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Parallel Interior-Point Solver for Structured Quadratic Programs:

Application to Financial Planning Problems

Abstract

Many practical large-scale optimization problems are not only sparse, but also display some
form of block-structure such as primal or dual block angular structure. Often these structures
are nested: each block of the coarse top level structure is block-structured itself. Problems
with these characteristics appear frequently in stochastic programming but also in other
areas such as telecommunication network modelling.

We present a linear algebra library tailored for problems with such structure that is
used inside an interior point solver for convex quadratic programming problems. Due to its
object-oriented design it can be used to exploit virtually any nested block structure arising in
practical problems, eliminating the need for highly specialised linear algebra modules needing
to be written for every type of problem separately. Through a careful implementation we
achieve almost automatic parallelisation of the linear algebra.

The efficiency of the approach is illustrated on several problems arising in the financial
planning, namely in the asset and liability management. The problems are modelled as
multistage decision processes and by nature lead to nested block-structured problems. By
taking the variance of the random variables into account the problems become non-separable
quadratic programs. A reformulation of the problem is proposed which reduces density of
matrices involved and by these means significantly simplifies its solution by an interior point
method. The object-oriented parallel solver achieves high efficiency by careful exploitation
of the block sparsity of these problems. As a result a problem with over 50 million decision
variables is solved in just over 2 hours on a parallel computer with 16 processors. The
approach is by nature scalable and the parallel implementation achieves nearly perfect speed-
ups on a range of problems.
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1 Introduction

We are concerned in this paper with a parallel structure exploiting interior-point solver to tackle
convex quadratic programs (QPs). An advantage of interior point methods (IPMs) is a consistent
small number of iterations needed to reach the optimal solution of the problem. Indeed, modern
IPMs rarely need more than 20-30 iterations to solve a QP, and this number does not increase
significantly even for problems with millions of variables. However, a single iteration of interior-
point method may be costly because it involves solving large and potentially difficult systems
of linear equations. Indeed, the efficiency of interior point methods for quadratic programming
critically depends on the implementation of the linear algebra operations.

We deal with the primal-dual interior-point method in this paper. It is widely accepted (Andersen,
Gondzio, Mészáros and Xu 1996, Wright 1997) that the primal-dual algorithm is usually faster
and more reliable than the pure primal or pure dual method. The primal-dual method is applied
to the primal-dual formulation of the quadratic program

Primal Dual

min cT x + 1
2xT Qx max bT y − 1

2xT Qx

s.t. Ax = b, s.t. AT y + s − Qx = c,

x ≥ 0; y free, x, s ≥ 0,

where A ∈ Rm×n, Q ∈ Rn×n, x, s, c ∈ Rn and y, b ∈ Rm. The main computational effort of this
algorithm consists in the computation of the primal-dual Newton direction. Applying standard
transformations (Wright 1997) leads to the following linear system to be solved at each iteration

[
−Q − Θ−1 AT

A 0

] [
∆x

∆y

]

=

[
r

h

]

, (1)

where Θ = XS−1 and X and S are diagonal matrices in Rn×n with elements of vectors x and
s spread across the diagonal, respectively.

In this paper we are interested in the case where A and Q are large, block-sparse matrices;
indeed we assume them to be of a nested block-sparse structure. We note that an augmented
system matrix such as in (1) whose components A, Q are nested block-structured matrices can
be naturally reordered by symmetric row and column permutations (provided the structures
of A and Q are compatible), such that the resulting matrix is again a nested block-structured
matrix whose elementary blocks are of augmented system type. Thus the structures of A and
Q imply in a natural way a structure of the augmented system matrix.

The philosophy pursued in our solver is to replicate the nested block-structure of the augmented
system matrix in the linear algebra routines. Nested block-structured matrices can be repre-
sented using a tree: the whole matrix is the root of the tree, its block components are the nodes
immediately below the root, whereas the final elementary blocks are the leaves of the tree. We
associate which each node the structure of the sub-matrix that it represents. Thus we have
different types of nodes for each structure that is supported by the linear algebra.

Matrix structures that are supported by our solver are derived types such as block-diagonal,
block-bordered diagonal (which includes primal and dual block-angular structures) and rank-
corrector (matrices of the form A + V V T where V has only few columns) as well as elementary
(non-structured) types such as dense, sparse, network and projection matrices.
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All linear algebra routines are executed following this tree-structure: each node of the tree has
associated with it a complete set of linear algebra routines that are appropriate to exploit the
structure present at this node of the tree. This is achieved by using object-oriented program
design techniques: a node of the tree is represented by an abstract matrix class. Any particular
structure represented by the node corresponds to a particular implementation of the abstract
matrix class. Whenever a linear algebra routine at a particular node needs to access results from
its child-nodes it does so by referring to the abstract matrix class. At a particular node we only
need to access the results from computations at a lower level in the tree: their implementation
is hidden from the calling node.

Due to this self-referential property of the abstract matrix class we only need an implementation
for each type of node-structure supported, not for each possible combination of node-structures.
This results in a huge gain of flexibility, since virtually any nested block-structured problem
can be easily rebuilt as a tree of matrix-classes automatically leading to efficient structure
exploitation at each level of the tree.

Block-matrix operations are natural candidates for parallelization. We have therefore imple-
mented all higher-level matrix classes in parallel. The parallelization is coarse-grained and so is
well suited to large scale applications.

Further our implementation is effectively providing a linear algebra library for IPMs for QP. It
is therefore possible to completely separate the linear algebra part and the IPM logic part of
the algorithm.

There are several other object-oriented implementations of IPMs and more general optimization
algorithms reported in the literature: OOQP(Gertz and Wright 2003), TAO(Benson, McInnes
and Moré 2001), OPT++(Meza 1994) to name but a few. The recent report of Gertz and Wright
(Gertz and Wright 2003) provides a good summary of the various ongoing efforts. However we
believe that our philosophy is unique. All other approaches use object-oriented concepts to
separate the logic of the interior point method from the used data-types and linear algebra
implementation. Our approach is targeted at a different level, in that we use object-oriented
design to exploit the particular (nested) block-structure of the matrices in question. Our objects
are the blocks of the problem matrices. This way we can easily exploit virtually any practically
occurring nested block-structure in the linear algebra without any more coding needed. Other
approaches offer similar advantages by separating the linear algebra from the logic of the IPM,
however a complete new linear algebra implementation would need to be supplied for every new
type of matrix. It is possible and would be worthwhile to combine the two approaches (i.e. ours
with (Gertz and Wright 2003)) to obtain a complete IPM framework exploiting object-oriented
concept on every level. However such an integrated work is not the subject of this report.

To illustrate the potential of the new solver, we apply it to solve multistage stochastic quadratic
programs arising in financial planning problems, namely in asset liability management. Such
problems have drawn a lot of attention in the literature and have often been modelled as multi-
stage stochastic linear programs (Bradley and Crane 1972, Cariño, Kent, Myers, Stacy, Sylvanus,
Turner, Watanabe and Ziemba 1994, Consigli and Dempster 1998, Kusy and Ziemba 1986, Mul-
vey and Vladimirou 1992, Zenios 1995, Ziemba and Mulvey 1998). In this paper we consider an
extension in which the risk associated with the later stages is taken into account in the opti-
mization problem. This is achieved by adding the variance term to the original objective of the
problem and leads to a QP formulation.
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Multistage stochastic linear programs can be solved by the specialized decomposition algo-
rithms (Birge 1985, Gassmann 1990, Gondzio and Kouwenberg 2001, Linderoth and Wright 2003,
Ruszczyński 1985) or by the specialized interior point implementations (Birge and Qi 1988, Jes-
sup, Yang and Zenios 1994, Vladimirou and Zenios 1999, Hegland, Osborne and Sun 2002).
Recently a number of interesting specialized approaches have been proposed for multistage quad-
ratic programs. Steinbach (Steinbach 2000) exploits the tree-structure of such problems inherited
from the scenario tree of the multistage problem to implicitly reorder the computations in the
context of interior point method. Blomvall and Lindberg (Blomvall and Lindberg 2002a, Blom-
vall and Lindberg 2002b) interpret the problem as an optimal control one and derive the special
order in which computations in IPMs should be executed. This approach originates from differ-
ential equations and the authors call it the Riccati type method. Parpas and Rustem (Parpas
and Rustem 2003) extend the nested Benders decomposition to handle stochastic quadratic pro-
gramming problems and use an IPM-based solver to solve all subproblems. However all these
approaches assume a special problem structure that is then exploited in the computations. Ex-
tending the problem formulation will be difficult or even impossible. Our approach does not
rely on any particular problem structure: we can solve a wide variety of stochastic programming
formulations. Further multistage stochastic QPs are only one class of problems that can be
efficiently dealt with by the suggested approach.

The approach presented in this paper is an extension of that implemented in OOPS1 (Gondzio
and Sarkissian 2003, Gondzio and Grothey 2003). The main difference is that when linear prob-
lems were considered in the earlier version of OOPS the augmented system of linear equations
(1) did not contain matrix Q and was always reduced to normal equations

AΘAT ∆y = AΘr + h. (2)

This was a viable reduction step because matrix Q was not present in the augmented system
and Θ was a diagonal matrix. In the context of quadratic programming such a reduction would
lead to almost completely dense normal equations A(Q + Θ−1)−1AT (see (Duff, Erisman and
Reid 1987)) and would be likely to incur prohibitively expensive computations (unless Q is a
diagonal matrix). A comparison with CPLEX (which uses normal equations) in section 5 will
illustrate this point. Hence in this paper and more generally in the QP extension of OOPS we
always deal with the augmented system (1).

The extension of OOPS to QPs is possible but not straightforward. For QP one has to deal with
two matrices A and Q each of which might display some nested block-structure. It is not clear
a-priori how to exploit both these structures. As we will show the augmented system needs to
be re-ordered before any exploitable structure becomes apparent.

Another contribution of our paper is the analysis of the influence of the QP problem formulation
on the efficiency of the solution process. We propose a nonconvex reformulation of the problem
which reduces density of matrices involved and is better suited to the use of IPMs. To the
best of our knowledge studying this reformulation from the point-of-view of solver efficiency is
a novelty.

The paper is organized as follows. In Section 2 we briefly discuss how nested block-structures
can be exploited in the linear algebraic operations required to implement the interior-point

1The acronym OOPS stands for Object-Oriented Parallel Solver
http://www.maths.ed.ac.uk/~gondzio/parallel/solver.html
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method for QP. We give examples of the types of structures we wish to exploit and discuss
how to exploit them. In Section 3 we illustrate the use of object-oriented program design to
exploit nested structure in an efficient and flexible way. Section 4 reviews the Asset and Liability
Management problem, which we use as an example to demonstrate the efficiency of the code.
Two different formulations are given, one convex and dense, the other nonconvex but sparse.
Section 5 states the actual computational results achieved with our code both in serial and in
parallel, while in the final Section 6 we draw our conclusions.

2 Exploiting Nested Block-Structure in the Linear Algebra

2.1 Nested Block-Structured Matrices

The linear algebra module in OOPS is designed to exploit nested block-structure of matrices A

and Q. Examples of block-structured matrices are block-diagonal, primal or dual block-angular
(block-diagonal with dense row or column block), bordered block-diagonal (3) as well as rank-
corrector matrices (of the form A + V V T , where V has a small number of columns). Nested
block-structured matrices are block-structured matrices where each of the component blocks
itself can be block-structured. There is virtually no limit on the levels of structures exploitable
by the solver except the available computer memory.

Nested block-structured matrices occur frequently in applications. An important example is
multistage stochastic programming, where every modelled stage corresponds to one level of
nesting in the resulting system matrix (cp. section 4). Other examples are various network
problems solved in telecommunications (Gondzio and Sarkissian 2003). Some formulations of
Support Vector Machines have system matrices of rank-corrector structure (Cristianini and
Shawe-Taylor 2000). Rank-corrector structure also occurs when the Q matrix is not known
explicitly but estimated by a quasi-Newton scheme.

We believe that nested block-structure is a general property of very large optimization problems.
One can argue that truly large optimization problems are usually generated by some regular
process which by its nature will introduce some nested block-structure into the matrices. Typical
processes leading to nested structures are discretisations over space or time, uncertainty or
dynamics.

We assume that the nested structure of the problem is known to the solver. One could attempt
to extend of the approach in (Ferris and Horn 1998) to identify block-angular matrix structure
to nested structures, however this is not part of our current research.

Nested block-structured matrices are represented in the solver by a tree. The root of the tree
corresponds to the whole matrix and every block of a particular sub-matrix is a child node of the
node representing this sub-matrix. Leaf nodes correspond to the elementary sub-matrices that
can no longer be divided into blocks. With every node of the tree we associate its children as
well as information about what type of structure this node represents. The matrix A in Figure 2
for example is represented by the tree in Figure 1. For quadratic programming both matrices A

and Q in (1) can exhibit block-structure. Since IPMs are working with the augmented system,
the structures of A and Q clearly have to be related, in order for the resulting augmented system
to have exploitable structure.
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Figure 1: Tree Representation of Blocks.

Assume that matrices A and Q are of the structure displayed in Figures 2 and 3, that is a
combination of primal-dual block angular, border diagonal and diagonal structures. Then the

matrix Φ =

[
−Q − Θ−1 AT

A 0

]

can be reordered into the form displayed in Figure 4, i.e. a

nested bordered diagonal form (the tilde in C̃31 indicates that this is a part of the original C31

matrix). Since Θ is a diagonal matrix and it does not change the sparsity pattern, we do not
display it in Figure 4.

Two matrices A and Q are compatible in the sense that the augmented system matrix formed by
them can be reordered into an exploitable nested block-structure if the two trees representing
them are compatible. This means that both trees have to agree on the number of children
representing diagonal blocks as well as the column-dimensions of these blocks. They do not
have to agree on the type of structure represented by each node.

This seems to be a fairly strong restriction, however it can always be satisfied by forcing onto
Q a nested block structure compatible with A. Remember that A and Q are not arbitrary
matrices, but the Jacobian of the constraints and Hessian of the objective of the same QP
problem. Therefore their column dimensions must agree. Clearly the sparsity of such a forced
Q matrix might not be efficiently exploitable, at worst Q might have no zero sub-blocks at all.
However this can usually be rectified by the introduction of new variables and further linear
constraint in the model. Section 4 will give an example for such a remodelling in the case of
an Asset and Liability Management problem. Note that the need for such a rewriting of the
model is not just a peculiar requirement of our solver, but is a sensible step in order to improve
sparsity of Q for any solution approach.

Once it is established that the nested block-structures for A and Q are compatible, the reordering
of the augmented system matrix can be done in a generic way - i.e. it is the same for all matrices
of a particular structure.

It is worth noting that since we use a tree structure to represent our matrices, we need no further
memory to store the reordered augmented system matrix Φ. Its leaf node matrices are identical
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Figure 2: Example of Block-Structured Matrix A.
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Figure 3: Example of Block-Structured Matrix Q.




























































TC
~~ T

31
T

D11

D12

D10

D30

D11

D12

D10

B

B T

B

B

B

B

~
Q31

T

T

T

T

T

T

T

T

T

B

B

12

11

1211

T

T

T

D

D

D

D

D

D

21

21

22

22

23

23

D

DT

20

20

~
Q31

~
Q31

~
Q32

~
Q32

~
Q32

~
Q32

~
Q

~
Q

~
Q

T
32

32

32

~
Q

~
Q

~
Q

~
Q

31

31

31

32
Q

Q

Q

Q

21

22

23

20

Q

Q

11

12

Q10

21 22 B23

B

T

T

T
23

22

21

T~
C31

~
CT

31 C
~
32
T C

~T
32

TC
~
32C

C
~
32

C
~
32

C
~
32

C
~
32

~
C31

~
C31

~
C31

32 Q30 D30

T




























































Figure 4: Example of Block-Structured Augmented System Φ.
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to those already present in A and Q. Hence the reordered augmented system is represented by
a new tree, reusing the same leaf node matrices that make up A and Q. Therefore no physical
reordering of memory entries has to be done to obtain the reordered augmented system matrix.

2.2 Exploiting Simple Block-Structures

We will now give an example of how a particular block-structure can be exploited in the linear
algebra of the IPM. Suppose a block of the augmented system matrix has the symmetric bordered
block-diagonal structure.

Φ =










Φ1 BT
1

Φ2 BT
2

. . .
...

Φn BT
n

B1 B2 · · · Bn Φ0










, (3)

where Φi ∈ Rni×ni , i = 0, ..., n and Bi ∈ Rn0×ni , i = 1, ..., n. Matrix Φ has then N =
∑n

i=0 ni

rows and columns. Such blocks will appear as seen in Figure 4 as diagonal blocks or root blocks
of the augmented system matrix if its component A and Q blocks are of block-diagonal and/or
block-angular structure.

With

L =










L1

L2

. . .

Ln

Ln,1 Ln,2 · · · Ln,n Lc










, D =










D1

D2

. . .

Dn

Dc










and

Φi = LiDiL
T
i (4a)

Ln,i = BiL
−T
i D−1

i (4b)

C = Φ0 −

n∑

i=1

BiΦ
−1
i BT

i (4c)

= LcDcL
T
c (4d)

matrix Φ can be decomposed as
Φ = LDLT . (5)

Because of this (5) can be seen as a (generalized) Cholesky factorization of Φ.

We can use this to compute the solution to the system

Φx = b,
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where x = (x1, . . . , xn, x0)
T , b = (b1, . . . , bn, b0)

T by the following operations:

zi = L−1
i bi, i = 1, . . . , (6a)

z0 = L−1
c (b0 −

n∑

i=1

Ln,izi) (6b)

yi = D−1
i zi, i = 0, . . . , n (6c)

x0 = L−T
c y0 (6d)

xi = L−T
i (yi − LT

n,ix0), i = 1, . . . , n (6e)

It is worth noting that the order in which matrix multiplications are performed in (4) and (6) may
have a significant influence on the overall efficiency of the solution of equation Φx = b. The sum
to compute C in (4c) is best calculated from terms (L−1

i BT
i )T D−1

i (L−1
i BT

i ), which in turn is best
calculated as sparse outer products of the sparse rows of L−1

i BT
i . Also the matrices Ln,i are best

not calculated explicitly. Instead Ln,izi in (6b) is most efficiently calculated as Bi(L
−T
i (D−1

i zi))
and similarly for LT

n,ix0 in (6e). For these reasons we refer to complex factorizations such as
(4/6) as implicit factorizations.

We have concentrated in this section on exploiting block bordered-diagonal structure as an
example of what we mean by structure exploitation. Other structures can be exploited along
similar lines. A rank-corrector structure for example would be exploited by using the Sherman-
Morrison-Woodbury formula.

A common feature of all structure exploiting approaches is that operations (factorizations, back-
solves) for the whole system can be reduced to operations performed on the sub-blocks. The
routine working on the top-level system only needs to access the results of the lower-level rou-
tine, no details about their particular implementation are assumed. This feature is the base of
our object oriented approach to nested structure exploitation.

2.3 Linear Algebra for Elementary Sparse Matrices

The main computational effort of any primal-dual IPM consists in the computation of the
primal-dual Newton direction. This requires solving the following linear system

[
−Q − X−1S AT

A 0

] [
∆x

∆y

]

=

[
ξd − X−1ξµ

ξp

]

, (7)

where

ξp = b − Ax,

ξd = c − AT y − s + Qx,

ξµ = µe − XSe.

In our tree based linear algebra implementation this system has to be solved at each of the tree
nodes corresponding to elementary sparse matrices. The matrix involved in (7) is symmetric
but indefinite (even for convex problems when Q is positive definite). For the sake of accuracy
and efficiency, the matrix in the reduced Newton system is regularized with diagonal terms Rp

and Rd

H =

[
−Q − X−1S AT

A 0

]

+

[
−Rp 0

0 Rd

]

(8)
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proc 1

...

proc n

Φ1 = L1D1L
>

1

...

Φn = LnDnL>
n

C1 = B1L
−>

1
D1L

−1

1
B>

1

...
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n
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=
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=
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n
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n
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n
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1
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P
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=
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1
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1
c

z
0

x
0

=
L
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n
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1
B>

1
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Figure 5: Split of Computations Between Processors.

to obtain a quasi-definite matrix (Vanderbei 1995) and allow more flexibility in the pivot order-
ing. The use of primal-dual regularization (8) guarantees the existence of a Cholesky-like LDLT

factorization in which the diagonal D contains both positive and negative elements. It avoids
the need of using the 2× 2 pivots required otherwise to decompose an indefinite matrix (Bunch
and Parlett 1971, Duff et al. 1987).

The matrix in the regularized augmented system (8) is symmetric and quasi-definite (with n

negative pivots, corresponding to the Q part of the matrix and m positive pivots, corresponding
to the A part). In our implementation of interior point method system (7) is regularized and
then solved in two steps: (i) factorization of the form LDLT and (ii) backsolve to compute
the directions (∆x,∆y). Since the triangular decomposition exists for any symmetric row and
column permutation of the quasi-definite matrix (Vanderbei 1995), the symbolic phase of the
factorization (reordering for sparsity and preparing data structures for sparse triangular factor)
can be done before the optimization starts.

2.4 Parallelisation

The scheme indicated in section 2.2 lends itself naturally to parallelization as indicated in Fig-
ure 5. Steps (4a) and (4b) and the calculation of BiΦ

−1
i BT

i can be distributed among the
processors. The only part that remains to be done on all processors is steps (4c)(4d): adding
the individual processors contributions to C and factorizing C. Typically the linking block is
much smaller in size than the other blocks, and therefore the time spent on factorizing C is small
in comparison. Similarly for the backsolves all steps involving matrices Li, Ln,i, Di and vectors
xi, yi, zi and bi can be distributed among processors, while the steps involving x0, y0, z0, b0, Lc

and D0 have to be performed on all processors. Thus each processor will need access to its
local blocks (subscript i) as well as the complicating blocks (subscripts 0,c). These blocks will
be stored on each processor. Our linear algebra implementation is carefully designed to exploit
parallelism along the lines indicated above when possible.

The solver supports coarse grain parallelism, that is the component blocks of the root matrix are
distributed among processors. Further down the tree structure is exploited but all computations
are done on the same processor. The solver uses an a-priori heuristic to assign component blocks
to processors based on the dimension and density of the component matrices. Therefore even
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unbalanced matrices can be distributed in an efficient manner.

Summing up, important savings can be achieved in the storage requirements as well as in the
efficiency of computations if the linear algebraic operations exploit the block structure of matrix
Φ. Last but not least, exploiting block structure allows an almost straightforward parallelization
of many of the computational steps when computing the decomposition of Φ and when solving
equations with its factorization.

3 Object-Oriented Design

So far we have argued that any particular (nested) structure of the problem should be taken
into account when implementing efficient linear algebra routines for IPM. This could be done in
a traditional implementation and indeed many such approaches have been presented over time,
specialised to exploit some specific structure. However the drawback of this approach is that
the resulting code can only handle one particular structure. Any change to the problem might
result in the necessity of a significant coding effort.

On the other hand our object-oriented approach, following the ideas outlined in (Gondzio and
Sarkissian 2003) gives us the flexibility to model any supported nested block-structure without
the need to modify the code.

3.1 Matrix Interface for Augmented System Computations

As pointed out earlier we represent a nested block-structured matrix by a tree. Each node
corresponds to a sub-block of the matrix and with each node we associate the type of structure
present at this node as well as the sub-blocks making up this node.

Observe that the type of the node determines how the linear algebraic operations for the cor-
responding block of the matrix should be executed. Therefore we also associate a set of linear
algebra routines with each node: those which exploit the structure present at the node in ques-
tion.

The representation of the tree storing the nested matrix structure and the linear algebra routines
associated with each node of the tree is done using object-oriented principles. We introduce a
Matrix class that is defined as an interface to a selection of linear algebra routines. The class
itself does not provide any implementation of the particular methods, it merely defines how they
should be called: the class is abstract. For a more thorough discussion of this abstract Matrix

class we refer the reader to (Gondzio and Sarkissian 2003).

For each supported type of block structure we have an implementation of this abstract matrix
class: i.e. a module that implements each of the specified routines in an appropriate way for
the block-structure in question. When references to the component blocks of a structure are
needed this is done by a call to the appropriate linear algebra routine from the implementation
of the abstract matrix class living on the child node associated with this component. Similarly
the building of the re-ordered augmented system matrix from its components A and Q is done
by a re-ordering method in the interface that has a different implementation for each supported



Parallel Interior-Point Solver for Structured Quadratic Programs 11

Di

Bi

RankCorrector

Rank corrector

implementations

D

R

SparseMatrix

general sparse

linear algebra

SolveLt

matrix

y=Mtx

y=Mx

SolveL

Factorize

Schur complement

Implementations based on

BorderedBlockDiagonal

M
at

ri
x 

In
te

rf
ac

e

Figure 6: The Matrix Interface and Several Implementations of it: Building Blocks for the Tree-
Structure.

structure.

The abstract matrix class and its implementations for all types of supported block structure
are the building blocks from which the trees representing the matrices A, Q and the re-ordered
augmented system are build (Figure 6).

3.2 Implementation Details

The linear algebra code is written in C. We decided to use C rather than C++ or Java due to the
more direct control offered by C. While language support for object-oriented design as offered
in C++ or Java would undoubtedly make the coding easier, these language features incur some
overhead that might decrease the overall efficiency of the solver. It is well possible to use C for
object-oriented program design at the cost of a slight increase in coding effort when compared to
an object-oriented language. The bottom level routines that implement the elementary sparse
matrix factorization and backsolves are written in Fortran, again for efficiency reasons.

The parallel implementation of OOPS uses MPI. This choice offers a great flexibility concerning
the choice of platform and the code should run just as well on a network of PCs as on a
dedicated parallel machine. The numerical results reported in this paper were obtained on a
SunFire 15000 offering 24 processors running at 900MHz. Comparisons as to the efficiency of
OOPS on different parallel environments have been reported in (Gondzio and Sarkissian 2003)
and we refer the reader there.

The interior point algorithm used to drive the linear algebra library is the infeasible primal-dual
method with multiple centrality correctors (Gondzio 1996). Other choices are possible and could
be easily implemented without having to touch the linear algebra kernel itself.
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4 Asset and Liability Management Problems

There are numerous sources of structured linear programs. Although we have developed a
general structure exploiting IPM solver, we have tested it in the first instance only on Asset
and Liability Management (ALM) problems. This section will briefly summarize the structure
of these problems. We will follow the problem description of (Steinbach 2000, Steinbach 2001)
and we refer the reader to (Ziemba and Mulvey 1998) and the references therein for a detailed
discussion of these problems.

Assume we are interested in finding the optimal way of investing into assets j = 1, . . . , J . The
returns on assets are uncertain. An initial amount of cash b is invested at t = 0 and the portfolio
may be rebalanced at discrete times t = 1, . . . , T . The objective is to maximize the final value of
the portfolio at time T + 1 and minimize the associated risk measured with the variance of the
final wealth. To model the uncertainty in the process we use discrete random events ωt observed
at times t = 0, . . . , T ; each of the ωt has only a finite number of possible outcomes. For each
sequence of observed events (ω0, . . . , ωt), we expect one of only finitely many possible outcomes
for the next observation ωt+1. This branching process creates a scenario tree rooted at the initial
event ω0. Let Lt be the level set of nodes representing past observations (ω0, . . . , ωt) at time
t, LT the set of final nodes (leaves) and L =

⋃

t Lt the complete node set. In what follows a
variable i ∈ L will denote nodes, with i = 0 corresponding to the root and π(i) denoting the
predecessor (parent) of node i. Further pi is the total probability of reaching node i, i.e. on
each level set the probabilities sum up to one. We draw the reader’s attention to the important
issue of scenario tree generation (Høyland, Kaut and Wallace 2003).

Let vj be the value of asset j, and ct the transaction cost. It is assumed that the value of the
assets will not change throughout time and a unit of asset j can always be bought for (1 + ct)vj

or sold for (1 − ct)vj . Instead a unit of asset j held in node i (coming from node π(i)) will
generate extra return ri,j. Denote by xh

i,j the units of asset j held at node i and by xb
i,j, x

s
i,j the

transaction volume (buying, selling) of this asset at this node. We assume that we start with
zero holding of all assets but with funds b to invest. Further we assume that one of the assets
represents cash, i.e. the available funds are always fully invested.

We will now present two slightly different versions of the model resulting from these assumptions.
One of them is convex but has a dense Q matrix. The other which is obtained by introducing
an extra variable and constraint has a sparse Q matrix at the expense of a nonconvex problem
formulation. However the problem is still convex in the space of the constraints, which is why
we use this second formulation due to its sparsity benefits. The non-convexity of the model does
not seem to adversely affect the performance of the interior point algorithm.

The objective of the ALM problem is to maximize final wealth while minimizing risk. Final
wealth y is simply expressed as the expected value of the final portfolio converted into cash

y = IE((1 − ct)
J∑

j=1

vjx
h
T,j) = (1 − ct)

∑

i∈LT

pi

J∑

j=1

vjx
h
i,j,
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while risk is expressed as its variance

Var((1 − ct)
J∑

j=1

vjx
h
T,j) =

∑

i∈LT

pi[(1 − ct)
∑

j

vjx
h
i,j − y]2

=
∑

i∈LT

pi(1 − ct)
2[

∑

j

vjx
h
i,j]

2 − 2y (1 − ct)
∑

i∈LT

pi

J∑

j=1

vjx
h
i,j

︸ ︷︷ ︸

=y

+y2
∑

i∈LT

pi

︸ ︷︷ ︸

=1

=
∑

i∈LT

pi(1 − ct)
2[

∑

j

vjx
h
i,j]

2 − y2.

The actual objective function of the problem is a linear combination of these two terms as in
the Markowitz model (Steinbach 2001). The ALM problem can then be expressed as

max
x,y≥0

y − ρ[
∑

i∈LT

pi[(1 − ct)
∑

j

vjx
h
i,j ]

2 − y2]

s.t. (1 − ct)
∑

i∈LT
pi

∑

j vjx
h
i,j = y

(1 + ri,j)x
h
π(i),j = xh

i,j − xb
i,j + xs

i,j, ∀i 6= 0, j
∑

j(1 + ct)vjx
b
i,j =

∑

j(1 − ct)vjx
s
i,j, ∀i 6= 0

∑

j(1 + ct)vjx
b
0,j = b.

(9)

The risk aversity factor ρ has been set to 1.0 in our computations. To illustrate the structure of
this problem we introduce xi = (xs

i,1, x
b
i,1, x

h
i,1, . . . , x

s
i,J , xb

i,J , xh
i,J), and define matrices

G =








1 −1 1
. . .

1 −1 1
−cs

1 cb
1 0 · · · −cs

J cb
J 0








, Bi =








0 0 1 + ri,1

. . .

0 0 1 + ri,J

0 0 0 · · · 0 0 0








and

Qi ∈ IR3J×3J :

{
(Qi)3j,3k = pi(1 − ct)

2vjvk, j, k = 1, . . . , J, i ∈ LT

Qi = 0, i 6∈ LT

di ∈ R1×3J : (di)3j = (1 − ct)pivj ,

where cb
j = (1 + ct)vj , c

s
j = (1 − ct)vj. The Qi are lattice matrices ( ) that have entries only in

elements with a row and column index divisible by three (corresponding to the xh variables).
We can now rewrite problem (9) as

max
x,y≥0

y − ρ[
∑

i∈LT

xT
i Qixi − y2] s.t.

∑

i∈LT
dT

i xi = y

Bπ(i)xπ(i) = Gxi ∀i 6= 0

Gx0 = beJ+1.

(10)

If we further assemble the vectors xi, i ∈ L and y into a big vector x = (y, xσ(0), xσ(1), . . . , xσ(|L|−1))
where σ is a permutation of the nodes 0, . . . , |L| − 1 in a depth-first order, the problem can be
written as

max
x

cT x − ρxT Qx subj. to Ax = b
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with matrices A and Q of the form

A =
























−1 0 di · · · di · · · 0 di · · · di

G

Bi

0
...
0

∣
∣
∣
∣
∣
∣
∣
∣
∣

G

Bi G
...

. . .

Bi G

∣
∣
∣
∣
∣
∣
∣
∣
∣

...
. . .

Bi

0
...
0

∣
∣
∣
∣
∣
∣
∣
∣
∣

G

Bi G
...

. . .

Bi G

∣
∣
∣
∣
∣
∣
∣
∣
∣
























(11)

Q =
























−1
0

∣
∣
∣
∣
∣
∣
∣
∣
∣

0

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣

. . .
∣
∣
∣
∣
∣
∣
∣
∣
∣

0

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
























(12)

which is of nested primal/dual block-angular form. However due to the −1 term in the diagonal
of Q (while all other Qi — being variance-covariance matrices — are positive semi-definite) this
formulation of the problem is not convex.

We can however substitute for the y term in this formulation, using

y2 = [
∑

i∈LT

(1 − ct)pi

J∑

j=1

vjx
h
i,j]

2

= (1 − ct)
2

∑

i∈LT

∑

l∈LT

J∑

j=1

J∑

k=1

piplvjvkx
h
i,jx

h
l,k

resulting in a block-dense Q matrix with |L| × |L| blocks of the form

Qi,l :







(Qi,l)3j,3k = −(1 − ct)
2piplvjvk, j, k = 1, . . . , J, i, l ∈ LT , i 6= l

(Qi,i)3j,3k = [pi(1 − ct)
2 − (1 − ct)

2p2
i ]vjvk, j, k = 1, . . . , J, i ∈ LT

Qi,l = 0, i 6∈ LT or l 6∈ LT .
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This formulation of the problem is convex (Q now being a variance-covariance matrix) but dense:

Q =
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Because of high density of matrix Q there is no point in solving such a formulation. Instead, we
have used the first formulation in our numerical tests.

5 Numerical Results

We will now present computational results that illustrate the efficiency of our structure exploiting
interior point code for quadratic programming, enabling it to solve QP problems with millions
of variables and constraints. Further we demonstrate that the code parallelizes well obtaining
almost perfect speed-ups on 2-8 processors.

All computations were done on the Sunfire 15000 machine at Edinburgh Parallel Computing
Centre (EPCC). This machine features 24 900MHz UltraSparc-III processors and a total of
48GB of memory.

In Table 1 we summarize problem statistics of our test-problems. All problems are randomly
generated Asset and Liability Management problems using the non-convex formulation of sec-
tion 4. ’Stages’ and ’Total Nodes’ refer to the geometry of the scenario trees for these problems.
’Blocks’ is the number of first stage scenarios. Problems ALM1-ALM5 use a symmetric scenario
tree while problem UNS1 uses an unsymmetric scenario tree. In this case the sub-blocks are
distributed among processors by a greedy algorithm (assigning largest sub-blocks first). Table 2
gives the performance of OOPS on the six smaller problems ALM1-ALM5 and UNS1 for 1-8
processors. Blank entries indicate that the problem was not run on the given number of pro-
cessors. Problems ALM1-ALM5 have only been run for processor numbers that are a divisor
of the number of blocks. For all test we have used a stopping tolerance of rel gap < 10−8.
We report the solution time in seconds (t), the number of interior point iterations (it) and the
parallel efficiency (pe) in percent:

100 ×
serial time

number procs× parallel time

All problems can be solved in a reasonable time and with a reasonable amount of interior
point iterations. The speed-up of the parallel implementation for the symmetric problems is
near perfect, due to the exact balance of the blocks treated by each processor and by far the
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Problem Stages Blocks Assets Total Nodes Constraints Variables

S B J |L|=
∑S−1

i=0 Bi (J + 1)|L| + 1 3J |L| + 1

ALM1 5 10 5 11111 66,667 166.666
ALM2 6 10 5 111111 666,667 1,666,666
ALM3 6 10 10 111111 1,222,222 3,333,331
ALM4 5 24 5 346201 2,077,207 5,193,016
ALM5 4 64 12 266305 3,461,966 9,586,981
UNS1 5 35 5 360152 2,160,919 5,402,296

ALM6 4 120 5 1742521 10,455,127 26,137,816
ALM7 4 120 10 1742521 19,167,732 52,275,631

Table 1: Asset and Liability Management Problems: Problem Statistics.

Problem 1 proc 2 procs 4 procs 5 procs 6 procs 8 procs
t it t pe t pe t pe t pe t pe

ALM1 86 14 45 95.5 18 95.5
ALM2 1933 22 968 99.8 387 99.9
ALM3 8172 29 4102 99.6 1638 99.8
ALM4 6435 33 3221 99.9 1642 98.0 1092 98.2 856 94.0
ALM5 8958 18 4566 98.0 2286 98.0 1195 93.7
UNS1 6119 27 3260 93.8 1633 93.7 1312 93.3 1092 93.4 872 87.7

Table 2: Results of OOPS on Smaller Problems.

major computational task being distributed amongst the processors. Problem ALM4 has also
been run on 12 and 24 processors with a parallel efficiency of 93.9% and 90.9% respectively,
indicating that the approach scales well to a higher number of processors. Also the speed-ups
for the unsymmetric problem are satisfactory showing that our approach does not heavily rely
on symmetry of the scenario tree.

Table 3 shows the performance of OOPS on the two huge problems ALM6/ALM7. These
problems have only been solved in parallel on 16 processors. As can be seen, we are able to solve
problem ALM7 with more than 50 million variables in just over 2 hours.

5.1 Comparison with CPLEX

In order to evaluate the competitiveness of our solver we have compared its performance with
that of CPLEX 7.0 QP barrier solver. This version of CPLEX can only solve QP problems
with a positive semi-definite Hessian. We have therefore done our comparisons on a convexified
version of the sparse nonconvex ALM formulation (10). Although this problem has no longer

Problem time iter

ALM6 1470 18
ALM7 8465 19

Table 3: Solving Large Problems on 16 Processors.



Parallel Interior-Point Solver for Structured Quadratic Programs 17

Problem Stages Blocks Assets Total Nodes Constraints Variables

S B J |L|=
∑S−1

i=0 Bi (J + 1)|L| + 1 3J |L| + 1

cALM1 5 10 5 11111 66.667 166.666
cALM2 6 10 5 111111 666.667 1.666.666
cALM8a 4 10 50 1111 56.662 166.651
cALM8b 3 33 50 1123 57.274 168.451
cALM8c 3 50 50 2552 130.153 382.801
cALM8d 3 70 50 4971 253.522 745.651

Table 4: Convexified Problems Used for Comparison with CPLEX.

Problem CPLEX 7.0 OOPS

time (s) iter mem (Mb) time (s) iter mem (Mb)

cALM1 215 36 202 231 14 91
cALM2 3107 51 1859 4570 26 922
cALM8a 1317 29 452 1196 14 258
cALM8b 2838 31 637 368 16 142
cALM8c 10910 29 1590 860 16 319
cALM8d (51000) (30) Out of Mem 1723 17 678

Table 5: Results of Comparing CPLEX with OOPS.

an interpretation in terms of Asset and Liability optimization, its numerical behaviour should
be similar to that of the unmodified problem. Indeed, the convexification does not change the
sparsity structure of the problem hence the cost of a single iteration should not change. The
problem does change significantly though and this may affect the number of iterations to reach
optimality. This is confirmed by comparing the performance of OOPS on both problems.

Since we do not have a CPLEX licence on the SunFire 15000 used for the results reported
above, the following tests have been run on a slower 400MHz Ultrasparc-II processor with 2GB
of memory. The sizes of these problem instances are thus smaller than those reported above.

CPLEX also uses a solution tolerance of rel gap < 10−8. For the test problems CPLEX
consistently uses between 2-5 times as much memory as OOPS does. Actually, CPLEX ran out
of memory for problem cALM8d. The reported solution time is an extrapolation based on the
number of flops needed per iteration reported by CPLEX and assuming that 30 interior point
iterations will be needed. The analysis of the results collected in Table 5 indicate that OOPS
needs consistently fewer interior point iterations. This is an effect of the multiple centrality
correctors (Gondzio 1996) employed by our implementation. The solution times are similar for
cALM1/cALM2 but OOPS performs vastly superior for the cALM8 problems, especially the
last three of these problems which feature large elementary matrices and a high number of first
stage scenarios.

Based on our experience, the problem size staying the same, the memory requirements and the
solution time of OOPS would decrease as the number of blocks increases. This is clearly seen
when comparing the solution statistics for problems cALM8a and cALM8b. Although they have
very close dimensions (Constraints and Variables), cALM8a is a four-stage problem with fewer
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blocks in the first stage. Indeed, cALM8a has 10 larger first stage blocks while cALM8b has 33
smaller blocks. OOPS on cALM8b needs less memory and is solved faster. For CPLEX both
solution time and memory requirements increase from cALMa to cALMb. It is here that the
power of our approach is expressed best.

6 Conclusion

We have presented a structure exploiting implementation of an interior point method for quad-
ratic programming. Unlike other such implementations which are geared towards one particular
type of structure displayed by one particular type of problem, our approach is general enough
to exploit any block structure and indeed any nested structure. We achieve this flexibility by an
object-oriented layout of the linear algebra library used by the method. An additional advantage
of this layout is that it lends itself naturally to efficient parallelization of the algorithm.

We have given computational results of our algorithm on a selection of randomly generated
Asset and Liability Management problems. These problems can be formulated as nonconvex
sparse quadratic programs and can be solved very efficiently and with near-perfect speed up in
the parallel implementation, enabling us to solve a problem of more than 50 million variables in
just over two hours on 16 processors.
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