
Category Theory
Hints on the problem sheets

I’ve written varying amounts about each question. Sometimes it’s just a quick
hint and sometimes it’s something more detailed—but almost none of my an-
swers are up to the level of detail expected in an exam.

General hint Before you look here for a hint,

make sure you understand the question in full.

In category theory, maybe more than in most subjects, you really have to com-
pletely understand every piece of terminology used in the question before trying
to answer it. If you don’t, you’re extremely unlikely to produce a correct an-
swer. But once you do, you may well find the answer a pushover. The purpose
of these questions is to deepen and test your understanding, not to exercise
your problem-solving skills. It’s not like number theory or combinatorics, where
there are many questions that can be stated in simple terms but are very hard
to answer.

So, the questions are often harder than the answers! This is particularly
true of the questions on the earlier sheets.

Sheet 1: Categories and functors

1. For everyday examples of categories and functors, browse library or web. Or
you can make up examples in the following manner. There’s a category

A = (A
p- B)

—that is, A has two objects, A and B, and just one non-identity map, p :
A - B. (No need to say what composition is, as that’s uniquely determined.)
Or (random example) there’s a category B with objects and maps
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where gh = kf = m and I’ve omitted identity maps. There’s a functor F :
A - B defined by F (A) = C, F (B) = C ′, and F (p) = f .

2. See ‘General hint’ above.

3.(a) Same set but multiplication reversed: (a, b) 7−→ b · a. Isomorphism G -

Gop provided by g 7−→ g−1.

(b) Let M be the monoid of maps 2 - 2 where 2 is a two-element set and
multiplication is composition. Then the statement ∃m ∈M : ∀x ∈M,mx =
m is true, but becomes false when M is replaced by Mop. So M 6∼= Mop.



4. No. Main point: a homomorphism φ : G - H doesn’t restrict to a map
Z(G) - Z(H) (e.g. take an injection φ : C2

⊂ - S3). So the obvious way
of defining Z on maps fails. In fact there’s no way to do it: for if there were,
the commutative diagram

C2
1 - C2

S3

ψ

-

φ -

(where ψ is the quotient map for A3 P S3) would become a commutative dia-
gram

Z(C2)
1 - Z(C2)

Z(S3)

-
-

which is impossible as Z(C2) = C2 and Z(S3) ∼= 1.

5. Easy once you fully understand the question. Write out the definition of A×B

in full : what the objects, maps, composition and identities are. Write down in
full what a functor A×B - C is. Then try it.

Sheet 2: Natural transformations and equivalence

1. For examples that occur mathematical practice, browse library or web. Can
also make up examples as in hints to Sheet 1, q.1. E.g. if 1 is the category with
one object and one map (the identity) then a functor from 1 to a category A is
just an object of A, and a natural transformation

1
R

�∨
A

between two such functors is a map in A between the corresponding two objects.
Or, take the categories A and B defined in the hints to Sheet 1, q.1: then there
is a functor F as defined there, another functor G defined by G(p) = g, and a
natural transformation α : F - G given by αA = h and αB = k.

2. See ‘General hint’ above.

3. Define F : Mat - FDVect as follows: F (n) = kn, and if M ∈ Mat(m,n)
then F (M) is the linear map km - kn corresponding to the matrix M (with
respect to the standard bases). Show functorial. Show full and faithful and
essentially surjective on objects. Invoke 1.3.12.

This functor F is canonical, but there’s no canonical functor G : FDVect -

Mat satisfying FG ∼= 1 and GF ∼= 1: for such a G must send every finite-
dimensional vector space V to dimV (fine), but to specify G on maps, you’d
have to choose a basis for every finite-dimensional vector space, which can’t be
done in a canonical way.
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4. Conjugacy.

5.(a) Let f : X - Y be a map in B. Then Sym(f) : Sym(X) - Sym(Y )
is defined by σ 7−→ fσf−1. Also Ord(f) : Ord(X) - Ord(Y ) is defined
by ≤ 7−→≤′ where y1 ≤′ y2 ⇐⇒ f−1(y1) ≤ f−1(y2). Check functoriality.

(b) Take α : Sym - Ord. Draw naturality square for α with respect to the
map f : 2 - 2 in B where 2 is a two-element set and f interchanges its
elements. Work out what its commutativity says when you take the identity
permutation 1 ∈ Sym(2): get contradiction.

Sheet 3: Adjoints

1. Same comments as for Sheet 1, q.1 and Sheet 2, q.1.

2. They are just bijections between sets (or strictly speaking, classes): if F a G is
an adjunction between discrete categories A and B then F is an isomorphism
and G = F−1.

3. For all B, the set B(F (I), B) ∼= A(I,G(B)) has one element. And dually.

4. Bookwork.

5. The substantial parts are (i) understanding the concepts behind the question,
and (ii) observing that if ηA is an isomorphism then so is εF (A) (by a triangle
identity) and dually.

The equivalence you restrict to can be completely trivial, e.g. the adjunc-
tion Vectk

-� Set becomes the equivalence ∅ -� ∅ (where ∅ is the

empty category). Slightly less trivial: Top
U-�
D

Set gives the equivalence

(discrete spaces) ' Set.

Sheet 4: Adjoints and sets

1. Bookwork.

2. Let F : A - B be a functor. Then F has a right adjoint if and only if for
each B ∈ B, the category (F ⇒ B) has a terminal object.

Proof: can just say ‘by duality’.

3. Left: (A,B) 7−→ A+B. Right: (A,B) 7−→ A×B.

4. I can think of three general strategies for finding adjoints. You can use them to
find D, I and C respectively.

Guess it We’re given O : Cat - Set and want to know what its adjoints
are. Have a guess: what functors Set - Cat do we already know? In
other words, what methods do we know for constructing a category out of
a set? One is the discrete category construction (1.3.3(a)), which defines a
functor D : Set - Cat. Check that this is left adjoint to O.
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Probe it We’re told that O has a right adjoint I. We can try to figure out
what it must be by using adjointness. Given a set S, an object of I(S) is a
functor 1 - I(S), which is a function O(1) - S, which is an element
of S. So the object-set of I(S) is S. An arrow in I(S) is a functor 2 -

I(S) (where 2 is the category A in the hint to Sheet 1, q.1), which is a
function O(2) - S, which is a pair of elements of S. So the arrow-set
of I(S) is S × S. You could carry on with this method to figure out what
domain, codomain, composition and identities are in I(S), but perhaps you
can now make the leap and guess it: I(S) is the category whose objects are
the elements of S, where for each A,B ∈ S there is exactly one map A -

B, and where composition and identities are defined in the only possible way.
It’s called the indiscrete category on S.

Stare at it We’ll use this to find C. Let A be a category and S a set. A
functor F : A - D(S) is supposed to be the same thing as a function
C(A) - S, whatever C is. Well, what is a functor F : A - D(S)? It’s
a way of assigning to every object A ∈ A an element F (A) of S, with the
property that for every map A

f- B in A we have F (A) = F (B). In other
words (aha!), it’s a function O(A)/∼ - S where ∼ is the equivalence
relation on O(A) generated by A ∼ B whenever there’s a map A - B. So
C(A) = O(A)/∼. This is called the set of connected-components of A.

Sheet 5: Representables

1. Bookwork.

2. The non-inventive answer: by definition, theere’s one representable for every
pair (A, A) where A is a category and A ∈ A, namely HA. So to give five
examples of representable functors, you can just write down five examples of
objects of categories!

For more interesting answers, browse library/web.

3. Take isomorphism α : HA
- HB . We have to define maps A

f-
�

g
B and

prove gf = 1A and fg = 1B . Define f = αA(1A) and g = αB(1B). (What else
could we possibly do?) Get gf = 1A and fg = 1B from naturality of α.

4.(a) Pushover once you fully understand the question: e.g. make sure you fully
understand how monoids are one-object categories and M -sets are functors
M - Set. If it helps, use a different letter (M, say) for the one-object
category corresponding to the monoid M .

(b) The unique map α is m 7−→ xm. The bijection is φ 7−→ φ(1). (Moral:
unique existence statements can be rephrased as saying that some function
is a bijection.)

(c) This is just (b) rephrased.
(Well, the statement of the Yoneda Lemma also includes naturality in X and
in the object (usually called ‘A’). We haven’t proved this part, although we
know that our bijection is natural in the sense of being canonically defined—
no random choices involved.)

5. Same kind of comments as for Sheet 1, q.5.
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Sheet 6: The Yoneda Lemma

1. Bookwork.

2. Definition of Yoneda embedding: bookwork.

(a) If f : A - B is a map in A then f = Hf (1A).
(b) Given α : HA

- HB , define f = αA(1A); show Hf = α.
(c) Definition of universality: see 3.3.2. Isomorphism α : HA

- X given by
αB(g) = (Xg)(x).

3.(a) If J(f) is an isomorphism then by fullness, there exists a map f ′ : C ′ - C
such that J(f ′) = J(f)−1; then check that J(f ′f) = 1, which by faithfulness
implies f ′f = 1, and similarly ff ′ = 1.

(b) Use (a).
(c) Follows from (b).

4.(a) As the hint on the problem sheet suggests, it’s easy once you understand the
question. If you’re having trouble, try writing out in full the definition of the
functor J ◦− (i.e. what it does to objects and to maps).

(b) Follows from (a) and q.3.
(c) Take C = A and J = H• in (b).

Sheet 7: Limits

1. Definition of limit: bookwork.

Uniqueness: there are at least three statements you might make. Let D : I -

A be a diagram and take limit cones (L
pI- D(I))I∈I and (L′

p′I- D(I))I∈I.

Weakest L ∼= L′.
Stronger There is a unique isomorphism j : L - L′ such that p′I ◦ j = pI

for all I.
Strongest There is a unique map j : L - L′ such that p′I ◦ j = pI for all I,

and j is an isomorphism.

I’ll prove the strongest. First half of statement holds because (L′
p′I- D(I))I∈I

is a limit cone. Similarly, have unique map j′ : L′ - L such that pI ◦ j′ = p′I
for all I. Then j′j : L - L satisfies pI ◦ j′j = pI for all I, and 1L satisfies
pI ◦ 1L = pI for all I; but (L

pI- D(I))I∈I is a limit cone, so j′j = 1L.
Similarly, jj′ = 1L. So j is an isomorphism.

2. We define a functor F : A×A - A given on objects by F (X,Y ) = X × Y .

Given a map (X,Y )
(f,g)- (X ′, Y ′) in A × A, there is a unique map h : X ×

Y - X ′ × Y ′ such that

X × Y
pX,Y
1 - X

X ′ × Y ′

h
?

pX′,Y ′

1

- X ′

f
?

and

X × Y
pX,Y
2 - Y

X ′ × Y ′

h
?

pX′,Y ′

2

- Y ′

g
?

5



commute, since (X ′ �pX′,Y ′
1 X ′ × Y ′ pX′,Y ′

2 - Y ′) is a product cone. Define
F (f, g) = h. Check functoriality. To justify the word ‘canonical’, observe
that in this answer we’ve done nothing random (unlike the question-setter, who
randomly chose a product cone on every pair of objects).

3. Do ‘if’ and ‘only if’ separately. The only thing you’ve got to work with is the
definition of pullback, and there’s only one way to proceed.

4. No. E.g. if f = g then i is an isomorphism, but then the square is a pullback
if and only if f is monic (see 4.1.31). So we get a counterexample from any
non-monic map. For instance, take f and g both to be the unique map 2 -

1 in Set.

5.(a) If m is split monic with em = 1 then m is equalizer of B
me-

1
- B. If m is

regular monic then the uniqueness part of the definition of equalizer implies
that m is monic.

(b) Any monic m : A - B in Ab is the equalizer of B
q-

0
- B/im(m) where

q is the quotient map (much as in 4.1.15(c)). The map m : Z - Z defined
by m(x) = 2x is injective, therefore monic. It is not split monic: if em = 1
then e(2) = 1, so 2e(1) = 1, and there is no integer x satisfying 2x = 1.

(c) In Top, a map is monic iff injective (arguing as in 4.1.30(a)). A map
m : A - B is regular monic iff the induced map A - m(A) is a
homeomorphism. (So up to isomorphism, the regular monics are the inclu-
sions of subspaces.) In particular, a bijection m is regular monic if and only
if it is a homeomorphism, so we get an example by writing down any example
of a continuous bijection that is not a homeomorphism. For instance, let A
be R with the discrete topology, let B be R with the usual topology, and let
m be the map that is the identity on underlying sets. Or let A = [0, 1), let
B be the circle, thought of as consisting of the complex numbers of modulus
1, and put m(t) = e2πit.

Sheet 8: Limits and colimits

1. Bookwork.

2. Definitions: bookwork. Second part is straight manipulation of definitions.

3. Choose a product cone on every pair (B,C), with notation as in Sheet 7, q.2.
For each A,B,C, define a function

αA,B,C : A(A,B × C) - A(A,B)×A(A,C)
q 7−→ (pB,C

1 ◦ q, pB,C
2 ◦ q),

which is bijective by definition of limit. Prove α natural.

4. ‘Only if’ is bookwork. For ‘if’, write R for the right adjoint of ∆. Let D ∈ [I,A].
Then [I,A](∆A,D) ∼= A(A,R(D)) naturally in A ∈ A. Applying 4.4.2, conclude
that R(D) is a limit of D.

5.(a) Simplest of many possibilities: take the unique non-identity map in the cat-
egory A = (• - •).
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(b) Follows from observation that X
p-

p
- Y

q- Z is a coequalizer if and only

if q is an isomorphism.

(c) Axiom of Choice (page 40) says exactly that epic ⇒ split epic in Set. Then
use dual of Sheet 7, q.5.

Sheet 9: Limits and colimits of presheaves

1.(a) The meaning of ‘computed pointwise’ is the statement of Theorem 5.1.5 (with
A changed to Aop and S to Set).

(b) Applying Lemma 4.1.31, a map α in [Aop,Set] is monic iff a certain square
involving α is a pullback, iff for each A ∈ A the analogous square involving
αA is a pullback (since pullbacks are computed pointwise), iff for each A ∈ A
the map αA is monic. The monics in Set are the injections, so α is monic iff
each αA is injective. Similarly, the epics are the pointwise surjections.
Without using (a), can still figure out what the monics are: do a direct proof
by considering maps out of representables. But I know of no way of proving
the result on epics without (a).

2. Bookwork.

3. Something stronger is true: every representable HC is connected, meaning
that whenever HC

∼= X + Y for presheaves X and Y , then X ∼= 0 or Y ∼= 0.
(Here 0 = ∆∅ is the initial presheaf.) This implies the result in the question
because HA 6∼= 0 (since we have 1A ∈ HA(A)) and similarly HB 6∼= 0.

(Actually, connectedness also includes the condition of not being isomorphic to
0. This is very like the condition that 1 is not a prime number.)

To prove that HC is connected, suppose HC = X + Y . Then have universal
element u ∈ (X+Y )(C) ∼= X(C)+Y (C). Viewing X(C) and Y (C) as subsets of
(X+Y )(C), either u ∈ X(C) or u ∈ Y (C). If u ∈ X(C) then ((X+Y )(f))(u) ∈
X(D) for all maps D

f- C, which implies (by definition of universality) that
Y (D) = ∅ for all D; hence Y ∼= 0. Similarly, if u ∈ Y (C) then X ∼= 0.

4. Follows immediately from 3.3.2 and definition of E (X).

5.(a) If you’re having trouble with ‘only if’, make sure you understand the def-
inition of Monic(A); perhaps 2.3.3(a) will help. For ‘if’, write I for the
common image of m and m′; then since monic = injective in Set, there is a
bijection j : X - I defined by j(x) = m(x), and similarly j′ : X ′ - I;
show (j′)−1 ◦ j is an isomorphism from m to m′.

(b) Subgroups, subrings, vector subspaces. In Top, a subobject is a subset
equipped with a topology containing the subspace topology. (If you’d prefer
the answer to be ‘subspaces’, take regular subobjects instead: equivalence
classes of regular monics. See Sheet 7, q.5(c).)

Sheet 10: Interaction of (co)limits with adjunctions

1.(a) Bookwork.
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(b) Given A ∈ A, have to find left adjoint to HA : A - Set. For S ∈ Set and
B ∈ A, a map S - HA(B) is a family (A

fs- B)s∈S of maps in A, or
equivalently a map

∑
s∈S A

- B. So the left adjoint is S 7−→
∑

s∈S A.
We usually write

∑
s∈S A as S × A and call it a copower of A; compare

powers (page 70). To explain the notation, if 2 is a two-element set then
2× A = A+ A, and similarly for other numbers. Also, if A = Set then the
copower S ×A is the same as the product S ×A.

2.(a) Bookwork.

(b) U does not preserve initial objects.

(c) I does not preserve the sum 1 + 1.
C does not preserve the equalizer of the two distinct functors 1 -

- 2, where
2 = (• - •).

3. Bookwork.

4.(a) Straight application of definitions of pullback and monic.

(b) Just need to confirm that if X1
m1- A and X2

m2- A are monics rep-

resenting same subobject of A then the monics X ′
1

m′
1- A and X ′

2

m′
2-

A obtained by pulling back along f represent same subobject of A′. Can
do this directly or prove a more general—and morally obvious—statement
about isomorphic cones having isomorphic limits.

(c) Just need to check that Sub preserves identities (easy) and composition (di-
rect from hint in question).

(d) Saw in Sheet 9, q.5 that in Set, subobjects are subsets. Saw in 4.1.16 that
inverse images of subsets correspond to pullbacks of inclusions. From this,
deduce that Sub ∼= P, where P is as in 3.1.10(b). But saw there that P ∼= H2,
so Sub ∼= H2.
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