Interior-Point Solver ] ] ]
Interior-Point Methods reached maturity

e well understood theory
Jacek Gondzio e fast commercial and free IPM solvers
e IPMs are suitable for large-scale problems

ISMP, Atlanta, August 2000 Large-scale problems are usually structured
(dynamics, uncertainty, spatial distribution, etc)

Affordable parallelism: Beowulf Project
Becker et al., Harnessing the Power of Paral-
lelism in a Pile-of-PCs.

Department of Mathematics & Statistics Develop Interior-Point Solver that
The University of Edinburgh
EH9 3JZ Edinburgh, U.K. e solves ANY structured problem
Email: gondzio@maths.ed.ac.uk e is fast
URL: http://www.maths.ed.ac.uk/ gondzio e runs in parallel

Object-Oriented Design

In collaboration with: e define Abstract Algebra
Andreas Grothey, Edinburgh dedicated to IPM’s
Robert Sarkissian, Cambridge e implement different algebras
for block-structured matrices
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Structures and IPMs Block-Structured Matrices

Staircase Structure

Az
Todd, Math. Prog., 1988; By As

A= B>
Birge & Qi, Mang. Sci., 1988; .Bn,l An

Primal Block-Angular Structure

A1
Ap

Schultz & Meyer, SIAM Opt, 1991;

Hurd & Murphy, ORSA JoC, 1992; A
n

By By -+ Bn Bp4i

Choi & Goldfarb, Math. Prog., 1993; Dual Block-Angular Structure

Ar C1
Jessup, Yang & Zenios, SIAM Opt, 1994; A= A2 C2

An Cn

Grigoriadis & Khachiyan, SIAM Opt, 1996;
Row and Column Bordered Structure

Al C1
Gondzio, Sarkissian & Vial, EJOR, 1997; Ao C>
A= s :
An Cn
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Augmented system (symmetric but indefinite)

—o 1 AT ||z | _|r
A 0 Ay | ||

Eliminate
Az = 0ATAy — or,

to get Normal equations (symmetric, positive
definite)

(AeAYAy = g = AOr +h.
Two step solution method:

e factorization to LDLT form,

e backsolve to compute direction Ay.

Dual Block-Angular Structure

Normal-equations matrix

A1AT

A AT tcct

AAT =
Ap AT

where C € R™*k defines a rank-k corrector.

Implicit inverse (Sherman-Morrison-Woodbury)

7} (2
diag(A;Al) diag(L;LT) = LLT
éi = Li_lC,-
S=I,+yr,CIC; = LgLY

(AATY1 = (LT +ccTy-1
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(LLY-1—(Lrt)y-les-1cT(Lrt)-1
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Normal-equations matrix

A1 AT A BT
Ap AT ApBY
AAT = . : ,
An AT A, BT
B1AT BoAT ... B,AT C
where
n+1
c= Y BBl
i=1
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Tr=T
B;ATL;

Data Structure

Linear Algebra Module :

e Given A, z and ©, compute Az, ATz, A©AT.

e Given A®AT, compute the Cholesky factor-
ization A@AT =T

e Given L and r, solve Lz =r and LTz =r

Common choice: A single data structure to com-
pute the general sparse operations

How can we deal with block-structures?
Blocks may be

e general sparse matrices
e dense matrices

very particular matrices (identity, projection,
GUB)

e block-structured

It is worth considering many data structures.
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Important observation for primal and dual We define a Polymorphic Algebra Class:
block-angular structures: an Algebra for IPMs.

The linear-algebra module can be implemented The Algebra contains the following functions:
using the linear algebra modules of blocks.
e NewAlgebra

Solutions e FreeAlgebra
e PrintAlgebra

e EXxploit block structures using essentially the
same operations. e MatrixTimesVector
e MatrixTransTimesVector

e Use data abstraction to achieve generality. e ComputeAThetaATrans

e ComputeCholesky

e How the matrix is stored defines how com- ® Solvel

putations are done. e SolvelLTrans

) e GetColumn
e Add many particular data structures rather

than modify previous one for new applica-
tions e SolveLl Ej

e GetSparseColumn

e SolvelLTrans Ej 10

Vector Parallelism

) Two distinct parts:
We define a Vector Class

for primal and dual vectors in IPMs. e The Linear Algebra Module
Vector is a friend of Algebra. e The Primal-dual method
The Vector contains the following functions: Linear Algebra Module:

e NewVector

e FreeVector e Memory Layout for the Matrix

e PrintVector

e ddotVector

e copyVector

e daxpyVector

e normofVector

The key program construct that describes the
structure of the LP is a I ree.
Tree has a recursive definition. e Very good speed-ups
. e Reduces peak memory
Both Vector and Algebra are friends of Tree.
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Bad memory layout for vectors:
C ] T ]
P

e excessive communications

e bad balance between
computations and communications

Good memory layout for vectors:
[ ] 1T

Multicommodity Flow Problem

13

e Multicommodity flow problem

e Survivable network design problem

e Network capacity investment problem
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Minimum Cost Network Flow Problem

A graph G = (V, &) is given. V are its nodes and
EcCA{@,j):1€V,5 €V, i# 3} are its arcs.

We associate cost c;; > 0 with arc (4, 7).

We associate capacity K;; > 0 with arc (3, 7).
A set of demands k € D:

ship a flow from a source to a target.

Minimum Cost Network Flow Problem:

i (k)
min > Cii oY X
(iee  kep

s t. ,%D xf]’“) <Ky, v(i,§) €E,
Nz(F) = g(k), Vk € D.

directed network undirected network

Network data

Prob Nodes Arcs Demands
RealNet 119 308 7021
Random6 100 300 200
Random12 300 600 1000
Random16 300 1000 1000
Random?20 400 1000 5000

Pentium Pro 300 MHz, 384 MB:

Problem | Rows Columns |Iters Time
RealNet 14232 72996 31 98
Random6 8715 51300 20 35
Random12 88506 353400 40 1183
Random16 87710 581000 39 2958
Random?20 || 160201 799000 46 5823
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SUN Enterprise 450
4 processors 400MHz UltraSparc-II with 4MB
built-in cache. Each processor has 512MB RAM.

Minimum Cost Network Flow Problem:

Prob Sizes
Rows Cols
RealNet 14232 72996
Random6 8715 51300
Random12 88506 353400
Random16 87710 581000
Random?20 | 160201 799000
Prob 1 Proc 2 Procs 3 Procs 4 Procs
time S-up | time S-up | time S-up | time S-up
RN 75 1.0 40 1.88 28 2.68 22 3.41
R6 63 1.0 39 1.74 28 2.43 23 2.96
R12 | 1243 1.0 709 1.75 504 2.47 403 3.08
R16 | 3401 1.0| 1987 1.71 | 1367 2.49 | 1097 3.10
R20 | 5041 1.0 | 2826 1.78 | 1942 2.60 | 1593 3.16
Speed-ups:

about 1.8 on two processors;
about 2.5 on three processors;
about 3.1 on four processors.
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Survivable Network Design Problem

. k

A variable z(F) = (wfg,j))(i,j)eé'(s) represents the
feasible flow of G(s) between the source and the
target node, for a demand d(k),k € Rs in state
seSs.

Survivable Network Design Problem:

min Ly
(k) (s) o, »
s. t. > oxy <K i V(i,5)€&(s),VsES,
k€ERs
N(s) z(F) = g(k), Vk € Rs,Vs € S,
(k) > 0, Vk € Rs,Vs € S,
0<y<uy,
-
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A network is survivable if, following an elemen-
tary failure, there is a way, using some capacity,
to rearrange the traffic assignment to meet all
demands.

\‘/

Two routings:

from node a to node f, 3 units pass through the
edges (a,h), (h,g), (g,k) and (k, f);

from node ¢ to node d, 5 units pass through the
edges (c,h), (h,g), (g,e) and (e,d).

Common edge (h,g) breaks down.

Local rerouting: one demand: send 543 =
8 units between the endpoints h and g of the
broken edge.

Global rerouting: two demands: send 3 units
between a and f, and 5 units between ¢ and d.
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Survivable Network Design Problem

Basic data Failure data
Prob | nodes arcs Routes | Fails CondDems
T1 16 23 84 38 300
T2 31 68 961 99 2877
P56 35 56 1000 85 5832
PB1 30 57 150 81 1110
PB2 37 71 300 102 3266
PB3 40 77 200 109 1942
PB4 45 87 300 123 3658
PB5 65 127 400 179 7234
pbl4 111 25 500 135 1804
Prob Size New IPM Cplex 6.0
Rows Cols | Iters  Time | Iters Time
T1 3100 7466 16 6 12 8.8
T2 31542 117468 32 396 38 Failed

P56 55630
PB1 22213
PB2 59021
PB3 54657
PB4 83561
PB5 || 242570
pbl4 34847

168161 35 363 26 605

72514 25 122 23 143
207901 34 518 35 730
188266 29 407 25 518
294735 33 735 31 1131
886178 48 3956 34 Failed
197868 94 2661 57 1793
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SUN Enterprise 450 Base capacity y = (y(; ;) (i,j)ee-
4 processors 400MHz UltraSparc-II with 4MB Spare capacity z = (z¢; j)) (i,j)ee-

built-in cache. Each processor has 512MB RAM. .
Network Capacity Investment Problem:

Survivable Network Design Problem: min  Ty4dlz
k o
Prob Sizes s. L. kgpng) < Yij, v(i,j) €€,
Rows Cols N (k) _ kD
PBl | 22213 72514 Ty = , €D,
PB2 | 59021 207901 ¥ o) <yij 24, VG,7) €E), V5 €S,
PB3 54657 188266 kERs
PB4 | 83561 294735 N(s)z(F) = gk, Vk € Rs,Vs € S,
PB5 | 242570 886178 (k)
zy >0, Vk € D,
Prob 1 Proc 2 Procs 3 Procs 4 Procs (k) >0, Vk € Rs,Vs € S,
time S-up | time S-up | time S-up | time S-up 0<y<7,
PB1 93 1.0 50 1.86 38 2.45 30 3.10
PB2| 385 1.0| 201 1.91| 146 2.64 | 119 3.24 z > 0.
PB3| 310 1.0| 171 1.81| 118 2.63 94 3.30
PB4 | 601 1.0| 375 1.60| 239 252 | 208 2.89
PB5 | 3033 1.0 | 1733 1.75|1259 2.41 |1086 2.80
Speed-ups:

about 1.8 on two processors;
about 2.5 on three processors;
about 3.1 on four processors.
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Network Capacity Investment Problem Conclusions

It is advantageous to exploit structure.
It is easy to exploit block structure.

Flexibility:

e tree representation of the matrix

e common layer (interface)to every structure

Problem || nodes edges demands
T1 12 25 66 e new data structures may be easily handled
T2 26 42 264
T3 53 79 1378
P1 25 41 300 I )
P2 35 58 595 Portability: (C and MPI):
P 4 1
3 5 9 990 e SUN Enterprise
Pr Size NewIPM Cplex 6.0 Cplex 6.0
Barrier Simplex e IBM SP1/2
Rows Cols | It Time | It Time It Time
T1 1021 2400 [ 15 1.7[20 1.65][ 1577 2.0 e Cluster of Linux PC's

T2 | 3414 7266 |23 10.6 | 21 Failed | 2852 6.8
T3 | 13053 26860 | 25 49.7 |22 69.1 | 9112 68
P1| 3241 6970 |28 10.8|25 7.2 |2474 5.2
P2 | 6492 13978 |28 26.2 | 23 22.1 | 7829 46.3 . )
P3 | 14221 32760 | 49 138.2 | 54 226.9 42520 867 Efficiency:
achieved in sequential and parallel code.
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