported by a given neighbourhood 
• 

N of X in Q. (R is not a corollary because the embedding Q x I -7 Q x I 

ir:duced by R is not proper) . vlithout loss of generally we may assume the 

r:eighbourhood N of' X to be reg~lar , and therefore a compact manifold 

Restrict H to X and extend by the identity to an ambient isotopy, G 
• 

say , of N keeping N - X fixed. 1 

~ T 2 riangulate the square I as 
2 . 

shown, and let n: I ~-I be the simplicial 

map determined by mapping the vertices to 0 t 

or 1 as shovm. 

* ~ . e 

Define G : (N x I) x I -1 (N x I) x I by 

G* ((x, s) ,t) = ((Gu(s,t)X, s) ,t) • 

o 

- , 

s 

As in thB proof of Lemma 27, it follows that G* is an ambient isotopy of 
• 
N x I keeping 

• • 
(N x I) IJ (N - X) x I fixed 

o 

o 



( 

v. 
- 29-

Choose a collar c N x I ~ N and let H* be, the :image of G * 

under c. * Since G 
, . 

keeps N x 1 fixed, H* can be extended by the 

G * keeps (N - X) x 0 identity to an ~bient isotopy of N; and since 
.~ 

H keeps the frontier of N fixed, and so can be further extended to an 

ambient isotopy H* of Q supported by N. By oonstruction H* extends 

H, as desired • 

Proof of Corollary 1. to Theorem 12 • 

Corollary 1 is concerned vTHh the case when the isotopy F of H 
• in Q doe s not keep 11 fixed. Let T be the track of F in Q, which 

•• • 
is compact since ill is compact. Let F: M x I -7 Q x I denote the 

'restriction of F to the boundery , which is locally unlcnotted because F 
• 

is. Let X be a regular neighbourhood of the track T (\ Q of F in Q 
, ' 

and let N be a ,regular neighbourhood of X in, Q. By choosing X, N 
0, 0 

sufficiently small , we can ensure that the given neighbourhood N of T 

is elso a neighbourhood of N 
o 

• • 
Use Theorem 12 to cover F by an ambient isotopy of Q supported 

by X, 

of Q 

and by the Addendum extend the 
-1 supported by N . Then G F 

o 

latter to an ambient isotopy, G say, 

is an isotopy of M in Q keeping 

}l fixed, whose track is contained in T V N • But N o 
neighbourhood of T v N , and so we can again use Theorem 

o 
by an ambient isotopy, H say, of Q supported by N • 

covers F and is supported by N 

is a 

12 to cover G-l F 

Therefore GH 

Recell Lemma 16. Am homeomorphism of a hall keeuinl; the b01)!1dary fixed 

is isotopic to the identity keeping the boundary fixed • 

Corollary. Any homeomorphism of a ball keeping a face fix~d is 

isotopic to the identity keeping the' face fixed. For by Theorem 2 the bell 
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is homeomorphic to a cone on the complementary face • First isotope the 

complementary face back into position, and extend the isotopy conewise to the 

ball ; then isotope the ball . 

Proof of Corollary 2 to Theorem 12 

'lie have to shovr the equivalence of 

(1) isotopic, 

(2) ambient isotopic, 

(3) ambient isotopic by an ambient isotopy ,Tith compact support, 

and 

(4) isotopic by moves. 

(1) implies (3), 'by Theorem 12 and Corollary 1, because vre Can choose 

the neighbourhood N to be compact. (3) implies (4:) by Theorem 11 ; 
, 

(4) implies (2) by Lemma 16 and Corollary, because then each move is 

ambient isotopic to the identity, Finally (2) implies (1) trivially 

Proof of Corollary 3 to Theorem 12 , 

If F is a locally trivial isotopy , then by definition each pOi.nt 

in t1 x I has a neighbourhood "hich is locally unlmotted ; therefore F is 

locally unlmotted • Conversely if F is a locally unlmotted isotopy , then 

the level F 'is a locally unlmotted embedding, and so the constant isotopy 
o 

F x 1 is localiy trivial. By Theorem 12 cover F by H; thcn F = H(F x 1) o 0 

is loc ally trivial , because the homeomorphism H preserves local triviality 

This completes the proofs of the theorems and corollaries stated at the 

beginning of the chapter , 
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onc 0 mb in a tor i a 1 isotopy. 

• 
\~e have framed the defirii tions of isotopy and proved the theorems 

in the polyhedral category, because that is the spirit of these seminars 

In other ~lords , thel'e is no reference to any specific triangulations of 

either of the manifolds concerned. However ,there is a definition of isotopy 

in the combinatorial category ~lhen the receiving manifold Q happens to be 

Euclidean space , by virtue of the linear stl'uctul'e of Euclidean space • The 

manifold M is given a fixed triangulation, K say, and the isotopy is 

defined by moving the vertices of K. At each moment the emoedding of M 

is uniquely'determined by the positions of the vertices, and by the linear 

structure of Euclidean space • But a general polyhedral manifold Q has only a 

piece1'1ise linear structure not a linear structure, and so the positions of 

the vertices of . K do not determine a unique embedding of M. It is no 

good picking a fixed triangulation L of Q, and considering linear 
• 

embeddings K -l- I, , because this has the effect of trapping N locally, 

and preventing thc movcrr.ent of any simplex· of K across t11c boundary of any 

simplex of Q. Therefore to obtain allY useful form of isotopy it is essential' 

to retain the polyhedral structure of Q, even though we may descend to the 

combin~j;orial structure of H. Wo now give a definition in these terms, >lhi.ch 

looks at first sight much more special than the definitions of isotopy above , 

but in fact turns out to be equivalent vie state the theorem vlithout proof • 

The moral of 'the story is : stick to the polyhedral category and don't tinker 

about >lith the combinatorial category; keep the latter out of definitions and 

theorems, and use it only as it ought to be used, as an inductive tool for 

proofs • 
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L in 0 a r m 0 v e s w'i t h res p e c t t 0 a t r i a n ~ u 1 at ion 

<l A m Let (:::, be the standard q-simplex', and L\ 

face, q > m Lot x be the barvcentre of ,6, <l , and y 

and the barycentre of !::. m Let IT: 6. q ~-1- 6. q be the 

an m-dimensional 

a point between, x 

homeomorphism 

thrwing x to y, mapping the boundary by the identity , and joining 

linearly 

Let 14 be closed, K a triangulation of N, and let f, g : l'I-1-Q 

be proper embeddings • 'lie say there is a move from f to g linear vrith 

respect to K if the fol101'ling occurs 

There is a closed vertex star of K, A = st (v,K) si\Y , and a 

q-ball B c.:. Q, and a homeomorphism h: B ~ 6 <l such, that 

o 
(i) f,g agree on K - A , 

(ii) A = f-ln = g-lB , 

(iii) hf maps lk(v,K) ---,/6 m , homeomorphioally , 

v _,. x 

A ----7 x 

(iv) g I A = h-1 ()- h(f I A) 

- -~ 

m 
, by joining linearly • 
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Roughly speaking, h is a local coordinate system , ohosen so 

that the move from f to g looks as simple as possible , just moving one 
• 

vertex of K linearly in the most harmless fashion, like a move of olassical 

knot theory • 

Addendum (stated \'Iithout proof) Let N be closed ! and K an 

arbi trar:y: fixed triangulation of 1·1 Let f, " N --> Q be proper embeddings 

that are locally unlmotted and ambient isotopic If codimension > 0 thEm 

f ~ g a:i.'e isotopic by moves linear \'rith respect to K. 

The addendum becomes surprising if we imagine embeddings of a 

2-sphere in a manifold , and choose K to be the boundary of a 3-simplex , 

with exaotly 4 vertices • Then ;18 can move from any embedding to an;:r otl18r 

isotopic embed~ing by assiduously shifting just those 4 vertices linearly 

back and forth. All the ,lOrk is secretly done by:judicious choice of the 

balls , or looal ooordinate systems in the reoeivi~g manifold , in ;rhich the 

moves are made • 

Remark. Notice the restriction codimension > 0 that,oocurs in 

tr.e addendum (but not in TLeorem 11 for example) • It is an open question 

as to ,rhether or not tLe restriction is necessary In particular we have the 

problem : is a hOCl00mornhiSl of a ball that keeps the bour.dary fixed isotopic 

to the identity by linear moves? 

-!-!-:-:-:-
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Chqpter 6: GEtmRALPOSITION

General position is ~ technique applied to (poly) m~ps

from polyhedra into manifolds. The ide~ is to use the

homogeneity of the manifold to minimise the dimension of

intersections. Throughout this ch~pter X, Y will denote

polyhedra and ~il a compact manifold. The sillsll letters x, y, m

will always denote the dimensions of X, Y, M respectively, apd

.r'8 shall assume x ,y < m. In particular 1N8 tackle the followillg

two situations.

Situation (1) Let f: X ~ M be an embedding and let Y be a

subpolyhedron of M. In Theorem 15 we show it is possible to

move f to another embedding g such that gX" Y is of minimal

dimension, namely $, x + y - m. We describe the move f -+ g by

s3ying ambient isotope .f into general position with respect to Y.

There arr:;l refinements such as keeping a subpolyhedron Xo of X

fixed, and moving f IX - Xo into general pos i tion 0

Situation (2) Let f: X ~ M be a map, not necessarily an

embedding. First we show in Lemma 32 that f is homotopic to
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a non-degenerate me.p? g say, where n0n-degene:r'a"tf::: llloa.n8 -that

in any triangulatirm with respect to ,r'hich g is simplicial

each simplex is mapped non-degenerqtely (qlthough of course

many simplexes of X may be mg,pped onto one simplex of M).

Next we show in Theorem 17 th'l t g is homotopic to a

map, h say, for which the self-intersections are of minimal

dimension, namely S 2x - m. Not only the double points but

9.lso the sets of triple points, etc 0' we ,nish to make minimal.

we describe the composite homotopy f ~ g ~ h by saying

move f into general pasi tiona There are refinements such as

keeping Xo fixed if f' Xo happens qlre8-dy to be in general

position, qnd arranging also for flxi to be in general posit1on

for a finite family tXi) of subpolyhedra (notice that the

gene ral position of f does not imply the general position of

fl X. unless x::: X. ) 0, l l

We observe tbat situation (2) is part of a general

progr9.mme of "improving" maps, and is an essential step in

passing from algebra to geometry. For example suppose that an

algebraic hypothesis tells us there exists a continuous-map

X ~ M (illie use the hyphena tad "continuous-map" to avoid

confusion with our normal usage map = polymap), and that we want

to deduce as 9. geometrical thesis the existence of a homotopic

embedding X eM. Then the essential steps are:
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Chapter 6

Chapters 7 and 8.

Remark on homotopy
criteria for

Tho general programme is to investigate

(1) an arbitrary continuous-map to be homotopic to a
polyembedding, ~nd

(2) for two polyembeddings to be polyisotopico Therefore although
we are very careful to make our tsotopie~ piecewise linear
(in situation (1)) ~j\le are not particularly interested in
making our homotopies piecewise linear (in situation (2)).
We reg'1rd isoto py '3.8 geometric, and homotopy as algebraic-
topological.

Invariant definition If JYI is Euclidean sInce 9 then gener1l
position is easy because of linearity~ it suffices to move
the vertices of some triangulation of X into "general
position", and then the simplexes automatically intersect
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minimally. However in a manifold we only have piecewise
linearity, and the problem is complicated by the fact that the
positions of the vertices do not uniquely determine the m~ps of
the simplexes; therefore the moving of the vertices into
"general position" does not gu~rantee that the simplexes
intersect minimally. In fact defining general position in
terms of a particular triangull tion of X le:lds to difficulties.

Notice that the definitions of general position we
have given above depend only on dimension, and so are invariant
in tho sense that they do not depend upon any particular
triangula tion of X or M. The advqntages of an invariant
definition are considerable in pr'1ctice. For example, h9ving
moved '3. map f into general position, ~}\!ecan then triangulqte
f so that f is bo th Simplici3l and in general pasition (a
convenient state of '1ffairs that was not pOSSible in the more
naive Euclidean space approach). The closures of the sets of
dr;uble points, triple points, etc. will then turn out to be a
descending sequence of subcomplexes.

Transversality In differential theory the corresponding
transversality theorems of ~~itney ~nd Thom serve a different
purpos e, because they 9,ssume X, Y to be manifolds. 'Whereas
in our theory it is essential that X? Y be more genersl
polyhedra than manifolds. For goneral polyhedra the concept
of "tr8.nsversality" is not defined, and so our theorems !:j,im
at minimisip~ dimension rather than achieving transversality.
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~~en X9Y are manifolds then transversality is well defined in
combin~torial theory~ but the general position techniques given
below are not sufficiently delicate to achieve transversality~
except in Theorem 16 for the special case of O-dimensional
intersections (x + y = m) •

When x + y > rJ. the difficulty can be pinpointed as
follows. The basic idea of the techniques below is to reduce the
intersection dimension of two cones in euclidean space by
m0ving their vertices slightly apart. However this is no good
for transversalitY9 because if two spheres cut combinatorially
transversally in En, then the two cones on them in En+1 , with
vertices in general position~ do not in general cut transversally:
there is trouble at the boundary.

The us€ of cones is a pri~itive tool compared with the
function space tecbniques used in differential topology, but is
sufficient for our purposes because the problGms are finite. It
might be more elegant, but probably no easier, to work in the
combinatorial function space.

WIld embeddings Without any condition of local niceness, such
as piecewise lineqrity or differentiability, then it is not
possible to appeal to general position to reduce the dimension
of intersections. For consider the following example.
pOSsible to embed an arc and a disk in E4 (and also in

It is

n ~ 4) intersecting at one point in the interior of each, and to
choose f.:> 0 ~ such that is is impossible to €-shift the disk off
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the arc (although it is possible to shift the arc off the disk) •
The construction is as follo'ws~ Let A be a wild arc in E3 ,
and let D be a disk cutting A once 3.tan interior point of
o8ch, such that :b is essential in E3 - A. If we shrink A to

a point x , and then multiply by a line, the result is 4-space,
( E 3/ A) X R := E4 (by a theorem of Andrews and Curtis) • If D'

denotes the i:':1'1geof D in E3/.~ then D' X 0 :~leets xxR.1:1 ,
in one point x)( 0, 2nd D')(; 0 is essenti'J.lin E4 - (x XR).
Therefore if t is less thqn the dist~nce bet~8cn dD' X 0 qnd
x X R , it is i::::;.possible to !-shift the disk D' .x 0 off the '1rcxx R.

Compactness We restrict ourselves to the case when X is a
polyhedron and therefore compact. Consequently we can assume
th":tt M is also COGlpact, for, if not, replace M by a regular
ne1.ghbourhood N of fX in j\,~ 0 Then N is a comp3.ct manifold
of the sq,me dimension, and moving f into general position in
N a fortiori moves f into general position in M.

General position of ~oin~3 in Euclidean spac~ Before we can
move maps into general position we need '1 precise definition of
the general positioD of a point in Euclidean sp'3.ceEn with
respect to other points, as follows. Let X be a countable
(finite or denumer'lble) subset of En 0 Each point is, trivially,
a linear subspace of En, and the set X generates a countable
sublattice, L(X) say, of the lattice of all linear subspaces of
En • Let flex) be the set union of ,'3.11 proper linear subspaces
in L(X) • Since L(X) is countable, the complement En -n(X)
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is everywhere dense. Define y! En to be in general position

with r.e.spect to X if Y t !l(X) .

Nowlet D be an n-simplex and X a finite set of points

in 6. We say y E 6 is in generfll posi tion with respect to X

if the same is true for some line~r embedding ~cEn (the

definition being independent of the embedding). Let ~ be a

subdivision of 6,with vertices x1,x2, ••• ,xr say. We define

y. is in general
1

(x1,···,xr, Y1'···'Yi-1) •position with respect to the set

an ordered sequence (y 1 ' ••• ,ys) c D. to be in general position with
,

respect to ~ if, for each i, 1 S i ~ s ,

~emma 29 G~ven a subdivision It:;. of 6 and a sequence

h'1ve to be interior to 6 .y.
1

This is the first time we hqve used the reals:

Notice that all the

Inductively 7 the complement t:>. -n(x1,···,y i-1 ) is

v., enabling us to choose y. arbitrarily near v .•
1 1 1

close to

Proof

dense at

Remark 1

B.emark 2

(V11 ••• ,vS) of vertices of ~ (not necessarily distin~t)2 th£a

it is possible to choose 9. sequence (y 1 ' ••• ,y s) C A in general

Eosition with respect to ~, such that Yi is arbitrarily

v. 7 1~ifS .
1

previously all our theory would work over the rationals, and even

now it would sufficG to use smaller field, like the slgebraic

number field.

Remark 3 There is an intrinsic inelegance in our definition of

a sequence of points being in general position, because if the
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order is changed they may no longer be so. To construct a
?

counter-ex3,mple in :E~ 9 choose 4 points X such that ..Q.(X)

contains all r:::ttionals on the rel11 axis (regarding ]2 as the

complex numbers), '1nd then add rr 9 Iff in ths. t order. To get

rid of this ineleg3nce9 and ~t the same time preserve the lattice

property would be ruol'e trouble than it is worth ~ because all

we need is some gqdget to make Lem.f.:1?s30 and 34 work.

ISOTOPING~.~BSDDINGSINTO GENERALPOSITION ~~ consider situation

(1) of the introduction. Let v C v Y r'1".L\.n A 9 ~ ,I,'t
U

be pOlyhedra, ~nd

let lVI be a manifold. Let x = dim X- XO' y = dim Y, m == dim M•

Let g ~X -7 K be 8. map. we say that glX - Xo is in general

posi tion with resEcct to Y if

dim (g(X-XO) "y) ~ x+y-m. •

Theorem 15 Given XOCX and YCM, lnd an embedding f . X ~ M.-
f(X - XO) .--:such thqt C NI, then we can ambient isotope f into g

by an arbitrsrily small ~mbiGnt isotopy keeping ~: and the im~g,

of Xo fixed~ such that gl X- Xo is in gener:J.l position with
resnect to Y 0_.-.'---
Remark 1 In the th(lOrem we say nothing about fl Xo being in

general position. In fQct in many applic:::ttions for engulfing

in the next two chapters, flxo will definitely not be in

general position with respect to Y. The intuitive idea is to

think of Xo 9.nd Y as large high-dimensional blocks, and X- Xo
as a little low-dimensional feeler attached to Xo by its
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frontier Xo ~ X-Xo. The theorem says we can ~mbient

isotope the fOGler keeping its frontier fixed so th9t the

interior of the feeler meets Y miniffi3.11y (9.1though its

frontier ffi3Ynot). In other applicqtions we may already have

flxo in gener81 position, qS in the following three coroll~rjes.

Corollarv 1 If- =~

fXO does not meet

flxo is alreqdy in general position, or if

f(X-XO)' then Theorem 15 is true for maps

as .vell as embeddings 0

Proof Apply the theorem to the embedding of the im8ge

fX eM, Jnd ambient isotope fX into ge neral position with

respect to Y Iceeping fXO fixed. (Notice the extra

hypothesis is ne cessqry, otherNise h°-'ving to keep fXO fixed

may prevent us from moving 'lwkward pieces of X- Xo th'J.t

overlap X,.,).
\j

Corollary 2 (Interiur Case)
o

Given 'J map f ~X ~ rK and

Y c: M then we can ambient isotope f into general position

'Nith respect· t.:? Y keeping M fixed,

For put Xo= sO in Corollary 1 0

Corolll.ry 3 (Bounded C'?se) Given a ml.p f ~X -? 1'i[ 9nd Y eM,
-1 ••

let Xo= f M, YO = Y f'l M. Then we C"l,nqmbient isotope f to

g such iha t gl Xo is in general position in 1!I with respect
o

to YO' g,nd glX- Xo in gener"l position in r.•l with respect

to Y 0

Proof First apply Corollary 2 to the boundary, and extend the

ambient isotopy of M to M by Theorem 12 Addendum; then apply

Coroll-:rv 1.
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For the proof of Theorem 15 we sh~ll use a sequence of

special moves which 1Ne call t-shifts? and which we construct

below. The parameter t concerns dir.J.ension, with 0 ~ t ~ x •

The construction involves choices of loc~l coordinate systems

(i. e. replRcing the piecewise line'"")r structure by local linear

structures) and choices of points in genernl position.

The t-shift of an embedding By Theorem 1 choose triangulqtions

of X, Xo and M,Y with respect to which f ~X -7 ~,: is

simplici ':11. Let Kj L denote the tri 'J.ngulations of X, M. Let

K' ? L' denote the b8.rycentric derived co ..~plexes modulo the

(t-1)-skeletons of K? L (obt~ined by stQrring all simplexes of

dimension ~ t ? in some order of decre9.sing dimension). Then

f ; K' -7 L' remeins sir.lplicial beC'1use f is non-degenerate (it

is an embedding).

Let A be :q t-sirJ.plex of K, ?,na B= fA the img,ge

t-simplex of L. Let 3, b be the b~,rycentres of A?B (with

fa = b) 0 Then

st(a,K') = aAP st(b,L') = bTIQ

where P? Q nre subcomplexes of K', L' • If A t¢ XO' then

dim P S x - t - 1? and Q is an (m-t-1 )-sphere because

Let

fA ~ a AP -7 b BQ

o
fA eM.

denote the restriction of f. Then fA is the join of three
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m8.ps a -t b? A-t Band p-t Q ? and thereforo cmbed:3 the frontier

AP of ~AP in the boundqry BQ of the ill-ball bBQ

The idea is to construct another embedding

that?grees with f A on the frontier AP, and is ambient
.n

isotopic to f,. keeping the boundary BQ fixGd.
""i.

We shall call

the move f~ -t g a local shift, and give the explicit construct-
"i A ------

ion below. From tho construction it will be app~rent that gA

can be chosen to be arbitrarily close to fA' and the ambient

isotopy be made arbitrarily small.

Now IotA run overall t-simplexes of K; for e8.ch

A C X - Xo construct a 10c8.l shift fA -t gA ,,:,nd for each

A C Xo define gA = fA. The closed stars {st(a,K')3 cover

X and overlap only in their frontiers? on which the tgA~ agree

with f, clnd therefore with each other. Therefore the {gAl

combine to give a glob'".l embedding g: X -t M arbi tr9.rily close

to f. Also since the st3.rs {st(b,L')} overl:lp only in their

boundqries which the 10c'1l ambient isotopies keep fixed, the

latter c0~bine to give an arbitrarily small global ambient

isotopy from f to g. Tlloreovor the ambient isotopy is

supported by the simplicial neighbourhood of f(X - XO) in L' ,.
'Jnd so in particular keeps fXOU tv! fixed.

lYe C911 the move f -t g a t-shift with respect to Y

keepiQ,g Xo fixed. Notice thg.t Y entered into the construction
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'Jllhen choosing the tri9ngulqtion L of M so aG to have Y a

subcomplex.

Local shift of 8n embedding We are given 3. sim:plicial erabeddjng

f : aAP -. b13Q

which is the join of the three !:laps a -+ b, A-. 13 and P -. Q ,

and ",e want to construct

g : aAP -+ b13Q •

(We drop the subscript A from ff' and gA .)
_1 li

Now Q is an (m-t-1 )-sphere, and by construction Y (\ Q is

a subco:nplex of Q, '1nd by hypothesis both Y f\ Q '3.nd fP are of

lower dimension than Q. Therefore, if 6 is an (m-t) -sim.plex

with an (m.-t-1) fqce r , we can choose a hOweoC10rphism.
h Q -. 6-

throwing fP V (Y f\ Q) into the f'lce r. Let v be the barycentr~

of 6, and extend h : Q -+ ~ to h: bQ -+ ~ by Glapping b -+ v

and joining linearly. Choose subdivisions such that

h : (bQ)' -+ A'

is simplicial. Choose v1 neg,r v in A in general position with
,

respect to 6,. Then in p':1rticular v1.J. v because v is a vertex
,

of ~. Define the homeomorphisGl

k1 : 6. -+ ~ .
to be the join of the identity on 6. to the c:r.l9.pv-'v1 . Define

k : bBQ -+ bBQ

to be the join of the identity on 13 to the homeomorphisrJ.
-1h k1h : bQ -+ bQ 0
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Then k 18 ~ h~~oQorphis~ of the b~ll bBQ kOGping the
bound'1ry fixGd. Dt:fino

.
g = kf g aAP ~ bBQ

Then g is al'!lbientisotopic to f keeping the boundary fixed by
Lemma 15. We Cl.n m.ake g arbi tr~rily near f, and the isotopy
arbitrarily sm3ll? by choosing v 1 sufficiently near v. This
completes the definition of the local shift.

a h
~

~1

~p? f(aP) r

Remr-:..rk Since f,k !lre joins, it follows that g ~ aAP ~ bBQ
is the join of g : 9.P ~ bQ' to f:A~B . However g g aP ~ bQ
is not a join with respect to the sim.plicial structure of bQ,
as the diagram shows, but is a join with respect to the linear

A -1structure induced on bQ from L..) by h a

Lemma 30 Given the hypothesis of Theoreo 15, let f~g be a-
t-shift with res:pect to Y keepin~ Xo fixed.

(i) If f is in general position with respect to Y, then
so is g.

(ii) On the other h'1ud if f is not in genernl position, and if

dLl(f(A:-Xo) ray) :: t "x+y-n then di~(g(X - Xr) "y) ::t - 1v
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(i) It suffices to eX":lmine the local shift from f to
••

g ~ ?AP -+ bBQ, for a t-simplex ~\ c X - Xc>. Since g agreAA

wi th f on the frontier LP, we h8,ve

o

dim(g(X-XO) (\ Y f\BQ) ~ dim(f(X-XO) ny) ~ x+y-m •

Therefore it suffices to examine the intersection of g(X - XO) n Y

with the interior of the ball bBQ.

Since Y is a subcomplex of L, Y meets the interior of
•

bBQ only if Bey, and so we "lssume this to be the case.

Therefore

and so
•

diCl(g(X-XO) f\ Y f\ int(bBQ)) = t + m'l.Xdim(v101 "vC)

where the m3ximum is t~ken over ~ll pairs of simplexes 01,0

of 6' such that 01C hfP, ° c h(Qf\Y) '1nd such that

v101 ('\ vO meets the interior of 0. .
Since B01, BO are in the im'1ges of x - X Y undero '

hi' , h respectively, we h?ve dim 01 ~ x - t - 1, dim ° f y - t - 1 •

oy-t-1 r o.-t-1
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Reg"'crd[) as ealbedded in Em.-t, and let (C] denote the li.Y1pn.r

subspC1.cespanned by C. There '1re two possibtli ties, .,)cc()l~ding
as to whether or not [C] and (c1) sp,!':..n[r) .
Case (<:1) [C) and [c 1 span [r] Therefore [vc] and

1
(v1c1J span [6] , 3.nd so

dim.(V1C1 (\ vc) 5 dim v1C1 + dim vC - dim.6-
= (x-t) + (y-t) - (m-t) .

Therefore

Case (bt [CJ and [C1J do not span [r]. Therefor8 (vC]
nnd [C1) sp':"in3. proper subsp3.ce of [6]? which does not
contain v 1 ' by our choice of v1 in, and the definition of,
general position in 6 with respect to 6 t •

(Note th'1t this applic'1tion W'1S the reason for our definition
of the gen0r~1 position of '1 point off the lqttice of subspaces
generqted by the vertices of ~t '1more complic'lted 3.pplic~1tion
of the same kind occurs in Lemma 34 below.) Therefore

which does not meet the interior of ~ , contradicting our
nSAumption that it did. Therefore C'1se (b) does not apply, and
the proof of p~rt (i) of Lcmm'1 30 is complete.
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(ii) ~.1iJe are given dim(f(X-Xu) (\ Y) = t > x+y-m ,

~nd h~ve to show that the t-shift drops this dinen8ion by one.

Again it suffices to ex~mine the local shift. Since

f(X - Xo) (\ Y is cont'?.ined in the t-skeleton of L, '3.nd since

.
bBQ (\ (t-skeleton of L) = B

we have
••

g (X - XO) " Y "BQ = f (X - XO) " Y "BQ c. B

which is of dio.ension t - 1 • Moreover f(X - Xo) f\ Y ;:)B

for some J3, 2nd 80 dim(g(X - Xo) r. Y) ~ t - 1 0 Conversely, to

show dim(g(X - XO) " Y) ~ t - 1 ? it suffices to show that
•

g( X- XO) "Y does .not meet the int erior of bBQ, for "lny B.

If B¢Y this is tri vi "llly true, 'l.nd so '1ssume B = fA C Y •

Agqin there qre two cases, and, as ~bove? only case (n) ~pplies.

In C'1se (';.)?

'1 nd so v1C1 () vC is eJ"lpty. Therefo re g(X - Xo) "Y does.
not meet the interior of bBQ, snd the proof of Lemma 30 is

complete.

Proof of Theorem 15 Given f ~X -> leI? let s = dim(f(X ....XO)('\y)

q,nd ~ssut:1e s" x + y - ill, otherwise the theoreo is tri vir'.l.

Perform t-shifts for t = 8? 8-1".0 ,x+y-m+1, in that order:

by Lemma 30 (ii) each t-shift knocks the dimension of the

intersection down by 1 , until '~le ~re left with '1n embedding

in gener'J.l position with respect to Y. E':1ch t-shift, "md
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therefore ~lso their composition, c~n be reGl;Red by an.
e,rbi trnrily small '1mbient isotopy keeping fXO U III :fixed.,

The pro0f of Theorem 15 is complete.

O-DIEENSION.AL TRANSVERSLLITY Let X9 Y, ill be m'-:.nifolds such

thD,t x+ y = m 9 "'ondlet f: X -+ M and Y C 1',1 be proper

embeddings such that f is in general position with respect to

Y Therefore fX" Y is "'. finite set of points interior to

rJI, Given v E fX " Y "Ne say f is tr~nsversal to Y §.1 V

if, for some (and hence for any) triangul~tion of

cCJnt~,ining v as vertex 9 there is 3, homeomorphism

throwing st (V 1 fX), st (V , Y) onto respectively. We
sew f is tr"1.nsversal to Y if it is tr::;,nsversal "it e3.ch point

of fX (\ Y

Ex:m:ple Let J:f1 be a 4-bnll with boundary S3, o.nd let X, Y

be two loc3lly unknotted disks in 11 formed by joining the centre

to two unknotted curves in S3 th'1t linlc more th8:n once. Then

f g X C M is in general posi tion with respect to Y 9 but not

trmsversal.
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Let X, Y, M be manifolds such that x + y = m ,

and let f' ~X ~ M and Y C M be proper embeddings. Then we

can ambient isotope f into g by an arbitrarily small ambient

isotopy such that g is transversal to Y •

Proof First ambient isotope f into general position? and then

perform a O--shift with respect to Y 0 Since fX () Y does not

meet the bound~ries of e~ch local shift it suffices to examine

the interior of one local shift gA ~AP ~ BQ (A,B = points

because t = 0 ). 1\.s in the proof of Lemma30, only case (a)

applies, and the intersection of the two cones in ~x+y consists

of a finite number of points where an x-simplex crosses a

y-simplex at point interior to both; such a crossing is transversal.

Therefore

to Y.

gA is transversal to BQ Ii Y, and so g is tr~nsver$al

SINGULARSETS We now pASS 0nto situqtion (2) of the

introduction, to the homotoping of oaps into general position.

Let f::X: ~ M be a map between polyhedra (for this definition

it is not necessary that Iv1 be a manifold).

The singular set S(f) of f is defined by~

S(f) = closuretX~X; f-1fx';' xJ •

Then S(f) = ¢ if and only if f is an embedding.

The branch set Br(f) of f is a subset of S(f) defined by:

Br(f) = {x E. X; no neighbourhood of x is embedded by f J .
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We deduce that :Br(f) is closed, and that Er( f) :::= ¢ if and

only if g is an immersion.

The rth singular set 3 (f) of f is defined by~--------- r

Sr' (f) = t x f X j f-1 fx contains at least r points J .
Sr(f) = closure 3r'(f)

Thus 32(f) is the closure of the double points? S3(f) the

triple points, etc .. ~e deduce

x = S1 (f) ::) 32(f) ::> GO GO. :;) 3
00
(f) c

S ( f ) = 32 ( f ) = S2 • (f) ~ Br ( f )

To prove the last statement it suffices to show s - S ' C Br2 2

ThereforeX is comp8.ct.because

x I. 32'. Consequently any

x f. y ? for some n, and so it isn n

Y -T Yn

that is identified with a disjoint sequence

therefore suppose x E 32 - 32'. Then there is a sequence

{Ynl?

i'x = fy, and so x = y because

neighbourhood of x contains

X -Tx,
'1

which tends to a limit

not embedded. Hence x E Br •

Notice that although 3 -3'<:. Br ? in general2 2

TIr ¢ S2 - 3' and2

3 - S ' ¢ Br for r>2r r

The singular sets have been defined inv3riantly? without

reference to any triangulation. Nowchoose triangulations

K, L of X?WI such that f g K -T L is simplicig,l.
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Lemma 31 (i) There is an integer s , and a decreasing
seguence of subcomplexes

K -- K1 ~ K2 :) • 0 • :>K = Ks+1 = = Koos
such that 1Krl = S (f) 0r

(ii) SoJ f) = ¢ if and only if f maps every
simplex of K non-degenerately.

(iii) There is a subcomplex L 7 K2 =' L :> Koo , ~
that I L\ = Br(f) and dim (L - Koo)<. dim K2 0

Proof (i)
oif A meets

Let A be a p-simplex of K 0 We shall show thqt
o -1 0S I(f) then A C. S I(f) For f f.i is ther r

disjoint union of open simplexes of K, and must contain either
a simplex of dimension > p, or at least r simplexes of

odimension p. In either case, each point of A is identified
under f with at least r - 1 other points, and so •ACS'(f) •r

K 0 If A € K - Kroo'
r - 1 other simplexes, and

S I(f) is the union of open simplexes, and so ther

Sr(f) is a subcomplex , K say 0r
Let n be the number of simplexes of

closure
Therefore

othen A is identified with at least
so rs n Therefore K = K for r> n 0r 00

Define s to be the
least r such that

(ii) If a simplex is n~pped degenerately then a continuum
is shrunk to a point and S~(f) I ¢ Conversely if every
simplex is mapped non-degenerately then at most n points can
be identified, and so Soo(f)= ¢ .
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(iii) If .A E K"" , then A faces some simplex mapped

degenerately and so A C Br(f). If

mapped non-degenerately, and either

,
A Jl. Koo' the n s t (A,K) i;S

o
A C X- Br(f) or 1..•C. Br(f)

according as to whether or not lk(A7K) is embedded. Therefore

Br(f) is the union of closed simplexes, and is therefore a

subcomplex 7 L say.

If A E L - K"",? there is a vertex x € S2(f\lk(K,K» , and

so 'XAe K2• Therefore dim A < dim K2 ' and so

dim (L - K",,) < dim K2 •

NON-DEGENERACY- Define f ~X -t M to be non-degenerate if

Soo( f) ::: ¢. The justification for the definition is Lemma 31 (ii) •

We recall that this is equivalent to the more general definition

given in Ch3pter 2.

Lemma 32 Givan a D1§:.E f ~XX -t rJl:m froill a polyhedron X to ~

manifold M, with x ~ rn, tlten ,,"Nt can homatope f to a non-

degenerate m~ g :!2l... an arbitrarily small homotopY. If, further,,

X C X ando is already non-degener3te? we can keeE Xo
fixed during the homotoBl_

Proof Choose triangulations of X,M with respect to which f

is simplicial? let K be a first derived complex of the

trL:mgulation of X, and let B1".' ,Et denote the open vertex

stars of the triangulation of Th1 (each Bs is either an open

m-cell or a half-open m-cell, according to whether vertex lies

in the interior or boundary of WI). The set {Bs 1 is an open
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covering of TIT, and f has the property:

(p) for each A E K, f(st(A,K)) c some Bs. Any map X ....•~Il

sufficiently close to f also satisfies (p).

Now order the simplexes A1' ••• ,fir of K in some

A. < A. then
1 J

We cons truct, by induction on i,

order of locally increasing dimension (i.e. if
i

i ~ j ) , and let K. = VA ..
1 1 J

starting with fO = f , a sequence of maps fi: X ~ M such that

(i) f.~ f. 1 by an ~rbitrarily small homotopy keeping K. 1
1 1- 1-

(ii) f. satisfies (P),
1

(iii) f.IK. is non-degenerate.*
1 1.

The end of the induction g = f proves the lemma.r
For the case when' Xo C X and fl Xo is already non-

degenerate, we choose the original triangulation so as to

contain Xo as a subcomplex, choose the ordering so that

Xo = IKj' , 80C1e j, and then start the induction at j, with

f. = f •
J

Wo must now prove the inductive step. Assume fi-1

defined, and let L=.A. , L=st(A,K), and let B denote
1

the Bs such that fi_1L C B 0 Choose a homeomorphism

h ~B ....•~ onto a simplex and define g = hf. 1 ; in other words
1-

the diagram

L
f. 11-

----) B

~z<
I:::>

is commutative.
* \7e do not clai~J. that f. ~K.....• v!:

1 1
th':tt f; e:.1beds end sim.plex of Ki

is si~plicial, nor do we claim.
in M, but only th':'ct Soo(f.lrc. )=¢.

1 1.
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Choose subdivisions l' 7~' of L,A such that
g ~ L' -+,6' is SiUlplicial, and such that l' has at least one

overtex in A 0 1et denote the vertices of l'
Gcontained in 1~, and let xp+1" 0 0 ,xq denote the remaining

vertices of l' . Choose a sequence of points (Y1" o. ,Yp) c. 6
in general position with respect to 4' , such that Yn is
arbitrarily close to fxn ' 1~n~p • Define g' g L' -+(;>

to be the linear map determined by the vertex map

g'x ==n 1sn~p

Then
•

P" I ~;o l·h,

•
== gill. which is non-degenerate by induction, and

so gl A is non-degenerate by our choice of y's because
dim J~ < dim 6 Now define f.: X -+ 111 so that f. agrees with1 1

f. 1 outside 1, and on 1 the diagram1.-
f.

1 1.) B

~A~

is commutative. Having defined f. we must verify the three1

inductive properties.
Firstly g' ItV g by straight line paths in 6., keeping

the frontier Fr(1,K) fixed. Therefore h-1g' -- h-1g can be

extended to a homotopy f. 'V f. 1 supported by L 0 By the1 1-

choice of ordering of A's, K. 1 C K - 1 , and so the hoootopy:1-

keeps Ki-1 fixed. Secondly fi satisfies (p) prOVided the
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homotopy is sufficiently small. Thirdly f.1 K. is non-degenl">rai;c~ ~

induction and on A by construction.
bybecause I(. =~ Ki-1 U A t and f.~ is non-degenorate on K. 1

1-

The proof of Lemma 32 is
complete.

GEN:ER\1 POSITION OF r:rAPS Consider ~ps of XX into Mm, where
X < m. Define the codim.ension

c = m. - x

Define the double point dimension

0. ::: 0.2 ::: x - C ::: 2x - m •

More generally define the r-fold point dimension
0. == x - (r-1)c •r

Define g g X -t M: to be in general position if

dim S (g) ~ dr r each r.

Our principal aim is now to show that any map is homotopic to a
map in general position.
Rem.ark 1 The dimensions are the best possible, as can be seen
from linear intersections in euclidean space.
Remark 2
and

If f is in general position then f is non-degenerate

dim Br(f) < 0.2 .

The first follows from Lemma 31 (ii) , because we are assuming
x < m , and so dr <. 0 for r large; the second then follows
from Lemo9, 31 (iii) .
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Rems.rk2 We shall confine oursolvGs to 'the.interior of' mg,nifo1.dS

for simplicity. The engulfing theorems are especi~lly tricky at

the boundary. In applications the boundary problem can generqlly

be treated independently and more cl santly by the Addendum to

Theorem 12.
Re [11:') rk 4 In applications WG frequently hqve the relative

situation of wanting to keep a map fixed on a subpolyhedron Xo
of X which already happens to be in gener9.1 position (.1nd is

often e8bedded). Therefore before st9ting the Qain theoreo we

introduce a relative definition.

Suppose Xo eX. Define g: X ~ M to be in gen~

]2.ositism for the pa.ir (X,XO) if

(i) g is in general -position.

(ii) g\XO is in general position.

(iii) if Xo <: x, then diGJ,(Sr(g) f) Xo) < dr' eJ.ch r.

:Ji0mark1 If xo == x ~ then (i) implies (ii), and (iii) is vacuo\ls,

and so then genera.l pos i tioD of g i;:lplies general position for

(X,Xo) . :But if xO< x 9 then (i) does not i::J.ply (ii) or (ii1).

Remark 2 ConditioD (iii) is, surprisingly ~ the ['est possible.

At first sight it would see~ th~t we ought to be able to make

instead of werely 1£ dr - 1 • But if X is not a r.19,nifold~ then

the non-hoillogenei ty of X may C3use certain points of X always

to lie in S (g) independent of g. It is not the r-fold pointsr
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S~(g) theGselves~ but the li~it points in the branch set that

cause the trouble.

:Ex3mple Let X be thG join of a p-simplex Xo to an n-dirc.ensional

polyhedron not embeddable in 2n-space, and let m:= 2n+ 1 • Then

X cannot be locally embedded at any point of XO' and so

Xo C Br(f) ,for all g. If g is in general position for (X,XO)

then

diffi S2(g) := d2 := p + 1

dim (S2(g)nXO) = p

but d2 - (x - xO) < 0 for n large.

Remark 3 In applications we shall be priillarily concerned with

the whole singul~.r set S(f) . But in critical cases '1Neshall

wa:1t to "pipe awaylt the cliddle:s of the top dimensional siG.1plexes

of S(f) ~ and in order to do this it will be important that the

interiors of such simplexes consist of pure double points, and

should avoid the triple point set, the branch set, and a certqin

subpolyhedron XO' 1Ne summarise this inforr.1ation in a useful

form:

Theorem 17 Let o
f : X -t M be in gelleral DOS i tion for the pair

(X,Xo), 'INhere

11Y. (1:= 2x - G:l ,

~~ote the double point dioension

Lc?t K bo [1. trian,2;111s.tion ..of X, th7 t contains

Xo 8 S a su'Jcomplex, and such th? t f g K -t M is SiLlpJ.icial

for some tri.8ngul'.1tion of, m.
(i) Then the singul.:,rities S(f) of f foro. a subcomplex

of K of di::lens ion ~ d •
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(ii) If A is '=l d-sioplex of S(f) t then the:reJ1L~Xa--2-~lx

one other d-siillpl(lx A* of 8 (f) such that fA = L'J.*. If r? u*

denote the open st':trs of 11.1 A* in K, then U1 U* are contained

in X - Xo 1 and the res1;rictions flU, f Iu* 8.re em.bedding§..~
ell ••

the. imqges fU 1 fU.* intersect in fA = fA* , and cont8.in no

other points ,")f fX.

Proof

of f.

(i) By Lemma 31 9.nd the definition of gener'3.1 pas i tion

(ii) Dim S3(f) < d by definition of general position,
o

and so .Ii 1- 83(f) • Also dim Br(f) <: d by Lealma 31 and so
~ 0

A ¢Br(f). Therefore Ii <. 32' (f) because

"In other '!lords Ii consists of eX'"'lctly double points, snd so

for exactly one other simplex A*.

Nowl\. ¢. Xo' because dim.(S(f) (\ XO)<. d 1 by defini tio:p.

of general position for the pair (X1XO). Therefore

U == st(A,X:) C. X-XO ' because Xo is a subcomplex. Since f is

non-degenerate, if flu
Q

was not an embedding, then A C Br(f) ,

a contradiction. Sim.ilarly for U*. Finally if u E U? fu = fu*

and u -I- u* , then u€S(f)"U
o

= .1.1 , qnd so Therefore
o ($

fU, fU* meet only in fA = fA* and contain no other points of

fX. The proof of Theorem 17 is com.plete.

The rest of the chapter is devoted to showing that any

map can be moved into gener8.1 position.
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o

Let f ~X -t M be '1 mg,pfrom a polyhedron X to the

interior of a ffi'3.nifold ill, where x < ill. Suppose f IXo is in

gener9.1 position where Xo is a sll.bpolyhedron of X. Then f -- g

by an 3rbi tr3rily small hoootopy keeping Xo fixed, such that g

is in general position for the p'lir (X,XO).

(Notice th8.t the theoren is trivial if X=ffi).

Coroll9.ry 1

position.

t,ny ill2:l? X-t M is homotopic to a mg,p in general

Proof First homotope X into the interior, Qnd then put Xo == ¢

in the theorem.

Corollary 2 With the hypothesis of Theorem 18, let {xil be

Proof

a finite family of polyhedr·4..~~ch that Xo c:.Xi ex, each i.

Then we C8.n choose g .§.SLas to be in gener9.1 position for every

]ag (X.,X.) forwhich X.::::>X. (including j=O).
1 J ----- 1 J ------

Choose a tri'3.ngulation K of X containing all the X.
1

as subcomplexes, by Theorem 1, '3.nd let Kn be the n-skeleton o:e

K. :By induction on n, use Theorem 18 to homotope f IKn into

general position for the pair (Kn ,Kn-1) keeping Kn-1 fixed,

and extend the homotopy from Kn 1;0 K by the homotopy extension

theorem. The induction begins with n = Xo ' by moving f IKn

into general position keeping Xo fixed. At the end of the

induction we have a map g, that is in general position for each

adjacent pair of skeletons cont'J.ining XO. If

XiCKn, and so glXi is in general position,.

n == x. then
1

If Xi:;' Xj then
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the pair (X.?X.); or else x. > IrJ"
1 J ~

so condition (iii) is satisfied for

. t· f' d f (Kn Kn-1)1S sa 18 1e or •. ? •

oi ther x. == x. 3nd the gener"ll position ()f
1 J

general position for

(X. ~X .) C (Kn ~1(n-1 )
1 J

(X. ,X.) because it
1 J

implies

9.nd

Rem.ark In Coroll,'3ry 2, if 'I've put Xo == ¢ and the family equal

to the f'1r'.lily of skoletons of a triQngul'=ltion K of X ~ V'le

recover, far gen0ral position in nqnifolds, a generBlisqtion

of the pri::.1iti ve gencro.l position of K in euclidc3n s pg.ce.

CorollEl?:'Ll Yc III, we can hOLJotope f

t l·.J-·o 9:enerEL pOS1iJ10n g such that for e'3.ch r,

F'roof Hewing c10ved f into general position g by Corol11ry 1,

we then use Theorem 15 ~ by induction on r? starting with r

l'3rge Stnd Sr( g) == 0 ~ 'll:lbient isotope ~S (~) C M into general,-,r "~ '-'

position \I"ith respect to Y keeping gSr+1 (g) fixed.

The t-shift of R ~ap The proof of Theorem 18 is like that of

Theorem 15, and uses a generalisation nf the t-shift as follows.

Given Xo C X and f: X -~ iiI such tll'lt flxo is in

general p08iticn~ then in pqrticular flxo is non-degenerate~

and so by LOU,L1:1 32 we CQl1 first homotope f into <J. non-degener3. te

LT.13pkeeping Xo fixed. Therefore 8,ssune f non-degenerate 0

Choose triangulations K, KO of X, Xo g,nd 1J of M such th8..t

f : Ie -+ L is si8plici91. Let K', L I denote the bSl,rycentric

derived complexos modulo the (t-1)-skeletons of K?L.
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Then f ,K' -+ L' rem'1ins siwplicial bcc8,use f is non-degene·rate •.

IJ,;t B be a t-sicpl?x of fIC, and let L1' ••• 9 i:'-n be the

f::ji[]plexes of K th:J.t qre m3pped onto B 9 'Nhich aro ':\,11t-siuplexGs

since f is n-:n~-d.egenerate. Ord8r the A's so that those in Xo

CO:J.8 l'-;,st? in othur \lords there is an integer q such th'."lt

if and only if ai,b be the barycentres

of l,. ,B
1

(with fa. ;.::b ).
1

Then for each i

st(a.,K') = a.A.P.
1 111

st(b,LI) = bBQ

:-:md if f. dE~notes the restriction
1

•
f . ~a. L. P. -t bBw
1 1 1 1 -

of f, then f.
1

is th0 join of the three w?PS a. -+b ,
1

a nl3W C3p

The loc'}l shift, given below, determines

that equ21s f. if
1

i > q , and is h0Dotopic to fi keeping the

frontier A.P.
1 1

fixed if i ~q • Therefore, letting i 'ind B

vary, th(: local G.'i.aps f:r. c00bine into a £~lobD,lc.a.pCl .~

that is houotopic to f by 9.n grbi trl.rily s8all homotopy keeping

Xo fixed. We c'1.11 the Clove f -1 g a t-shift k(~e'Ping Xo fixed.

Local shift of a 03p ThE~local shift is L'lUeh the S'1rneas

before, except that instead of moving one cone away froD the

centre we h~ve to Clove several cones away froo each other.

Llthough ench cone is not in general ei.:.1beddcd,the Qovement of
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e~ch cone c~n be reqlised by qn a~bient isotopy as in the local

shift of an eobeddingj but of course the illovenent of the union

of the cones is only a hoootopy . .
As b afore, choose a hOrJ.eoc:orphis2 h ~ Q -t (1 onto the

bound'1ry of an (m-t) -s ir.1plex, throwing y. fP i into the

(m-t-1 ) -fqce r (which is possible since by hypothes is x <: m ).

Extend h to h; bQ -', 6 by o·J.pping b to the barycontre v of

6, Stnd joining linearly" Subdivide so that h ~ (bQ) I -t D,,' is

simplicial. Dcofine vi = v, q <: i S n, and choose Il, sequence

(v 1 ? V 29 ••• , vq)C [) near v in general position with respect to

t:J: '. Let ki: ,t).-t 6. be the homcoC1orphiso joining the identity.
on 6. to the map v -t V •• In pQ,rticu12r k. = 1 i > q. For

l l

each i 9 define

-1h k . hf ~ a. P. -t b Q
l l l

f ~A. -t B '1nd
l

9nd if i ~ q then g. is g,mbient
l

f. by an arbitrarily small
l .

fix8c] the bound!lry BQ (~nd therefore

to be the join of the m~ps

If i;> q then ,2;. = f. ,
"l l

isotopic (and therefore homotopic) to

a~bient isotopy keeping
"

the frontier A.P.). This cowpletes the definition of the local
l l

shift.

LeCl~lla 31 In the local shift S (g.) == S (f.) •r l r l

Proof ThE: singul-' r S9ts are unaltered by ambient isotopy.

A t-shift preserves non-degeneracy.
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With the hypothesis of' Theorer:l 18_-1.et f ~ g be a

t-~hift keeping, Xo fixed. If die Sr(f) ~ dr fO~8,1J-,- r ~ Q

then the s 9rJ8 is true for 6.

CO!.Qll§!J: A t-shift preserves geneT"'!.l posi tio.Q (for choose

s sufficiently lqrge).

Proof of Lemos 34 Suppose not: suppose d > dr' where

d == dLJ. S (g) and r< s. Since g agrees with f on ther
frontiers of the 10c8.l shifts, sOL1ething D.ust go wrong in the

interior of SODelocql shift. Therefore

dir.'1
n .•

S ( g I u (a. L . P . -;, . P. )) ==
r i==1 l l l l l

d ,

and
n

dim S.jgl U (a.P. - P.)) == d- t
.•. 1 l l l

Therefore if "'.Ie ch'Jose subdivisions (U'l.P.) I ,6,11 of Ua.P. ,
l 1 1 1

" ID with respect to which hg is Sitjlplicial, then there is a

(d-t)-siDplex 1\ .,D E u , in the interior of 6., thq,t is the ioage

under hg of at least r si::J.plexes. Select g, set of exactly 1"1

sir:.lplexes r:J.appingonto D, and, of these, suppose
n

a.P., 1:! i~ q, and suppose rO lie in U a.P ..
l 1 q+1 l l

'N8 h~}ve

r. lie in
1

Therefore

q
r == r. r.

'" lv
each i.

')ITs shall now choose cert'"J.in sL.lplexes

i == 0,1 , •.• ,q, vJith the properties

D. J D
l

,.....C. C.
l

and D. C A, for
l

(Reca11
dim D. ~ diD 6-r.c •

l l

C == c()di:J.ensinD. ::::r:l - X a)
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C. == rand D. == IJ. ,
l l

triviqlly satisfied.

Secondly supposo r. f. 0 and i ~1 0
l

:By LewDl'?l 33

as f

hgS (gla.P.) is a subc0ne of hg(a.P.) with vertex v. andri l l . l l J.

bqsG hf S (f I P.). Therefore there is a siGlplex C. E.6,' such
ri l l

that
C. C hfS ( f I P. )
l ri l

D. = v. C. :> D "
l l l

Therefore

dio C. :;: di:n S (flp.)
l r-i l.•. .

== diu S (fla.L.P.) - t - 1ri l l l

~ dr. - t - 1 1 by hypothesis since
l

= rJ. - r. c - t - 1 9 'NhGre c = codi8Gnsion ~
l

Therefore

dim D. ~ ;"1 - r c - tl .~ i

::: diLl 6 - r. c
l

verifying property (*) •

Fin'111y suppose rO f. O. :By construction g is the saGle
n

on U a. P. , f-3.nd so thero is Go SiGlplex Co E 6,' such that
q+1 l l

n
Co C hfSr (fl U P.)o q+1 l

DO == vCO =:J D



::: diG

-33-

Weverify (*) 9.S in the previous case:
n

Sr (f\ U Pi)o q+1
n Q

SrO (flu a.',. P. )
q+1 1 1 1

- t - 1

<. dro - t - 1 , sin ce r 0~ r < s, '3. nd so

_\8 in the proof of Le~J.t:13 30, eobed 6.. in euclidean

spr.J.ce, and denote by [ciJ the linear subsp3.ce spanned by Ci'

etc.Q ls before there are two possibilities, each leading to a

contrqdiction.
j -1

[Dj] [6JC':lS6 (s. ) For 6Qch j ~ < j ~ q , (\ [D.] 9.nd span9 I ••• .
o 1

CSt.se (b) Not (a) 0

In C'1.se (a) we defrQce

j [ 1dio () D. +1-'o
diC:1 6. ::: . ~ j -1 CD l Ddhl n . + dim .

o 1· 1

Summing for j::: 1 ,2, . 0 • ,q 9 3.nd cancelling, we h:lve

(l:J.-t) -

q
dim "[D.)o 1

=

:::

q
, dir:l D. - q dim 6-
t'(j 1

dim 6 + t (dit:l D. - diC1~)o 1
q
L r.c, by (*)o 1

::: lJ. - t - rc

::: d - tr

< d-t
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contradicting the fact th~t Dd-t C "D. C A [D.] •o 1. 0 1.

[D. ] do not
J
D.=v.O .•

J J J
of the

1 S j $ q , such thatj ,

span [6]. Therefore D. J ~, and

j;.1 [D.] [ J J~lso I \ 9nd OJ' span ao 1.

[6]. Nowthe vertices

there exists SODe

IT Sqy, ofproper subspace,

In C'-lse (b),

jn1
[D.] ando 1.

so r. J 0 and
J

and D I S ~:lre 9.11 vertices of Ii , ~nd our choice of v. in
J

I

general position in f:.- with respect to 6 ensures th'1t

vj¢ TI , because the definition of the general position of a

point involved sufficient lattice operations to cover this

eventuality. Therefore T7 f\ v.O. ::: O. , q,nd so
J J J

q
D C ("\ D. en" D.

t) 1. J
::: o. c r

J

co~tr3.dicting our choice of D in the interior of 6. This

'completes the proof of Lemoa 34.

Ler~lCl'3. 35 With the hypothesis of LemLj/l 34 suppose that

t > d •s Then

001"'011'11"';:[ VITith thE: hYEothes is of Theore[.l 18, vie C9.nm.ove f

into general posi tion by t-shifts kee12in,g Xo fixEJi.

Proof By incr2'1sing induction on s , starting trivially \}IIith

s = 1 , q,nd, for each s, by decre'3.sing induction on t, starting

with t::: dLl S (f) , we can reduce 89,ch singul::,tr sets S (f)s to
its correct diwlension by Lo:J.::J."1 35, at the S'1o.e time keeping <nrroct the

singul'lr sets S (f), 1'" < s, by Lerr.:.o8 34.
1'"
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Let d::: dim S (g) • By LenDa 31 S. (f) iss s

9. t-dir.lensionalsubcoo.plex of the tri'1.ngulation K of X used
in the t-shift f ~ g • By construction the t-shift keeps the
(t-1 )-skeleton of K fixe d, and so

S (g) .:> S (f) f\ «t-1 )-skeleton of K)s s

ioplying th'1t d ~ t - 1 .

Suppose d -;,t-1 ; then d :> d , and wi th ones
Dodification the proof is exsctly the same as that of L8083. 341

substi tuting s for r. That is to SRY, we exarJine the interior
of a loc~l shift, and find

n
d-t C

D 1 c.6, tha t is the image of r0

S :::

si::J.plexesin U
q+1

9,. P. , and
J. J.

t r.o ].

r. sL.mlexos in a.P ..
].." J.J.' where

for O~i~q

The ffin,dificationthat we need to prove is

1'.< S
J.

for

in order to be able to verify (*), and therefore achieve a
contradiction in each of the tino ca.ses0 The contrqdictions
est3.blish d::: t - 1 .

There remains to prove the Qodificqtion, '1nd for this we
use two pieces of hypothesis that we h'1ve not yet used, that
dim Ss(f) :::t and flxo is qlready given to be in general
position.
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Using Lemoa 33 and that Ss(f) is cont~ined in the

t-skeleton of K, we h1.ve for eaeh i,

s (g\ a.P.) == S (fl a.P.)s ~ ~ s ~ ~

(a. P.) " (t-skeleton ()f K)
J. J.

:::: (a.P.) ('\!i.J. J. J.

= a ..
).

Now trivL'llly s ~ 2 ? because if

d ==x 'J.nd so we could not haves
the only point of a.P.~ ~ mapped

s==1 then Ss(f)==X

dim. S (f) > d. Ands s
by g to v .• Therefore

J.

and

a.
J.

is

S (gla.P.) =0, and so r.<s for 1!:i::q.s J. J. J.

There re:':lains tho case i = O. If n - q ~ s, then there

are at le9.st s sic1plexes "~ 1" 0 0 9 /i of Xo mapped by f intoq+. n

the t-sim.TJlex B, ir.lplying dir.1 Ss (f IXO) ~ t " ds' and

contradicting the hypothesis flxo in general position. Therefore
n

n - q < s. Let Z = U a. P .• By definition of the t-shift
q+1 ~ J.

g agrees with f on Z, and so

~)s(g\ Z) C Z (\ (t-skeleton of K)

==
n
1) <:'>'Vi

q+1

SinC8'lq+1 , ••• ,an q,re the only points of Z D:1pped by g to

v , and since there are less than s of theGl, we deduce

Ss(glz) ==¢ ,and so rO< s. The proof of Leooa 35 is cOQplete.
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Lemo'),2.§. Given XOCX 9 xo< X , and f :X -, IiI , supp.Q.se tl1ll

both f and flxo are in general position. Let f-+g be a

t-shift keeping Xo fixe3.0

(i) If diw.(Sr(f) (\ Xo) < dr 9 for all 1"< s , then the S8.ITl8 is

tru0 for g.

(ii) If? further, t==d s .1hen d i [1( S (g)" XO) < d •s s

Coroll~£l A t-shift preserves general position for pairs"

For use the Corollq,ry to Lec.:o3,34, :1nd Lewwa 36(i) with s large,

Proof of Lem~:lFl36 ill Suppose not. Then for sorJ.8 1" 9 < s 9 we

bydin S (g) ~ d1" 1"
bec'3.used ,1"

As in the proof of LeoDa 34 we exaoine the
o

Dc 69 ofinterior of .'1 locql shift, 8.nd find a sill1plex

have 'dio.( Sr( g) " XO) ==

Lemma 34 Coroll,~lry,

dimension d - t , in the i~aage of1" siuplexes of
n

Z == V a.P. 9 '3.nd r. sit:.lplexes of a.P. , 1 ~ i~ q. 1.1so
q+1 1 1 -L 1 1

D C fXO' But Xo () a iPi == ¢ for 1 ~ i ~ q , :1nd SOl"O I 0 ,

Therefore D is in the im3.ge of SrO(g I z) n XO' But

glZ = flZ , and

by hypothesis, ~nd so in the verific~tion of (*) (~s in the

proof of LOOQ'134) we gain one diuension;

Therefore in case (a) we have
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d -t

contradicting the const1"Uc-tion D r C f't D.•
].

In case (b) the contradiction is unch~nged.

(ii) The proof of 1J8:.1::'1"1 36 p':'lrt (ii) is the saDe as for

p~rt (i)? except for the oodification of h~ving to show

r. <: s ,
]. for 0 = i ~q ,

8.8 in the proof of LGD.rJ8,35. Firstly 1"'0J 0 bec8,use D C fXO
and so r. <: S

].

should h[-lve s

for 1 ~ i ~ q. Fin'J.lly 1"'0<: s ? ()thervvis e we

siCiplexes of Xo Ll9.ppedonto B, irn.plying

contradicting the hypothesis x::>xo and the condition

included in the general position of flxo. The proof of

Leo~a 36 is complete.

Proof of Theorem 18
to

We are given f ~X ~ lvl with f! Xo in

genar'll position, ':lnd we h:;.ve to Dove f into general position

for the pair (X,XO) keeping Xo fixed. Ler.1!J.3.35 Corollary

shows that f c'~n be moved into general position using t-shifts.

If x:::::Xo we are then finished, because the general position

of g iClplies general pas i tion for the pg,ir. If x::>xo ' there

reGlains to 2chieve condition (iii) for gener'll position of the

pair. L0208. 36 shows this can be also using t-shifts, by
induction on s putting t = ds' and starting trivially with

s ::::1 • The general position of f Gleanwhile is preserved by

Lemma34 Corollary.
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VII
INSTITUT DES HAUTES ETUDES SCIEr~TIFIQImS

SeminE'tr on Combinatorial Topology

The idea of' 8:,1 enGulfing the ')rem is to convert a
homotopy stateme~t into a geometrical statement: it is a key
step in passing from algebra to geometry.

For exam::::Jlele t be a compact subspace in the interior
of a manifold M, and COIlsider the following two statements about X.

(1 ) X is inessentJ-& in M that is to say the
inclusion map X c :E is homotopic to a constant.

(2) X is contained in an m-ball in M. Tho first is
a homotopy statement aoout X, and the second is a geometrical
statement. Obviously the sGcond implies the first, because a ball
is contractiblG. The converse is not so obvious~ and is given by
our first engulfing theorem. For the thecrem He shall assume that
liI is k-connected~ that is to say the homotopy groups 1t.(I\1) vanish

l

for i ~k.

£illd....-~,_~ ffi_ + k .::'_.1..:....JhelL_X __ is 111.8S sentJ~..L.~tn 11 if' ~d onlY-if.

it-+_S3_.~cp!,-';.!.~ill9.9-_in _1L.~11 ~1L~}1y__;tn.!9rior_of"JvI~~
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We shall prove a gelJ.cralisatioY.lin Theorem 21 below,
~rom which the above result ~ollows at once. However eince the
proof of Theorem 21 is long9 involving s~ecial techniques for the
boundary, we give a shorter proof 07: Theorem 19, which will
illustrate the main idea of an engulfing theorem. The proof
requires four lemmas, the first three of which are straightforward.
The last one, Lemma 48, involves a more complicated. technique
called "pipingl

:, and we ~Qostpoll.ethis UIJ.tillater in the chapter
in order not to interrupt our main flow of thought. In effect
the piping lemma is only concerned with winning the last dimension
x = m - 3.

If
o

L~n'Y in..~!t__.ill:}d.-:i_.s;._B ._tt~DLe._.~c.ll11~2.illJ?i ~ntis 0 t.0"0_L....lL1l..t..:Ll

oFirst we may assume that Y c B, for if not
oisotop B onto a regular lleighbourhood of itself in lvI, by

Theorem 8(3). The proof is easy to visualise becausE.:as Y expanl!is
to X we push B along with it. Notice that we may have to push
other bits of B out of the way as we g09 which explains why it
was necessary to have B in the interior of M.

Now for the details : triangulate a ~1oighbourhood of X
in M so tllat X9 Yare subcomplexes. By subdividing if necessary
we can ensure that y

.11.. collapses simplicially to By induction
on the number of elementary simplicial collapses, it suffices to
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consider the case vvhen X ~ Y is an elementary simplicial collapse.
(Notice that we do not say anything about B being a subcomplex of
the triangulation, for otherwise this would violate the induction,
because during the induction B gets pushed around.)

Suppose, therefore, that X~Y across the simplex
,\, aF f:i."omthe face F. Let F denote the barycentre of F,w =~.

and L the link of F in M, which is a sphere because
0

F c X c M. Let b. be a simplex of'dimension 1+ dim L, and
1\

choose a homeomorphism h : L ~~. Map F to tho barycentre
1\ 1\

6 of 6, and extend linearly to a homeomorphism h : FL ~ b..
0Since sF c Y c B,

we can choose a . + b in thepOlnv
1\

interior of the segment aF such
0

that abF c B. Let f . b. -> 6. be.
the homeomorphism defined by

1\ •

mapping hb ~ b., keeping b.
composition h-1fh : ~L ~ ~L

fixed, and joining linearly. The
1\

throws b onto F. Join this

composition to the identity on F to give a homeomorphism of

st(F, M) onto itself, ·which l{eeps the boundary fixed, and which

therefore extends to a homeomorphism g : M ~ M ambient isotopic

to the identity, keeping M - st(F, M) fixed. The isotopy keeps

Y fixed, because Y does not meet step, 1\1), and moves ab F onto A.
o

Since B ~ Y u abF, the isotopy moves B to gB where
o

gB ~ Y u A = X. The proof of Lemma 37 is complete. We shall prove

a more delicate version of this result in Lemma 42 below, replacing
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the manifold B by an arbitrary subspace.

VII

1)1en. fX_':~.1. fY~

Prool'.: Let K, L be triangulations o~ X, Z such that
f : K ~ L is simplicial. Let K' be a subdivision of K such
tha t Y J. S a subcomplex, a:ad K' collal!ses simplicially to Y.
Let

Ie I = Ko ''-~ K1 '::,\ ••• '::! K = Yn
denote the sequenco of elementary simplicial collapses, and suppose,
for each i, across the simplex A.

1
from the face B .•

1

from the face
'{oJe claim that
ball fA.

1

fK "'.,
i-1 - fK. is an elsmentary collapse across the

1

fE. (notice that we do not claim it is a
1

sim.Pli£.-t~1.collapse becau5c in general there is no subdi vi sian L'
such that f ~ K' ~ L' is simplicial). The reason for our claim is

non-degenerately because
that f mags linearly into some simplex of L, and

and

,
.J;.".
1

fB. a face.
1

Also

A.
! 1
, 0

-r11 f\
.L \ .••••i

A Sef). Therefore fA.
U B.) n fK. = ¢ becaus:l' 1

is a ball

o 0Ai u Bi C X - y C X - S(f). Therefore fA. n fK.
1 1

is the complementary
face of to fB .•

1

The sequenc;: of eleme';ltar;y-collapses gives fX ~;fY.
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The proof' is tl'l v lal if' :It > ill- - 3, for then ChOOB0

x == y == Z. Therefore assume x ~ m - 3. We r~~o~ p~ove a weaker
result, namely the same statement cxcept that Z is one dimension
higher.

Proof of thc.yve"gJcerresulLCg; ~_2x - m t.31. ..

Let C be the cone on X. Sinco X is inessential, we can extend the
o 0inclusion X c M to a continuous-map 1':0 ~ M. By the relative

simplicial approximation theorem we can make l'piecewise linear,
keeping fIx fixed. By Theore;m 18 we can homotop l' into general
position kee~ing fix fixed. Therefore the singular set S(f) of
l'will be of dimension ~ 2(x + 1) - m.

Let D be the subcone of C through S(f); tlmt is to say D
is the union of all rays of C that meet S(1') in some point other
than the vel~tex of the cone. Them dim D ~ 2x - m + 3. J,et
y == fC, Z --fD. Since a cone collapses to any suocone we have C -....:,D,

and since D ~ S(f) we have Y'~Z by Lemma 38. Since fX = X, we have
x c Y--~· ..••Z, and the proof of the weaker r(~sult is complete.

Eroof .9..£:....:tl1LSltronge..r_xes1;1J."t.£ z ~ 2x..- m +-.?J~~
For this we need the piping lemma (Lemma 48) below. Since the proof
of the piping lemma is long we postpone it until later in the chapter.

As in the weaker caso, let C be the con.:;on X, and
o 0f:C ~ M a (piecewise; linear) extension of the inclusion X c M.

Triangulate X and let Co be the subcone on the (x - I)-skeleton
of X. By Theorem 18 we can homotop l' into general position for
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the :pair .....• -.;r
U Co keeping :fIX f'ixed. The triple XX9'--'9 .JI..

Co X Cx+1 is cylinder-like (in tho senS0 of the piping lemma)c

and so by the :piping lemma we can hornotop f lweping f Ix fixed,
and choos8 a subs:pacG 01 c C such that

S(f) C C1

dim(Co n 01) < dim 01 ~ 2x - m + 2

Let D be subcone through Co n 01; dim D ~ 2x - m + 2. Then

Tho proof of L0~~a 39 is complete.
O~,D U 01 • Define y == fO, Z == feD
by Lemma 38~ bcc;::iuSC D U C:1.:::> S(f).

00 U 01 ":..\D U 01 because 00 -...''"':::\D and Co n 01 cD. T11erefol'e
U 01) and the result follows

We havo
c>

inessential in M9 and have to show that
x is contained in a ball in The proof is by indnction on x,

stai,ting trivially wi th x == - 1. Assume the re suItis true f'or
dimensions less than x.

B;y L.:nnma 39 choose Y ~ Z c 11 such that X c Y ''>J ZZ ~

where

Z ~ .2x - m + 2, by Lemma 39

~ k, by the l~pothesis 2x ~ m + k - 2.
Th8refore Z is in-JsscEtial in Iii. But z < x b;l the hypothesis
x ~ m - 3. (Thi s j. s one OJ the place s wher 0 codimensi on ;>: 3 is
crucial). Therefore

o
Z ic contained in a ball in M by induction.

By Lenmla 37 so is Y. 'rherefore we }-;',9.veput a ball round X, and
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the proof of Theorem 19 is complete. We deduce some corollaries.
Corollary 1.

,then al'}x,subsp~ce, o:C dimel'l§.i.QI,J.~ l{ is ...Q,Qntainedin a.bali..
The corollary follows immediately from Theorem 19.
Qorq-llarx ,2•. (, , "~veaK

a »Qm 0 tC2.123~ Il1-sllllere...iJ,L;::5-f~j;.t~.g J~f_.1 s ..:t-op0 1o,g,ica 111L..JL~meomor-phic
to Sm •

..-We call this the w.:.;alcPoi:i'lcaroConjecture because
although the hypothesis assumes that M has a polyhedral manifold
structure (we always assum0 this)9 the thesis gives only a topological
homeomorphisffi9 not a polyhedral homeomorphism. The reason is that
the proof that we give here is Stallings' proof9 which depends upon
the topological Schonflies Theorem of Mazur-Brown. In Chapter 9
we shall give Smale's proof9 using combinatorial handlebody theory,
which does not depend upon the Schonflies Theorem 9 and which gives
the stronger result that M is in fact a polyhedral sphere, m ;::6.
The stronger result for m == 5 is also true 9 but we shall not give
it in these notes9 because the only lalown proof depends upon
smoothing 9 and deep results from differential theory, including
e5 == r4 :;::o.

Let x == [m/2] and x.~ = m - x .- 1.
'P

Then since m ~ 5 we have both x, x~ ~ m - 3. Choose a triangulation
of M9 and call this complex M also. Let X be the x-skeleton
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of M~ and x ....,- the dual x1j-I-skeleton (which is defined t.obe the

largest subcomplex of the barycentric first derived of M~ not

meeting X). Now a homotopy m-sphere is (m-l)-co~Lected. Therefore

by Corollary 1 both X~ X* are contained i~ ballE B, B*, say.

We can also assume that x. X.,.
''''

are in the interiors of

balls (by taking regular neighbourhoods of' B, B* if necessary).

We nmv want th.:;interiors of the two ba:.ls to cover M,

and if they dontt already then we stretch them a little illltilthey

do 9 as follows. Let N, N ...be the simplicial noi ?;hbourhoods of..'
X9 X* in the second barycentric derived complex o'~ M. Then

o
IVl= N u N*. Noyv picl{ a regular neighbourhood of ..I. in B9 and

ambient isotope it onto N. The isotopy carries E into another

ball, A say, whose interior contains N. Similarly construct a

ball A*, whose interior contains Therefore H =
o 0

A u A.,.'.-
Now let C = IvI - A •.•

'.'
Then is a collaled (m _i)-sphere

in the interior of A) (by the Corollary to Lemma 24). Therefore by

the topological Schonflies Theorem of ~azur-Brown C is a topological

ball. Therefore M = A u C is the union of two topplogical balls

sewn along their boundaries; in other words M is 8 topological

sphere.

then !vi t.§..Jheunion of r balls. Q.onse.s..ucntl",YM_is of

1ustcr.]jLck-Schir~e~man catc~ory ~ r~

ProoL~_ Let M be k-connected.
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[m/r] ~ k <:::> rr/r < k + 1

<=> m < r(k + 1)
<=> m + 1 ~ r (k + 1) •

VII

Thereforo the condi tion [m/r] ~ k is equivalent. to saying t.hat the

set {o, 1, ••• 9 nl can be partitioned into r disjoint subsets

G., i = 1,
1. • • • 1 r, each contai:aing ~ k + 1 intogers •

Choose a triangulation of 1'1, and let M' denote the

barycentric derived complex. Divide thcver~ices of M' into r

disjoint subsets J., by putting thE: barycentre of a q-sirnplex of M
1.

into J.
1.

if ClEG .•
1.

Let K. be the subcoffinlex of M' consisting of1. •

all simplexes, all of whose vertices lie in J ..
1.

The K.' s will then
1.

play t he role that the compleii1ontary skeletons played in the proof'

of the preceding corollary. N. be the simplicial ncighbourhood
1.

of K 1.•"I" 1," It th -
• •L '- '- > . lJ
1.

becond derived • Them 1\1= UN .•
1.

By construction, for

each i, dim K. ~ k 9 and so K. lies in a ball B. by Corollary 1.
1. 1. 1.

A~bient isotope B. onto a ball A~ containing N.. Then M = UA., as
1. ~ 1. 1.

:'!c nail' tlH'n to the Cluestion of showing by examples that

the hypotheses x ~ m-3 and 2x ~ m+k-2 in Theorem 19 arC) the best

possiblo. First suppose x = m-2.

In 19':57 Whitehead produced. the follmving example of a
~

contactible OpOj.'l 3--manifold M-' (opon moans non-compact without boundary
A

The manifold is rCT'1arl{abl·,;;in that it contains a curve S I thE'et is

in:;edontial (since L~3is contractible) but is not contained in a ball
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iu M~. The mani~old is constructed as follows. Inside a solid torus
T~ in 83 draw a smaller solid torus T2~ linked as shown; then inside
T2 draw T3 similarly linked, and so on.

7.: 7-

D f· ·J.·,"1':'; '-',,)e lnc" -_ I:)

Ho Cf.lit the proof'~ bccau8c t..l1Gproof of the nexta baJ.1 .. ,3lIi M •

1links T~~ then S is ~ot contained in

exam:plu j, s SiElp18r.

P00naru (1960) and Mazur (1961) produced examples of a
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compact bounded contractible 4-lIlanifold wi th non simply-connected

boundary. For a description of 1illzur1s example it+ see Chapter 3,

page 10.
In particular M4has as spine the dunce hat D2• 2Then D

is inesscmtial, bu~ not contained in a ball for the following reason.

Suppose r2 were contained in a b&ll B. By replacing B by

a regular neighbow~'h')od if nQceSSar~T we may assume D2 lies in the

interior of B. L;t ~1 be a regular neighbourhood of D2 in B. There
2is a homeomorphis~n M -+ Ivl1 keeping D fixed (Chapter 3, Theorem 8).

Let B1, M2 be tht!, images of B, M, under this homeomorphism. Therefore

we have

By the regular neigrbourhood annulus theorem (Theorem 8, Corollaries

2 and 3), we have
0

83B B:l '" x I
0 0

jll - M '" Iv1 M2 '" M x I!Vl1

Therefore in tho cOI!lnutative triangle induced by inclusions
•

1\:1 (M:\. )

the top arrow is an isomorphism, and the bottom group zero, contradictin!

1\:1(M) ~ O. Therefore D2 is not contained in a ball.

R3marl;:~ It is significant that L1. the two examples above

one 0:_' the manif'olds is open, an,d the other is bounded. It is
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conjectured that no similar example exists ~or ~ose~ manifolds.

More precisely:

Con,ject\l}~e..:.Corollary 1 is true for k =: m-2.~-- __ ~ ••;:a~",,-,;' --=::;:-.- .., .__ ~

Observe ~lat this conj0cturu is true for m ~ 5, because

the Poinc8I'c Conjecture is true for m ~ 5. In the missing dimensions

m =: 3,4 the conj3cture is equivalent to the Poincare" Conjecture, which

is still unsolved. For, if the Poincare Conjecture is true, then

an (m-2)-connected m-manifold~ m ~ 3, is a sphere, and so any proper

subpolyhcdron is contained in a ball. Conversely if' the above

conjecture is true, th0n tll.e proof of Corollary 2 v\I"Orl\:sfor the

missing dimensions In =: 3,4, because there are complementary sl{eletons

of cod.imer~si on ~ 2.

Bing has shown that in dimension 3 a tiGre delicate result
7..

will suffice: he has proY.:;.dthat if 11 is closed manifold in which

every simple closed curve lies in a bal19 then M3=: S3.

Wi;;; next give an exam:glo to show that the hypothesis

2x ~ m+k-2 is nocessf:'.ry in TheoreD 19. Let M =: S1
x Sm, n ~ 2, and

let X ::;:Sn, embedded in Mb;y f'irst linking two little n-spheres

locally, and then connecting them by a pipe running around the st.

\
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Notic0 that III ::: 2n+1~ x ::: n~ k ::: 0, and so the hypothesis :rails by

one dimension

2x I, Ia + k - 2.
nNext observe that we can hOlilOtope 8 to a poin.t by pulling one end

acrOSf:l tho other and back around the 81 .

Therei'ore S::.1 is inclssi:mtial. On the otherhand 8n cannot

be can ta ined in a ball, i'or otherwi se we could unkIlot it in thi s

ball (by Theorem 9 since n~m-3) and span it with an (n+1)-disk.

In the universal COYer' R x 82n of' 81 x fJ2n the disk would lift to a

countable set of disjoiJt disl:s, none of whose bourldaries could

theref'orG link. But by construction sn lifts to a countable set of

spher'cs, any one oi' ·'Iihich links its two l1oighbours. This contradiction

shows that 8n cannot be contained in a ball.

There is a 1-diD.GllSional obstruction in the lS;3t example,

w'hich suggests that if "vo cannot "-;IT!bedX in a ball, \VG migl1t try to

engulf' it in some BOl"'tof 1-dimE.:1"lSional IIcore II of 1\1.

r.1ore ~p'(:cisGl~l de:f:'in8 a closed 5'~be:pace 0 to be a k-core

of I'd if the pair (M, C) is t:-connected; that is to say the I'olati ve

homotopy gr'oups 1Ci (£:1,0) vanish i'or i ~ k. This condi tion is

0qui'vDlcnt to saying tbat thB inclusion C c M induces isomorphisms

(F)'iCi .il , i < .':., an.a. 8n epimorphism ~_(O)
-c.

Ii' M isk··coflJlectud, thclJ. a point, or a ball,

01' ar~:T collapsible set in IvI is C:. k-corc.
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~~ampl~J. The k-skeleton of a triangulation of M is
a k-core.

~~e 3. The k-sk8leton of a triangulation of a
k-core is another k-core.

Exa~~~ __4. A regular neighbourhood of a k-core is another
k-core.

~~qlAQ~~ If D'~ C then C is a k-core if ~~d only if
D is a k-core.

Exam~le 6. If p ~ q then SPx point is a (q-1)-core of

Defini~la~~2f cng£1fin£.
Let X, C be compact subspaces of M. We say that we can

~_X b;L..ll.\ll>hin/L.0llt Ta• .f.9.e1c£=fr:.qm t.h~_Q1'..!L.9., if thel~e Gxis ts D,

such that
XcD~C

din (D-C) ~ x.+1.
More briefly vie dGscribe this by saying ~np;ulf'J.,or ~:n,g\l.lfX ::from..Q.,

or ::.m£1l.lf'..;X:Jn ~. The fesler is D-C, and it is important for
applications that it be of dinension only one more than X (and in
special cases of the same dincnoion as X). For exawple in the next
chapter we shall engulf singularitics of maps, and the feeler itself
may introduce new singularities, but these will be of lower dimension
th.an the ones we started with, and so can be absorbed by successive
engulfing. Rewriting Theorem 19 from this point of view, the core C
would be a point, and X would be engulfed in a collapsible set.
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The proof that this statement is equivalent to Theorem 19 is given
by the following lem~a.

LeD}11::'llt0.Let C-,- X 9.e~pact subspac~J? of M. Then X can
"Q..e_"Wgulfed:'r.£l11C if. 8d~n..kY _if..JL_ilLcOR~ned in _~ re.R~

Proof...:..If X can be engulfed in Dy then it is contained in
regular neighbourhood N of D, which is also a regular neighbourhood
of Oy because N ~ D "'",C. Oonver'sely given X c N --:)0, triangulate N
so that X, 0 are subcomplexes, and subdivide if necessary so that N
collapses simplicially to C. Order the elementary simplicial collapses
in order of decreasing dimension, by Lemma 11. Perform all those
elemental"Y collapses of dimension ';;::x+2, leaving D, say. Then
dim (D-O) ~ x+1, and D ~ X because we have only removed simplexes of
dimension,;;::x+l. Performing the rest of the elementary collapses gives

N01l=.90lTIPact_collapsing and~~ci sion.
We shall always aSSUDe X compact,. but it is sometimes useful

to have the core 0 non-compact, as for example in the proof of Theorem
22 below. So far collapsing has only been defined for compact spaces,
and we extend the definition to non-compact spaces as follows. Define

{
-D_-C compacty and

D '-"~.~O if
D-O -~ D-O n C

where the right hand side is compact collapsing. If C, Dare
non-compact the definition is nCVlr; if they are compact then the
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de~inition agrees with conpact collapsing1 because 1 given the right
hand side1 we can triangulate and perform the same sequence o~
elementary simplicial collapses on D1 since C does not meet the free
face of any elementary collapse. Jill imm.]diate consequence of the
defini tion is the C:i;SJ.J2Jonproperty

A·~ A n B <=> 1.'.... u B '.....:;.,B

because the condition 1'01"both sides is X':B ~A:B n B. Whenever we
use this property in either direction we shall say 9J ~xcisio~.
Given D~C, when we say triangulate the collapse we mean choose a
triangulation of D-C such that D-C collapses simplicially to
D-C n C? and choose a particular sequence of elcoentary simplicial
collapses.

The definition of engulfing from a non-compact core C

remains the same, with the new interpretation given to the symbol ~

~.2msn:K·
Stallings introduced a dif'1'erent point of vi ew of engulfing.

He envisaged an open set of M moving1 amoeba like, until it had
swallowed up X. Rewriting Theorem 19 from this point of view, the
open set would be a small open m-cel11 and we could isotope this onto
the interior of the ball containing X. The following lemma illustrates
the connectlon between our definition of engulfing and Stallings'
point of viow.

kemmCLlI:1 ~ L';Lt If[ b~",§:",l~aniJ'_Ql_Slwi tll.out""£0llnCll!P1l-'l-..<?-.l'ldX ~
.9 onIQ.Q.S~t .8.}l.b s.J?§.~.()~~~L et~.Q_J)8....§l.,"£ 10 Sl,§§ ~-l:2..s.paco ~1l2..t n~...£essar ily c:ompactL..
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prgo? I? C is compact the proof is easy, for choose one
regular n0ighbourhood o~ ° in U, and another containing X, by Lenmla 40,

and umbient isotop one onto the other kee~ing ° fixed.
If C is non-compact, confine attention to a regular

neighbourhood Mo of D"":C tn ]\/1, which will be compact. Let

°0 == C n Mo, Do == D n Mo· Let NC' I-jD be second derived neighbourhoods
of Co, Do in SOElC tr ia~J.gulation of 110' Thon FJ~:HC is contained in
thE::interior of MO? and so we can anbisnt isoto}? NC into ND keeping
Co u Mo fixed, by (the proof of) Theorem 8(3). Extend the isotopy
to M by keeping the rest of M fixed. If the triaDg~lation was
sufficiently fine, then U ~ N and so U will be isotoped over X.C

In general hU -p U in IJe:nmaL~1. For example consider the
case when X u U = M. Therefore the amoeba apyroach is no good for
successive engulfings? because eacl",;.neYI engulfing may mess up what
has a.lready beE.m engul?od. The advant.age of' the feeler approach is
tha t the core C stays f'ixe':~while successive feelers are addecL The
price that we havo to pay for this advantage is that the core must
satisfy a certain colla:t;)sibilitycondition (see the definition of
q-collalJsibili ty below). ii f\lrther aclv8Dtagc of the' f'eGler approach
is th& tit can handle bounoJ3.ryppoblcE1s which pre sen t certain
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difficulties. Before handling the general case9 however, we

VII

consider the special case of a collapsible core. As in the case
of Theorom 19~ we shall be able to deduce the following Theorem 20
from the general Theorem 21, but again it is worth giving a short
proof separately.

Th_~~.m ~O.~ ~eJ: l~~mb.2_8.k7.9.QP.nE,).c~2fl._manif.9ld...l_L~m-3~
~~

Le.1-J2J?e Sl;_9Q:J-lgJ2.§Aple~s~bsl!ac...sL_sll£lXL

>.§_ COElPEl.9"t..§..1£1?.m2~ both J-11

the int oct.o_r-_Q.f....~,l._~~If~LLt.J_~~t]1.iUl-1LEL.9_~p._e~.Kll)J'J."t11a_£Q.1J.D.;gsible
.1:rq£ll1Ja.c!L1?jl.?-~lli~~=inj~..erior of_Ji.L_tha.1..j.st<L_8..I:?--LJC c j) ~':,)C 2P.Q.

Proof· Triangulate C u X, and subdivide if necessary
so that C is simplicially collapsible. Order the elementary
simplicial collapses of C in order of decreasing dimension. 'iiJe
claim that it is possible to perform all those of dimension> x on
the complex C u Xy collapsing it to Xo say, dim Xo = x, as follows.
There is no trouble during collapses of dimension> x+1, because X
cannot g...,tin the way. There looks as though there might be trouble
with those of dimension x+1, for COIlsider a collapse across AX+1

from the face EX. It is possible that F c X, but since F is
principal in X, F is still a free face of ii, and so the collapse is
valid.

oNow Xo is contained in a ball in M by Theorem 19 Corollary 1.
oTherefore by LGlJma 37, C u X is also contained. in a ball, B say, in M.

oWe may assume C u X c B by taking D. regular neighbourhood if necessary.
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Now a ball is a regular neighbourhood of any collapsible set in its
interior, by Theorem 8 Corollary 1. Therefore X lies in the regular
neighbourhood B of C. By Lemma 40 vIe can engulf X. This completes
the proof of Theorem 20. We now show how the dimension of the
feeler can be improved by one in special cases.

Let x .If there exists X such that W ...•..."J X, x < w,
and X n C = W n C, then we say W can be furled. to X relative to C__ ._ ••• t~~ •• ~_ ~ '4 _. __ •••• _' .. ~ ~,

or, marc briefly, W can be f~rled. The term comes from sailing,
where Cis a ship, and the 2-dimensional sails Yif can be furled to
the i-dimensional masts X.

o

111.,1.1 ~.~--1.f...w call1?..L._fill:l~.J~.](_ ~ h. theJ~lL..£P...a1l:JL_ 'N. <;. j) =...Q
o

1n._l'L....~~1h.ql?-_th8;"t_lliLlP=C2!i ..J'-~
Notice that there is no restriction on the d.imension of W,

and that the feeler has the same dimension as W. To provo the
corollary we need a lemma, vfliichis a more delicate version of Lemma 37.
We take the opportunity while proving this lenmla, to prove a sharpened
version, sharpel'"the.n.is needed h0:C'C, \';hich '.iill be l-~s(:f'ul later fo:.'"

Lot X"': .••Y in tho manifold M. INrito
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0 0X~Y if X-y c M

X~Y if X-Y c 1~11~,
0 .

y~y.X~ .Y if X"-~~(X n M) u~-

VII

The ambient manifold M is not included in the notation but is always
understood. We call ~--; an interior _c,.Q.llajLs£"~ a bou,n.dar¥_co~,;L.ill?~
and""~ an ~!li.§..~tp:t~~c21]'...§.p~. .At the end of this chapter \1'8 shall
define j.,nili[§..rd,g.,co~llo,psing '-~ which is in a sense o:9posite to
admissible. Adnj.ssible collapGing was introduced by Irwin~ and inwards
collo.:psingby Hirsch, both f'or t:ngulf'ing spaces that meet the boundary.

Notice tho.t all three relations are transitiv.:.;. The
transitivity of 0, ~ is obvious, and that of a depends u~on the fact

_ R . 0tl~t two elementary simplicial collapsGs K~ ~ K2~
int8rch~ngod, because the froe face of the second rGDains free in K~,

o . -X._~ ~since it lies in M. Therefore gJ.ven ~ Y .~ Z, tricmgula to and
push all the interior collapses to the front, leaving all the boundary
collapses at tho end, X-~ z.

If N is a derived neighbourhood of X in M
then N -..g,--;. X.

If a ball B in M meets in M in a f'ace, then
B is admissibly collapsiblo, B~O.

If X ~ 0, then a derived neighbourhood of
X in M is a ball ~e8ting M in a face.

Exanmle 4._ ...".. •• ;.,j,ijI. A ball properly embedded in a manifold is not
admissibly collapsible.
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.;LLX':'-a,~ Y c. LW.l!I,L then Z i s ambiE:}~...t=i130t..opic to _Z..:.:•..}cG~,EJ~g I
a,

f.~~ed such that X u Z* -'-:4 ~~:'

Remarlcs.--
1. The spaces are not nocessarily compact •

. 2. X-Z"A C X-Y •.•.
3. dim(X-Z~) ~ dim(X-Y), by 2.

4. The lemma is true if a, is replaced by 0 or ~, again

by 2.

El?oof.

Triangulate a neighbourhood of x=Y in M, and by subdividing

if necessary, triangulate the collapses
__ ..••.0
....•r ,or -.........\
.1'..-1. ...•.

As in the proof of Le::lr'la 37, by induction on t he number of

elementary sir:rplicial collapses, it sufficos to consider the case

when X~ Y is an elementary sim:Qlicial collapse, across the simplex

A from tho face F, say. There are two CD.ses according as to whe ther
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x '~:;1. Y or X ---f3~ Y. In the first case A, F st M, and in the second
case A~ F c M. (The purpose of the admissibility in the hypothesis..
was to exclude the third possibility A st M~ F eM) ..

Firs.t caScLL-.:b-J!..,--i_1!,.As in Lemma 37 'IiVG do not assume Z
to be a subcomple:;~of the triangula tien, because Z is going to be
isotoped around during the induction~ until it reachos the position
Z,..• Thorefore we may expect A n Z to be an arbi trary subpolyhcdron

'."

of i>..

1\

F

a

1\

Lot F be the baryccntl'o of P~ and let A' be a subcUvision of A
1\

containing aF and A n Z as subcoIDplexcs. Choose a point b in the
A

interior of the segment aP, and sufficiently cloSG to the point a.
for there to be no vertices of i~' in abF other than those in aF.
We claim th3.t

o
abF --oi abF n Z.
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To prove this, recall that Z ~ Y ~ aF, and so the idea is to
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collapse abF onto aF, but leave sticking up those bits lying in Z.
More precisely, let P be a simplex of AI meeting bF and not contained
in Z. Let Pi = P n abF, P2 = P n bF. Then Pi is a conveA linear
cell with face P2, and so we can collapse Pi from P2• Moreover this

o 0 0 0collapse is interior, because Pi U P2 cAe M. Perform cullapsos
for all such P, in order of decreasing dimension, and this gives the
reQuired collapse. By excision

• 0
abF U Z "'-::,\Z.

Since F i M, the link of F is a sphere, and so we can define the
homeomorphism g:M ~ M described in the proof of Lemma 37, throwing
abF onto A. Let Z~;: = gZ; then Z is ambient isotopic to Z* keeping

0y fixed. The inage under g of the colll;;lpseabF u Z~ Z is a collapse
0A U Z:::l: Z, ..• But A U Z>;-. = X u Z .... because X = A u Y and Z* :J Y..,. -.,

o
Therefore:; we have the required collapse X u Z~;:~ Z*.

S iq£ olld._c ....a_s_e_:_l:~ F c 1\1.
In this case the construction of abF is as in the first

case, but the definition of g is different because the link

L = lk(F,M) is no longer a sphere but a ball. Let 6 be a simplex

of dimension 1 + dim L, and let r be a top dimensional face of 6,
1\

with barycentre r. Let h be a homeomorphism given by map~ing
1\ 1\ 0 0

F -+ r, L -+ tJ. - r, and. joining linearly'. Then hb E r, because A c M.
1\

There is a homeomorphism of 6. detel"T'lined by r,mp9ing hb -+ r, keeping
o

tJ. - r fixed, and joining linearly. As before this h08eonorphism
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determines a homeomorphism of ~,!=, isotopic to the identity g throwing
abF onto A and keeping Y fixed. The rest of the proof is the same
as the first case. The collapses this time are all boundary collapses.

The proof of Le~~a 42 is complete. Notice that the..
reason for avoiding the third case ll.. i M, F c 111is that otherwise
the required isotopy would have had to push stuff off the boundary
of M, which is impossible.

We have to show that if W can be furled, then it can be
engulfed with a feeler of the samc dimension. Recall that furling
means there exists Xx, x < w, such tfilltW~X and X n C = W n C.
This implies that W u C~X u O.

Since x :::;k, we can engulf X c E-·":..!C, such that
dim(E - 0) ~ x + 1 :::;w, by Theorem 20. Apply Lemma 42 to the situation

", 0
WuO ....."'>'XuOcE

(the collapse being interior because all subspaces are interior to M),
we can ambient isotop E to E* keeping X u C fixed, such that
('Nu C) u E~>~ E*. Let D = (w u 0) u E*. Then W c D',"",Eojd and
E*~'O because the pair (E~;l' 0) is homeomorphic to (E, 0). Therefore
W c D~O. Finally we have to check the dimension of the feeler:
by the Remark &fter Lerr~a 42,

dim(D - ~*) :::;aim[(W u 0) - (X u C)]
=: dime-IV - X)

:::;w.
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dim(E~ - C) = dim(E - C)
~ x + 1

:::;;w.

VII

Therefore dim(D - C) ~ w, and the :proof of the Corollary is complete.

We have now completed the proofs of the engl11fing theol'ems

that \~c shall need in the ensuing chapters, apart from the pi~ing

lemma (L0mma48). For tho r0st ot' this chapter W8 shall go on to

prove the generali sation that allows for more complicclted cor0s, and

permi ts both C and X to meet the boundary of 'fl. To stnte the

generalisation we need two definitions.

pe f i.~lJ.j..2!';;..,~'lt.~<1=.2.9J-1£J?1l.t1JJ~1.itY...

We descr'ibe tho collCtpsibili ty condition on the core, th9.t

was mcnt,ioned in tho Remark aftc-:r I;emma1.-1-1. Let C bG a closed subspace

of ;JI, not :c.eces sarily compact. Define C to be .a•.~cq]J-...?...Jl.,flLP1..e~__~p....11 if

theru is a subspDCG
.•.••• C 0

':j such thE).t C ""',~ ~~and dim( Q n iK) ~ q.

If dim C ~ <1 th8n C is q-collapsible.
. 11 .~- -~ co apSlG~e BUDspace

o
of ~ is O-collapsible •

1"\:n-;1 closed subsrace of :'1: is Q.-collapsible for all q.

If C is compact and q-collapsiblc9 then any regular

neighbourhooc1 of C, that meets flI in a reguln1'" neighbou:r-hood in M

of C n :'11, is also q-collapsible.

iDl arc properly embedded in a 3-ball is not O-collapsible.

Let C, X be subspaccG of M • We call X C-inessential in M.•.....~.-~~ ---._ ....•~:.;:""-~

i~ the inclusion map X c M is homotopic in ~9 keeping X n C fixed,
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£lJCam1?.J.:!L~If C is a point the dei'inition reduces to X inessential
in M. 'rherefore the cO~1cept is a generalisation.

If C is a k-core and dim X ~ k then X is C-inessential;
for if X is triangulated so that X n C is a subcomplex~ then there is
no obstruction to deforming into C each simplex of X - Cl keeping its
boundary fixed, in order of increasing dime:;'1sion.

If C is the northern hemisphere and X the southern
nhemisphere of S ~ then X is ll9~ C-inessential •

.~theOI'~TIL?J ..:. r....Q.tC~coll ElllsibJ..lLl~o~Qf j;h.£.
9 ..£..Jll::.2..:-1&j~_XX be ..£qmp~~:t ancl C-:iIl~~~li~ntJ~L...._illl-.L.~'tll?J?02e

( 1 )
.

d:Lm (~:LLJ...JIL..:S...J<. ~'ld

(2)

..
p__nnJYL==_J..~.~Q.L.D.J4•

Notice that the converse is trivial~ if we can engulf X then X is
C-inessential, because tile collapse D-~C gives a deformation
r'etrs.ction of: D onto C, vifhichhomo tops X into C II l~eeping X n C fixed.
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Before pl10ving Theorem 21 we give some examples and corollaries.
o

Let 1.1 be k-cormected, le t C oe a point in M~and le t
o

X be inessential in M. Then w'e C2~1e~1.gulfX in a collapsible set D.

A reg"ular neighbourhood of' D is 8. bc,ll, arn so we deduce Theorem 19.
o

Let Mbe x-connected. If C is a collapsible set in M,
x 0

then C is an x-core. If X c M, there is no obstruction to deforming

X into C, keeping X n 0 fixed, and so X is C-inessential. Therefore

\7e can engulf X~ alld so deduce TheoI'em 20.

~9JIrqJSL-3~ Consider' Irwin's example~ vv.hichwas described abo\,-e in

Example 3 after Theorem 19. Yle have l,jI ::: Six 82n$ and X ::: S11embedded

in Mby be i11g self-linked ['.round the S1. Ohoose C = 81xpoint in

81 x 82n• Then 0 is a i-collapsible (2n-1)-core. 'l:heorc;m21 tells

us that X can be engulfed; by I,emma39 this is equivalent to saying

X is contained in a regular neighbourhood of 81• Of cou:..'se this can

be easily seen by eleme:"1tary methods - but the purpose was to

illustrate how Theorem 21 can be applied in situations where Theorem

19 fails.

~§i~J2l~ We give an example to show that the hypothesis

(l+X~ m+k-2 in Theorem 21 is the be st possible. Let

M = E2n-1 :::En x En-1, n > 3,0 :::81 x En-1, X::: sn-1 x 09 where

8n-1 cont.ains 81 in its interior .
.........---......1'-..--,---,:
I
C !

,.--'--' I i---~
i I -''''--- J \~"-.t-~

I I
I !

i !II -- -- j...•..... ~.--------
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Then C is an n-collapsible i-core o~ M (it is not a 2-core
because ~2(M,C) ~ ~1(C) = z).

Putting x = n - 1, q = n, m = 2n + 1, k = 1 we see that
q + x ~ m + k - 2 by one, but all the other hypotheses are satisfied.
X is trivially C-inessential because it can be shrunk to a point of C.
SUPT)OS0 we could engulf' X.

1 n 0 n-1Let A be a regular neighbourhood of' S in E. Then A x E
is an open set containing 0, and so by Lemma 41 there is a homeomorphism
h moving this open set over X. Let N = h(A x En-i). Since ~ (N) = 0,

n
• -r •• Tl ..X lies lnnbnll i:a IT by TheOl~em 19. Spun Ji. ,nth a dlBlc D l;n thJ..sball

by Theorem 9. By Theorom 15, isotope nn in N into general position
with respect to C II N keeping X = oDn fixed (which is possible since X
does not TIleot0). Then C II Dn is i-dimensional, oriented by orientations
of 0, X, and therefore possesses a fundamental class in H~(C II Dn). Let
l; E Hi (0) be the image of thj.s class under the inclusion homomorphism

~ no II D· c C. Then l; is independent of D because it is the linking class
.p C v 1" n E,2n-1.O.L ,.lI. '

disle in En x o.
homomorphisms

We verify that l; J 0 by spanning X with the unique
But ~ = 0 from the commutative diagram of inclusion

~
···_'::"~H1(N) = z.

The contradiction shows that X cannot be engulfed.
E~..€PW..9"~_ We give an example to show that the hypothosis 2x ~ m + k - 3

is the best possible in the case that X c M. Let M = 81 x B2n+1, n ~ 2,
and in the boundary M = S1 x S2n let X = Sn be as in Irwin's example.
Let C be a point, which is a O-collapsible O-core. Then all
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2x i m+k-3 by one dimension. We cannot engulf X, for if we were able
to, then X would be contained in ball by Lemma 39, and so would span

·a disk in M. This disk would lift to a couiltable set of disjoint
d' k 't' , - "B2n+1 f ',r-1S S In ne un1versal cover l:\. x 0 M. The boundaries of these
d' k 1 l' 1 d' R s2n bv1S s wou d therefore be homologically un~ln~e 1n ~ x , but v

construction we know that adjacent bOlli1dary spheres are linked.
The cont:padiction shows that X cannot be engulfed, 8.l1.dthat the
hypothesis 2x ~ m+k-3 is best possible.

I cl0 not know whether x ~ m-4 is best possible in the case
that X c M. It would be the best possible if the following conjecture
were true.

90I.lJ..~~9>:t1IT~.. L~,U1~~J2~~~a__<?~o]Il-p~g.t~9..9At;X.C3.>c:t;l}l,.t~",",m§:n.~fg12-~ ..?~.Sk
let 81 be essential in M4. Then 81 does not bOlmd a disk in M4 ..- =""'-'""" ~_.~,,~-.., _"""~_ ,__,,,,,,,,,.~"._,.,.;;:-.:.-=- •.__ ""'="' •..._.,_.••-...~ ....•"'._.~_ •.••••...::w_.~....."._.••...__ ~ •. -'" _.~...'~ ... - ..;<I;;~__ ~ •.•••~.-"<-- .__ ~,. __"'._.~~..".,~

Observe that S1 does bouncl a P..iDgy.~_~disle because tvi4 is contractible.
"A good candidate for this conjecture is Mazur's manifold M4 (see

eh t 3 10) d ..P t' , S1 . t c (S1 x B3)' 0ap er , page , an lor 11e curve cnoose x pOln ,
drawn so as to avoid the attached 2-ha:1.o.le.This curve bounds a disk
with one self intersection, which seems impossible to remove.

Before proving Theorem 21, which will require several lemmas,
we state and prove two corollaries.

Corollary 1 to Theorem 21.
~"""'''*'"'~-'-~'~'~'~'.-~.'''''''''''.'"""",4.~~.-._~-~~,-- .•,....,.,_

~Jtt._Q.h :x ..b ELa8,. Jn ~.Jl''".<::~?l'£l;'L.?1.•_~.Lf_~~V~cpn .2~~L~("i9.Il]".ts~il?&~tlJ,r1~,:l.J2_~,
then we can engulf' W with a feeler of the same dimension.~.~~ •••.•.••--.'~" .... , ...•••.,'._"'~~""'-' .""'-'---.,.-Z"'_'-'a...- •••••••,.: ;:.:a~._"".• ,,,,.-..,..._..~.-,,,-_~"---.••••.c.=· ."'_'*...-....~· .-._o......, •.•• _~••.-;.·.•..•.••••.••..••...._..... *_',.:.:.._o_.~

The proof is the same as that of the Corollary to Theorem 209 with the
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proviso that it is nacessary to verify admissibility at each stage.
C.£.r:.2J~l,q£L_?__~2~...T1J.PB1~~1!L,,2.:1-.DrY£.1nJ .
J.e t.J!.~J:_€L~~Llc..-.2..,9-I?-l1.~L9.!.esl_"_m.ap: it.o1.q,P...Jc_ £..ID=.3.La.lli1"1 ej~ Q~~ ~,!lll

h-connected submanifold of 1ft 11 ~ m-4. Let C ,·-9:,.;0 in M and
~'_~-<" .•.". ~, ...-oa.~''''''_'''''''~_''''~''''''__ '._'~'_'"'''''''''' __"'O-! __ ~_''~''~'~'~~'''''''''''' __ ••••• "'-.......-.,... •• _--'_ •• ¥''''-'''"-'"~''''-'''',''''''' "' __~"""'&~a. .'"

o 0
£LD_.JL~('..~.:...1t§ll .....1?..~.9.9nrQ~.U_j..A."Jv~.,_JS. ~ lSt,.~QL1~L+Y-.,t)Ln_.Lc;...;,8. wi th
9-llItlllJLlU _~j}.:-._.TJl;.~ll..w ~ ~~~~l).Ji1lU'..X._c:.1L~~_~__pu 911." t l}.al..
£li11!.lD-:-c)"i.xz1 al14.Jl..D_1L;::.jl~....1L2.LjJ_Ni_~Con.s8Quel'LillX is q,Qntaip.!2,.cl

oin a ball that meets M in a face in ~._ .•..--" ..•••.;,,~,---,-' •.•••..,,~-"'_••. --...::..-~~.~ .--.~-~.., ~-_.__..-.......:-..••.=. -.••..•.,~ ••..•..•••••.••

oApply Theorem 21 to X n M, C n M in Q and engulf
• 0X n M c E--~C n M, where dim(E-C) ~ dim(X n M) +1 and E c Q. Then

o R
E u C --y E ~O. Now apply Theorem 21 to X, E u C in M to engulf .
X c D~--..iB u C, where dim(D-(E u 0)) ~ x+1 aDd D n h = (X u E u C) n M::::E.

Because of' the last remar1:::,the colla:9se D~:8 u C is interior.
Therefore D .,0..;:} C.

Therefore D a.,
----j., o~ and so a derived neighbourhood of D is a

oball meeting M in a face in Q.
Vie now pI'oceed to the Drool' of Theorem 2"1. The last statement

of the the 81s is talcen care of b;)rthe following lemma •

. .
ctJ2gS.§:;~J?._so.~]}lttJ2...J1.Jii =._lX lL..9J..,it}l·

The iden is to isoto!) D inwards a little, keeping X u C
fixed. Let Y ::::X u O. We can assume M compact by confining attention to

~, ....,-a regular neighbourhood of D-Y. Let c : M x I ~ M, c(x,O) = x, X E M
be a collar given by Lemma 24 Corollary. Choose a cylindrical
triangulation of M x I (that is one such that the projection onto M
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is simplicial) such that C-1y is a suhcomplex. Define an isotopy
of M x I in itself as follows. For each vertex v E M n Y keep
v x I fixed. For each vertex v E M - Y isoto}? v x 0 along v x I
and stop before hitting (v x 1) u C-1y; extend to an isotopy of
v x I in itself keeping v x 1 and tho intersection with c-1y fixed.
Now extend the isotopy cylinderwise to each prism A x I, A E M
in order of increasing d.imension, keeping A x 1 and the intersection
.t' -1y...,.. dWl n c J.lxe. The image under c extends to an isotopy of M

keeping Y fixed and moving M - Y into the interior. The restriction
to D gives what we want.

We introduce a notion duo to Moe Hirsch, which will be
useful in the proof of Theorem 21. Let s denote the simplicial
collapse

j7" '~.••••• -:-- T••• "-:.'J.\. 1 ">-\K =.u.n- 11

~L..§. as follows, by induction on n.

The symbol s includes the given ordering of elementary simplicial
collapsGs. Let W be a subcomplex of' K. We define the E..~t...1of W

If n = 0, define trail W = W.s
in~uctiv0~trail+ W has been defined for the collapse t:

v

and
Define

Ko ~ K:t. '::, ••••. -..,;. Kn-1 •

sunpose K 1~K is across the simplex A from the face F •
.1:'_ n-· n

trajl W. s
,trailt W, F ~ trailt W

== .<
~A u trailt W, F e trailt W.
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~~en there is no confusion we shall drop the suffix s.

Geometrically the trail is the track left by Wduring

the deformation retraction K 4 L associated with the collapse

K~. L. Weleave the reader to verify the elementary properties:

(i) trail K = K~ trail L = L.

(ii) trail (Wi u W2) = trail Wi u trail W2•

(iii) trail (trail w) = trail ~\!•

Therefore "trail!! is a closure operator on the set of' all

subcomplexes of K, and the trails form a sort of combinatorial

fibering of the collapse.

Remark

Notice that the trail depends upon the triangulation and

the order of the elementary collapser. If the same elemen.tary

collapses are re-ordered to give a different simplicial collapse

K',::,L then the trails turn out to be the same, but if different

elementary collapses are used to define a simplicial collapse

K~L then the trails are different. Therefore the trail is not

a piecewise linear invariant.

However trails can be related to piecewise linear invariants.

For example a~~issibility is a piecewise linear invariant. If

X-yY is an admissible collapse (in a manifold now) then we can

triangulate so that the trail of anything in the boundary remains

in the boundary. Therefore admissible collapsing is equivalent

to ilboundary preserving" in terms of' trails. For Lemma53 below
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we shall introduce another piecewise linear invariant called

VII

inwards collapsing~ which is equivalent to "interior preserving"
in terms o~ trails.

We; now prove tvvo important propertie s of trails.
Lemma )+~ It.K-::,.1is a.simpli,£ial coll.m~d 'NW c K9 then

dim (tra,11...1V) _:(, Vi ..:LJ.

dim (L ('Lt~il Jil._~VI.

Let s denote the collupse
K = Ko ~.' K:1.---.; •••.....•....">, K = L. The proof is by induction on n~n
starting trivially with n = O. Let t be the collapse Ko--"" K. 1

11-

of' length n - 1~ and let T = trailt'fJ. By induction dim T ~ w + 1~
and dim (K1'1_1n T) :(, vv. Suppose K '--"K is across A from F.n-1 n
If'F l:- T then trail W == T~ and T n TT := m n K and so both,no .l.

S n n ...,~-,
results hold for s.

Therefore dim A ~ w

If F E T then F E K n T, and so dim F :(,w.11-1

+ 1, and so dim (trails w) := dim (A u T) ~ w + 1.

Also L n trail W:= L n (A u T)s
A u (K n m)C n_'}.l. ~

which is of' dimension ~ w.

Proof For each elementary collapse~ across A from F~ say~

either both A~ F are in the trail~ or neither are. Perform~ in

ordcr~ all those elementary collapses for which neither A, Fare

in the trail, giving K "'",,>\ L u trail W. These elementary collap ses
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are valid, because if A principal in K., and A i trail W, then
1

A principal in Ki u trail W; also if F a free face of A in Ki,
and F ~ trail W, then F is a free face of A in A. u trail W. Now

1

perform, in order, the rest of the elementary collapses, giving

Corollary to Lel.lli'TIa45. If K--~ L is a simplicial collapse.

Proof Let s denote the collapse K--~L. Let t denote
the induced collapse L u trail Wi -~ L given by the lemma. Thens
trailt \l"v2 = trails W2 because W2 C Wi. Now apply the lemma to t
to obtain

L u trails 1N1.--"-"; L u trailt W2•

Substituting s for t in tho right hand side gives what we want.

Corresponding to the genoralisation in the theorems from
inessentiality to C-inossentiality, it is nucessary in the proofs
to generaliso from the cone on X to tho mapping cylinder of
X -t C. It was for a similar purpose that Whitehead introduced
the mapping cylinder in 1939. We need a relative version of the
mapping cylinder here because X n C is kept fixed. As it was
pointed out in Chapter 2, the mapping cylinder is a simplicial
rather than a piecewise linear construction: it is a tool rather
than an end product.

Let K, L be complexes meeting in the subcomplex K n L,
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and let f:K ~ 1 be a simplicial map such that fiR n L = 1.

VII

The relative_~apping cYlJnger of f is a complex ~K u L defined

as follows. For each simplex A E K - L choose a new vertex~ a say.

(Since our complexes always lie in some Euclidean space9 choose

one of sufficiently high dimension so that the new vertices are

linearly independent of K uLand each other). If A E K n L

define ~A = ¢. If A ,-K - L~ define.
~A = a(~A u A u fA)

inductively in order of increasing dimGnsion~ where..
~A = Ui~B; B E AS. Define

~K = Ui~A; A E Kl.
The relative ma~:9ing cylinder is ~K u L. In particular it contains

K u L as a subcomplex.



b

- 36 - VII

c

d

Let K be the 2-simplex~ abc, and L be the 1-sirnplcx, ad. The
diagram shows the relative mapping cyli~deI' o~ the simplicial map
~~K ~ L given by ~a = ~ = a, ~c = d.
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I&mma_~~ (NewmfUl) If An E K - L t,hsm_vA is an

.CP + 1)-ball 'y!ith face A.

p~ For this proof only we shall use chains modulo 2

in the complex ~K. The symbol ~A will stand ambiguously for a

subcomplex and an (n + i)-chain. To empbasise the chain point of
view we replace the statements ~A = ¢, flA is degenerate by th9

formulae ~A = 0, fA = 0, respectively. We replace u by +, and

write a for boundary. Therefore ~A = a(~oA + A + fA). We ded~Ge

o~ = ~o + 1 + f

by verifying inductively on simplexes, and extending additively to
•chains. If B is a ball, then oB is the chain of the complex e,

and so by the ambiguity of our notation, oB = B. (Of COl~se for.
a general chain 0, 00 is defined but 0 is not).

The proof is by a double induction. Let 1, 2 denote the

following statements'

1(n): if An E K - L then ~A is an (n + i)-ball.

2(n): if AB E K, A E K - L, dim AB = n, 0 ~ dim A < n,

then p,(AoB) is an n-ball.

Notice that the lemma follows from 1(n) because A occurs with

non-zero coefficient in o~A. Both 1, 2 are trivial when n = 0,

and A is a vertex (A ~ fA because AiL). We shall assume 1, 2

for dimensions < n, and prove first 2(n) and then 1(n).
The proo~ o~ 2(n) is by induction on dim B. Let 2(n, q)

denote the statement of 2(n) when dim B = q. The q-induction

begins with 2(n, 0) trivially implied by 1(n - 1). We shall prove
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2(n, q - 1) => 2(n, q), 0 < q < n.
Given An-q-1Bq E K, write B = xOq-1• Then

lJ.AoB= !lAo(xC)
= !lAC+ j.lAxoC

VII

= X + Y, say
where X, Yare n-balls by 2(n, 0), 2(n, q - i), respectively.
Then X + Y is an n-ball provided that X, Y meet in a common face.
Now X n Y = oX n Y, because X = aoX~ a i Y

= (fJ.(oA)C+ fJ-AoC+ AC + fAC) n fJ-AxoC
= !lAoC + (fAC n fAxoC)
coY.

Therefore X n Y = oX n oY. There are four cases.
(i) fAC = o.
(ii) fAxC ~ o. Therefore 1-'ACn fAxoC = fAoC.
(iii) fAG ~ 0, fx E fA. Therefore fAxoC = o.
(iv) fAC ~ 0, f'xE fO. Therefore fAxoG = fAC.
In each of the first three cases X n Y = fJ-AoG, which is an
(n - 1) ball by 2(n - 1). In the last case X n Y = fJ.AoC+ fAG,
which is the union of two (n - 1) balls meeting in the common
face fAoe (because fAG ~ 0), and consequently X n Y is a ball.
Therefore X, Y meet in a common face, so that X + Y is an n-ball~
and 2(n, q) is proved.

l'T h t 2 () 1 ') G1-vel" An E K - L.r,e now ave 0 prove n => \.n •.... ,
write A = XBn-1, x E K - L. Again there arc four cases.
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(i) B E K.
(ii) B i K9 fA J O.
(iii.) B I=. K 9 fA = 0 9 fB f O.
(iv) B ~ K9 fA = fB = O.
In the first case we prove, by a separate induction on n9 that
~A = (xyB),9 where y = fX9 and the dash means take a first
derived complex modulo xB + yB. For if this is true for
dimensions < n, then

~=~xB

== a(~xoB + xB + yB), since ~oB = 0
~ a«xyoB)' + xB + yB), by induction
== a(o(xyB))'
~ (xyB)'.

In case (ii) ~B is an n-ball by 1(n - 1). Therefore
~B + fA is an n-bal19 because ~B n fA == fB, which is a common
face. Also ~xoB + (~B + fA) is an n-ball, because ~xoB is an
n-ball by 2(n7 n-1) and

~xoB n (~B + fA) == ~oB + fXoB
~ ~oB + fB, by a homeomorphism,
== o~B + B,

which is (n - 1) ball, because it is the complementary face to
B of the n-ball ~B9 by 1(n - 1).

We have shown that

~oA + fA == ~xoB + (~B + fA)
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is an n-ball. But o(l-LoA+ fA) = aA. Therefore l-LaA+ A + fA
is an n-sphere9 and joining to the point a gives ~ nn
(n + 1)-ball.

Case (iii) is simpler than case (ii) because fA = O.
Thererore l-LaA= I-LB+ I-LxaB9which is an n-ball because I-LB9I-LxoB
are n-balls meeting in the common face

~B n I-LxoB= !-LoB+ fB9 since fXoB = fB9
= (n - i)-ball as above.

Then !-LoA+ A is an n-sphere9 and ~ an (n + i)-ball9 as before.
Case (iv) is yet simpler because this time

!-LBn p,xoB = !-LoBy
= o!-LB+ By since fB = 09
= (n - i)-ball as before.

The proof of 1(n)9 and L8mma 46 is complete.
Q9ro:l;lar"y_to Lemma Lt6..:., l-hILu L~~.:..
Proof Collapse across ~ from A9 for each simplex

A E K - L9 in order of decreasing dimension.
J;&l@1a4L 1...o'Dological:j..y_th_e rela..!Jve mapping cylinder

hkILuL of' f:K -+ L can be obtained from K u K x I u L by identif'yin.z
x = x X 09 X E K
fx = x x 1 9 X E•.K
x = fx = x X t,2 x E K n Lx t E I.

Eroot' We construct a continuous map
cp : K u K x I u L .-.-.--,~ u L

onto the mapping cylinder9 that realises the identifications. We
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emphasise that the proor (or this lemma only) is topological

and not piecewise linear. Dorine ~IK u L to be the inclusion,

and ror A E K - L construct ~IA x I : A x I ~ ~A by induction in

order or increasing dimension~ as rollows •
•For the inductive step~ lot Sn = (A x I). We shall show

that thero is a pseudo-isotopy ht:8n ~ 8n such that ho = 1~ ht

is a homeomorphism ror 0 ~ t < 1~ and h1 realises the identi~ication.

Assume ~or the moment that this pseudo-isotopy exists. By induction

~lsn has already been constructed so as to realise the identi~ication~
and so this map can be ractored .Sn . L.. ~ (~)

" ~

"-" /
hi ~ // / 1jJ

~, 8n/

where 1jJ is a homeomorphism. Using Lemma 46 that ~A is a ball~

the pseudo-isotopy enables ~ to be extended to a map of a collar

or A x I onto a collar or~. By filling in the complementary

balls~ we obtain a map of Ax I onto ~A, such that the interiors

are mapped homeomorphically. This is the required map ~IA x I,
a-

because un.der the identification no point of (A x I) is identified

wi th any other point.

We now construct the pseudo-isotopy. Let B be the simplex

spanning the verticos of A n L (possibly B = ~). Then fb = b for

each vertex of B~ and so

fB, = B = A n L (~ Aj beeauso A ~ t).
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We first construct the pseudo-isotopy on B x I by defining
ht:B x I ~ B X [t, 1]

to be given by mapping the segment x x I linea~ly onto
x x [t, 1], each x E B. Therefore ht keeps B x 1 fixed, ho = 1,
ht is a homeomorphism for 0 ~ t < 1, and h~ is the required
identification B x I ~ B x 1. Next we construct the pseudo-isotopy
on A x 1, as follows.

Lift A ~ fA; that is to say choose a simplicial embedding
g:fA ~ A such that fg = 1, and B c gfA. Given a vertex a E A,
and t E I, define at = (1 - t)a + t(gfa). Let At be the simplex
with vertices ~at; a E A~, and define tIle simplicial map

ht:A x 1 ~ At x 1.
Therefore ht keeps gfAx 1 fixed, ho = 1, ht is a

homeomorphism for 0 ~ t < 1, and hi is the required identification
A x 1 ~ gfAx 1. Moreover ht is compatible with pseudo-isotopy
already defined on B x I, because both keep fixed the intersection
B x I n A x 1 = B x 1. We can show by elementary geometry, that
given 8 > 0, there exists 0(8) > 0, such that given 0 ~ s < t < 1
such that t - s < 0, then tIle isotopy from hs to ht of
B x I u A x 1 can be extended to an 8-isotopy of Sn, keeping fixed
outside any chosen neighbourhood of h (B x I u A xi).s

Choose strictly monotonic sequences 8. ~ 0 and t. ~ 12 l
Choose a sequence of neighbourhoodssuch that t. 1 - t. < 6(8.).2+ l l

V. such that nV. = B x I u A x 1. Suppose inductively that we2 2
have chosen the isotopy ht of Sn for 0 ~ t ~ tie Now extend the
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isotopy ht of B x I u A x 1 for ti ~
of Sn keeping fixed outside h~ (V.).

lJ. ~
1

Cauchy sequence of homeomorphisms of

VII

t ~ t. 1 to an e.-isotopy~+ ~

Therefore [ht.l is a
u ~S ? and consequently the

limit map hi exists? making [ht; 0 ~ t ~ 11 a pseudo-isotopy.
Any point of Sn outside B x I u A x 1 has a neighbourhood outside
Vi? for some i? which is kept fixed for ti ~ t ~ 1. Therefore
tho point is not identified with any other point under hi.
By construction hi makes the required identification on
B x I u A X 1? therefore on Su. Therefore the construction of
the pseudo-isotopy, and the proof of Lemma 47? are complete.

p~fin~~ion of cylinderlike
Let V be a manifold? and V x I the cylinder on V. Let

•W = (V x I) u (V X i)? the walls and base of the cylinder
(perversely we regard V x 0 as the top and V x 1 as the base of
the cylinder).

We call a triad xx? J~ C JX+1 of compact spaces QllJpderlike
if there exists a manifold V and a map ~:V x I ~ J such that

~(V x 0) c X

and ~ maps (V x I)-W homeomorphically onto J - Jo•

V x 0
1" --.- •.• -- .- .•- .".'- '-'.,
I !
I !
i V x I II ~

w 1. 1

~
-.--.-)



- 44 - VII

Example 1.
- x+1 xLet XA be a complex, J the cone on X, and Jo the

subcone on the (x i)-skeleton of X. Then X, Jo c J is
cylinderlikc. For let V be the disjoint union of a set of
x-simplexes fAil in 1-1 correspondence with the x-simplexes fBiJ
of X. Define ~ by mapping A. x 0 isomorphically onto B., and

1 1

extending to a homeomorphism of' Ai x I onto the subcone on Bi,
for each i. -:Jc have alread.y used thi s example in the proo1~ of
Lemma 39 above.

Let go be the restriction of g to the (x - i)-skeleton of X, and
let J~ be the subma:pping cylinder of go' Then X, Jo c J is
cylinderlilw. For- choose V to be tho disjoint union of a set of
x-sirn.plexes {A.l in 1-1 correspondence \frlththe x-simplexes fB.}

1 1

of X-C. Define ~ by mapping the pair A. x I, A. x 0
1 1

homeomOFphically onto I1.Bi' Bi (by Lemma 46) for each i.
In the special case that C is a point, not in X, example

2 reduces to example 1.
1emm[L~..lThc_.P1J2.ip.,gJ2mmaJ

L~tM: be a man5.f.9J2:.2.. an4_l£J. :~..9_J~.,.£..Jx+1 be..£Y.J.i.12§c£like,

o

~2 J£"..iL-J 0 an.£.S1:Lch that ..£(J -=...J0) eM. _ Th~2} thqre exi ~i.s.§... IQ,aJ2,

f.:L=J -t ]1.,. homgtopi c t}L f k..£.9..EJng X j,LJo-±:ixed..Jancl..a sut?..§J?.fLco_J:l.c;: J".2.
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o
11(J 7_3.02 c Li.

.§lf1) c <L.

S!ll!L31 ~ 2x - I!l.. + 2

dim J..J0 ..D.~J1) ~ 2x - m---i"-1
3 ~ 3 0...!..L.31 -.:...30

VIr

The meat of the lemfJa is the combination of the collapsing
condition J~Jo u 31 together with the dimension dim J~ ~ 2x - m + 2.
In order to achieve this the homotopy f ~ f1 has to be global~
rather than local liko tho homotopies of simplicial approximation
and general position.

Before proving the lemma we introduce notation. The proof
will then follow~ and involve three sublemmas.

Let V be compact. We call a triangulation of V x I
9X.±',ll.td.r:.ts& if the suocylinder through each simplex is a sub complex •
Given any triangulation9 we can find a cylindrical subdivision by
Theorem 1, by merely making tho projection ~:V x I ~ V simplicial.
Given a cylindrical triangulation we can ohoos0 a cylindrical
derived complex by Lemma 5.

In a cylindrical triangulation there are two types of
simplex~ call A ~~~Etal if ~IA:A ~ ~A is a homeomorphism, and
call A ~~tical if ~A = ~A. In an arbitrary triangulation of V x I
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it is possible to havG simrlexes that are n0ither horizontal nor
vcrtica19 but in a cylindrical triangulation~ or any subdivision
thercof9 every simplex is either horizontal or vertical.

Q;z1.jlld..Q£VYJ-...~J.§.~j.Ylg •

Let K be a cylindrical triangulation of V x I. For each
asimplex A E ~K, the subcylinder A x I consists of horizontal

a-simplexes and verti~al
(a + 1)-simplexes, arranged
alternately. Removing the
interiors of the top horizontal
and the top vertical simplex is
an elementary simplicial collaps~.
Proceeding in this way we obtain.
a co 11ap seA x I '~,; (A x I) U (A x -1).

Do this for all simplexes A E ~, in some order of decreasing
dimension, and W0 have a simplicial collapse V x I ~V x 1. We

Let P be a sub complex of a cylindrical triangulation of
V x I. Call P sQl.L<lif P contains every simplex beneath a simplex
of P. Equivalontly P is solid if P = trail P under a cylinderwise
collapse.

Examnle 2.-~ .....,.~

A subcyJ.indel'is solid.
The intersection and union of solids are solid.
If V is a manifold and W the walls and base of V x 19
then W is solid.
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The result follows immediately from Corollary 1 because
p = trail p~ Q = trail Q under a cylind~rwise collaps~.

~Nithout loss of'generali ty we can assume J.l compact~ for
otherwiso replace M by a regular neighbourhood of fJ in M. Let
z = 2x - m + 2. Let ~:V x I ~ J be the map given by the cylinderlike
hyDothesis~ and let ~ = f~.

V x I .----. _CJ2. .. __ > M

" /~, /f
~I J

dim Z :;:;z.
Let Z -1 I )= ~ S~1"·.

( 1)

Th~n Z has the properties

(2) dim [Z n (V x I)" ] ~ z - 1.

These properties follow from three facts: firstly f is in general
position~ implying dim S(f) :;:;z~ and dim (S(f) n (X u Jo)) ~ z - 1;

oseconilly~ is non-degclierate because ~I(v x r) is a homeomorphism;
and thirdly ~-1(X u Jo) = (V x r)·.

If we could now find a subspace Q ~ Z such that
dim(Q n W) < dim Q ~ z
V x I ---../N u I~ ---., '[if

then the proof would. be finished by defining f1 = f and J1 = ~Q.
In particular the collapses J---;Jo u J1~JO would follow from
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Lemma38 because W~ S(~). However in general no such Q exists.

VVhatwe have to do is to homotop f to ~1~ and replace Z by

2:1. == ~-1S(~1)' so that there does exist a ,';:1, con"taining Z1 and with

the above properties.

Digr'cssion.=_._~-~,. We digress for a moment to explain the

obstruction to finding a Q containing Z~ and to describe the

intui ti ve idea behind the proof. Let 1C:V x I -+ V be the :9rojection.

Then 1CZ x I is the subcylinder through Z and wu can collapse

cylini:lervJ'i se

It is no good }JHtt.Lng Q, == 1CZ X I because this is one dimension too

high. f.,nd the trouble j,s that if V'/C start collapsing 1CZ x I

cylinderwise tc try and reduce thG dim...;nsion by one 1 then the

horizontal z-simolexes of Z ~or'm an obst1"'uction to collapsing away

the (z + 1)-dLnel1sional stuff underneath them. 'I'hercfore the idea

is to punch holes in these Bimplexl;s in order to release the stuff

underneath, How the only way to "punch holesOi in the singular set

of a map (wh~ch is essentially what Z is) is to alter the map.

Roughly spea~ing we alter f to f:1. and Z to Z1 so that Z1 equals

Z minus the punch-holes. More prcc:isely V\'O shall describe a

homotopy ~rJm <p to <P1 keeping (V x I r fixed~ which will determine
o

a homotopy froEl f to f1 keeping X u Jo fixed, because ~ I (V x I)

is a homeOIflorphism.

The way to punch holes in a simplex AZ E Z is as follows.
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Since A is a top--climellsiom-11siL1plex of a singular set, it arises
from where two sheets of ~(V x r) cross one another. Choose an
interior point of A, and a neighbourhood N 01' this point in the
sheet containing A. Then pipe 1'1" over the free end of the othel'
sheot. The "free encl."moans ~(V x 0). The i1pipingll is done by
dividing N into a central d.isk N' surrounded by an annu:::'usNil, and
re:ple.cing ~N by

<piN :;: ~iN' U <P:1.I\[tI.

-Plhere~:1.NH is a long pipe running along a path in the seconcl sheet
to the fr0c eno.9 and <piN' is a cap on the end of this pipe, whose
interior docs not meet the rest or ~(V x I). The reason that we
had to have <p(v x I - w) in the interior of M was to make room for
tho pj.pc and the c~rl?over the e-11d. Define ~i :;: <Pon the rest of
V x I. The following pictures illustrate the idea when z :;:1, and
show how the riping enables us to perform the collapse tllat we
want. Of co~~se the pictures are inaccurate in that x ~ ill - 3.
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A tecru~ical di~ficulty in the proo~ is that in general
it is impossible to ~ind a cylindrical triangulation o~ V x I

with respect to which the map ~:V x I ~ M is simplicial. The
reason is that we cannot make both ~, ~ simplicial, as is shown
by Examplo 1 after Theorem 1. A.S the pI'oof progresses we shall
sometimes want 9 sioplicial, and other times ~, and so it will be
necessary to switch back and forth.

Q.()A..tJ...nuingth.£..J2£.2~f,of Lem~L48.
Let K, L trian~~late the pair V x I, Z. We shall construct

successive subdivisions K1, K2? ••• of K, and L1? L2, ••• will
denote the induced subdivisions of L. First let K1 be a cylindrical
subdivision of K. Next let K2 be a subdivision of K1 such that
~:K2 ~ M is simplicial (for a suitGble triangulation of M). Then
L2 has the properties:

(1) dim L2 ~ z.
(2) The z-simplexes of L2 are interior to K2•

(3) 9 identifies the z-simplexGs of L2 in pairs~ and
identifies interiors of those simplexes with no other points.

The properties (1), (2) follow from the properties (1)? (2)
of Z above. Property (3) comes from the general position and
Theorem 17.

Su 121crnm.§LJ..:..

WL®1l.-qp.oos_~~~,JC 80 thi?-t~La .E?.!L"tisfi_e~§..t.h.e__:further prQJ2.~:
.L41 If A.J s a ll<2!i,&ontaJ._2!,-..EimJ21.ex oLL2~.

~b._n q~.~~.L7Sl::..
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Although Ki is cylindrical~ Li does not in

VII

general satisfy (4) because two horizontal z-simplexes of Li may
lie in the same subcylinder~ and therefore have the same image
under~. If they do, then we can move one of them, A say,
sideways out of the way as follows. Let K' be a first derived
of Ki modulo the z-skeleton. Choose a point VA E st(A, K')
such that ~vA i 7U~~which is possible bocause dim A = z < x = dim V~
since x ~ m - 3. (This is one of the places where codimcnsion
~ 3 is essential.) Since both VA and A lie in a simplex of Kt,

the linear join v.r!:" is well defined. By property (2) A lies in
the interior of and so there is a homeomor:phism ~r of ·st(A~K')
throwing A onto vAA, and keeping the boundary fixed. Extend 1/r to
a homeomorphism

1/r;V x I ~V x I

fixed outside st(A, K'). Since 1jr keeps Z-=-A f'i.xed,and since
~vA i (z-skeleton of ~K')I we have

~~A n ~*(Z - A) c ~1/rA.

Now choose a point v. for each horizontal z-simplex A ELi'
1-1..

such
that the imagGs {~vA} are distinct. Since the stars {st(A, K')}
E.L'e disjoint ~ we can define the homeor.iOrphism* so as to shift
all the A's simultaneously. Let

~ = ~1/r-1:v x I ~J,
which is a valid alternative for the cylindGrlike hypothesis,
because 1/r keeps (V x I)"fixed. Let

~ = g-1S(f) = 1/rZ.
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Let K = WKi1 L = WL1. Then R1 t is a triangulation of the pair
V x I1~. Moreover by construction L satisfies property (L~)1

anc1 consequently any subdivision of t also satisfies (4). Therefore
if we replace ~1 K in our original construction by ~1 R then L2

will automatically satisfy (4). This completes the proof of
Subler.llna1.

9,p1.±§jrugj:,i?11_of0n.~-oipe.
So far we have constructed a triangulation K21 L2 of

v X 11 Z satisfying ~()roperties (1 J 21 31 4). Let K3 be the
barycentric first derived of K2• Let K4 be a cylindrical subdivision
of K3. Let K5 be a cylindrical second derived of K4.

Let "'~1A~:: be two z-simplexes of L2 identified -by 'P1 by
property (3). I.•abeJ. thc~n so that one of the following cases
occurs:

(i)
(ii)

(iii)

both vertical
both horizontal
A horizontal and A vertical ••....

One of these cases always occurs because overy simplox of K2 is
either ilOrizontal or vortical1 because K2 is a subdivision of the
cylindrical K1 (this was why we bothered with Ki). In case (i)
thore is no need to do any piping1 because neither A nor A* will
have 2UY (z + i)-dimensional stuff underneath them that we want to
get rid of. Ther0for~ we can assumo A is horizontal.

Lot J~be the barycontro of .A1 and let P (p stands for path)
be tho vertical interval above A joining A to ~A x O. By
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construction A is a vertex of K3 and P is a subcomplex of K4~ and
so the second derived neighbourhood

DX+i == N(P~ K5)
is an (x + i)-ball meeting V x 0 in a face~ DX say. Let

DZ _ A ()DX+i,

"which is a z-ball, being the closed star of A in A5 (A5 being the
subdivision of A induced by K5).

1 •• __ .,. .• _
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Let
DZ' -1 DZ* = .B.~l; n cp cp

which is a z-ball by property (3) abovcs but is not in general
a subcomplex o~ KS' because cp is not in general simplicial on KS"

Both P and ~(Z-:~A)x I are subcomplcxes o~ K4, and are
disjoint by property (4)" Their second derived neighbourhoods are
disjoint in K5" Thcre~ore DX+1 n Z = DZ• TherQ~ore cplDx+1 is an
embedcHng, and

..1 DX+1 x+1 z(5) cp cp = D u D~.
Let K6 be a subdivision of KS' and MS a triangulation of

M such that cp:K6-~116 is sim91icial. Consequently D~ becomes a
subcomplex of K6, Let K7, M7 be barycentric second deriveds of
K6s M6, Then cp~K7 -? 1,17 is simplicial because cpis non-degenerate,
Let

Bm :::N(cpDx+1, M7)
EX+1 = N(Dx+1, K7)

x+1 zEo = N(D*, K7)·

Notice that these aI'e three balls, because they are second derived
neighbourhoods of balls, Also BX+1 meets V x 0 in a face, BX say
'lJecause J,~x+1dJ.'d): B~,':':+1\ - v ," lies in the interior of V x I (because
D~ did); and Bm lies in the interior of M (because cpDx+1 did),
From· ():)) we deduce

(6 ) -1 (Bm\ x+1 BX+1qJ ) ::: B u
'"

cp-1(:8m) (:SX+1 BX) ·x+1
= - u B..,..

','
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By Theorem 6, V x I is homeomorphic to closure (V x I _ DX+1),
and so we can choose an embedding

l1:V x I -7 V x I
tha tis tho id.cntity 01) tside :z?:+1 i m:.d maDS V x I onto closure
(v X T _ nX+1). mh t,~e wo ;[laps

arc both proper and agree on the boundary. Therefore th0Y are
ambient isotopic by Theorel~ 9, because x ~ m - 3, and so there
o:::dstsa homeomor'phism k:Bffi

-7 Brn, keeping the boundary fixerl, such
that

I x I x -nX Bmcp B ::: kcph B :.0 -) ..•

Extend k by the identity to a homoomorDhism of M. Defino cp~ to be
the composition

V x I h " V x I __ .-52_._) M _-E__ > M
-_._--,-"---_._----,-~

CPi

N t· th t t .~ "o.x+ 1 B:::.c.-1- 1 d th 1 d ..p '"'o lce U' 9::: 91 OU SlQO D U * , an 0 on y l~~eronce
b t l·~ to ~ltnr tl b~dd'ng OI~BX+1 ux+1 . Bffi•e woen cp, 91 ~ - ~ 1.e em '"' l S , .LJ;;: In

Theref'ore 'Pi is homotopic to cpo Also 'P1 ::: 'P on (V x It , because
tho o~ly place where they might not agree is BX, and hore they
agree by choice or.k. Therefore 91 ~ cp keeping (V x Ij fixed.

We have completed the construction of one pipe. Notice
that the neighbourhood N I'eferred to in the digl"'essionabove is
£:+1. irhepipe VIas thrmvn up indirectly by the homeomorphism k,.'..•

rather than by drilling directlJT along the path cpP (which might be
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tt d .Q 7 - the:.~mb{~dc~l'J:~~cpIDX+1 .oDx+1 ~ ~,,~npre y rugge II x = ~ - ~,because _~ v ~ ~ .~~ ~ .'1

could then be locally knotted along p).

Recall the CO~;ll;lUtativo diagpam
v x

Since CPi = 'P outside B~ and sinco t'; maps B
homcomorphically onto ~B9 anQ maps no other points into ~B, we can

-1define f1 = 'Pit; lli~ambiguously. Ther0fore
'Pi

V x I ..------- > M
" /'
'0, /1~1

~ /JI

ois com.muta tive. Since l' = fj. outside i;B, and f( J - J0) c M, and

--1
Z:l = t; S ( f 1. ) •

o
'NO have f 1. (J - So) c Al as requil'cd. Let

t';B. Therefore

T,et.B -_ BX+1 U BX...,+1. ~ f ~ ~ 'd.... .Lnen ,1:1. agree QUlJSl e

Since h keeps Z - B fixed,
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h~-1S(f1 1GB) = h~-1S(k~h~-1 I~B), by definitions of ~1' f1,
= S(k~lhB)? because h~-1 l~B:~B ~ hB is a homeomorphism,
= S(~lhB), because k is a homeomorphism,

z Oz z oz)- (D - D ) u (B* - L* "
°z °z .= Z - (D U D~J 9 as rcqu1recl.

Let f (Ai' l\;i)J be the set of pairs of z-simplcxes of L2

of.'ty:pe (ii) or (iil), where i runs over some indexing set. ]'01'

each i we construct a pipe as abovG, using the same subdivisions
K3, .. , K7 of K2" We now verify that the constructions are mutually
disjoint.

Firstly the paths tP. J are mutually disjoint, and. disjoint
1

from UIA.. by pr'operty (L~) above" Also these arc subcomplexes of K4
·"1

and so their second dcr>ived neighbourhoods fD~+'l J are mutually
o.isjoin t? and_ o.isj oint fl"um UA;;~i" Therc fore, using (5) above, the
images [~D~+11 arc mutually disjoint subcomplexcs of'M6• Therefore
their second derived neighbourhoods {B~J are mutually disjoint.

1

Therefore we can define h, k so as to construct a pipe inside each
B·~J. simultaneously.
1

-1As before def'1ne ~1 = k~h? f:1. = CP1 r; •
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pro.2f..

to show that
Since h is an embedding it suffices by Lemma 38

h(V x I) --"'';!h('i,ru T u Z1) --->h7J.
By property (4) each path P. is disjoint froD 0 u T1 and therefore

1.

d . d nx+1 BX+1 - 1 d'" t fthe second erived nC1.ghbourhoo s . 1 . are a so ISJoln rom
1. 1.

W u T. Therefore h keeps W u T fixed1 because h only moves inside
the ~B~+1~. Therefore it suffices to show

..I.

h(V x I)~W u T U hZ1~~.
Now h(V x I) is the sub complex of the cylindrical triangulation
K5 obtaine d by rer:lovingthe open simpli cial ne ighbourhoods or the
fp.}. Therefore h(V x r) is solid because if a simplex docs not

1.

meet UPi1 neither does any simplex beneath it.
For each horizontal z-simplex A E L21 let A' denote the

sub complex of K5 beneath A1 and let f It.Ii. = ii.' n h(V x I). Let
.ill = UA", the union for all such L.• Then A' is solid, ard so is L"

being the intersection of solids, :cmd so is 13being the union of
solids. Therefore VI! u T u E is solid. We have

h(V x I) ~ VI! u T u E ~ V x 1 and so
h(VxI)--,lWUTUE

cylinderwi se by Corollary 2 to Lemma Lt5. Next we have to show

We do this by examining each Ail separately. There are two cases,
according to whether A is the first or socond member of a pair .

• 1. is the first member of a pair. Now A' is a
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(z + i)-ball, because A is interior to the prism ~ x I by

pro:9oI'ty' (2), and so A' triangulatos the convox linear (z + i)-cell

beneath .i..• The subball st(A., A') meets A 'in the commonface nZ,

and so tho complement

AI1 :;: J.l.' - st(A, A')

is also a (z + i)-ball with face F = lk(A, A'). Thorefore we can

collapse across All from F.

A.. is the second member or a pair. In this case
'.'

A~ = h~ and so we can collapso ,\II
J.1. .•.•,

'.'

ZfroLl D....or What is left after all

these collapses is ~ u T U hZ1 by Suble~TIa 2.

Next colla:psc 1:/ U T U hZ1--.. Wu T by collapsing
°z •

A - D '~A
o •/ nZ' ~1'l..." - ." -.,.. ~.~...••..•.. ..•. ..•-.

for all horizonta.l z-sim:plo::es A or A~;. in L2• Finally colla:pse

Wu T-"j W cylinderwise. We have shown

a;:· rcquir·ed.

Defino 31 ::: 8(f1) u i;(T-:-W). Wemust verify that 31 satisfiJf'

the thr00 conditions:

(i) dim J1 ~ z

(ii) dim (Jo n 31) ~ z - 1

(iii) J ---.30 u 31 ·~Jo.

To prove (i) observe that dim S(f1) ~ z and dim T < z.
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Jo n J1 = (Jo n 8(f1» u (30 n F;(rr"- w»
= (30 n S(f» u (1;W n r;(~f- w»
= (30 n S(f» u r;(W n T- 11).

VII

Thercforo
To prove (iii);

dim (30 n S(f» < z, by general position of f.

dim (W n T ~ W) < dim T ~ z.

dim (30 n 31) < z.

J = i;(V 'x I)

JQ U 31 = F;W u r;(ir- - w) u r;Zl

= r;(W u T u Z:1.)

30 = r;'Fv.

Therefore the collapse 3"""" 3 0 u ,J:1. ~ 30 follows from Sublemma 3

by Lemmn 37 because W ~ S(r;). The proof of the piping.leIT~a is
com:plete.

(c.f. Lemma 39)

1~:t~C_J?.~".Q•. £lp~s*~g."..l?-u..b.~.:g.Q...2..~._'?J>~}:~l:L1.;lcht1~.:t.~iLtIILj...Q...D_.~J_~~
I&..:t)c..J)§_C?..9~.P1LC~C_-:.U1~s~n t.t~J-.~.,mLZ'"-..CLl!_c*S...~...._3_h..§.n._th~_§iL.Qr·e,..coona c t
§~9. G!dJ'd .•L 2~~..2..• s~L(~!tJlill.i

X u C c y u C "-CS, Z u C---=-"".--~~,.~~--,,-------...-.,.--...-----

Notice that the interiorness of the collapse
fol:ows trivially from the other result~because....
(X u C) n M = (Y u C) n M = (Z u C) n M = C n M.
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The lemma is trivial if max (q, x) > m - 3, because then
choose X = y = Z. Therefore assume q, x ~ m - 3. Let
z = max (~9 x) + x - m + 2. There are two cases according as to
whether x < q or x ~ q.

Therefore z = q + x - m + 2. Without loss of gener'ality
Vie can assume X = it - C, because if 'lye :prove the resul t for X .:c,
then trivially it follows for X. The C-inessentiality means that
the inclusion X c M is homotopic to a map f:X ~ C by a homotopy
h:X x I -> M keeping ;~ n C fixed. Both f, h are continuous-maps,
not necessarily piecewise linear, but before we make h piecewise
linear we first want to factor it through a mapping cylinder.

Without loss of generality we can assume M to be com}?act.
For if not, re:Dlace M by a compact submanifold M:.;; containing a
neighbourhood of heX x I). (Construct 1\1:;: by covering heX x I)
with a finite number of balls and taking a regular neighbourhood
of their union). Replace C by C n M:;.;' If the result holds for Nt..•.
then using the same Y, Z it also holds for M, by excision.

Therefore assume that M is com}?act, and consequently the
pair M, C is triangulable. By the relative simplicial approximation
theorem, we can homotop f:X ~ C to a piecewise linear map keeping
X n C fixed. Triangulate X, C so that f is simplicial, and let
J = ~X u C be the relative mapping cylinder. Since h realises the
identifications of the topological relative mapping cylinder, we
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can ~actor h through J by Le~na 479
x x I h ) lVI

" /~ /g
J/

where glX u C is the identity.

VII

Again using the relative simplicial approximation theorem,
make g:J ~ M piecewise linear keeping X u C fixed.

J

Let Y = g(~)9 which is one of the spaces to be ~ound.
Th Y X d d· Y 1 I t Y v f-;r (v -Pv)en ::) an 1m ~ x + • ,e 0 = A U .J>.. = g oJ>" U .I..A • Then
Yo c Y. In particular glYo is in general position, because it is

~he identity, and so by Theorem 18 we can homotop gl~X into general

position keeping Yo fixed. At the same time we can ensure that
o 0

g(~X - Yo) c M. There~ore Y - Yo c M. Therefore Y n M = YonM c C9

by the hypothesis X n I\'I c C. The homotopy extends trivially to a

homotopy of g keeping X u C ~ixed, because ~X n C = ~X. Since
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dim (~X) ~ x + 1, the general position implies

dim S(glp,x) ~ 2(x + '1) - m

:>;; z - 1,

VII

"beeause x < q. What we want is dim B(g) :>;; z - 1, but as yet

y = g(~X) IIlay intersect C in too high e. dimension, Qnd so another

general position move is neces8ory.

Let Co = closure The..! dim Co :>;; CJ. by hypo the eis.
o

Since Y - Yo c M, by TheorG~ 15 we can ambient isotop Y keeping

Yo f'ixed, l.Ultil Y - Yo is in generD.l posi tion with respect to Co.

The:::>efore

.= ~~ -.. ',.
Tr.:.ei sotop~r of' Y keeping Yo fixed determines a homotopy of g keeping

x u C 1'ixed" that does not alter s(glp'x) hat does reduce S(g),

because

g ( ~X) n g (.J - p.X) ::: Y (, (C - f'X)

== (Y - fX) Ii C
-- (y f'X - X) Ii C, since XnCcfX

'~T Yo) Ii C.- 1..-'-
0

- (y Yo) Ii CO? s~_nce Y - Yo c M.
Therefore, 8lnce g is non-degoner8te~

Writing J == ~X u (J - p'x), we see tlmt

S(g) - S(g Ip.x) u S(g IJ p.X) U clusure g-1 (g(p.X) n g(.:J - p.X»?
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of which the second term is empty? and ~he other two terms wa have

made of dimension ~ z - 1. Therefore

dim B(g) ~ z - 1.
Novytriangulate the collapse J'-;>C of the mapping cylinder (given

lJY the Corollary to Lemma L~6)? and let T ::c trail B(g). Then

J ~T u C by l,emma 45. Therefore gJ ~g (T u 0) by Lemma 389 be cause

T ::) S(g).

Let Z - gT n Y, which is the other space that we had to rind.

'l'hen

dim r7 ~ dim m~ .L

~ 1 + dim Sf \ by Lemma 44\.g},

~ z.

Now Y u 0 gJ, [J.nd Z u 0 = (0"m n Y) u ,..,= <.;>-l. V

== (gT u C) n (y u 0)

= g( '1' u 0) n gJ

= geT u 0).
Therefore

XUCcYUG~ZUC9

which completes the proof' of' case (3)

Therefore z = 2x - ill + 2. This time we shall need to use

th(; :piping lemma. As before ascume M9 C compact, make f:X -+ C

simplicial, ~nd. let ,..1 - ~LX U C be the relative sim:plicial mapping

cylindel' of f. 'Nitl1out loss of genernli ty Vie C8.n aSS11Ine

dim 0 ~ :;;:; for otherwise Jet C(x) c~')nnte the x-skeleton of C.
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Then fX c c(x)~ Qnd if we prove the lemma for c(x):
X u c(x) c Y u c(x)~ z u C(x)~

then it follows for'C by excision9 because C - C(x) c 1\.1 by the
hypothesis dim (C n o

M) ~ Y. ~ x.

Therefore as surne dim C ~ x. Hence dim J ~ x + 1. IJet

Xo be the (x - 1)-skeleton of X9 and 30 = ~Xo u C the submapping
cylinder' of f IXo. As before construct from the homotopy h a
piecewise linear m3p g:3 ~ M such that g!X u C is the identity.
In particu18r glX u C is in general position9 and 3 ~ X u 30 ~ X u C,
and so by 'l'he(,rcif\18 Corollary 2 we can homotop g into general
position for t~e pair J, X u Jo keeping X u C fixed. At the same

o 0time we can ensure that g(J - X - C) c M. Therefore g(J - C) c M,
obecause X - C c H by the hypothesis X n M c C.

This tilnelet Y = g3. Then Y ~ X, dim Y ,,;; x + 1, and
g(tJ 0)

0y n M c C beco.use Y - C ::: g3 - gC c - c M. Now the triple
x x 3)(+'1 30)

0
X , 30 c is cylinderlH:::;, ~ g(3 - c M and. x ~ m - 3.
Therefore b;)' the pj.ping 10m.Hie; (LCl"fll.1t:t Li.8) we can hom.oto};)g l-::eeping

o
X u 30 fixed and g(3 - 30) c M~ and choose J1 ~ S(g) such that

Trinll.gulatethe mapping cylinder collapse J 0 •••.•• '":1 C given by
Lemm<: :+6 8or~(.)11nI~Y~ and let T = trclil (30 n 3:1.) •

d.im 1":"1 ~ " dim (30 n cJ1)J• .
Then by Lemma 44

~ z..
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Also Jo~T u C by Lemma l-\-5. Therefore Jo u J1.-;T u C u 31

because Jo n J1 c T. Therefore

Therefore by Lemr:c.a38, g.J ~g (T u 31. U C), because 31 ::> S(g) .

Now let Z = g(T 'u J1); then dim Z ~ z becQuse both

dim T9 dim J1 ~ z. We have gJ = Y = Y U C9 and geT u 31 u C) = Z u C,

and so
x u C c y u C"'-J Z u C,

which com};'letes the froof of Lemma 48.

Definition: a 16gul:"'lr nei ghbourhood N of X in IvI is called

~dmt9sibl-~ if the collapse N~X is adrnissible.

9L7~j·I'Jt~~_.l~et :t:J2.e jJ1E: fl'_Q.n..t.Ler_,=9f~~\Lj.LL1!.~_~Jf~.£.N - ~.2 ar&

z.:$Y orL$];.J_1Jl.E;:ll. N is .:;,Q....§.£.. ElD.,,,;'l9l11issibler~£Lu.h1!'11.eJ1illbourhoQ.d

~oj:. If X·~ Y the resul ~ is trivial because then

N-2;. X~Y. Ther>e:foro ~ssume Y -2:,.x. There aro two C'3.ses: the
o

absolute case when X c E and t:i:1e reL ..tive case when X meets H.
o

In the al)sclute CDBC: bath N, Y must also li8 in 1:1, nnd so F

therefore the re:;sul t follows from Theorem 6 CorollaI'Y 4.

.•_ j'T 0- ~',

The rela tive case 1 [3 similar 7 q:nd we indica t3 the ste~9s

of the proof, leaving the ~etails to the reader.

(i) A derived neighbourhood is admissible (c.f. Corollary

to Lemma -]4).
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(ii) 111.lY two admissible regular neighbourhoods are

ambient isotopic (c.~. Theorem 8 (2».

If' N:l..is 8.1'lother admissible regular neighbourhood

or X in M~ and N:1.c N - F, then there is a homeomorJ:1hism.
N:l..such that ~(x~ 0) = 0, X E F and ~(F x I) -

(c.f'. Theorem 8 Coroll~ry 2).

Now~ given the s:~tuation in tlle lemma 9 let N1 be an

.
MnCff-l{),

adn.issible regular neighbourhood of Y in N - F. Then N:l.. is also

dr '] 1 ~ ..p -v' -., ",T' C(, Y a.van a nisslb ..e reg-u' 8.1' neighbourhood. oj. J). In IVl oecm.lse .1.'1 ---=" ~.

Henco N~:N:t c;}i":::"indel'vviseby (iii). TherefOl~e N is an admissible

I'egular neighbourhood of Y because N -S;N1 -~Y. The proof of

J.JGllliUa50 is complet.e.

We now prove Theorem 2-j in the 8pecial case that X n M c C.
o

In :Qarticul[~l~ thlS eovers tbJ:; case 1."-:11or:. X c M.
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f~!l~~ Let C 12.e~a__£1:"colJ.~siQJe ~_:-~~~c;>£~e~9f--,~-,~~n<L.~§t

~~ __1;>8 . ~.Q.L1ill..~~.J..~C_-:igesSel1J;ja~~:~LD.,Ji_cC. Le,1

o
Lot c = dime C n ~,~). The Q-collapsi"bili ty means

o (0.tl1~..I_·t ('Iv•••••.••.• (d, 0 .r1-1c> r"" dJ' m n n 1.7) -" q-.~ • 1 V_",;, I .ll. "" • Of course c > q in general.

We consider separately the three cases: (1) c ~ q (2) c > q > x

(3) c > q ~ x.

(c.f. the proof of Theorem 19).

Thl~ ~9roof' is ')Y induction on x, starting trivially with

x == - 1. Assume th0 ::>e8u1t true for dimensions < x. By Lemma L.l-9
o

choose y~ Z such tlLi.t X c Y U C-----:lZ U C, Z n 1·,Ic C9 and

z == dim Z ~ maz (q, x) + x - ill + 2.
rrhere:fore z :r; k by th.e hy:,;othesis x + ~il3.X (q, x) ~ rn + It - 2.

TheI'efoJ'(:3 Z is C-inessential. Also z b;y th2 hypot:1csis
o

X ~ m - 3. ThereforE b;! inductjon we can enguli' Z c E ~C;.

with d:.m (}~ - C) ~ z + 1 ~ A, and L n iVl ::: C n H. Apply Lemrria Lj.2

to the situQtion
o

y. u C'~Z u C c E,

ancl a' nbient isotop H, to E l\:eeping Z U C fixed so that
. 0

(y u C) u E';"---'IE;;;. Since D.mblent isotopy preserves interior'
<)

coll::psibility we h:cive 3:---..,;C. Thcre:~-'ore putting D = Y u C u E,.,.~-.'
o 0

we hnve D --:I E,.. --.:-''::; j 2nd 80

o
)~c ri--~C.

Also dim (D - C) ~ x + 1 because D - c - (y -- E.) u
\ "j

(E.
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dim Y ~ x + 19 and dim (E.;; - C) = dim E - C ~ x.

Qas_q_l?J.; .._._CL~L..9..2~"~
o

Let C-~Q be given by q-collaJ?sibili ty. 'Ne can choose

Q so that X n C = X n Q; for if not let T = trail (X n C) under
o

some triangulation of' the collapse C--~ Q,. Then dim T ~ x + 1 ~ q
o

by Lemma44, and C~~, u T by IJemmaL~5. Therefore Q u T is as

good a candidate as Q in the definition of q-collapsibility. In

fact it is better becnusa X n C = X n (Q u T).

Therefore we cell 8u:p:poseX n C = X n Q. Therefore
o

X u C ---=-X u q by excisioit9 and X n Mc "~' The deformation

retraction C ~ Q ensures that if X is C-inessential then X is
o

Q-inessential also. Therefore by case (1) we can engulf X c E ~Q.
Apply Lemma42 to the situ&tion

o
Xu C"-,.."X IJ QcE

and e.mbient isotop :ill to Eo" keeping X u (~fixed, so that
'j'

(x u C)
o

u E,., --....." E.,.•
• ' .J.~

Let F = X u C u E~. o 0

Then F-;.K,.; ~Q9 because
o 0 0

E '~~. Therefore F :J C :J ':J9 F~.~ ane. C -'''; Q,.
o

If we could deduce th:J.t F --.-) C we should be finished'9 but

this cannot be deduced, as is shown by the example at the end of

Chapter 3. Therefore ,"V8 have to get I'm.met the diff'icul ty by talcing

a regulRr neighboul"hood of F; but it is necessary first to restrict

attention to a compact subset in order that tbB r8gular neighbourhood

shou.ld exist.
-_.-~----Let 1'.1;1 be a regular neighbourhood of F - q in M. Let

C19 F19 ~h denote th0 intersections of M1 with Cjl F9 Q respectively.
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o 0Then Fi --~ l~hand Cl ~ C:h in VIi because none of the collapses
meet the frontier of Hi. Let:n be an admissible regular neighbourhood
of Fl in Mi. Then Cl does not meet the frontier of N because

-r.!~l' also have N an admissible
regular neighbourhood of Cl in Ml, by Lemma 50. Therefore N-->Ci•

Adding C - Cl to both sides, N u C ~C by excision. Now
x c F C Fi U C c N u C. Let D = trail X under some triangulation of
the collapse N u C--"'/C. Then X c D~C by Lemma 45, and
dim (D - C) ~ x + 1 by Lemma 44. By Le~lla 43 isotop D keeping..
X u C fixed so that D n 1'.1= (X u C) n M = C n M. This completes
the proof of case (2).

C~ s~j)~~~-> ..9.. ~ "_x
oLet C ~~~ be given by the q-collapsibility. Triangulate

X u C· .:.~-Q, so that X is a subcomplex, and subdivide if necessary so
that C ~Q collapses simplicially. Let TX be the trail of the
(x - 1)-skeleton of C~ Q. oThen C ~ T u Q by elementary simplicial
collapses of dimension ~ x + 1. It is valid to perform these on
X u C because although an x-simplex of X may occur as the free face
of some elementary collapse, it is nevertheless principal in X,
and therefore remains a free face when X is added. Therefore

where Xi = (X - (C - (T u Q») u T. We now want to engulf Xl from
Q.

Observe that dim Xl ~ x because dim T ~ x. Also
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x~ n M c (X u C) u M = C n M = Q n M c Q. Since X is C-inessential,
so is X u C, and therefore so also is X~. The deformation
r'etr'action C ~ Q, ensures tha t X~ is Q-inessential. Therefore by

ocase (1) we can engulf X~ c E ~ Q. Apply Lemma 42 to the s1tuation
o

X u C -;:I X:1. U Q c E 1

and proceed as in case (2). The proof of Lemma 51 is complete.
The problem of proving the general case of Theorem 21 is

.that the deformation of X into C may involve some boundary-to-interior
type collapses, and so the engulf involve the inverse process
interior-to-boundary type expansions. But when we try to expand
interior-to-bolil1.clarywe hi t an obstruction, because there is no
room to push other stuff out of the way. We drew attention to this
situation at the end of the proof of Lemma 42. Therefore we
introduce a device of Moe Hirsch to cope with the difficulty.

InwaL.C!&. 9gl:l;.apsing.

~~JEi_tjoA: Let K ~ L, J be complexes. We say that an (ordered)
simplicial collapse K~L is ~vau.fy~ J if J n trail W = J n W for
every subcomplex W c J.

Example Let K be a cylindrical triangulation of X x I.
Then any cylinderwise colla:;?seK ~base X x 1 is away from the top
X x O.
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Let s denote the collapse K--~L, and t the
induced collapse K'~L u trail W given by Lemma 45. The elementary
simplicial collapses o~ t are a subset of those of s, with the
induced ordering. If V c K, trails V is obtained by adding to V
an ordered set of simplexes, while trailt V is obtained by adding
a subset; therefore trailt V c trails V. Therefore

J n V c J n trailt V c J n trails V = J n V,
because s is away from J. Therefore t is also.

Definition. Let X~Y in the manifold M. We call the..~ -- '

collap se l.llwa.r.d~9and wri te x....:f..;y if, given any tria.ngula ti on of
X~~, there exists a subdivision and a simplicial collapse
.......,~.-=-..•..- ~;~-'~ ;~':II.~ TIt'(X - Y 'A - ':{ n Y away from .A - Y n .'.u It follows at once from the
definition that y is invariant under excision:

x '~X n Y <=> X u Y ~ Y

;t0c...§mp 1e •

Let M be compact, X a collar on M, and Y the inside boundary
of' the collar. Then X --1;; Y, because given any triangulation of X
there exists a cylindrical subdivision and a cylinderwise collapse
away from M.

L-iLI}ll!l~L~J__(JLi 1's.£hl

L~..t,Q..J?..9_~0....9..::.9~9l:tansibJ-a k..::Sl9t::'L ot:.JvL~.9JJJ2.Il.o_say~~ Z.z..aJ:~~
.c21f1E.a,cb_.:J. :J_,j~_.Q. ,9_::::S.;.z...-1L~q..&-,g;....J.l=L_Q.::.i.ll§ s~en tJ1?-l9 anQ..~-Ll...rt_s.....9 • L~ t
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VII

The proof is by induction on Z9 starting trivially
with z = - 19 for then choose D = Y u C. Therefore assume the lemma
true for dimensions less than z.

Since z ~ Y9 the hypothesis of Lemma 51 is satisfied for Z9
oand so we can engulf Z c E~C9 dim (~ - C) ~ z + 1. By Theorem 15

ambient isotoD £9 keeping C u Z fixed9 lli~tilE - (C u Z) is in
general position with respect to Y.

Let W = closure (Y n [E - (C u Z)]). Then
dim W ~ y + (z + 1) - m.

Now N c '(Yu C) - -(Z u cr. Therc:fore triangulate (Y u Cr-: (Z u C)

so that W is a subcomplex. By the definition of y there exists a
subdivision and a simplicial collapse Y u C~Z u C such that if.
T = trail W9 then T n M = W n M.
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~e claim that Y~ T~ E satisfy the hypotheses for Y~ Z~ 0
in the le~na. Once this claim has been established~ we can appeal
to induction~ because t == dim T

~ 1 + dim W~ by Lemma 44
~ y + z + 2 - m
< z~ by the hypothesis y ~ m - 3.

Therefore by induction engulf Y c D~E. Therefore Y c D~ 0 because
oE ~O. Thererore Y c D~O because D~E~O. Finally

dim (D - 0) ~ max (y~ z + 1), because
dim (D - E) ~ max (y, t + 1), by induction~ and
dim (E - 0) ~ z + 1~ by choice of E.

There remains to establish the claim about Y, T~ E
satisfying the hypotheses.

oFirst E is q-collapsible because E --~O. Next E is a
k-core becauso 7C.(E~ 0) == O~ all i. Next T is compact~ because W

J.

is compact. Next Y ~ T because Y ~ W and so~ taking trails under
the collapse Y u 0 -"1 Z U 0,

Y == trail Y ~ trail W == T.
Next Y u E '~T u E by excision~ because Y u 0 -y"'T u Z u 0 by
Lemma 52, and

(Y u 0) u (T u E) = Y u E
(Y u 0) n (T u E) == (Y n (T u E)] u 0

== T u (Y n E) u 0

= T u [tV u Z u(YnO)]uO

== T u Z u O.
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Next T is E-inessential because E is a k-core~ and
t = y + z + 2 - m

~ k, by the hypothesis y + z ~ m + k - 2.
Finally the dimensional hypotheses are satisfied because the only
change is to substitute t for z~ and t < z. Therefore the proof
of Lemma 53 is complete.

3e=1a.t:i..y_~__~olJar:s~~
Let M be compact~ C c M, V c M. We construct a collar on

V mod C in M as follows. Let c:M x I ~ M, c(y~ 0) = y~ Y E M be
a collar on M. Choose a cylindrical triangulation of M x I, and
a triangulation of M such that V, C arc full subcomplexes and c
simplicial. (This can be d.one as follows: first triangulate the
triple M, V, C~ noxt take a first derived, next subd.ivide to malte
c simplicial~ then subdivide to make M x I cylindrical, and finally
extend the subdivision to M). Choose 8 > 0 such that M x (0, 8]

contains no vertices. Let f:V -~ [0, .s]be the simplicial map
determined by mapping vertices of V n C to 0 and vertices of
V - C to 8. Define

Vi = tc(v, t); V E V~ 0 ~ t ~ fvJ
V2·- tc(v, fv); v E vj.

We call Vi a ~oll.§..ro.n":'[J!l...2.¢l..Q.J.lL1!, and we call V2 the ip.§J"g.e
bOBn~£Y of the collar.
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Suppose, ~urther, that we are given XX c M such that
dim (X

.
n ,Iii)

.,I.'U. < X~ and that we chone the tri~ngulation o~ M so as
t.') have X a subcomplex.

1en~.

o
i i i.L-V1. ::;::->:::!_y _ilL ('1".. ~11·
1Yl__ ili!r.~.J.X 0 V2 )~jC-:..

P~q-.2f..
o

i) If v E V - C~ then v E A, some si~plex A i C. The.
fibre v x [0, fv] c int [st(A x 0, M x I)] because
the triangulation is cylindrical, and because of our
choice of 8. Thererore the image c(v x [0, fv])does



- 78 -

not meet C. Therefore V1. () C = V () C. l{ext

VII

V2 n C = V n C because V n C c \[2 C V1.. Finally
V n M = 1'-10 = V n C9 because V n C is full in V.2

ii) V:1. --r....,. V2 because take a cylindrical subdivision such
that V1. is a subcomplexs nnd collapse cylinderwise
away from V.

iii) Let p:M x I ~ I denote the projection. aIf A E M

iv)

meets V1. - V then pA is 1-dimensiona15 and A n V2

is a convex linear cell of dimension a - 1 separating
A into two componentss one of which is A n V1..
CQ11crpse across A n V1. from A n V2 for all such
simplexes A not in Xs in order of decreasing dimensions

oand we have the collapse V1. --, V u eX n V1.).

If .r!. E
v then either A Ii V2 C ~!!s vvhence.lI., .

dim (i Ii V' ~ dim eX Ii M) < Xs by hypothesis~ or~t 2 )

else " n V2 contains an interior points whence.L.~

dim (A n V2) < dim A ~ x. Therefore dim eX n V2) < x.

We m.'8 given X c M: to engulf, where ;~ is C-inessential,
C is a q-collapsiblc k-cores and

q~m-3
.i~ :.f; m - 4

q + x ~ n + k - 2

2x ~ m + k - 3.
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Let Y be a col12r on X mod C, with inside bOill1dary Z. We now
want to apply Le~~a 53, and so let us check the l~potheses. First
Y u C ~z u C by excision, because Y ~ Z and Y n C :::Z n C by
Lemma 54 (i) and (iv) • Next Z is C-·j.nessenti2.lbecause the collar
furnishes a homotopy from Z to X keeping X n C :::Z n C fixed, and
because X is C-inessential by hypothesis ..

Next Z n C :::Z n M c Iv~? by LemlTl1J.54 ( i ). Finally the
dimensional hypotheses are satisfied because y :::Z + 1, z :::x.
Therefore by Lemma 53 we can engulf Y c D~C. Therefore
XcD~CbecauseXcY. Next

dim (D - C) ~ max (y, z + 1) :::x + 1 ..
Finally we can choose D so that D n M :::(Y n C) n M by

Lemma 43. ThG proof of Theorem 21 Case (2) is complet3 .

.
H~~ ...Q.. .c ltl..Lt X £.91~ ct. cU}.•CL Q -:-i ne 9..§_e.~]..i,t~J~.2~..a.n.CI._,.§.j1!L.1J;.. n_ID_<: ~

"+1 x ~~!£1_eIl~r~r~~i si. l!iT
A -k~ti~l_.Q=-~ ..§.§!F~!-...LaJ--1-.§l!-cll.that

/S--£" W .•1L 9 ::;Y__V-_.9%-:S;'~~-.Jd,..,.Q



•

- 80 -

---

VII

---

The important part of the le~~a is to get
Z n M c C and the v-collapse.

P£.99f. Without loss of gen2rality we may aS2ume M
compact5 for otherwise replace M by a regular neighbourhood of X
in M5 and perform all the constructions therein. Let--~~-

Xo == eX n l~) - C

Co == Xo n C.
We assume Xo J ~~ otherwise the lemma is trivial: X = W == Y = Z.
Triangulate M such that Xo and M n Care subcomplexes and take a
first derived. Let Vo be the closed simplicial neighbourhood of
Xo - Co; in other words Vo is the union of all closed simplexes
of M meeting Xo - Co' (Notice that Va may not be a manifold at
points of CO~ and is thorefore not a regular neighbourhood in
general) . 'Ne deduce
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( 1 ) Vo·--'" Xo 9 by Lemma 1 L.j. Corollary.
(2) Va n C = C09 because of the first derived.

VII

Let V~ be a collar on Va mod C in M9 with the proviso that we have
X a subcomplex during the construction (so that LemIJ1s54 is
appli cnble) • l,et X~ be the subcollar on Xo 9 and let V 29 X2 denote
the inside boundaries of the collars. We claim:

(3) V~ n X -.: Vj. = X n V2

(4) dim (X n V2 ) ~ X - 1

(5) V~ u X u C~X u C.
(6) V~ ~ Xj.

0

U V2 -....,.Xj.

To prove (3)9 let Fa = frontier of Va in M9 and let F~ be the
subcollar on Fo' Then

Fa n X = Fo n Xo

= 009 because Va is a neighbourhood of

= Fo n C.
Therefore by construction F is a collar mod X as well as mod C.
Therefore F:t n X = Co by IJemms 54 (i). Therefore

Vj. n X=- V:t = X n (frontier of Vj. in M)
= X n (F:1. u V2)

= Co u (X n V2)

= X n V2•

(4) follmvs from Lemma 54 (iv). To prove (5) observe that
V:1.-~Vo u (X n Vj.) by Lemma 54 (iii). Next Vo u (X n V~)~X n V:1.
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by excision from (1), because Vo n (X n Vi) = X n Vo = Xo.

Therefore Vi---.,lX n Vi by composi tion, and so Vi U X U C ········~x U C

by excision, because

Vi n (X U C) (Vi n x\ U (Vo n C) by Lemy)1a54 (.)= I.J \1

(Vi n ~r) U Co by (2)= ),.

To prove (6) observe that V:t--Y.JXi U V2 cylinderwise away from Vo•

Next V2 ~X2 by (1), because the pair' V2, X2 is homeomorphic to

Vo, Xo. Also V2 n M = Vo n d by Lemna 54 (i)

= Co by (2)

= X2 n M, again by Le~~a 54 (i).
o

f V .-.....There ore ::3 -I X2 •
o

Therefore Xi U V2---~X1 by excision because

Xi n V2 = X2• The proofs of (3, 4, 5, 6) are complete.

Let Ti = trail (X n Vi)' T2 =: trail (X n V2) under some

trio.ngulation of' the composite collapse (6). Let

W = X:t u (.ri U (X - Vi)

Y = Xl U T2 U (X - Vi)

Z = X2 U T2 U (X - Vi)·
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M

M

/' c:x:t.
I..........". ~

~ I X:a
I

Y T:a '~
"·x w z

We must now show that W, Y, Z satisfy the properties in
the Lenlina. First dim ~N ~ x + 1 and dim Y, Z ~ x because

dhl X:t ~ 1 + dim Xo, because Xi is a collar on Xo,.
~ x, by the hypothesis dim (X () M) < x.

dim Xs ~ x - 1 , because X2 is ho:t:i.eomorphicto Xo·

dLn T1 ~ 1 + dim (X n Vi) , by Lemma 44

~ 1 + x
dim T2 ~ 1 + dim (X n V2)

~ x, by (4).

Next Vi u X U C is (X u C)-inessential by (5), and therefore is
C-inessential because X is C-inessential. Therefore W, Y, Z are
also C-inessential because they are subspaces of V:t U X U C. Next
x c Vi! because

o
Next we have to show W u C-~Y u C. First observe that
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X~ U T~~X1 U T2 by Lemm~ 45 Corollary; moreover this collapse
is interior for the following reasons. If rri = trail (X ()Vi)
under the first part of (6), then.

Ti n M = (X n Vi) n M, bJi7the propertJ.T "(,

= X n Va
-,r= '/:"'0·

Also T~ - Ti C Xi U V2, because it comes frow the second part of.
(6), flnd so (T:l.- Ti) n lV1 C (x~ U v2) n M = Xo, by Lemma 54 (i) ..
Thorefore (X~ u T~) n M = Xo = (Xi U T2) n M. Therefore

oXi U T~--~ X~ U T2• We can add C u X""":v;..- to both sides because

= Co, by Leoma 54 (i)

C T2•

lr i n X"~V; C V~ n X- - v7
= X n V2 by (3)

oTherefore iN u C "---;Y u C by exci sion.
Next X~ ~ X2 by Lemma 54 (ii). We can add

C u T2 U X - -v7 to both sides because
Xi n C = Co C X2, by Lemma 54 (i)

x~ n X· - V""; C Xi n V2 = X2, by (3) •

Ther'ei'ore Y u C --Y.,. Z u C by oxci si on.

Next X, W, Y all ~eet M in the same set because X n Vi'
Xi U T1' Xi U T2 nll meet M in the same set, namely Xo. Finally
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Z n M c 0 because

(X2 u T2) n M c V2 n lVI

~ Vo n C by Lemma 54 (i)

c C, and

(X - V1) n M c (X - Xo) n i
c C, by definition of Xo.

VII

The proof of Lemma 55 is complet6.
~,.

Proof 9£_ TEE3.2Fem li~Q~~,§~~~ .
We are given X c M to engulf, where dim (X n M) < x.

X is C-inossenti~l where C is a q-collnpsible k-core, and

q, x ~ rn - 3

q + x, 2x ~ m + k - 2.
B;y Lemma 55 choose vyX+1, yX, ZX such that X c \IV U C -~.}y u C ~:£.":"Z U C.

Since Z is C-inessential and Z n M c C we can engulf Y c D~C
o

by Lenuna 53. A}?ply Lerllfl1a42 to the situation W U C ~y u C c E,

and ambient isotope E to E~;:, keeping (Y u C) u M fixed, so that

('IVU C) u E,;,--.E,,:. Let D == W u E;; == (W u C) u E;;;. 'l'hen

X c D-~ C because D-~,E·~C. Also dim (D - C) ~ x + 1, because

D Ti'., C "1,1 - Y- ~". v ,

dim (D E.,. ) ~ dim V{ == x + 1,
"

E~> - C '" E - C,
'6"

dim (R., - C) == dim (E - C)
'"

~ lilax (y, z + 1 )

== x + 1 •
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Finally we can choose D such that D n M :: (X u c) n M by Lemma 43.

This completes the proof of our main engulfing theorem,
Theorem 21.

We conclude this chapter with an application of engulfing,
a theorem of John Stallings which implies the uniqueness of structure
of En. More precisely, given two piecewise linear structures
(::pOlystructures) on En (there arc obviously infinitely many) then
they are piecewise linearly homeomorphic, provided that they are
pieceWise linear manifold structures, and n I 4. The case n :: 1 is
trivial, n :: 2 is classical, and n = 3 is the Hauptvermutung Theorem
of Moise. We shall prove the case n ~ 5 •

.Q.~_stj.9.p.~~ ~~2.Y_s.E.J t _t£:H~_!2J' n_= 41-
The proof below fails for the same reason that the Poincare

Conjecture proof fails.

This is the Hauptverwutung for manifolds. The obvious case
to look at is:

~~2..1:L.i: ~~.jJ1e_.d_'2..\!_bles.us.]ensi91L.2f_a PotI}ca~_~...Jillllere
~2.lL()}_9,g.~gall::Y_.Acmlq2llorJ2l1i.q.to_S5?

By a Poincare sphere we mean a closed 3-manifold M3, which

This car..not be a

is a homology 3-sphere, but not simply-connected.
. f' 1\T3. t t1,. .. 81.,.-,J[3sus~9Emslon 0 m 1S he same as 110 J01n ' "'lla •

The double
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polyhedral sphere, because the link of a i-simplex on the
suspension ring 81 is M3, not S3.

VII

Call a manifold M 9.~n if it is non-compact without
boundary, and its structure has a cOlmtable base. This is
equivnlent to saying there is a triangulation of M by an infinite
complex, in which the links of vertices are (m - i)-spheres.

The key idea of Stallings is the following definition.
Let M be 2-connected. We call M 1-connect~d a~ i~fin~t[ if given
compact P c M there is a larger compact Q c M (Q is not necessarily
a subpolyhedron) such that M - Q is i-connected. This is equivalent,
by the exact homotopy s8quence~ to saying that the pair (M, M - Q)

i8 2-connected. The property is topological~ independent of any
structure on M.

gamplCL1...~

If m ~ 3, Em is 1-col~~ected at infinity.
Whitehead's example M3 (given in Example 1

after Theorem 19 Corollary 3) is a contractible open 3-manifold not
A

i-connected at infinity. In fact, if S' is the curve not contained
in a ball~ and Q is compact ~ 81, then the fWldamental group of
M - Q is not finitely generated.

The interior of Hazur's example M4 (given
after ~~itGhead's example) is a contractible open 4-manifold not
1-coru~ected at infinity. In fact, if D2 is the spine, and Q is
compact ~ D2~ then the fundamental group of M - Q must contain
~i(i~)as a subgroup. The dimension 4 is not significant in
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Mazur's examples, because Curtis has given similar examples for
dimensions ~ 5.

It is no coincidence that we use the same examples to
illustrate non-engulfability and non-connectedness at infinity; in
fact the idea behind the proof of Stallings theorem is that
connectedness at infinity implies a certain engulfability.

T.hg...ol'-.?m .1~_._~~1lJ11~)
L~j:,MID be~_~9.9ll.i£ftCLtible _o~n manif.'old, i:_9.Q.nIlecYed__at

:m miD%J11i.tx. If ..E12~ tp.~n M = ~
Proof.--.-".'-=-=-- Let P be a compact subspace of M. The main step

of the proof is to show that Pis con tal.ned in a ball. We cannot
engulf P directly because it is not in general of codimension ~ 3.
Therefore we have to start indirectly by engulfing a 2-skeleton of
M l1away from P". So choose a tl""iangulation of M by an infinite
complex.

By hypothesis, choose compact Q ~ P such that M - Q is
i-connected. It is important to observe that Q is not a
subpolyhedron in general (in order tl1at the definition of
i-connectedness at infinity be a topological invariant). Forget P
for the moment. Let

x = union of all 2-simplexes meeting Q
Y = union of all 2-simplexes not meeting Q.
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In the diagro.n the 2-skeleton is represb~ted by P. i-skeleton.
2-conn0cted th0 inclusion X c M is

h0li1oto:picin M; keeping X 1'1 Y fix0d~ tv a map t':X -7 M - Q. vYe can
assume f is piecewise linear, oy using the relative simglicial
approximation thE;crem in M - Q~ keeping X n Y fixed. (Since M - Q
is open in M it is also a piecewise linGor manifold). By Theorem
15 ambient isotop the inagc fX in ii/I •• ;~ keeping X n Y fixed; so
that fX - (X n Y) is in general posi tion wi th respect to X n (:/I - I.;J).

Since both are 2-dimensional in ~ 5 dim0nsions~ they are disjoint.
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Therefore fX n X = X n Y. Let C = fX u Y. Then C c M - Q.
C is connected because it is the image ~~der f u 1:X u Y ~ fX u Y
of X u Y, whicll is connected, being the 2-skeleton of cOllilectedM.
Therefore ~o(C) = 0 and ~1(M, C) = O. Therefore C is a 2-collapsible
i-core.

Now X is C-inessential in M because X n C = X n Y, and
the inclusion X c M is homotopic to f:X ~ C keeping X n Y fixed.
?~tting k = 1, q = x = 2, m ~ 5 the hypotheses of Theorem 21 part (1)
are satisfied. Ther8fore we can engulf X fro~ C.

Let U = l':~ - P. Then U :J 11 - Q :J C. Therefore by Lemma 41

there is a homeomorphism h:M ~ M isotopic to the id~'l"l.tity keeping
C fixed, such that hU :J X. Therefore hU :J X U C :J X U Y. Therefore
hP does not meet the 2-skeleton X u Y. We have achiev0d our first
objecti ve of pushing P off the 2-skelcton. This mLl1ceshP "effectively"
of codim 3, and so we c~n now start engulfing hP in a ball.

More precisely, notice th8t since hP is compact it does not
meet a neighbourhood of Z u Y. Choose a second derived of M such
that hP does not meet the second derived neighbo~rhood of X u Y.
Therefore hP is contained in the complementary second derived
neighbourhood of the dual (m - 3)-skeleton. Again using the
compactness, hP is contained in the second derived neighbourhood N
of some compact subspac-: Z of the dual (m - 3)-skeleton. N is now
a regular neighbourhood of Z, because Z is compact, and so N--;Z.

By Theorem 19 Corollary 1 Z is contained in a ball.
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Therefore N is contained in a ball, B saY9by Lemma 37. Therefore
P c h-1B9 because hP c NeB. We have completed the main step of
the proof, which was to show that any compact subspace is contained
in a ball.

We now use this result to cover M by an ascending sequence
of balls {B.] as follows. Choose a triangulation of M. Since M

1.

is connected the triangulation is countable, and so order the
.... For i > 1, define

The proof of Theorem 22 is completed by:

B. inductively to be a regulQr neighbourhood of a ball containing
1.

A. u B. 1. Then {B.] is an ascending sequence of ballsy each
1 1.- 1.

contained in the interior of its successory such that
UB. = UA. = M.
1. 1.

~e2llin~2h

If.Mm .J,s th~_ un:Lon
in thEt,~nterior

Proof.
of its successor, then Mm ~ Em.--. -_......•.••....•~-- .... --_ ..~.~

Let Em = U~., the ascending sequence of m-simplexes91.

each in the interior of its successor. Choose a homeomorphism
f1:B1 ~ ~1' and inductively extend fi_1 to fi:Bi ~ ~i by the
combinatorial annulus theorem (Theorem 8 Corollary 3) which says

B---- ~ ~ sm-1 Ithat Bi - i-1 ~ ~i - i-1 - x.
The two corollaries to Theorem 22 are also due to Stallings.
Q.Q£ollar;y:1. Th .. l' t t of ~IIm_.ep1.ecowJ. so lnear _~ ruc ure. !\

m....a 52 is uni..@e up to h0.11!£2.rn.2£l?hism.
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m qCopolla"rX 2. Le-.i.1V1,Q: be contrScctible _2lli'3nma:g,ifolds.
If m + q if: 5 the11.lL~_("l= Em+q•

This result is interesting in view of the non-trivial
examples above.

It suffices to show that M x Q is 1-connected
at infinity, and this is done using algebraic topology. First,
if m ~ 2 then Mill has one end because H~(M) = Hn_1(M) = o.

Therefore if both m, q ~ 2 we can find arbitrarily large
compact subspaces A c M, B c Q such that M - A, Q - B are connected.
Therefore

(M x Q) - (A x B) = M x (Q - B) u (M - A) x Q
is 1-connected by Van Kampen's Theorem, becQus0 in the free product
with amalgamation both sides are killed by the amalgamation .•

On the other hand if m > q = 1, then Q = the real line9 and
so choose B to be an arbitrarily large interval. Then (M x Q) - (Ax B)
is homotopy equivalent to two copies of M sewn along M - B, which
again is 1-connected by Van Kampen's Theorem.

While discussing Em, we mention the analogous result to
Theorem 10 for spheres.

~mma 5..L..
!:mL.S?£.ierl1f.rt.:L2.n__pres~£'yjtlg l.l<?meomorplli.§A1_of Em is 4•.?IilbieIl1

i§2.t2l?i£.to ._the ideIl~1;lt,y~
Proof. Given a homeomorphism f, first ambient isotop

f to g, where g keeps a bell Bm fixed, as in the proof of Theorem 10.
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Nmv embed Em - 13 in n simplex /J.monto the complement of the
barycentre~. The restriction glEID - B extends to a continuous-

,... "homeomorphism h:/J.~ /J.by mapping /J.~ /J.,that keeps /J.fixed and is
"pi_ecewise linear except at /J.. By l•.lexanderts Theorem (Lemma 16)

h is isotopic to 1 by an isotopy H:/J.x I ~ /J.x I that keeps !J.and
,...

~ fixed, and is piecewis0 linear except on !J.x I. Therefore the
,...

restriction of H to !J. - /J.deter~ines a piecewise linear ambient
. t f ~m . t 1lSO opy 0 ~ movlng go.

g,emarlt..:.. Let P denote the group of piecewise linear
homeomorphisms of Em, and let L denote the subgroup of linear
honcomorphisms, which deformation retracts onto the orthogonal
group. Therefore both P, L have two components, corresponding to
the two orientations of Em. However this is a deceptive remark,
because the Lie group topology on L is not the same as the topology
induced from P. The higher homotopy groups of P arc not known,
but they ure known to differ from those of L.
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Chapter 8

--- ..

In this chapter we wish to classi~y embeddings

of one manifold in another. IIClassi~y" means sort

into equivalence classes and then list the classes.

The natural equivalence relation to use is ambient

isotopY9 bec~use this has the same geometric quality

as the embeddings. In Chapter 5 we saw that ambient

isotopy was the same as isotopy. Listing is done by

means o~ algebra9 and the way to pass into algebraic

topology is via homotopy theory. Geometrically the

notion o~ homotopy is a horrible idea, because during

a homotopy a nice embedding gets all mangled up. But

the virtue o~ homotopy theory is that the homotopy classes
o~ maps are o~ten ~inite or ~initely generated, and

~requently computable, and so out o? the mess we get

something interesting. There~ore our classification
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technique will be to map the ambient isotopy classes
of embeddings (geometry) into the homotopy classes of
maps (algebra). If this map is an isomorphism then
the algebra classifies the geometry; if not then we
have a knot theory to play with.

Let M be a closed manifold and Q a
manifold without boundary (open or closed). We say
M ~P2t£ in Q if any two embeddings M c Q are

ambient isotopic ,\'=---4 homotopi c.
Otherwise we say M knots in Q.
E~a~~l~_iil The classical example is S1 knots in s3.
A knotted curve is homotopic, but not isotopic, to a
circle. Similarly Sm knots in Sm+2, m ~ 1, and this
kind of knotting is characteristic of codimension 2.

by Corollary 2 of Theorem 9 in Chapter 4.
It is the latter example that we want to generalise

to arbitrary manifolds, and in Corollary 1 below we
giVE: ou.L'f'icicl"J.tcondi tions for M to unknot in Q. While
proving an unknotting theorem it is natural to prove
an embedding theorem in the same context, the relation
between the two being explained as follows. Let
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lso(M C Q) = ambient isotopy classes of embeddings (geometry)
[My Q] = homotopy classes of maps (algebra)

[M c Q] = homotopy classes of embeddings (hybrid).
There are natural maps

lso(M c Q) l-L [M c Q] A Q]."._.~---~ ----~[Msurjective injective ",
To say that M unknots in Q is the same as saying that l-Lu

is bijective. The main results of this Chapter are
Theorems 23 and 24 below, which give sufficient conditions
for A and l-L to be bijective. In other words conditions
for there to be a classification isomorphism

lsoOd C Q) ~~ [l\!I9 Q].
Remark.<--=" ~.. "='~' .•.." We think of a "knot" maJ2.wtst?,9as an isotopy
class of embeddings. Other authors, notably Fox, prefer
to think of a "knotll s~t\IViseas an isotopy (or homeomorphism)

class of subsets. Clearly the mapwise definition is
finer than the setwise9 because potentially it gives
more knots. Therefore our mapwi se unt:notting theorems
are stronger. However our preference for a mapwise
rather than a setwise approach is dictated by our aim
to classify knots in terms of homotopy.
St§ttt?l1L~toJ~-=m_a.inth.e()rELms. Let Ir9

Qq be manifolds
(with or without boundary). We shall always suppose that
11 is compact. We shall state the theorems in relative
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~orm; the absolute ~orm can be deduced by putting
M =~. Throughout this chapter let

d = 2m - q.

The letter d stands for double-point dimension because
this would be the dimension o~ the double points were
an a~bitrary map ill~ Q put in general position.
Ern» E? d..c1iDE. The ore1!l23. ( Irw in) Le t .~ :M :-+ Q.. t?JL a"II§.J2~
.s.Ecll~JJ1a~ 1~1ts a1l.~e.Q.cli..nJL_oL1~ in~~~TheJ}J~.J,?
h,9I11otopic.to iL pr:9;Qel?_.e.rnl2.e_ciCiinglCT~~tPK. ~lLtx~d7 J2X'ovi-<i~c!

Remark,.~---~

{m ~ .•£1.-.3

{J M 'T~~_4.::.5?..?~1J:11~e.s,~~d

1..5? is .1-d+ll:-cC2p.ne~t.e<i.
As usual we always assume everything to be

piecewise linear, unless we explicitly draw attention
to the contrary. However Theorem 23 is an exception.
Because of' relative simplicial approximation, it is only
necessary to assume that f is a continuous map such that
f'IM is a piecewise linear embedding; we can still deduce
the existence of a piecewise linear embedding homotopic
to~. In other words this is the strongest way round:

continuous hypothesis ==)piecewise linear thesis.
In the following theorem everything is piecewise linear.
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lL~:qE~t.tinKTheorem 24. k~_tf'?_Jl:~.1..:::...Qp_~"~t}'V_q~

W_<m.er SlTJ?!~.£..?JJ1~__~u~h_ t~?.!,LIiL~~~ ~f ~.E.._~1'~

homot()]i c lfeeJ2ing r:1J'ixed--.1;~e1L.the.x.are ambJenJ....J;~Q.!2.Q..t.£

keeping Q f'ixed, provided

{ !1L__~Jl==-.2

{&1-),S . (g.+1l-_<;Lonn~£~~q.
i 'i is (dt2.l-co®ecJ~~d.
\,

In the absolute case the two theorems can be combined
to give.

Cor_ollarY 1. LE?t_1L"t>~_c;lo~~9--!llLg.~t!,ithouDo~E~qa~l..:..
'rl.ten.M.unli.n.Sll§..2n Q.L.Qnd Jso(M~~...Q.)~ .b1, QL provid_~d

r ill...;·~•..JL ..::•.2
" M. is,l d+1J ..._~,OYl.l2-~~cteq
LQ j)L.Lq._T_~.=qOIln ~~c t 82, .

The proof's of' the theorems are a mixture of' the
ingredients of' the last f'our chapters, namely unknotting
balls, covering isotopy, general position and engulf'ing,
and we give the proof's at the end of' this chapter. But
bef'ore we give them, we deduce some more corollaries,
make some remarks about f'urther developments, suggest
some problems, and give counterexamples to show that the
dimensional restrictions are the best possible. We also
illustrate in Theorem 25 how the theorems can be used to
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classify certain links of spheres in spheres, and knots
of spheres in solid tori. First the corollaries: they
follow irnnediately from the statement of the theorems,
and are obtained by specialising M or Q. In the first
corollary we put Q equal to Euclidean space.

mC9rol,l2-~rx~2. Any__closedk-co:q'pect~~§.JJLnifold M_"-.2...

k ~.m -. 3-2_c.?~~.be ._e~m.E=edded~nE2m-~? .§Ed unknots. in one
p_igher .diJ!lf?nsion .~
In particular any homeomorphism M ~ M can be realised
by an ambient isotopy of E2m-k+1, in the same way that
S1 can be embedded in E2, and any homeomorphism of s1

can be realised by an ambient isotopy of E3 (but not of E2).
The next corollary is obtained by putting M equal

to a sphere, and is a higher dimensional analogue of the
Sphere Theorem.
9_0.ro,~la~. If Qq is l2]1:9.±jl.::.cOn!L~2~Y~_.\~_~Fe
m ::;;'...9...,-=.- :2. _tJ:1\3n~1fx..."el=e~lJlent-9..L7i:m(~canb_El._r_EU?I'es~nt_~~q

o
Pl.: ..all.n~::sJ2.l1eree~b~(~l.c~te_diA. Q .nI(j:~is_one .htgher
connecte~Uhen ?em C~.L£;J..as§lif.ie.s tlle.ar£l."9iELl)...1.isotC)]?y..J?lass~.s

m 0

gf, S S:~l2.rovill.ed .IT.!. .?:..~J..:..
By Theorem 24 the ambient isotopy classes are tl~

same as the homotopy classes, and since m > 1 there is
no base point trouble. If m ~ 1 then the isotopy classes
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are classified by the free homotopy classes9 in other
words the conjugacy classes of ~1(Q). A special case
of Corollary 3 is~
Co£olJ-ary 4. If Qq is m;::",connegte<!:J1l::::; g - 39
,:ttJ-ell..EPYJ!!..oel!lbeddin~Sm c,9llreambi~nt is_o~t.2.,]J~

The next corollary is obtained by putting M equal
to a disk9 and is in some ways a higher dimensional
analogue of Dehn's Lemma and the Loop Theorem.

m 1 . m-1 .L.eJ1.,S_ - S Q and suppo se S LS

iIl(;sse,!,ltJ&i~L,,_~"=Jf.,g 1-l?~U~1!l~.g•.t1J-~gnnected 9 _wh~r_~
m ~_9." ~ 3, t11&JtSm-1 caI}_Re.s.:illlnnY.9-~.lL.IL~oper1Y.
~1J1bed.9:ed~9-~~kD

m
c ..;(h..-1.f Q.. is op_~_tJ-igh~~_c0I:J.ll~c~~2:.

ttLen_~m(9} cl.§.s§..ifi.e_s~the.~§:nib,l...e-ILLJ_~c>t9J;lL.cl..§sses of
.§..~£l1~§J~f?Jc_fi2_k.eelL~~ rl fUC~'

The correspondence between isotopy classes of disks
and elements of ~ (Q) is not natural as in Corollary 29

m

but is obtained by choosing a base disk9 D~ saY9 and
associating with any other disk Dm the difference element
of ~m(Q) given by Dm u D~. This time the case m = 1 is
not exceptional because we can choose a fixed base point
on Sa.

We now make some remarks about the two main theorems.
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Remark_l: Hud~on's improvements.
John Hudson has improved both theorems by

weakening the hypotheses: instead of re~uiring the
manifolds to be connected he re~uires only the maps
to be connected. We say that the map f:M ~ Q is
k-connected if the pair (F, M) is k-connected where
F is the mapping cylinder of f. This is e~uivalent
to saying that f induces isomorphisms
for i < k, and an epimorphism ~(M) ~
let

?c. (M) ~'](. (Q)
l l

?Ck(Q). As before

d = 2m - ~ = double-point dimension
t = 3m - 2~ = triple-point dimension.

Hudson's improvement in the Embedding Theorem 23 is to
replace

M d-connected }
by

Q (d+1)-connected {
: (d+1)-connected

L'lL (t+1) -connected.

and in the Unknotting Theorem 24 to replace
M (d+1)-connected1

~ by
Q (d+2)-connectedJ {

f (d+2) -connected
M (t+3)-connected.

In both cases the connectivity of M implies the same
for Q because t ~ d - 3 and so f induces isomorphisms
of homotopy groups in the range concerned.

Hudson's proofs are too long to give here, and so
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we content ourselves with proving the theorems as

stated. His main idea is combine the techniques

given here with those developed by Haefliger for the

smooth case. Another basic idea is to use concordance.

Two embeddings f~ g:M ~ Q are called cQncoJ:dant if there

is a proper embedding F:M x I ~ Q x I that agrees with f

at the top and g at the bottom; there is no requirement

that F should be level-preserving in between~ as there

is in isotopy. In codimension 2 concordance is strictly

weaker than isotopy: for example the reef knot

is concordant to a circle by a locally flat concordance~

because it bounds a locally flat disk in the 4-ball~ but

the reef blot is not isotopic to a circle by a locally
flat isotopy. However in codimension ~ 3 Hudson has

shown that two embeddings are
concordant (~~9isotopic~
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and so the unknotting theorem becomes a corollary
of the embedding theorem. However we shall prove the
two separately.
Remark_ :So Co¢iiIIlensioIl 1.

Our results are essentially unknotting results
in codimension ~ 3. The situation in codimension 2

is fundamentally different~ because knotting occurs and
is detected by the fundamental group. In codimension 1

the situation is again different, because of orientation.
Sn knots in En+1 because two embeddings with opposite
orientation are homotopic but not isotopic, and therefore
Iso(Sn c En+1) contains at least two elements. We do
not know whether there are more than two elements because
the piecewise linear Schonflios Conjecture is still
unsolved for n ~ 3. In fact the Schonflies Conjecture is
equivalent to:
Co&e_cture: Isol~~.!i:'~ta§~_t1lJ2.-eJeme.~tf:>..

Again the situation in codimension zero is quite
different, and there are many more unsolved problems.
If M is a closed manifold then Iso(M C M) is a group,
namely the quotient of the group of all homeomorphisms
of VI by the component of the identity. It is called the
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~J1le.9~topxgroup of 111" Only three example s of homeotopy
groups are known.

Ex_argple_iJ) . The homeot opy group of 8n is Z2 by The orem 10

of Chapter 4. The isotopy class of a homeomorphism is

determined by the degree ~ 1. In 0 ther words

Iso(8n c 8n) = [8n c 8n] ~ Z2"

J3lxampJ"e 1)i~. Gluck has shown that the homeotopy group
f 81 0

2. Z Z Z Th f" t t f t do X Q lS 2 x 2 x 2' e lrs wo ac ors correspon

to orientation reversals of 81 and 829 and the third factor

Z2 is generated by the homeomorphism h:81 x 82 ~ 81 x 82

given by h(69 x) = (69 PeX)9 where Pe is rotation of 82 through

angle 6 about the poles. Recently Browder has proved

(unpublished) the same result for 81 x 8n9 n ~ 3.
It follows from a theorem of Baer that

the homeotopy group of a 2-manifold is isomorphic to the

automorphism group of ~1(M) modulo inner automorphisms. In
each of these three cases the manifold unknots in itself9 but

the following example shows that this is not true in general.

~:~m~l~llvl.Browder has shown that 83 x 85 knots in
itself9 although the homeotopy group of 83 x 85 is not yet

known. He gives a homeomorphismh of 83 x 85 onto itself

that is homotopic but not isotopic to 1. We sketch the proof.

Choose an element U E ~3(80(6], ~ Z9 choose a smooth

representative f E u9 and use f to twist the fibres of the
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product bundle 83 x 85 ~ 83• The result is a smooth

~ibre-homeomorphism h o~ 83 x 85 onto itsel~. We claim

that i~ a is a multiple o~ 24 then h is ~ibre-homotopic to 1~

because i~ F5 denot8s the space of maps o~ 85 to itself o~

degree 1~ then ~3(F5)~ ~8(85)~ Z24~ and so a is killed

by the homomorphism ~3(80(6)) ~ ~3(F5). To place outsclves
in the piecewise-linear category choose a piecewise linear

homeomorphism hi concordant to h. Browder then shows that

h is not topologically concordant to 1~ and therefore hi

is not piecewise linearly isotopic to 1. To prove the

non-concordance let Th denote the mapping torus, obtained

from S3 x 85 x I by identifying (x~ 0) = (hx~ 1) for all
x E S3 x S5. I~ h were concordant to 1 then Th would be

t 1 . 11 h h" t T --83 x s5 x s1. But lotopo oglca y omeomorp lC 0 1
transpires that a E Z classifies the Pontrjagin class

P1(Th)~ and so if a J 0 then the rational Pontrjagin class
o~ Th is non-zero. But the rational Pontrjagin class of
3 ~ 1S X SJ X 8 is zero, and is a topological invariant~ and

so we have a contradiction.
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Examj2le lv).
In smooth theory it is well known that a mani~old

can knot in itsel~. For example the piecewise linear

homeotopy group o~ S6 is 229 but the smooth homeotopy

group of 86 is the dihedral group D28• The orientation

preserving subgroup 228 corresponds to exotic 7-spheres9
6by using the homeomorphisms o~ S to glue two 7-balls

together. In piecewise linear theorY9 on the other hand 9

there are no exotic spheres (at any rate in dimension ~ 5)

by the Poincare Conjecture9 which we shall prove in the

next chapter.

Remark k. Higher h0l!lQ..ts2J1Y.grollPlL_'J\iOJ c Ql.
Our so called classi~ication of embeddings of M in

Q has only touched the sur~ace o~ the problem. More

generally we can study the space (M c Q) o~ all embeddings
o~ M in Q9 regarded either as a piecewise linear space

(RS in Chapter 2) or as a semi-simplicial complex. In

particular we can study the higher homotopy groups

'J\.(Mc Q). SO far in Theorem 24 we have only said
l

something about the zero homotopy group

~O(M c Q) = lso(M c Q).
For example we might generalise Theorem 9 the unknotting

o~ spheres by:

Conjecture. 'J\i(£~ c S~.2 = 09 l2.rovidedi + m :::;;~.
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Remark,..,.j..An 9PsJ;ruction th..§..ory.
In the critical dimension, when the map is just

not sufficiently connected for unknotting, Hudson has
developed an obstruction for homotopic maps to be isotopic,

a quotient of
with the obstruction in/the first non-vanishing homology
group of the map (with certain coefficients). One
would like to develop a more general obstruction theory,
and fit it into an exact sequence, perhaps including
the terms 1t.(M C Q) ~ 1t.(M, Q], i ~ O. In Corollary 2

l l

to Theorem 25 below we give a non-trivial example that
looks as though it ought to fit into an exact sequence.

We now discuss counterexamples to show that the
dimensional restrictions in the two main theorems are
the best possible. In each of the six cases we relax
a single hypothesis by one dimension, and show that the
theorem then becomes false.

EmbCddi~-gf ~odimenSion 2 2~ only \~ only ~--"-"-l
theorem i I (d+1)-connected I d-connected

:4 \--------~5T-- - .----~--!-.---------------
,- 1---- \-~-

Unknottin~ Codimension 2 I M only . Q only
theorem I d-connected (d+1)-connected.

I
1 !---------------- ..---, .._--_._-.._-----------!...- .._--_._-~----_....._._-~,----
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This is the only one o? the six
cases where the counterexample is conjectured rather
than proved. Let D2 be a disk9 and ~+ a contractible
4-nani?old with non-simply connected boundary. Let

?:D2 ~ Q4
be
in
in

·2a map such that? embeds D onto an essential curve
Q4. Such a map exists because the curve is inessential
4Q. By the Conjecture in Example 6 a?ter Theorem 21

in Chapter 79 the curve does not bound a non-singular
disk in Q4 and so ? cannot be homotopic to an embedding
kee~ing the boundary ?ixed. Notice that n2 and Q4 satis?y
the connectivity conditions because they are both
contractible.
p01.11rtereXam..12~e~2.. Let m be a power of' 2 and m ;<: 4.
Let M = pm9 real projective space9 and let Q = E2m-1.
Then d = 1 and P just f'ails to be i-connected. Meanwhile
Q is 2-coruLected and the codimension is ;<: 3. Since pm

. 2m-1 m 2m-1caru10t be embedded ln E , no map P ~ E can be
homotopic to an embedding.
9o~p~~~exa~~e"~. (Irwin) Let m ;<: 3, and let ?:Sm ~ S2m
be a map with exactly one double point9 where the two
sheets o~ fSm cross transversally. We shall show that
such a map exists in a moment. I? ill were allowed to
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equal 1 then the figure 8 would give a correct picture.
Let Q2m be a regular neighbourhood of f'Sm in S2m. We
claim that f':Sm ~ Q2rn cannot be homotopic to an embedding.
Notice that d = a and Sm is a-connected, but Q just f'ails
to be i-connected. In f'act ~1(Q) = Z, generated by a
loop starting from the double point along one sheet and
back along the other. Notice also that the codimension
is ~ 3.

embedding of the boundaries of the
to a map Sm-1 x I ~ B2m Now use

·t Sm Dm u Sm-1 I DmWrl e = a x U l'
m mEmbed the two disks transversally as DO x 0 and 0 x D1 in a

m m 2m 2mlittle ball DO x D1 c S . Let B be the complementary
the
i32m

J?ro9.:L.Jhatf exists:

ball, and extend
disks Sm-1 x ± ~
Theorem 23 to homotop this map into a proper embedding,
keeping the boundary f'ixed. The result gives what we want.
FRoof _tha~ fi~mbedding. Suppose on the contrary that
f'was homotopic to an embedding g:Sffi~ Q2m. Let p2m
denote the universal cover of Q, which consists of a

t b f· ~ Sm Dm 1 b dcoun a Ie n~~ber 0 coples OL x , p urn e together
in sequence. We can lif't f',g to a countable nmnber of

,.,ffimaps fi, gi:o ~ P, i E Z. By construction each f'i is an
embedding, and, for each i,f.Sm cuts f'. ism transversally1 1+
once. Meanwhile g.Sffiis disjoint from g. ism because g1 1+
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was an embedding. Here we have a contradtction, because
the intersection of the f's is homological, and must

algebraically
be/the same as the g's because f. !:>! g., each i.

1 1

More precisely, if ~ is a generator of H (8m) and
III '

is Poincare Duality (where Hc stands for compact cohomology)
then in H2m(P, p) we have the contradictionc

o = Dg.~ u Dg. 1~ = Df.~ u Df. 1~ f o.1 1+ 1 1+
Counfer.§xample .l±.. 8m knots_ i1l.sm~2..:.-lIL;:::.1.

1 m-1 . 2m8 x S knots 1n 8 m ;::: 3 .
...." ~~~~ .•.•••.:.o.__ ~'~

Sm-1 just fails to be
(d+1)-connected.

Given an embedding f:81xSm-1 -+ 82m

we shall define a knotting number kef) E Z2' and prove
that it is an invariant of the ambient isotopy class of
f. We shall then describe two embeddings fO' f1 with
knotting numbers 0, 1 respectively.

Let T = f(S1 x Sm-1), the embedded torus. Given
a E 81, let Sa = f(a x Sm-1), an etlbedded (m-1)-sphere.

8 11 A· 82m 8;[..emmp5 .. ~here_,js.an m":;:pa ln • spanning a
~.n()t 1fl~:tin€.£J:~at1l.
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proqf. Since m ~ 3, Sa is unknotted in s2m, and so

can be spanned by an m-ball, D say. By Theorem 15
oambient isotop D, keeping D = S fixed, until D is ina

ogeneral position with respect to T. Therefore D meets

T in a finite number of points, which we can remove

one by one as follows. Let x be one of these points.

Choose YES, choose an arc acT joining xy, and ana

arc ~ in D joining xy. We can choose the arcs so as
o

to avoid the other points of T n D and so as to meet
S only in y. Let ~2 be a 2-disk in S2m spanninga
a u ~, and not meeting T U D again (this is possible
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by general position since m ~ 3). Triangulate

and take a second derived neighbourhood B2m of
S2m, which is a ball since ~2 is collapsible.

the set

x = B2m n (T U D).

everything
A2 .In

Consider

Now X consists of three m-balls glued together along the

common face B2m n S , and embedded in B2m with one selfa

intersection at the interior point x. Let

X = B2m n (T U D)

which consists of the three complementary faces glued
() - 2mtogether along the common m-2 -sphere B n Sa' Let

Y be a cone on X in B2m• If we replace X by Y, behold

we have removed the intersection point x; but We have

moved the torus meanwhile, and so we must now move it
back. We can write

X = ~ U 71)'

where 7~, ~ are the m-balls B2m n T, B2m n D. Similarly

Y = YT U YD
where YT, YD are the cones on the (m-i)-sphere B2m n T

-2mand the (m-i)-ball B n D. Since~, YT are two m-balls
in B2m with the same boundary, and since m ~ 3, by Theorem 9
Corollary 1 we can ambient isotop YT onto XT keeping

B2m fixed. This moves the torus back into position.
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Meanwhile the isotony carries Y to Y' say. ThenD D
replacing D by

(D - XD) U Yn
has the e~fect o~ reducing the intersections of

oT n D by one. After a finite number o~ steps we obtain

A as required. This completes the proof of Lemma 589
and we return to the construction of the knotting nunmer

k(f).
1Choose three points a9 b~ c E S . By the lemma

choose three m-balls A9 B9 C spanning Sa~ Sb~ Sc
respectivelY9 and not meeting the torus again. We can

choose the balls in general position relative to one

another~ and so each pair cuts transverBally in a ~inite

number of points. Let AB denote the number of intersections

of A and B9 modulo 2. Define

k(f) = AB + BC + CA.
We have to sho~ that k is independent of the choices

made. First we show k is independent of A. Let [bc]

denote the interval of S1 not containing a9 and let SBC

denote the immersed m-sphere

SBC = B U f([bC] x Sm-1) U C.

T h I ' I l' k' number mod 2 o~ Sm-1hen the omo oglea ln lng ~ a
Sm , S2m, , bBC 1n 1S glven y

L(Sa~ SBC) = AB + AC9

and
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([] m-1)because A does not meet f bc x S • Therefore

which is independent of A. Also k is independent of a1

because if we move a (without meeting [be]), then the

resulting isotopy of S does not alter the linkinga
number L(Sa' SBC). Similarly k is independent of
B, C, b, c. Therefore k is well-defined. Clearly k is

an ambient isotopy invariant, because any ambient isotopy

carries with it the whole construction of A, B, C.

Finally we have to produce embeddings fO' f1 with

different knotting numbers. Define the embedding

fo:S1 x Sm-1 ~ S2m to be the obvious one given by the

boundary of an embedded s1 x Dm• Then we can draw

A, B, C disjoint as in the picture below. Therefore

1Construct the embedding f1 ~S
follows.

Sm-1 S2mx ~ as
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First link two (m-i)-spheres in the equator S2m-1

with linking number 1. Then collar each o~ these

into each hemisphere. Finally connect the tops o~

the two collars by a cylinder I x Sm-1 in the tropic

o~ Cancerp and connect the bottoms o~ the two collars

by similar cylinder in the tropic o~ Capricorn. The

only moment o~ doubt OCGurs as to whether two linking

spheres can be coru~ected by a cylinder, but this doubt

is resolved by glancing at the image o~ the diagonal x I

under the identi~ication map

Sm-i Sm-1 I Sm-1*Qm-1 _ S2m-1x x ~ u _ •

To compute k(~1)p choose Sa to be one o~ the (m-1)-spheres

in the equator, and choose Sb' Sc to be the top and

bottom of the other collar. Form B by joining Sb to

the north pole, and C by joining Sc to the south pole.

Then L(Sa' SBC) = 1, because we can compute it by spanning
S with an m-ball in the equator, that meets the othera
(m-1)-sphere and hence also SBC' in exactly one point.
Meanwhile Be = 0 because B, C are disjoint. There~ore

k(~1) = L(Sa' SBC) + BC = 1.
This completes the proof of Counterexample 5.
gemapk o~ knott~d tor~.

Hudson has shown that i~ the codimension is even,

then his knotting number described above is in fact
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sufficient to classify the knots, but if the codimension
is odd then an anologous knotting number in the integers
Z is required. More generally he has proved that

Iso(SP x Sm-p c S2m-p+1) = {_Z2' codimension even
Z, codimension odd

provided m ~ 3 and 1 ~ P < m - p. This is the critical
dimension for knotting tori, because they unknot in all
higher dimensions, by Corollary 1.

The case p = 0 turns out to be exceptional. Here
the torus Sa x 8m consists of two spheres, and the ambient
isotopy classes of links of spheres in the critical
dimension are classified by their linking number, as
we shall show below:

Iso(80 x Sm c 82m+1) = Z, m ~ 2.
m . 1 2mCounter_~xample 6. ~lS.not~J1l __8 _x 8 ..JLm ~ 2.

Notice that d = - 1 and 81 x 82m just fails to be
(d+2)-connected.
froo£' qf the kn2tting. We shall give two embeddings
8m C 81 x 82m such that one bounds a disk and the other
doesn't. Therefore they cannot be ambient isotopic,
but they must be homotopic because any two maps are
homotopic. It is trivial to choose the first one.
For the other choose the embedding described in Example 3

after Theorem 19 in Chapter 7. It consists of two little
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1linked m-spheres connected by a pipe round the S •

We showed in Chapter 7 that this embedding cannot
bound a disk.
RemaI"k.-~-~ We shall shortly furnish a large class of
alternative counterexamples by giving conditions for
Sm , 'd Sr q-rto knot ln the SOIl torus x E . The conditions
are given in terms of homotopy groups of spheres, in
Corollary 2 to Theorem 25 below. The simplest example
is that S4 knots in S3 x E4. We shall show there are
an infinite number
Notice that here d
(d+2)-connected.

3of knots, although ~4(8) = Z2.
= 1 and 83 x E4 just fails to be
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This completes the six counterexamples that were
designed to show the dimensional restrictions in
Theorems 23 and 24 were the best possible.

next
We want/to classify the links of two disjoint

spheres Smy sP in a larger sphere sqy up to ambient
isotoDY. The classical situation of two curves linking
in 83 is somewhat deceptive because knotting is confused
with linkingy but it does illustrate the three types
of linking that can occur.

L1J . Homolog~callJJ}kin~.
Each curve is non-homologous to zero in the complement
of the other. By duality this is a symmetrical situation.

~

/

Here Ay Bare homoligically unlil~edy but A is essential
in the complement of B. This situation can be unsy~netricy
because, as we have drawn them, B is inessential in the
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complement of A .

.01.. (}eC?Eletris~.ljpking.
Two curves are geometrically unlinked if they can be
ambient isotoped with opposite hemispheres. We illustrate
geometrically linked curves that are homotopically
unlinked.
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Summarising we have:

(homologically\ =) (hOmotoPicallY) - )1~eometricallY)
\ linked ) < - linked / ~.\ linked.

In higher dimensions we shall stick to codimension ~ 3~ so
as to separate knotting and linking and be able to concentrate
on the latter. Therefore we shall assume

so that each of Sm~ sP is unknotted in sq.
There are three cases.

Then Sm~ SPare geometrically
unlinked by Corollary 1 to Theorem 24.

In this case homological linking
can occur~ and this is the only case in which it can occur.
We shall show in Corollary 1 to Theorem 25 that the link is
classified by the linking number9 which is an integer. To be
more precise there are two linking numbers which differ only
by the sign (_)mp+1. However we shall not bother to define
the 'homology linking nllinbers~because they are special cases
of the more general homotopy linking numbers.

Homotopy linking can occur in
both this and the previous case. We shall define the homotopy
linking numbers9 and show in Theorem 25 that one of them classifies
the link~ provided 2m + p ~ 2q - 4.
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~ hom9topy linking numbers 0t S~Sp _c.~~

Since each sphere is unknotted we have
sP ~ Sq-p-1 x EP+1

Sm ~ sq-m-1 x Em+1•

We assume that all three spheres Sm, sP, sq are oriented,
Sq-p-1, sq-m-1 (and so orientations are induced on we shall

examine these induced orientations more carefully in a moment).
Therefore the linl: determines homot~o£:¥_JiHkin~".nUIIlbers

0, E 1C (sq-p-i)
m

f3 E 1C (sq-m-1).
p

Notice that both these are in the (m+p-q+1)-stem, and we
shall show in Lemma 62 that they have a common stable suspension
(to within sign).
homotopy groups.

We call 0" f3 st~qle if they lie in stable
Recall that 1C.(Sj) is stable if i ~ 2j - 2.

1

Therefore
0, is stable if m + 2p ~ 2q 4

f3 is stable • .t:> 2m + p ~ 2q 4.1-1.

Since m ~ p, we can have a. unstable while f3 is stable, and

Let L; denote the suspension homomorphism, and

to L;.

for examplebe a particularly interesting situation;

the composite suspension
(sQ-P-1) (sq-p) (sq-m-i)1C -+1C 1 -+ .•. -+7\. .m m+ p

there is no confusion we shall abbreviate L;p-mWhen

this will
S3 S4 c,
L;p-m
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:t:f13_ iS2table~~en a, classitt~JL~ille=link.__ l_1f_~~t]1~_:r~?rd~
J so (8m• 8! c 8~ ~ ~ 2:1Cm.l9...~:!..:.:~

A:L~()~.ii_:::-L:-lm+p+q+prn~~

Before we prove the theorem we deduce a corollar.y and a couple
of examples and prove two lemmas.
Q£r9].la~J...:. If m .+ p =_ 9 -:. 1..2..the..n

ISOC§..m..J_8P~~sLqJ..~ 7Cm(8~1_~ Hm{8m)~~_~,
and the )~0!10logi$a.)]..inldnK.number .9lClS~ifi~ the linl~"

Two 50-spheres can be linked in 101~ 100~ 999 98
dimensions9 but in 97~ 96 they become unlinked9 and then can be
linked again in 95~ 941 '0' ??? '00' 52. The explanation is
that the words

link/unlink ~ nonzero/zero
of certain stable homotopy groups9 and the unlinking is 97~ 96
correspond to the vanishing of the stable 49 5 stems,

There are exactly two links of 89, 810 C 816,
One .is geometrically unlinked, and the other is half-homotopically
linked as in the second diagram above 9 because

a, J 0, a, E 7C9(85) ~ Z20
6i3 = 09 13 E 7C10(8 ) = 0,



- 30 -

J!.2mm~_59~•.> 1~Sm i..?_~unkn-?tt.edin ~Cl,-!l1.~nan oriEglt_alio=n
l?£~s2FBnRJ"l.£,mE;0I!L-srJ2..h,J.§El_p!S.: k~e12:i-F$~~~lJJSeriis tS_9.to12 ..tS.
!-o_the iq,e,nJity keeping. Sr: f_i_xe_cl.
proo( by induction on Cl,keeping the codimension fixed,
the induction beginning trivially with m = - 1. Let
h:SCl ~ SClbe the given homeomorphism. Choose triangulation
K1 L of SCl1 Sm and a vertex x E L. Choose subdivisions such
that h:K1 ~ K2 is simplicial. Let BCl9 Bm be the closed stars
of x in K19 L1• Then h maps BCJ.9Bm linearly into st(X9 K) 9 st(x. T.)

and so by pseudo radial projection (see Lemma 89 Chapter 3)

we can ambient isotop h to k? keeping Sm fixed, such that
kBCl = BCJ.. Now Bm is unknotted in BCl, since Sm is locally
unknotted9 and klBCl is orientation preserving, and so by
induction we can isotop klBCJ.to the identity keeping Bm fixed.
By Alexander's trick (c.f. the proof of Lemma 16) we can extend
the isotopy to each of BCJ.1SCl - BClkeeping Sm fixed9 and so
isotop k to the identity.

For the next lemma we want to compare links in spheres
with knots in solid tori. Write

Cl rl-p-1 1"\ P rlS = S~ ~ *S~. Let g:S ~ S~ denote the embedding onto the
right-hand end of the join, and let e:SCl-p-1 x El?+1 ~ SCl
denote the embedding onto the complement. Then any embedding
f:Sffi~ SCl-p-1 x El?+1 determines a link
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~P-in<il!c:?~s~anisom0f'J2..l1isEl
.D>o~~~~:~~":*~ x E~~~)_ : __Isol~9 ~:'c_s*c:J~

Proof.
~~.~ ... -=- =- Let ~ denote ambient isotopic. If f ~ f', then we

can choose the ambient isotopy to have compact support 9 by
Theorem 12 in Chapter 59 and it can be extended to sq.
Therefore rp(f) ~ rp(f'). Therefore rp induces a map9 rp saY90fisotopyclasses
rp is injective~ for, given rp(f) ~ cp(f'), then the end of
the ambient isotopy gives an orientation preserving homeomorphism
keeping sP fixed9 which by Lemma 59 is isotopic to the identity
keeping sP fixed. The restriction of this to the complement
of sP gives f ~ f'. Finally ~ is surjective~ for given a
lilLk ~9 ambient isotop the embedding of sP onto g (using
p :::;;q - 3), and hence k ~ (ef 9 g) for some f.
f£20f' ():f 'l'he_orem?5 ...

m q-p-1 p+1S unknots in S - x E because
d + 2 = (2m - q) + 2

~ q - p - 2 by the stability of ~.
( m p sq) (m So-u-1 D+1) 6Therefore Iso S 9 S C ~ Iso S c ~ ~ x E~ by Lemma a

~ ~ (sq-p-1) by Corollary 2 to Theorem ~m
There remains to show that ~ = (_)m+p+q+mPZa9 but first we
~ust be more explicit about our orientation conventions.

Suppose we are given orientations of Sm, SP, sq. We
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define the induced orientation on Sq-p-1 in
Sq p '" n-"O-1 "0+1- S = S~ ~ x E~ as follows. At a point of sP
choose a local coordinate system in which sP appears as a
linear subspace. Choose axes 11 ."1 q to give the
orientation of sq so that 1, ".1 P gives the orientation

"0of S~. Then p +11 ..•, q determine an orientation in a
transverse disk nq-p, and hence induce the require orientation
on nq-p = Sq-p-1 c sq-p-1 x EP+1• To see that this is a
topological invariant definition, observe that it can be
expressed homologically: if x E H (SQ)1 Y ~ HP(SP) are the

q

given orientations, then oy E HP+1(Sq1 SP) and the cap product
x n 6y E Hq-p-1(sq._ SP)

gives the induced orientation. We use the given orientation
on Sm and the induced orientation on sq-p-1 to define the
linking nillfibera E ~ (sq-p-1). Similarly define ~.

m

Sus~e~~eqltnk? Suppose that we are given a link Sm, sP c Sq1
with linking numbers a1~. Let 2Sm1 sP c 2Sq denote the link
formed by suspending Sm and SQ1 while keeping sP the same.
Orient the suspension 2Sq by choosing axes 0, 11 •••, q at a
point of sq so that 0 points towards the north pole and
1, •.., q gives the orientation of sq. Let a*, ~* denote the
linking numbers of the suspended link.

LeIl)ma~2.h
P~.oo!~. First look at ~*. At a point of Sm we can choose



axe s so that 0, 1, •.•,

- 33 -

••. , q

or~ents ~sq. Therefore m+1, •.., q orients the same transverse
disk as in the unsuspended link. Meanwhile sP is unchanged.
Therefore ~ is unchanged.

Now look at a~. At a point of sP we can choose axes
so that 1, ..., P orients sP and 0,1, ... , q orients zsq.
By the prescribed rule we must reorder the axes so that
1, •••, p come first. Therefore this introduces a factor of
(-)p into the orientation induced on the transverse disk by
0, P + 1, •.•, q. For the transverse disk we can choose ~Dq-P,
the suspension of the transverse disk Dq-P in the unsuspended

( Q-p-1)link. In the unsuspended link the class a E ~m S is
determined by homotoping the embedding. Sm c sq - sP into a map
f·.Sm ~ D"q-P I th d d 1" k h t-r say. n e suspen e In we can omo op
ZSm c zsq - sP into the suspension ~f:ZSm -+ znq-p, which
determines the class ~a E ~m+1(sq-P). Adding in the factor
(-)p we have

Proof. The linlc consists of disjoint embeddings f:Sm -+ sq
m SCland g:S -+ where,

a is the class of f:Sm -+ sq gSm

13 is the class of m sq fSm.g:S -+
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"1 .t SCl Srn*SCl-rn-1 1· m Cli'rl e = , and et J:S -? S be the inclusion of'
the left hand end of the join. Ambient isotop g onto j,

and assume f'rom now on that g = j. Then f'Sm lies in the
complement sq _ Sm = Em+1 x sq-m-1. If e:Em+1 x sq-m-1 -? sq-m-1

denotes projection, then ef:Sm -? SCl-m-1 represents a. Let
Sm x SCl-m-1 denote the torus half-way between the two ends
of the join. Let r(ef):Sm -? Sm x SCl-m-1 denote the graph of
ef. Then both f and reef) represent a, and since ~ is stable
a classif'ies the link, by the part of Theorem 25 that we have
proved already. Therefore we can ambient isotop f onto reef)
keeping gSm fixed. ConseCluently assume f = reef) from now on.

We have reached a situation where both spheres are
Gn~

embedded in the complement of the right hand! Scl_ SCl-m-1 = Sm x ECl-m.
More precisely

f:Sm
-? Sm x Eq-m is given by fx = (x, efx)

g:Sm -? Sm x ECl-m is given by gx = (x, 0).
Let T be the antipodal map of SCl-m-1. There is a homeomorphism
h of' Sm x Eq-m, isotopic to the identity such that

hf = g

hg = (1 x T)f.

If we were content to have a topological
homeomorphism, then h would be easy to
describe: for each x E Sm merely translate

a-ill
X x E ....by the vector - fi. However such

j
_ -f-

I
" fx
..•.. \

I/'\- .
• (C'. I____-: -::::+=- ---L _

\<-L~i
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an h is not in general piecewise linear and so the best way

to construct h is as follows. First ambient isotop g to

(1 x T)f keeping fSm fixed, which is possible because they

are homotopic in the complement of fSm
1 and the stability

of a1 ~ ensures unknotting. Then ambient isotop f to g

keeping (1 x T)fSm fixed1 for similar reasons. Since the

ambient isotopy can be chosen to have compact support, by

Theorem 12, it can be extended to sq, and so the link is

unchanged. In the new position we see that, removing hfSm,

~ = [ehg] = [e(1 x T)f] = [Tef] = T[ef] = Ta.
q-m-1 ( )q-mBut the antipodal map T of S has degree - .

~ = (_)q-ma•

Therefore

Com1Ll~tion of the_proof of ~e?rem ?5.
We are given Sm1 sp c sq with linking numbers as~' Suspend
the smaller sphere p - m times, to give a link Zp-mSm1 sP c zp-msq

with linking numbers a~:;9' ~ ... say. Then
'I'

a... = (_)p(p-m)zp-ma.•.

~* = ~

by Lemma 61 , and

~., = (_) (qp+-m)-pQ,~i:
'.'

by Lemma 62, because ~ is stable. Therefore
~ = (_)q-m+p(p-m)zp-ma

= (_)p+m+q+pmZp-ma.

This completes the proof of the theorem.
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I~ neither o~ a, ~ are stable then we can show

r

they have a common stable suspension to within the sign
(_)m+p+q+pm by suspending both sides of the link sufficiently
and applying Lemmas 61 and 62.

Consider embeddings Sm c Sr x Eq-r• Keeping m fixed, let
us plot against coordinates q and r the three regions in which
different types o~ knotting can occur. As usual we restrict
attention to q ~ m + 3.

!
rn+3

unstable
range

;> <: > ~-------
metastable stable range

range
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1. UllJ.a1,ottJ-J1..E..Region C'f is bounded by g +r ~ 2m + 3,

which is the condition by Sm to unknot in Sr x Eq-r by
Theorem 24 Corollary 1. Therefore the classes of embeddings

rare classified by ~ (8 ).m

2. Homotop¥-~ ta.Q).enlcl1,?ttill.E..
q + r < 2m + 3 and r ~ m/2 + 1. I'Vecall these homotopy-stable
because the condition r ~ m/2 + 1 is exactly the condition for
~m(Sr) to be stable. In the next corollary we classifY
homotopy-stable knots.
3. [~~2t02y-un~tabl§kr~t;in£. Region ~ is the complement.
Here we can tie knots like the knotted Sm c s2m x E1 described
in Counter example 6 above.

It is interesting that region (g) lies entirely
in the unstable range. Therefore all the knots that we classify
in the following corollary lie in the unstable range. So far
there are no analogous results in the smooth category; the
smooth situation is complicated by the presence of sphere knots
in spheresy and it is difficult to disentangle them from the
situation.

Ham 0t<?I<.Y -J!JabIeJ{no t!3_?:..~~~

91ft s s :i,fi eel. b,y-.J;lw d~§J.N.lill!.

Iso(Sm c Sr x Eq-r)

e 1'" ~"" (Sr).
7C (Sm-r-1 ) ..- ~ ..-7 m
q-r-1

There:t~£.. s~ u~n~o_tf3 gL§r __x-.m.~_:~tt_.1?-nd..Q!lIYiL the susJ?ensJ_C?ll
L~.§..a_T!l0E2m0.rl?.h~sIT!.~
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Notice that conditions for region QL) imply

<1- r - 1 ~ (2m - r + 2) - r - 1 9 be caus e 2m - r ~ <1- 2
< m9 because m ~ 2r -2.

Also it is easy to show r ~ 2. Therefore
Iso(Sm c Sr x E<1-r) ~ Iso(Sm9 S<1-r-1 c S<1) by Lemma 60

~ Iso(S<1-r-1
9 sm c S<1) putting the smaller

sphere first.
~ ~ 1 (s<1-m-1)9 by Theorem 25 since ~<1-r- t bls a e.

Define the isomorphism e = (_)(<1-r-1)+m+<1+(<1-r-<1)ma• Then~

by Theorem 259 ~e = ~ and so the diagram is commutative.
Finally we can write ~ = A~ where

Iso(Sm c Sr x E<1-r) ~ 7 [Sm c Sr x E<1-r] A »> 'T- (Sr).
surjective injective m

Therefore Sm unknots in Sr x E<1-r < ~ ~ injective
~;.c~ ~ injective
<----.~ ~ monomorphism.

This completes the proof of the Corollary.

isotopy classes
sphere c torus

of embeddings
epi

Z ---7 Z2

homotopy classes
of maps

z ---- --) 0
2E10x I

I
i--+ ---------------- -------.---------------.-- ---- ...-.------
i
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In the last example there are three knots all homotopically
trivial, and no realisation as an embedding of the other
homotopy class.

It would be interesting to extend the results to:
(i) th . (---3 "e reglon ",,--j.

(ii) knots of Sm in arbitrary q-dimensional regular
neighbourhoods of Sr, rather than just the product neighbourhood.

(iii) knots of Sm in an (r-1)-connected manifold, where r
is not big enough for unknotting. This would be the beginning
of an obstruction theory.

We now return to the task of'proving Theorems 23 and 24,
which occupies the rest of this chapter.

We are given a continuous map f:M ~ Q which we have to homotop
into a piecewise linear embedding in the interior, and we are
given that

m :;-;; q - 3

M is d-connected
Q is (d+1)-connected,

where d = 2m - q.

The first step is to make l'piecewise linear by simplicial
approximation. Next homotopy l' into the interior of Q as
follows. Let Q1 be a regular neighbourhood of fM in Q. Since
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M is compact so is Q1' and therefore Q1 has a collar. By
shrinking this collar to half its length (the inner half)

o 0 0homotop Q1 into Q1' This homotopy carries fM into Q19 c Q.
oNow homotop f into general position in Q by Theorem 18

Corollary 1 of Chapter 6. Therefore singular set s(r) or r
will have dimension

dim s(r) ~ d,
the double point dimension. The next main step of the proof
is contained in the following lemma.

oI;~rruna_63. TE~..rEL_~~..Lstco11aJ?_sibl$=subt3J2.§tc~s_C2 D of.M,4 Q

re~.l?estJVE?)~1l.c:q.J;haL~i.fJ,.c c. =:..- r-J2..

c
f >

D
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Proof. The main idea of the proof' is to use the engulfing
Theorem 20 or Chapter 7 several times in an inductive process.

Since M is d-connected, we can start by engulfing S(f) in
d+1a collapsible subspace C1

S(f) c C1 c M.
Oi' course when C1 is mapped by f into Q it no longer remains
collapsible 9 because bits of S(f) get glued together to i'orm
non-bounding cycles. Nevertheless, since Q is (d+1)-connected,
we can engulf fCi in a collapsible subspace D~+29

ofC1 c D1 c Q.
-1We are not finished yet9 because although f D1 contains C1'

it may contain other stuff as well. The idea is to move D1 so
as to minimise the dimension of this other stuff and then engulf
it. More precisely we shall define an induction on i9 where
the ith induction statement is as follows:

oQ9 such that
exist three collapsible subspaces C. in M and

l

S(1') c C.
l

-1f E. c C.
l l

There
D. :) E. in
l l

( 1)

(2)

(3) dim (D. - E.) ~ d - i + 3 •
l l

The induction begins at i = 19 by constructing C19 D1 as
above, and choosing E1 to be a point of £'e1• The induction
ends at i = d +49 because then D. = E. and so we have

l l

( ) f-1S l' c C. = D. as required.
l l
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There remains to prove the inductive step, and so
aSSllffiethe ith inductive statement is true, where i ~ 1.

Then fC. U E. c D. by (2). Let111
F = D. - (fC. U E.).111

Then
dim F ~ d - i + 3

by (2). Using Theorem 15 of Chapter 6 ambient isotop D. in
1

Q keeping fC. U E. fixed until F is in general position with
1 1

respect to fw. Then
dim (F n fM) ~ (d - i + 3) + m -'1

Therefore
~ d - i, because m ~ '1 - 3.

dim f-ip ~ d - i,
because f is non-degenerate, being in general position.
Let Ei+1 denote the new position of Di after the isotopy.
Then E. 1 is collapsible because it is homeomorphic to D ..1+ 1

-1 (Since M is d-connected, we can engulf f F or more precisely
f ",-1 )the closure 0 I F by pushing out a feeler from C .• That

1

is to say there exists a subspace C. 1 of M such that1+
-1f FcC. 1 ......,.,C.

1+ 1
dim (Ci+1 - Ci)~ d - i + 1 .

Then C. 1 is collapsible because C. 1~ C. ~ 0;l+ 1+ 1
induction

C. U f-1E. U f-1F
1 1

= C. U f-1F, by induction
1

S(f) c C. l' because S(f) c C., by1+ 1

C C. 1.1+
f-

1
E. 1 c C. l' because f-1E. 1 =1+ 1+ 1+

c Ci+1' by engulfing.
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Since Q is (d+1)-connected we can now engulf f(C. 1 - C.)2+ 2
That is to say there

oexists a subspace D. 1 of Q such that2+
f( C. 1 - C.) cD. 1--'--;l E. 11+ 1 1+ 1+
dim (D. 1 - E·1) ~ d - i + 2.2+ 2-t

Then Di+1 is collapsible because Di+1 ~ Ei+1~ O. We have
constructed the three spaces, and verified all the conditions
of the (i+1)th inductive statement excent C. 1 c f-1D

.t;' 2+ i+1·
This follows because fCi c Ei+1, since the isotopy kept fCi
fixed9 and so

fC. 1 = fC. U f(C. 1 - C.)1+ 1 2+ 2
C E. 1 u D. 19 by engulfing1+ 2+
= Di+1"

This completes the proof of the inductive step, and hence the
proof of Lemn~ 63.

We return to the proof of Theorem 23" Choose a compact
submanifold Q~ of Q containing fM u D in its interior.

'l'

Triangulate M9 Q~;; such that f is simplicial and C9 Dare
subcomplexes. If we pass to the barycentric second derived
complexes then f remains simplicial because f is non-degenerate
(being in general position). Let Bm, Bq denote the second
derived neighbourhoods of C, D in M, Q* respectively; these
are balls by Theorem 59 because C, D are collapsible. Then
Lemma 63 implies S(f) C Bm = f-1Bq• In fact the lemma implies
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more: it implies that
f Om 0qI maps B -+ B

f' ,J embeds Bm -+ Bq
I
\ embeds m qM - B -+ Q - B .-

Now we see our way clear: we have localised all the
singularities of f' inside balls, where it is easy to straighten
them out. More precisely let g~Bm -+ Bq be an embedding such

'

.m 10mthat g B = f B , obtained by joining the boundary to an
interior point in some linear representation of'Bq. Extend
g to an embedding g:M -+ Q by making g equal to f outside Bm.
Then g ~ f. Notice that the homotopy is global, but takes
place inside the ball Bq• This completes the proof of Theorem 23
in the case M closed.
prs>of..()t~_TA~or.emS2_ wht:;nLt§..._boulld~d.
We are given a continuous map f:M -+ Q such that flM is a
piecewise linear embedding of M in Q. First make f'piecewise

olinear keeping M f'ixed by relative simplicial approximation.
The next thing to do is to straighten up the map near the
boundary. Call a map g:M -+ Q proJ2~ (as in the case of embeddings)
. -1 0 •If g Q = M.
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• 0E fixed, such that S(g) c Q.
-.,.- =-~··"_m.~~·~~"""""_==",,,,, ",r',-" .. ~", •••....•.", ...,__

After

Once the lemma is proved we can apply the same arguments as
in the unbounded case to eliminate the singularities of g,
working entirely in the interior of Q. The proof of the
theorem will therefore be complete.
Pro~f 91'L.§mma 64. Since M is compact we can choose a
collar by the Corollary to Lemma 24, that is to sayan embedding

cM :111 x I ~ M,

such that C~ff(X, a) = x, for all x E r~1. Let Ma = closure (M-im ~~)•,).be a homotopy
Let ht:M ~ M/that starts with the identity and finishes with a
map hi that shrinks the collar onto the boundary and maps Ma

homeomorphically onto M. Such a homotopy can be easily defined
by stretching the inner half of a collar twice as long. In
particular
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h1CM(X9 u) = x9

for all x E M9 U E I. Then ht keeps M fixed9 and therefore
.

f ~ fh1 keeping M fixed.
Now let Q1 be a regular neighbourhood of fM in Q. Since

M is compact so is Q1' and we can choose a collar
cQ :Q.1 x I ~ Q1

.such that c(y, 0) = y for all y E Q1' Let QO = closure(Q1-im cQ ).
Let kt:Q1 ~ Q1 be the homotopy shrinking the collar onto its
inner boundary and keeping QO fixed. More precisely for
a ~ t ~ 1 define

t + u), a ~ u ~ 1 - t

} Y E Q,1
1), 1-t~u~1

We now use k to construct a homotopy gt:M ~ Q that moves MO
into QO and sketches the collar cM out again compatibly with
cQ' More precisely for a ~ t ~ 1 define

gtc~:I(x , u ) = { cQ (fx , u), a ~ u ~ t
• X E 1i
cQ(fx, t), t ~ u ~ 1

gtlMO = ktfh1lMo'
Notice that gt keeps M fixed. Define g = g1' and we have

f ~ fh1 = go ~ g1 = g,
all keeping ~l fixed. Meanwhile gMo c Q09 and the collars

cM' cQ are compatible with g in the sense that the diagram
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is commutative. 000 •Therefore gM C Q1 c Q and gM = fliI c Q, and
So g is proper. Also the restriction of g to the collar is
an embedding, and so

S(g) 0 0
c closure Qo = QO C Q1 c Q.

This completes the proof of Lemma 64 and Theorem 23.
Proof of Theorem 24 when M is closed.

:=lI;-." "" . ..-..-...-. + - =-- ,~~_.~-.... __.,-~~... ~
oWe are given homotopic embeddings f, g:M ~ Q, we have to show

they are ambient isotopic keeping Q fixed, prOVided
m ::;; q - 3

M is (d+1)-connected
Q is (d+2)-connected.

Without loss of generality we can assume that M is unbounded,
because if we prove the result for the unbounded case then

of, g are ambient isotopic in Q. Then, by Theorem 12, it is
possible to choose an ambient isotopic with compact support,
which is therefore extendable to an ambient isotopy of Q keeping
Q fixed. Therefore assume Q unbounded.
R~marko If \lITe had Hudson t s concordance . :>isotopy result available,
then the theorem could be deduced immediately from Theorem 23,
as follows. The homotopy gives a continuous map
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F:M x I ~ Q x I
such that FI(M x I)" is an embedding in (Q x I)"" The
connectivities o~ M~ Q have to be increased by one each~
because the double-point dimension o~ F is

2 (m + 1) - (q + 1) = (2m - q) + 1 = d + 1 "

By Theorem 23 homotop F into an embedding
G:M x I ~ Q x I

keeping UI x I)" ~ixed" In other words G is a concordance
between ~ and g" There~ore they are ambient isotopic. However
as we have not proved the concordance >isotopy in these notes~
we give a separate proo~ o~ Theorem 24~ similar to that o~
Theorem 23 above.

Begin the proo~ by ambient isotoping g into general position
with respect to ~M~ by Theorem 15. The given homotopy is a
continuous map

h:l1 x I ~ Q
which we can make piecewise linear keeping (M x I)" ~ixed~
by relative simplicial approximation.

fJ_~_~.d.'_we__c_aJl~in_d.col~.§l..1?.~:!:J:L~_~=f2.1.l.9_~_ges.G..9 D __ol'Jk_.~~h ~p_at
S(ll.l~_ C~" = h-

1
D.

We prove the lemma in two stages in order to make the proo~
more translucent. In the ~irst stage we prove a weaker result
by assuming the stronger hypotheses
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m~q-5

M is (d+2)-connected
Q is (d+4)-connected.

The proof follows the pattern of the proof of Lemma 63.
In the second stage we show how to sharpen the proof as
various points in order get by with the correct hypotheses
of Theorem 24, namely

m ~ q - 3
M is (d+1)-connected
Q is (d+2)-connected.

We achieve the sharpening by using the piping techniques of
the last chapter.
Proo~ of First S~age. Let ~~M x I ~ M denote projection.
Notice that hl(M x I)· is in general position because we have
already isotoped g into general position with respect to fM.
By Theorem 18 homotop h into general position keeping (M x I)·
fixed. Therefore

dim S (h) ~ 2(m + 1 ) - q
= d + 2.

There is an induction on i9 as follows. There exist collapsible
subspaces C. in M and D. ~ E. in Q such that

111

( 1)

(2 )

(3)

S(h) C Ci x I
-1 C h-1D.h E. c C. x I

111

dim (D. - E.) ~ d - i + 6.
1 1
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The induction begins at i = 1. Since under the stronger
hypotheses we are assuming 1\1 to be (d+2)-connected, engulf
~S(h) in a collapsible subspace c~+3 of M. Since Q is assumed
to be (d+4)-connected9 engulf h(C1 x 1) in a collapsible

d+5subspace D1 of Q. Choose E1 to be a point of h(C1 x 1),
and the conditions for i = 1 are satisfied.

For the inductive steP9 assume true for i. Obtain E. 11+
by ambient isotoping D. in Q keeping h(C. x 1) U E. fixed9

III

until the cODplement F is in general position with respect to
heM x 1). Then

dim ~h-1F ~ dim h-1F

= dim [F n heM x 1)]

~ (d - i + 6) + (m + 1) - q

~ d - i + 2,
because we are assuming m ~ q - 5. Engulf in M

AA-1F c C. 1 ~ C.1+ 1
dim (C. 1 - C. ) ~ d - i + 3.1+ 1

Therefore
dim (C. 1 x 1 - C. x 1) ~ d - i + 4.

1+ 1

Engulf in Q

h( C . 1 x 1 - C. x 1) cD. 1 ~ E. 11+ 1 1+ 1+
dim (D. 1 - E. ) ~ d - i + 5.1+ 1+1

Verify the (i+1)th induction statement as in the proof of Lemma 63.
The induction ends at i = d + 7 with D. = E'9 and consequently

1 1

S(h) C C. x 1 ::;
1

-1h D., as required.
1
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When homotoping h into general
positiony the full strength of Theorem 18 was not used. We
now use the additional information that h is in general position
for the pair M x I, (M x I)·. In particular this implies
that the (d+2)-dimensional stuff of S(h) all lies in the
interior of M x I, at places where exactly two sheets of M x I
cross one another. The trick now is to punch holes in this
top dimensional stuff, by piping one of the sheets over the
free-end M x o. More precisely we use the piping Lemma 48 of
Chapter 7. The triple M x 0, M x 1 c M x I is "cylinderlike"
in the sense of Chapter 7, and Q has no boundary by assumption.
Therefore by the piping lemma, we can homotop h keeping (M x I)·
fixed, and then find a subspace T of M x I such that

(1 ) S(h) cT
(2) dim T ~ d + 2
(3) dim [(M x 1 ) n T] ~ d + 1
(4) M x I ~(M x 1) u T '-:ol.M x 1 .

By being a little more precise in the proof of Lemma 48 at
one J.)oint,we can factor the first of these collaJ.)ses

(5) M x I ~ (M xi) u (1tT x I) ~ (M xi) u T.

Since M is (d+1)-connected it is J.)ossible,using (3), to
d+2engulf (M x 1) n T in a collapsible subspace R of M x 1.

Define C~+2 = ~(R U T). Notice that comJ.)aredwith the dimension
I

of C1 in the J.)roofof the first stage, we have scored an
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improvement of 1. Then
C1 x r = (~R x D) U (~T x r)

'~R u (-JeTx I), cylinderwi se
~ RuT by (5).

Therefore h(C1 x I)~ heR u T) by Lemma 38 and (1) above.
But

dim h(C1 x I) ~ d + 3
dim heR u T) ~ d + 2.

Therefore h(C1 x I) can be "furledil in the sense of Chapter 7.
Since Q is (d+2)-connected engulf h(C1 x r) in a collapsible

d+2subspace D1 of Q, of the same dimension, by the furling
Corollary to Theorem 20. As before define E1 to be a point of
h(C1 x I). Notice that we have scored an improvement of 2 in
the dimension of D1•

We can write this improvement into the ith inductive
statement by replacing condition (3) by

dim (D. - E.) ~ d - i + 4.l 2
We now have to do some more piping and furling for the inductive
step. As before obtain E. 1 by ambient isotoping D. keeping2+ 2
h(C. x I) U E. fixed, until the complement F is in generall 2

) ( -1position with respect to h~M x I. Let W = closure h F).
dim ~W ~ dim W

= dim [F n heM x I)]
~ (d - i + 4) + (m + 1)-q

~ d - i + 2

Then
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because m ~ q - 3. We now want to engulf ~w from C1 but
with a feeler of the same dimension, and the way to do this
is to furl ~W. We furl ~w by punching holes in the top
dimensional simplexes (of aome suitable triangulation), by
piping the relevant top dimensional piece of F off the end
heM x D) of heM x I).

Before
l\iIxI

After
" pipe

M - c.~

J~ ,
l'hole

Notice that S(h) c C. x I, and F docs not meet h(C. x I),
1 1

and so that the self-intersections of heM x I) do not get in
the way of the pipe.

More precisely, we can adapt Lemma 48 to give the following
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result. We can find an ambient isotopy of D. keeping
1

h(C. x I) U E. fixed, such that in the new position ~Wd-i+2
1 1

can be furled to a subspace Xd-i+1 relative to C., and
1

(Ci x I) U (~W x I)~(Ci x I) U (X x I) U W.
By the Corollary to Theorem 20, engulf in M

~w c C. 1"--; C.1+ 1
dim (C. 1 - C.) ~1+ 1

Let yd-i+3 = closure (C. 1 x I-C. X1+ 1

d - i + 2.
I), Zd-i+2 = (Xxl) UW U (C. x

1+1
Then Y can be furled to Z relative to C. x I because

1

(C. x I) U Y = C. 1 x I1 1+
...~ (C. x I) U (~W x I) U (C. 1 x 1) cy1ind erwi S E1 1+
~(C. x I) U Y by above.

1

Therefore hY can be furled to hZ relative to h(C. x I) by
1

Lemma 38, because S(h) C Ci x I. Moreover hY can be furled
to hZ relative to E. l' because1+

hY n E. 1 C heM x I) n E. 11+ 1+
= h(C. x I) U hW

1

C hZ n E. l'1+
and therefore hY n Ei+1 = hZ n Ei+1• Therefore engulf in Q

hY C D. 1 ~ E. 11+ 1+
dim (D. 1 - E. 1) ~ d - i + 3.1+ 1+

Verify the (i+1)th inductive statement as in the proof of the
first stage, and the proof of Lenma 65 is complete.
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Tl?-e1Z.e_~~ts.:LEa~].J32mc ~L__l?q c~suc]l 1:;h9.t

fWDS 13m0 x I ~_Bq
h embeds Bm x I ~ BCl

t~:beds 1M- Bm.).,,, I .:'._Q _ B'l,
The obvious way is to take derived neighbourhoods

o~ the collapsible subspaces C, D o~ Lemma 66. However we

run into the technical di~~iculty o~ not being able to ~ind

triangulations such that both maps
hM x I ----?Q

1~
M

are simplicial (as is illustrated in the Example at the end

o~ Chapter 1). Therefore ~irst choose triagulation K, L o~

M x I, M such that 1C:K ~ L is simplicial, and C is a ~ull

subcomplex o~ L. Let A:L ~ I be the unique simplicial map
such that A-10 = C. Choose 8, 0 < 8 < 1 o~ a smallness to be
speci~ied later. De~ine Bm = A-1[O, 8] which is ball, because

it is a regular neighbourhood o~ C by Lemma 14.

Now choose a subdivision K1 o~ K, and a triangulation Q1

o~ a regular neighbourhood o~ heM x I) in Q such that

h:K1 ~ Q1 is simplicial. I~ K2, Q2 are barycentric ~irst

deriveds then h:K2 ~ Q2 remains simplicial because h is

non-degenerate. Now choose B such that 8 < A1CV ~or all vertices

V E K2 not in C x I. Call a simplex o~ K2 e~ceptionaJ. i~ it

meets C x I, but is not contained in C x I. Then (A1C)-18meets



- 56 -

only exceptional simplexes~ and meets each exceptional simplex
in a hyperplane.

Let K3 be a rirst derived or K2 obtained by starring all
exceptional simplexes on (A~)-18~ and the rest barycentrically.
Since S(h) c e x I~ no exceptional simplex is identiried with
any other simplex by h. Thererore we can derine a rirst derived
Q3 of Q2' such that h:K3 ~ Q3 remain simplicial, by starring
images of exceptional simplexes at the image or the star-point,
and the rest barycentrically. Derine Bq == N(D, Q3)~which is
a ball~ being a second derived neighbourhood of the collapsible
subspace D. Then

-1 q )h B == N(e x I, K3 ==

h-1Bq == Bm x I

S(h) C Bm x I.

IIIB x I.

The proor of Lemma 66 is complete.
eon~inJ1J1J.Jtthe l?.1~o~()fco:r~T.l1.e.9r_em_24.

So far we have the picture:
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~ BrnXI
~ Me

~ Bq
B~

Since hiM - Bm is a proper embedding
this means that ~IM - Bm is isotopic

Om 0qof M - B- in Q - B 9

I Omto g M - B. Therefore
by Theorem 12 Corollary 1 of Chapter 5 they are ambient
isotopic. Extend the ambient isotopy of Q - Bq arbitrarily
over Bq to give an ambient isotopy of Q. The latter moves

Om m~ to f' 9 saY9 where f' agrees with g except on B 9 and r' IB 9
glBm are proper embeddings of Bm in Bq that agree on the
boundary. Since m ~ q - 39 by Theorem 9 Corollary 1 of
Chapter 4 we can ambient isotop Bq keeping Bq fixed so as to
move f' IBIDonto glBm• This ambient isotopy extends trivially
to an ambient isotopy of Q9 moving f' onto g. Hence f and g
are ambient isotopic. This completes the proof of Theorem 24

when M is closed.
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We are given embeddings f, g:M ~ Q that are homotopic
.

keeping M fixed, and we have to show they are ambient isotopic
.

keeping Q fixed. The first thing to do is to make them agree

on a collar.

Let Q1 be a compact submanifold of Q containing the

image heM x I) of the gi7en homotopy h. Choose a collar
fof M. By Theorem 10 of Chapter 5 choose two collars cQ'

f gQ1 such that cM' cQ are compatible with f, and cM' cQ are

compatible with g. By Theorem 13 there is an ambient isotopy
. f g .k of Q1 keeping Q1 fixed, moving cQ onto cQ' Since Q1 is kept

fixed, k extends trivially to an ambient isotopy of Q keeping

~ fixed. Therefore if we replace f by ~f, and write cQ = c~,

then f, g agrees on the collar im cM' and cM' cQ are compatible

wi th both f and g. Let MO = closure (M - im cM), Qo = closure (Q1- im CQ)

Then fMO' gMO C QO' The picture now looks like:

M
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J:,~I£1Ela_67. ThC:;;...2T1fl:PSY-1Mo?~LMO ~MO ::"Q.o are hQmo_toJlJc__:ij1~Qo

?ee~ing MO fixed.
Let et~MO ~ M be a homotopy starting with the

inclusion and ending with a homeomorphism that stretches a

collaX' of Mo over that of M. In particular etcNr(x? 1) = cM(x? 1 -t)?
all x E M? tEl. Let j:Q1 ~ QO be the retraction that shrinks
the collar cQ onto its inner boundary? jCQ(Y? t) = cQ(y? 1)
all Y E Q1? tEl. Then the required homotopy is obtained by
timewise composition of the three homotopies

jfet, jhte1? jge1_t·
This completes the proof of the lemma.

The purpose of what we have done so far is to push the
singulaX'ities of the homotopy into the interiors of M? Q so
that the boundaries do not interfere with the engulfing.
However there is the trivial technical difficulty that a constant
homotopy of the collar is of cour se a singular map of (collar) x I.
Nor can we ambient isotop glim cM away from flim cM for two
reasons~ firstly we have got to keep M fixed? and secondly there
is an obstruction in H2q-2m(Q). Therefore we get round this
difficulty by defining the homotopy to be a map of a reduced
product M # I? obtained from M x I by shrinking x x I to a
point for each x E im cM.

More precisely? identify the collars of M x O? M x 1
(but not the complements of the collaX's) and define M # I to be
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the relative mapping cylinder of the homeomorphism
Mx0--7Mx1. Let 7\.#:M:I+ 1 --7 M denote the projection.

M

collar

by.rapPing 110 # I by Lemma 67

lembedding the collar by f7\.#.

If X c M, define X:I+ 1 = 7\.;1x.
M:l+I = 0,1.[0#1)

Define h# :M# 1--7 Q

Then
u (collar).

0Then 7C#S(~) c Mo c M.
0 0

h#S(~) c Qo c Q1 c Q.
Therefore we can apply engulfing arguments in the interiors

m 0of M, Q, as in the unbounded case, and obtain balls B c M,
Bq c Q, such that

- Om On

)

1 map s B :1+ I --7 B';1.

embeds 13m #: 1 --7 Ell

lembeds (M - Bm) # 1 --7 Q - Eq .
.Therefore, as before, f and g are isotopic keeping M fixed.

By Theorem 12 they are ambient isotopic keeping Q fixed. The
proof of Theorem 24 is complete.


	Zeeman-Seminar_on_combinatorial_topology._Chapters_6,7,8-IHES___University_of_Warwick(1966).pdf
	chapter 6: General position
	Isotoping embeddings into general position. Theorem 15
	Local shift of an embedding
	0-dimensional transversality. Theorem 16
	Singular sets
	Non-degeneracy
	General position of maps. Theorems 17, 18
	Local shift of a map

	chapter 7: Engulfing
	Theorem 19
	Corollaries 1-3. Weak Poincare Conjecture
	Examples 1-3
	Core
	Non-compact collapsing and excision
	Theorem 20
	Theorem 21
	Examples 1-6
	Proof of Theorem 21
	Newman's lemma
	The piping lemma
	Cylinderwise collapsing
	Construction of one pipe
	Simultaneous construction of all pipes
	Lemma 49
	Admissible regular neighborhoods
	Inwards collapsing
	Relative collars
	The uniqueness of PL structure of E^n. Theorem 22
	Product of contractible open manifolds

	chapter 8: Embedding and unknotting
	Theorems 23, 24
	Remarks 1-5
	Counterexamples 1-6
	Spherical links. Theorem 25
	Knots of spheres in solid tori
	Proof of Theorem 23 (embedding)
	Proof of Theorem 24 (unknotting)



