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Problem and motivations

Problem and goal

Efficient solution of a class of optimization problems which are very large and
are expected to yield sparse solutions

min
x

f (x) + τ1‖x‖1 + τ2‖Lx‖1

s.t. Ax = b

f : Rn → R twice continuously differentiable convex function, L ∈ Rl×n,
A ∈ Rm×n, b ∈ Rm, m ≤ n, and τ1, τ2 > 0

‖x‖1 and ‖Lx‖1 induce sparsity in x and/or in some dictionary Lx

Many applications: portfolio optimization, signal/image processing,
classification in statistics and machine learning, inverse problems,
compressed sensing, ...

Usually solved by specialized first-order methods, but those methods
may be too expensive or struggle with not-so-well conditioned problems
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Problem and motivations

Problem and goal (cont’d)

Non-smooth second-order methods:

proximal (projected) Newton-type methods

semi-smooth Newton methods combined with augmented Lagrangian
methods

Our goal:

show that Interior Point Methods (IPMs) can be equally or more efficient,
robust and reliable than well-assessed first-order methods, by

exploiting problem features in the linear algebra phase of IPMs

taking advantage of the expected sparsity of the optimal solution
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Problem and motivations

Applications used to support our view

Multi-period portfolio optimization: computing the optimal investment on a basket of
s assets, over medium- and long-time horizons, allowing rebalancing at intermediate
periods based on available information

(Generalized) Fused LASSO

min
w

1

2
wTCw + τ1‖w‖1 + τ2‖Lw‖1 s.t. Aw = b

(wT = [wT
1 , . . . ,w

T
m ], Lw =

∑m−1
j=1 ‖wj+1 − wj‖1)

Binary classification of functional Magnetic Resonance Imaging (fMRI) data:

(Wikipedia)

using BOLD measures of brain spatio-temporal activity, train a linear
classifier to distinguish between different classes of patients (e.g.
ill/healthy) or different kinds of stimuli (e.g. pleasant/unpleasant)
and get information on the most significant brain areas

`1-TV-regularized Least Squares (3D Fused LASSO)

min
w

1

2s
‖Dw − y‖2 + τ1 ‖w‖1 + τ2 ‖Lw‖1

(‖Lw‖1 discrete anisotropic TV)
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Problem and motivations

Applications used to support our view (cont’d)

TV-based Poisson Image Restoration: denoising and deblurring of images corrupted
by Poisson noise (fluorescence microscopy, computed tomography, astronomical imag-
ing, ...)

blurry and noisy Restored image - IP-PMM

Regularized Kullback-Leibler Divergence

min
w

KL(Dw + a, g) + λ‖Lw‖1

s.t. e>n w = r , w ≥ 0

(L discrete isotropic TV)

Linear Classification via Logistic Regression: training a linear binary classifier by using
the logistic model

Regularized Logistic Loss

min
w

φ(w) + τ‖w‖1, φ(w) =
1

n

n∑
i=1

φi (w) =
1

n

n∑
i=1

log
(

1 + e−g i w>d i
)
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Outline of the talk

Remaining part of this talk

Interior Point Methods (IPMs) for convex programming

Interior Point-Proximal Method of Multipliers (IP-PMM)

Applications:

Portfolio Selection

Binary Classification of fMRI data

TV-based Poisson Image Restoration

Linear Classification via Regularized Logistic Regression

For each application: efficient linear algebra solvers, variable dropping tech-

niques to take advantage of sparsity in the solution, numerical results and

comparisons with first-order methods

Conclusions
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Interior Point Methods

Modeling trick

Original formulation

min
x

f (x) + τ1‖x‖1 + τ2‖Lx‖1

s.t. Ax = b
L ∈ Rl×n, A ∈ Rm×n, b ∈ Rm, m ≤ n

For any a, let |a| = a+ + a−, where a+ = max{a, 0} and a− = max{−a, 0}
Set d = Lx ∈ Rl

New formulation

min
x+,x−,d+,d−

f (x+ − x−) + τ1(e>n x+ + e>n x−) + τ2(e>l d+ + e>l d−)

s.t. A(x+ − x−) = b
L(x+ − x−) = d+ − d−

x+, x−, d+, d− ≥ 0
ej ∈ Rj vector of all 1’s

Larger smooth problem, but IPMs are able to efficiently handle large sets of
linear equality and non-negativity constraints!

Daniela di Serafino (Univ. Napoli Federico II) Solution of Sparse Optimization Problems via IPMs May 19, 2022 7 / 41



Interior Point Methods

(Primal-dual) IPMs for convex programming

Problem in standard form: min
x

f (x), s.t. Ax = b, x ≥ 0

Basic ideas of IPMs

handle non-negativity constraints with a logarithmic barrier in the objective
function

approximately solve a sequence of barrier problems by using a (possibly
inexact) Newton method

At each iteration k

barrier problem: min
x

f (x)− µk

n∑
j=1

ln x j , s.t. Ax = b (µk > 0)

Newton system:

[
−(∇2f (xk) + Θ−1

k ) A>

A 0m,m

] [
∆xk
∆yk

]
=

[
r 1,k

r 2,k

]
Θk = XkZ

−1
k , Xk = diag(xk), Zk = diag(zk), xk , zk > 0
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Interior Point Methods

(Primal-dual) IPMs for convex programming (cont’d)

As µk → 0, an optimal solution of the barrier problem converges to an
optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill &

Wright M., SIREV 2002]

Polynomial convergence with respect to the number of variables has been
proved for various classes of problems [Nesterov & Nemirovskii, SIAM Studies Appl

Math 1994; Zhang, SIOPT 1994]

Θk contains some very large and some very small elements close to optimality
=⇒ the KKT matrix becomes increasingly ill-conditioned
=⇒ regularization is beneficial
[Friedlander, SIOPT 2007; D’Apuzzo, De Simone & dS, COAP 2010; Gondzio, EJOR 2012]

The augmented system can be solved either directly (by an appropriate
factorization) or iteratively (by an appropriate Krylov subspace method)
[D’Apuzzo, De Simone & dS, COAP 2010; Gondzio, EJOR 2012; dS & Orban, SISC 2021]
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Interior Point Methods

Regularization in IPMs

Use regularization to improve the spectral properties of the KKT matrix

Dual regularization → (2,2) block:

0m,m + δk Im, δk > 0 ([A δIm] full rank)

Primal regularization → (1,1) block:

∇2f (xk) + Θ−1
k + ρk In, ρk > 0 (eigs bounded away from 0)

A natural way of introducing regularization is through the use of proximal point
methods [Altman & Gondzio, OMS 1999; Friedlander & Orban, Math Program Comput

2012; Pougkakiotis & Gondzio, COAP 2021]

This (algorithmic) regularization allows us to retrieve the solution of the original
problem
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Interior Point - Proximal Method of Multipliers

Interior Point - Proximal Method of Multipliers (IP-PMM)

Merge IPM with PMM [Pougkakiotis & Gondzio, COAP 2021]

Problem formulation (equivalent to the standard one):

min
x

f (x), s.t. Ax = b, xI ≥ 0, xF free

I ⊆ {1, . . . , n}, F = {1, . . . , n} \ I

Iteration k: given an estimate ηk for an optimal Lagrange multiplier vector y∗ asso-
ciated to Ax = b and an estimate ζk of a primal solution x∗

PMM: minimize the proximal penalty function (ρk , δk > 0)

LPMM
ρk ,δk (x ; ζk , ηk) = f (x)− η>k (Ax − b) +

1

2δk
‖Ax − b‖2

2 +
ρk
2
‖x − ζk‖2

2

IP-PMM: solve the PMM subproblem by applying one or more iters of IPM,
i.e. alter the proximal penalty function with a barrier

LIP−PMM
ρk ,δk

(x ; ζk , ηk) = LPMM
ρk ,δk (x ; ζk , ηk)− µk

∑
j∈I

ln x j
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Interior Point - Proximal Method of Multipliers

IP-PMM: Newton system

By writing the optimality conditions, applying a Newton step and performing
straightforward computations we get the (symmetric indefinite) regularized
augmented system[

−(∇2f (xk) + Ξk + ρk In) A>

A δk Im

] [
∆x
∆y

]
=

[
r1,k
r2,k

]

Ξk =

[
0|F|,|F| 0|I|,|F|
0|F|,|I| (XIk )−1(ZIk )

]

In some cases (e.g. ∇2f (xk) zero or diagonal) it is convenient to eliminate ∆x ,
obtaining the (symmetric positive definite - spd) regularized normal equations(

A(∇2f (xk) + Ξk + ρk In)−1A> + δk Im
)

∆y = r
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Multi-period portfolio optimization

Application 1: multi-period portfolio optimization

Investment period partitioned into m sub-periods [t j , t j+1), decisions taken at each tj

Portfolio defined by w = [w>1 ,w
>
2 , . . . ,w

>
m ]> (wj ∈ Rs portfolio at t j , s # assets)

Markowitz-type model: minimize the sum of the risks over the periods

Asset correlation (ill-conditioned covariance matrices of returns), few active
positions i.e. vars > 0 (reduction of holding costs), small changes of active positions
(reduction of transaction costs) =⇒ regularization, sparse and “smooth” solutions

min
w

1
2
w>C w + τ1‖w‖1 + τ2‖Lw‖1, τ1, τ2 > 0

s.t. w>1 es = ξinit
w>j es = (es + rj−1)>wj−1, j = 2, . . . ,m
(es + rm)>wm = ξterm

Lw =
∑m−1

j=1 ‖wj+1 − wj‖1 Aw = b

n = m s, C = diag(C1,C2, . . . ,Cm) ∈ Rn×n block-diag spd, L ∈ R(n−s)×n fused-

lasso operator, rj ∈ Rs expected return at t j , ξinit initial wealth, ξterm target wealth

[Corsaro, De Simone & Marino, Ann Oper Res 2019]
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Multi-period portfolio optimization

Application 1: multi-period portfolio optimization (cont’d)

Smooth problem reformulation

min
x

1

2
x>Qx + c>x s.t. Ax = b, x ≥ 0

d = Lw , x = [(w+)>, (w−)>, (d+)>, (d−)>]>

Q =

 [ C −C
−C C

]
02n,2l

02l,2n 02l,2l

 , A =

[
A −A 0(m+1),2l

L −L
[
−Il Il

] ]

c = [τ1, . . . , τ1, τ2, . . . , τ2]> ∈ Rn, b = [b
1
, . . . , b

m+1
, 0, . . . , 0]> ∈ Rm

l = n − s, n = 2(n + l) = 2s(2m − 1), m = m + 1 + l = (m + 1) + s(m − 1)

Daniela di Serafino (Univ. Napoli Federico II) Solution of Sparse Optimization Problems via IPMs May 19, 2022 14 / 41



Multi-period portfolio optimization

Portfolio optimization: dropping & linear system solution

The optimal solution is expected to be (and actually is) sparse =⇒ dropping strategy:

set a threshold εdrop > 0 and a large constant ξ > 0

iter k = 0: set V = ∅
iter k > 0: for every j ∈ I \ V, drop (i.e. set to 0) x j

k and z jk such that

x j
k ≤ εdrop and z jk ≥ ξ · εdrop and (rd)jk ≤ εdrop

and set V = V ∪ {j} (dropped indices), G = F ∪ (I \ V) (non-dropped indices)

(rd )jk = (c − A>yk + Qxk − zk)j dual infeasibility

Solve by factorization the reduced augmented system corresponding to the non-
dropped variables[

−(Q̂ + Ξ̂k + ρk I ) Â>

Â δk I

][
∆̂x

∆̂y

]
=

[
r̂1,k

r̂2,k

]
much smaller system!

NOTE: a simple test at the end of the optimization process allows us to check if a
variable was incorrectly dropped
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Multi-period portfolio optimization

Multi-period portfolio optimization: test setting
10 test problems generated from

FF48-FF100 (Fama & French 48-100 Industry portfolios, USA), Jul 1926 – Dec 2015

ES50 (EURO STOXX 50), 50 stocks from 9 Eurozone countries, Jan 2008 – Dec 2013

FTSE100 (Financial Times Stock Exchange, UK), 100 assets, Jul 2002 – Apr 2016

SP500 (Standard & Poors, USA), 500 assets, Jan 2008 – Dec 2016

NASDAQC, almost all stocks in this stock market, Feb 2003 – Apr 2016

Comparison of IP-PMM with ASB-Chol (ad-hoc Alternating Split Bregman method)

MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkiakiotis & Viola,
to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)

Performance metrics (comparison with multi-period naive portfolio)

risk reduction factor: ratio =
w>naiveC wnaive

w>optC wopt

holding cost reduction factor: ratioh =
# active positions of wnaive

# active positions of wopt

transaction reduction factor: ratiot =
Tnaive
Topt

T = transaction cost = trace(V>V ), v ij =

{
1 if |w i

j − w i
j+1| ≥ ε = 10−4

0 otherwise
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Multi-period portfolio optimization

Multi-period portfolio optimization: results
Problem (n) Time (s) Iters ratio ratioh ratiot

IP-PMM

FF48-10 (1632) 1.37e−1 12 2.32e+0 6.67e+0 1.66e+1
FF48-20 (3552) 3.77e−1 16 2.28e+0 6.58e+0 2.13e+1
FF48-30 (5472) 8.43e−1 21 4.64e+0 6.15e+0 1.69e+1
FF100-10 (3264) 4.92e−1 12 1.58e+0 1.78e+1 4.36e+1
FF100-20 (7104) 1.63e+0 15 1.81e+0 2.04e+1 4.92e+1
FF100-30 (10,944) 3.93e+0 21 5.82e+0 1.34e+1 3.60e+1
ES50 (4300) 4.59e−1 14 2.12e+0 4.42e+0 5.75e+1
FTSE100 (3154) 4.64e−1 14 1.85e+0 5.37e+1 6.09e+1
SP500 (11,206) 3.43e+1 16 1.57e+0 8.62e+1 1.50e+2
NASDAQC (45,714) 7.05e+2 20 3.15e+0 2.73e+0 3.89e+2

ASB-Chol

FF48-10 (1632) 1.67e−1 1431 2.33e+0 6.67e+0 1.66e+1
FF48-20 (3552) 3.72e−1 1985 2.31e+0 7.93e+0 2.09e+1
FF48-30 (5472) 1.12e+0 4125 4.64e+0 6.08e+0 1.66e+1
FF100-10 (3264) 8.49e−1 3087 1.58e+0 1.78e+1 4.36e+1
FF100-20 (7104) 2.09e+0 3635 1.80e+0 1.78e+1 4.27e+1
FF100-30 (10,944) 8.54e+0 9043 5.83e+0 1.12e+1 2.97e+1
ES50 (4300) 9.70e−1 4297 2.05e+0 2.94e+0 4.26e+1
FTSE100 (3154) 4.29e−1 1749 1.80e+0 5.07e+1 5.71e+1
SP500 (11,206) 1.98e+1 3728 1.74e+0 6.16e+1 1.01e+2
NASDAQC (45,714) 8.84e+2 14264 3.15e+0 2.73e+0 3.89e+2
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Binary classification of fMRI data

Application 2: binary classification of fMRI data

s(−1) 3d scans in class “−1” and s(1) 3d scans in class “1”, s = s(−1) + s(1)

Each 3d scan is a q1 × q2 × q3 real array (q = q1q2q3 voxels)

D ∈ Rs×q matrix containing as rows the 3d scans (reshaped as vectors)

ŷ vector containing the labels associated with each scan

Square loss function for determining a separating hyperplane in Rq

# patients much smaller than the scan size i.e. s � q (ill-posed problem),
similar weights of the classification hyperplane sought for contiguous brain
regions (“structured” sparsity)
=⇒ regularization with `1 and anisotropic Total Variation (TV) terms

min
w

1

2s
‖Dw − ŷ‖2 + τ1 ‖w‖1 + τ2 ‖Lw‖1

τ1, τ2 > 0, ‖Lw‖1 discrete anisotropic TV of w

L = [L>x L>y L>z ]> ∈ Rl×q first-order forward finite differences in x , y , z

[Baldassarre, Pontil & Mouraõ-Miranda, Front Neurosci 2017]
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Binary classification of fMRI data

Application 2: binary classification of fMRI data (cont’d)

Smooth problem reformulation

min
x

1

2
x>Qx + c>x ,

s.t. Ax = b, xI ≥ 0, xF free, I = {s + 1, . . . , n}, F = {1, . . . , s},

u = Dw , d = Lw , w = w+ − w−, d = d+ − d−

x = [u>, (w+)>, (w−)>, (d+)>, (d−)>]>

Q =

[
1
s Is 0s,(n−s)

0(n−s),s 0(n−s),(n−s)

]
, A =

[
−Is D −D 0s,l 0s,l

0l,s L −L −Il Il

]
(diagonal Hessian)

c =

[
−
ŷ>

s
, τ1e

>
w , τ1e

>
w , τ2e

>
d , τ2e

>
d

]>
∈ Rn, b = 0s+l ∈ Rm, m = l+s, n = s+2q+2l
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Binary classification of fMRI data

Classification of fMRI data: solution of Newton system

∇2f (xk) = Q diagonal =⇒ solve the (spd) normal equations:

Mk∆y = r , Mk = A(Q + Ξk + ρk In)−1A> + δk Im

Mk =

[
M1,k M>2,k
M2,k M3,k

]
M1,k ,M2,k dense
M3,k sparse, size l � s

=⇒ use Preconditioned Conjugate Gradient (PCG) method

Preconditioner:

Pk =

[
M1,k 0

0 M3,k

]
block diagonal

M3,k has a sparse Cholesky factor (thanks to TV matrix L)

M1,k has a dense Cholesky factor, requiring only O(s3) operations and O(s2)
storage
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Binary classification of fMRI data

Classification of fMRI data: spectral analysis

Theorem

The preconditioned matrix Rk = P−1
k Mk has l − rank(D) eigenvalues λ = 1,

whose respective eigenvectors form a basis for {0s} × {Null(M>2,k)}. All the
remaining eigenvalues of the preconditioned matrix satisfy

λ ∈ (χ, 1) ∪ (1, 2), χ =
δkρk

σ2
max(A) + ρkδk

,

where δk , ρk are the regularization parameters of IP-PMM.

The preconditioner remains effective as long as ρk and δk are not too small

A× B denotes a vector space with elements [a>, b>]>, a ∈ A and b ∈ B
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Binary classification of fMRI data

Classification of fMRI data: dropping strategy

ρk and δk must be reduced to attain convergence of IP-PMM

the optimal solution is expected to be sparse
=⇒ drop primal variables converging to 0 to improve matrix conditioning

(same strategy as in the portfolio problem)

Reduced normal equations(
Ã
(
Q̃ + Ξ̃k + ρk I

)−1

Â> + δk I

)
∆̂y = r̂

smaller and “safer” system!
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Binary classification of fMRI data

Classification of fMRI data: test setting

(Preprocessed) data from https://github.com/lucabaldassarre/neurosparse

fMRI scans for 16 male healthy US college students (age 20 to 25), two active conditions:

viewing unpleasant and pleasant images

1344 scans of size 122,128 voxels (only voxels with probability > 0.5 of being in the gray

matter), 42 scans per subject and active condition (i.e., 84 scans per subject in total)

Leave-One-Subject-Out (LOSO) cross-validation test over the full dataset of patients

=⇒ size of w : q = 122,128, # rows D: s = 1260, size of d = Lw : l = 339,553

Comparison of IP-PMM with ad-hoc FISTA and ADMM

MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkakiotis & Viola,
to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)]

Performance metrics [Baldassarre, Pontil & Mouraõ-Miranda, Front Neurosci 2017]

classification accuracy (ACC): percentage of vectors correctly classified

solution density (DEN): percentage of nonzero entries

corrected pairwise overlap (CORR OVR): measure of “stability” of the voxel selection,

the higher the better
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Binary classification of fMRI data

Classification of fMRI data: results

Algorithm τ1 = τ2 ACC DEN CORR OVR

IP-PMM 10−2 86.16± 7.11 20.56± 6.63 43.47± 9.09
5 · 10−2 84.90± 4.80 3.77± 0.84 62.70± 10.39

10−1 82.29± 6.22 2.49± 0.34 82.60± 9.24

FISTA 10−2 86.90± 5.01 88.97± 0.71 5.43± 0.43
5 · 10−2 84.15± 5.92 19.36± 0.86 65.50± 2.68

10−1 81.62± 7.58 5.14± 0.44 80.44± 5.72

ADMM 10−2 86.46± 6.91 98.70± 0.03 0.03± 0.01
5 · 10−2 85.57± 5.37 97.97± 0.05 0.15± 0.04

10−1 82.07± 6.51 97.50± 0.19 0.26± 0.13
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Binary classification of fMRI data

Classification of fMRI data: results (cont’d)
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TV-based Poisson image restoration

Application 3: TV-based Poisson image restoration

Object to be restored: w ∈ Rn, measured data: g ∈ Nm
0 , with entries g j that

are samples of m independent random variables G j ∼ Poisson((Dw + a)j)

D = [d ij ] ∈ Rm×n modeling the imaging system, d ij ≥ 0 for all i , j ,∑m
i=1 d

ij = 1 for all j , BCCB structure assumed

a ∈ Rm
+ modeling the background radiation detected by the sensors

Maximum-likelihood approach =⇒ minimization of Kullback-Leibler (KL)
divergence (highly ill-conditioned problem) =⇒ TV regularization

Non-negative image intensity, total image intensity preserved =⇒
non-negativity + single linear constraint

min
w

DKL(w) + λ‖Lw‖1

s.t. e>n w = r , w ≥ 0

DKL(w) =
∑m

j=1

(
g j ln g j

(Dw+a)j
+ (Dw + a)j − g j

)
L ∈ Rl×n discrete TV operator, r =

∑m
j=1(g j − aj)
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TV-based Poisson image restoration

Appl. 3: TV-based Poisson image restoration (cont’d)

Smooth problem reformulation

min
x

f (x) ≡ DKL(w) + c>u,

s.t. Ax = b, x ≥ 0

d = Lw , u = [(d+)>, (d−)>]>, x = [w>, u>]>

A =

[
e>n 0>l 0>l
L −Il Il

]

c = λ e2l , b = [r , 0>l ]> ∈ Rm, m = l + 1, n = n+ 2l , m = l + s, n = s + 2q + 2l
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TV-based Poisson image restoration

TV-based Poisson image restoration: Newton system[
−Hk A>

A δk I

]
︸ ︷︷ ︸

Mk

[
∆x
∆y

]
=

[
r1,k

r2,k

]
, Hk = (∇2f (xk) + Θ−1

k + ρk I )

=⇒ use preconditioned MINimum RESidual (MINRES) method

Preconditioner:

M̃k =

[
H̃k 0

0 A H̃−1
k A> + δk I

]
, H̃k diagonal approx of Hk

Theorem

The eigenvalues of M̃−1
k Mk lie in the union of the intervals

I− =

[
− βH − 1,−αH

]
, I+ =

[
1

1 + βH
, 1

]
,

where αH = λmin(Ĥk), βH = λmax(Ĥk) and Ĥk = H̃
− 1

2
k Hk H̃

1
2
k .

[Bergamaschi, Gondzio, Mart́ınez, Pearson & Pougkakiotis, NLAA 2021]

If H̃k = diag(Hk), then αH ≤ 1 ≤ βH
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TV-based Poisson image restoration

TV-based Poisson image restoration: Newton sys (cont’d)

[
−Hk A>

A δk I

] [
∆x
∆y

]
=

[
r1,k

r2,k

]
, Hk = (∇2f (xk) + Θ−1

k + ρk I )

∇2f (x) =

[
∇2DKL(w) 0

0 0

]
, ∇2DKL(w) = D>U(w)2D

U(w) = diag

( √
g

Dw + a

)
, H̃k = U(wk)2

D may be dense, but its action of a vector can be computed via FFT

H̃k = U(wk)2 better than H̃k = diag(Hk)
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TV-based Poisson image restoration

TV-based Poisson image restoration: test setting
Test images

256× 256, grayscale
cameraman house peppers

Poisson noise and Gaussian blur (GB), motion blur (MB), out-of-focus blur (OF)

Comparison of IP-PMM with Primal-Dual Algorithm with Linesearch (PDAL)

MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkakiotis & Viola,
to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)]

Performance metrics

RMSE(w) = 1√
n
‖w − w‖2, w original image

PSNR(w) = 20 log10(maxi w
i/RMSE(w))

MSSIM = structural similarity measure, the higher the better
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TV-based Poisson image restoration

TV-based Poisson image restoration: results

0 5 10 15 20 25 30

time (s)

2

2.5

3

3.5

4

4.5

R
M

S
E

10
-3 cameraman - GB

IP-PMM
PDAL

0 10 20 30 40

time (s)

3

4

5

6

7

8

9

R
M

S
E

10
-3 cameraman - MB

IP-PMM
PDAL

0 10 20 30 40

time (s)

2

3

4

5

6

7

8

R
M

S
E

10
-3 cameraman - OF

IP-PMM
PDAL

0 5 10 15 20 25 30

time (s)

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

R
M

S
E

house - GB

IP-PMM
PDAL

0 5 10 15 20 25 30

time (s)

0.5

1

1.5

2

2.5

3

3.5

R
M

S
E

10
-3 house - MB

IP-PMM
PDAL

0 5 10 15 20 25 30

time (s)

1

2

3

4

5

R
M

S
E

10
-3 house - OF

IP-PMM
PDAL

0 10 20 30 40

time (s)

0.015

0.0155

0.016

0.0165

0.017

0.0175

0.018

R
M

S
E

peppers - GB

IP-PMM
PDAL

0 10 20 30 40

time (s)

0.007

0.008

0.009

0.01

0.011

0.012

0.013

R
M

S
E

peppers - MB

IP-PMM
PDAL

0 10 20 30 40

time (s)

0.008

0.009

0.01

0.011

0.012

0.013

R
M

S
E

peppers - OF

IP-PMM
PDAL

Daniela di Serafino (Univ. Napoli Federico II) Solution of Sparse Optimization Problems via IPMs May 19, 2022 31 / 41



TV-based Poisson image restoration

TV-based Poisson image restoration: results (cont’d)

IP-PMM PDAL

Problem RMSE PSNR MSSIM RMSE PSNR MSSIM

cameraman - GB 4.85e−2 2.63e+1 8.33e−1 5.02e−2 2.60e+1 8.22e−1
cameraman - MB 5.52e−2 2.52e+1 8.11e−1 5.59e−2 2.51e+1 7.77e−1
cameraman - OF 5.14e−2 2.58e+1 7.98e−1 5.26e−2 2.56e+1 7.62e−1

house - GB 9.71e−2 2.03e+1 7.51e−1 9.88e−2 2.01e+1 6.92e−1
house - MB 2.70e−2 3.14e+1 8.67e−1 2.77e−2 3.11e+1 8.43e−1
house - OF 3.80e−2 2.84e+1 8.33e−1 4.09e−2 2.78e+1 7.70e−1

peppers - GB 1.23e−1 1.82e+1 7.46e−1 1.25e−1 1.81e+1 6.57e−1
peppers - MB 8.76e−2 2.12e+1 8.90e−1 8.78e−2 2.11e+1 8.72e−1
peppers - OF 9.47e−2 2.05e+1 8.01e−1 9.70e−2 2.03e+1 6.60e−1
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TV-based Poisson image restoration

TV-based Poisson image restoration: results (cont’d)
blurry and noisy Restored image - IP-PMM Restored image - PDAL

blurry and noisy Restored image - IP-PMM Restored image - PDAL

blurry and noisy Restored image - IP-PMM Restored image - PDAL
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Linear classification via Logistic Regression

Appl. 4: linear classification via Logistic Regression

Training set with n binary-labeled samples and s features

D ∈ Rn×s with rows (d i )> representing the training points

g ∈ {−1, 1}n vector of labels

Logistic model to define the conditional probability of having the label g i

given the point d i

Maximum-likelihood approach =⇒ minimization of logistic loss function (ill
posedness – e.g. redundant features) =⇒ `1 regularization

min
w

φ(w) + τ‖w‖1

φ(w) =
1

n

n∑
i=1

φi (w), φi (w) = log
(

1 + e−g i w>d i
)
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Linear classification via Logistic Regression

Appl. 4: linear classification via Logistic Regression (cont’d)

Smooth problem reformulation

min
x

f (x) ≡ φ(w) + c>u

s.t. Ax = b, u ≥ 0

u = w , u = [(d+)>, (d−)>]>, x = [w>, u>]>

A = [Is − Is Is ]

c = τ e2s , b = 0m, m = l + 1, m = s, n = 3s
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Linear classification via Logistic Regression

Classific. via Logistic Regression: solution of Newton system

Solution of Newton system by preconditioned MINRES (similar to
Poisson image restoration)

Preconditioner:

M̃k =

[
H̃k 0

0 A H̃−1
k A> + δk I

]
H̃k = diag(Hk), Hk = (∇2f (xk) + Θ−1

k + ρk I )
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Linear classification via Logistic Regression

Classification via Logistic Regression: test setting

Linear classification problems from the LIBSVM dataset for binary classification,

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Problem Features Train pts Test pts

gisette 5000 6000 1000
rcv1 47,236 20,242 677,399
real-sim 20,958 50,617 21,692

Comparison of IP-PMM with ADMM (http://www.stanford.edu/~boyd/papers/distr_

opt_stat_learning_admm.html) and newGLMNET used in LIBSVM (https://github.com/

ZiruiZhou/IRPN)

MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkakiotis & Viola,
to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)]

Performance metrics

objective function value versus execution time

classification error versus execution time
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Linear classification via Logistic Regression

Classification via Logistic Regression: results
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Conclusions

Conclusions

Specialized IPMs for quadratic and general convex nonlinear optimization
problems with sparse solutions have been presented

By a proper choice of linear algebra solvers, IPMs can efficiently solve larger
but smooth optimization problems coming from a standard reformulation of
the original ones

Computational experiments on diverse applications provide evidence that IPMs
can offer a noticeable advantage over state-of-the-art first-order methods,
especially when dealing with not-so-well conditioned problems

This work may provide a basis for an in-depth analysis of the application of
IPMs to many sparse approximation problems
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Conclusions
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Conclusions

Thank you for your attention!
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