Efficient Solution of Sparse Optimization Problems via Interior Point Methods

Daniela di Serafino

Dip. Matematica e Applicazioni, Univ. Napoli Federico II, Italy daniela.diserafino@unina.it

Acknowledgments

Co-authors

Valentina De Simone Univ. Campania Vanvitelli, IT

Jacek Gondzio Univ. Edinburgh, UK

Spyros Pougkakiotis
Univ. Edinburgh, UK (now at Yale Univ., USA)

Marco Viola Univ. Campania Vanvitelli, IT

Funding

- Istituto Nazionale di Alta Matematica - Gruppo Nazionale per il Calcolo Scientifico (INdAM-GNCS), Italy
- V:ALERE Program of the University of Campania "Luigi Vanvitelli", Italy
- University of Edinburgh
- Google Project Fast $(1+x)$-order Methods for Linear Programming

Problem and goal

Efficient solution of a class of optimization problems which are very large and are expected to yield sparse solutions

$$
\begin{array}{cl}
\min _{x} & f(x)+\tau_{1}\|x\|_{1}+\tau_{2}\|L x\|_{1} \\
\text { s.t. } & A x=b
\end{array}
$$

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice continuously differentiable convex function, $L \in \mathbb{R}^{1 \times n}$, $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, m \leq n$, and $\tau_{1}, \tau_{2}>0$
$\|x\|_{1}$ and $\|L x\|_{1}$ induce sparsity in x and/or in some dictionary $L x$

- Many applications: portfolio optimization, signal/image processing, classification in statistics and machine learning, inverse problems, compressed sensing, ...
- Usually solved by specialized first-order methods, but those methods may be too expensive or struggle with not-so-well conditioned problems

Problem and goal (cont'd)

Non-smooth second-order methods:

- proximal (projected) Newton-type methods
- semi-smooth Newton methods combined with augmented Lagrangian methods

Our goal:
show that Interior Point Methods (IPMs) can be equally or more efficient, robust and reliable than well-assessed first-order methods, by

- exploiting problem features in the linear algebra phase of IPMs
- taking advantage of the expected sparsity of the optimal solution

Applications used to support our view

Multi-period portfolio optimization: computing the optimal investment on a basket of s assets, over medium- and long-time horizons, allowing rebalancing at intermediate periods based on available information

$$
\begin{gathered}
\text { (Generalized) Fused LASSO } \\
\min _{w} \frac{1}{2} w^{T} C w+\tau_{1}\|w\|_{1}+\tau_{2}\|L w\|_{1} \quad \text { s.t. } A w=b \\
\left(w^{T}=\left[w_{1}^{T}, \ldots, w_{m}^{T}\right], \quad L w=\sum_{j=1}^{m-1}\left\|w_{j+1}-w_{j}\right\|_{1}\right)
\end{gathered}
$$

Binary classification of functional Magnetic Resonance Imaging (fMRI) data:

(Wikipedia) using BOLD measures of brain spatio-temporal activity, train a linear classifier to distinguish between different classes of patients (e.g. ill/healthy) or different kinds of stimuli (e.g. pleasant/unpleasant) and get information on the most significant brain areas

$$
\begin{aligned}
& \ell 1 \text {-TV-regularized Least Squares (3D Fused LASSO) } \\
& \qquad \min _{w} \frac{1}{2 s}\|D w-y\|^{2}+\tau_{1}\|w\|_{1}+\tau_{2}\|L w\|_{1} \\
& \left(\|L w\|_{1}\right. \text { discrete anisotropic TV) }
\end{aligned}
$$

Applications used to support our view (cont'd)

TV-based Poisson Image Restoration: denoising and deblurring of images corrupted by Poisson noise (fluorescence microscopy, computed tomography, astronomical imaging, ...)

Regularized Kullback-Leibler Divergence $\min _{w} K L(D w+a, g)+\lambda\|L w\|_{1}$
s.t. $\quad e_{n}^{\top} w=r, w \geq 0$
(L discrete isotropic TV)

Linear Classification via Logistic Regression: training a linear binary classifier by using the logistic model

Regularized Logistic Loss

$$
\min _{w} \phi(w)+\tau\|w\|_{1}, \quad \phi(w)=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}(w)=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-g^{i} w^{\top} d^{i}}\right)
$$

Remaining part of this talk

- Interior Point Methods (IPMs) for convex programming
- Interior Point-Proximal Method of Multipliers (IP-PMM)
- Applications:
- Portfolio Selection
- Binary Classification of fMRI data
- TV-based Poisson Image Restoration
- Linear Classification via Regularized Logistic Regression

For each application: efficient linear algebra solvers, variable dropping techniques to take advantage of sparsity in the solution, numerical results and comparisons with first-order methods

- Conclusions

Modeling trick

Original formulation

$$
\begin{array}{cl}
\min _{x} & f(x)+\tau_{1}\|x\|_{1}+\tau_{2}\|L x\|_{1} \quad L \in \mathbb{R}^{l \times n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, m \leq n \\
\text { s.t. } & A x=b
\end{array}
$$

For any a, let $|a|=a^{+}+a^{-}$, where $a^{+}=\max \{a, 0\}$ and $a^{-}=\max \{-a, 0\}$ Set $d=L x \in \mathbb{R}^{\prime}$

New formulation

$$
\begin{array}{cl}
\min _{x^{+}, x^{-}, d^{+}, d^{-}} & f\left(x^{+}-x^{-}\right)+\tau_{1}\left(e_{n}^{\top} x^{+}+e_{n}^{\top} x^{-}\right)+\tau_{2}\left(e_{l}^{\top} d^{+}+e_{l}^{\top} d^{-}\right) \\
\text {s.t. } & A\left(x^{+}-x^{-}\right)=b \\
& L\left(x^{+}-x^{-}\right)=d^{+}-d^{-} \\
& x^{+}, x^{-}, d^{+}, d^{-} \geq 0 \quad e_{j} \in \mathbb{R}^{j} \text { vector of all } 1^{\prime} s
\end{array}
$$

Larger smooth problem, but IPMs are able to efficiently handle large sets of linear equality and non-negativity constraints!

(Primal-dual) IPMs for convex programming

Problem in standard form: $\min _{x} f(x)$, s.t. $A x=b, \quad x \geq 0$

Basic ideas of IPMs

- handle non-negativity constraints with a logarithmic barrier in the objective function
- approximately solve a sequence of barrier problems by using a (possibly inexact) Newton method

(Primal-dual) IPMs for convex programming

Problem in standard form: $\min _{x} f(x)$, s.t. $A x=b, \quad x \geq 0$

Basic ideas of IPMs

- handle non-negativity constraints with a logarithmic barrier in the objective function
- approximately solve a sequence of barrier problems by using a (possibly inexact) Newton method

At each iteration k

- barrier problem: $\min _{x} f(x)-\mu_{k} \sum_{j=1}^{n} \ln x^{j}, \quad$ s.t. $A x=b \quad\left(\mu_{k}>0\right)$
- Newton system: $\left[\begin{array}{cc}-\left(\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}\right) & A^{\top} \\ A & 0_{m, m}\end{array}\right]\left[\begin{array}{c}\Delta x_{k} \\ \Delta y_{k}\end{array}\right]=\left[\begin{array}{c}\bar{r}_{1, k} \\ \bar{r}_{2, k}\end{array}\right]$

$$
\Theta_{k}=X_{k} Z_{k}^{-1}, X_{k}=\operatorname{diag}\left(x_{k}\right), Z_{k}=\operatorname{diag}\left(z_{k}\right), x_{k}, z_{k}>0
$$

(Primal-dual) IPMs for convex programming (cont'd)

- As $\mu_{k} \rightarrow 0$, an optimal solution of the barrier problem converges to an optimal solution of the original problem [Wright S., book 1997; Forsgren, Gill \& Wright M., SIREV 2002]
- Polynomial convergence with respect to the number of variables has been proved for various classes of problems [Nesterov \& Nemirovskii, SIAM Studies Appl Math 1994; Zhang, SIOPT 1994]
- Θ_{k} contains some very large and some very small elements close to optimality \Longrightarrow the KKT matrix becomes increasingly ill-conditioned
\Longrightarrow regularization is beneficial
[Friedlander, SIOPT 2007; D'Apuzzo, De Simone \& dS, COAP 2010; Gondzio, EJOR 2012]
- The augmented system can be solved either directly (by an appropriate factorization) or iteratively (by an appropriate Krylov subspace method) [D'Apuzzo, De Simone \& dS, COAP 2010; Gondzio, EJOR 2012; dS \& Orban, SISC 2021]

Regularization in IPMs

Use regularization to improve the spectral properties of the KKT matrix

- Dual regularization $\rightarrow(2,2)$ block:

$$
\left.0_{m, m}+\delta_{k} I_{m}, \quad \delta_{k}>0 \quad \text { ([A } \delta I_{m}\right] \text { full rank) }
$$

- Primal regularization $\rightarrow(1,1)$ block:

$$
\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}+\rho_{k} I_{n}, \quad \rho_{k}>0 \quad \text { (eigs bounded away from } 0 \text {) }
$$

A natural way of introducing regularization is through the use of proximal point methods [Altman \& Gondzio, OMS 1999; Friedlander \& Orban, Math Program Comput 2012; Pougkakiotis \& Gondzio, COAP 2021]

This (algorithmic) regularization allows us to retrieve the solution of the original problem

Interior Point - Proximal Method of Multipliers (IP-PMM)

Merge IPM with PMM [Pougkakiotis \& Gondzio, COAP 2021]

Problem formulation (equivalent to the standard one):

$$
\min _{x} f(x), \quad \text { s.t. } A x=b, \quad x^{\mathcal{I}} \geq 0, \quad x^{\mathcal{F}} \text { free }
$$

$\mathcal{I} \subseteq\{1, \ldots, n\}, \mathcal{F}=\{1, \ldots, n\} \backslash \mathcal{I}$

Iteration k : given an estimate η_{k} for an optimal Lagrange multiplier vector y^{*} associated to $A x=b$ and an estimate ζ_{k} of a primal solution x^{*}

- PMM: minimize the proximal penalty function $\left(\rho_{k}, \delta_{k}>0\right)$

$$
\mathcal{L}_{\rho_{k}, \delta_{k}}^{P M M}\left(x ; \zeta_{k}, \eta_{k}\right)=f(x)-\eta_{k}^{\top}(A x-b)+\frac{1}{2 \delta_{k}}\|A x-b\|_{2}^{2}+\frac{\rho_{k}}{2}\left\|x-\zeta_{k}\right\|_{2}^{2}
$$

- IP-PMM: solve the PMM subproblem by applying one or more iters of IPM, i.e. alter the proximal penalty function with a barrier $\mathcal{L}_{\rho_{k}, \delta_{k}}^{I P-P M M}\left(x ; \zeta_{k}, \eta_{k}\right)=\mathcal{L}_{\rho_{k}, \delta_{k}}^{P M M}\left(x ; \zeta_{k}, \eta_{k}\right)-\mu_{k} \sum_{j \in \mathcal{I}} \ln x^{j}$

IP-PMM: Newton system

By writing the optimality conditions, applying a Newton step and performing straightforward computations we get the (symmetric indefinite) regularized augmented system

$$
\begin{gathered}
{\left[\begin{array}{cc}
-\left(\nabla^{2} f\left(x_{k}\right)+\Xi_{k}+\rho_{k} I_{n}\right) & A^{\top} \\
A & \delta_{k} I_{m}
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
r_{1, k} \\
r_{2, k}
\end{array}\right]} \\
\Xi_{k}=\left[\begin{array}{cc}
0_{|\mathcal{F}|,|\mathcal{F}|} & 0_{|\mathcal{I}|,|\mathcal{F}|} \\
0_{|\mathcal{F}|,|\mathcal{I}|} & \left(X_{k}^{\mathcal{I}}\right)^{-1}\left(Z_{k}^{\mathcal{I}}\right)
\end{array}\right]
\end{gathered}
$$

In some cases (e.g. $\nabla^{2} f\left(x_{k}\right)$ zero or diagonal) it is convenient to eliminate Δx, obtaining the (symmetric positive definite - spd) regularized normal equations

$$
\left(A\left(\nabla^{2} f\left(x_{k}\right)+\bar{\Xi}_{k}+\rho_{k} I_{n}\right)^{-1} A^{\top}+\delta_{k} I_{m}\right) \Delta y=r
$$

Application 1: multi-period portfolio optimization

- Investment period partitioned into m sub-periods $\left[t^{j}, t^{j+1}\right.$), decisions taken at each t_{j}
- Portfolio defined by $w=\left[w_{1}^{\top}, w_{2}^{\top}, \ldots, w_{m}^{\top}\right]^{\top} \quad\left(w_{j} \in \mathbb{R}^{s}\right.$ portfolio at $t^{j}, s \#$ assets $)$
- Markowitz-type model: minimize the sum of the risks over the periods
- Asset correlation (ill-conditioned covariance matrices of returns), few active positions i.e. vars >0 (reduction of holding costs), small changes of active positions (reduction of transaction costs) \Longrightarrow regularization, sparse and "smooth" solutions

Application 1: multi-period portfolio optimization

- Investment period partitioned into m sub-periods $\left[t^{j}, t^{j+1}\right.$), decisions taken at each t_{j}
- Portfolio defined by $w=\left[w_{1}^{\top}, w_{2}^{\top}, \ldots, w_{m}^{\top}\right]^{\top} \quad\left(w_{j} \in \mathbb{R}^{s}\right.$ portfolio at $t^{j}, s \#$ assets $)$
- Markowitz-type model: minimize the sum of the risks over the periods
- Asset correlation (ill-conditioned covariance matrices of returns), few active positions i.e. vars >0 (reduction of holding costs), small changes of active positions (reduction of transaction costs) \Longrightarrow regularization, sparse and "smooth" solutions

$$
\left.\begin{array}{ll}
\min _{w} & \frac{1}{2} w^{\top} C w+\tau_{1}\|w\|_{1}+\tau_{2}\|L w\|_{1}, \quad \tau_{1}, \tau_{2}>0 \quad L w=\sum_{j=1}^{m-1}\left\|w_{j+1}-w_{j}\right\|_{1} \\
\text { s.t. } & w_{1}^{\top} e_{s}=\xi_{\text {init }} \\
& w_{j}^{\top} e_{s}=\left(e_{s}+r_{j-1}\right)^{\top} w_{j-1}, \quad j=2, \ldots, m
\end{array}\right\} \quad \bar{A} w=\bar{b}
$$

$n=m s, C=\operatorname{diag}\left(C_{1}, C_{2}, \ldots, C_{m}\right) \in \mathbb{R}^{n \times n}$ block-diag spd, $L \in \mathbb{R}^{(n-s) \times n}$ fusedlasso operator, $r_{j} \in \mathbb{R}^{s}$ expected return at $t^{j}, \xi_{\text {init }}$ initial wealth, $\xi_{\text {term }}$ target wealth [Corsaro, De Simone \& Marino, Ann Oper Res 2019]

Application 1: multi-period portfolio optimization (cont'd)

Smooth problem reformulation

$$
\min _{x} \frac{1}{2} x^{\top} Q x+c^{\top} x \text { s.t. } A x=b, \quad x \geq 0
$$

$$
d=L w, \quad x=\left[\left(w^{+}\right)^{\top},\left(w^{-}\right)^{\top},\left(d^{+}\right)^{\top},\left(d^{-}\right)^{\top}\right]^{\top}
$$

$$
Q=\left[\begin{array}{cc}
{\left[\begin{array}{cr}
C & -C \\
-C & C
\end{array}\right]} & 0_{2 n, 2 l} \\
0_{2 l, 2 n} & 0_{2 l, 21}
\end{array}\right], \quad A=\left[\begin{array}{ccc}
\bar{A} & -\bar{A} & 0_{(m+1), 2 l} \\
L & -L & {\left[\begin{array}{ll}
-I_{l} & l_{1}
\end{array}\right]}
\end{array}\right]
$$

$$
c=\left[\tau_{1}, \ldots, \tau_{1}, \tau_{2}, \ldots, \tau_{2}\right]^{\top} \in \mathbb{R}^{\bar{n}}, \quad b=\left[\bar{b}^{1}, \ldots, \bar{b}^{m+1}, 0, \ldots, 0\right]^{\top} \in \mathbb{R}^{m}
$$

$$
I=n-s, \bar{n}=2(n+I)=2 s(2 m-1), \bar{m}=m+1+I=(m+1)+s(m-1)
$$

Portfolio optimization: dropping \& linear system solution

The optimal solution is expected to be (and actually is) sparse \Longrightarrow dropping strategy:

- set a threshold $\epsilon_{\text {drop }}>0$ and a large constant $\xi>0$
- iter $k=0$: set $\mathcal{V}=\emptyset$
- iter $k>0$: for every $j \in \mathcal{I} \backslash \mathcal{V}$, drop (i.e. set to 0) x_{k}^{j} and z_{k}^{j} such that

$$
x_{k}^{j} \leq \epsilon_{\text {drop }} \quad \text { and } \quad z_{k}^{j} \geq \xi \cdot \epsilon_{\text {drop }} \quad \text { and } \quad\left(r_{d}\right)_{k}^{j} \leq \epsilon_{\text {drop }}
$$

and set $\mathcal{V}=\mathcal{V} \cup\{j\}$ (dropped indices), $\mathcal{G}=\mathcal{F} \cup(\mathcal{I} \backslash \mathcal{V})$ (non-dropped indices)

$$
\left(r_{d}\right)_{k}^{j}=\left(c-A^{\top} y_{k}+Q x_{k}-z_{k}\right)^{j} \text { dual infeasibility }
$$

Portfolio optimization: dropping \& linear system solution

The optimal solution is expected to be (and actually is) sparse \Longrightarrow dropping strategy:

- set a threshold $\epsilon_{\text {drop }}>0$ and a large constant $\xi>0$
- iter $k=0$: set $\mathcal{V}=\emptyset$
- iter $k>0$: for every $j \in \mathcal{I} \backslash \mathcal{V}$, drop (i.e. set to 0) x_{k}^{j} and z_{k}^{j} such that

$$
x_{k}^{j} \leq \epsilon_{\text {drop }} \quad \text { and } \quad z_{k}^{j} \geq \xi \cdot \epsilon_{\text {drop }} \quad \text { and } \quad\left(r_{d}\right)_{k}^{j} \leq \epsilon_{\text {drop }}
$$

and set $\mathcal{V}=\mathcal{V} \cup\{j\}$ (dropped indices), $\mathcal{G}=\mathcal{F} \cup(\mathcal{I} \backslash \mathcal{V})$ (non-dropped indices)

$$
\left(r_{d}\right)_{k}^{j}=\left(c-A^{\top} y_{k}+Q x_{k}-z_{k}\right)^{j} \text { dual infeasibility }
$$

Solve by factorization the reduced augmented system corresponding to the nondropped variables

$$
\left[\begin{array}{cc}
-\left(\widehat{Q}+\widehat{\bar{B}}_{k}+\rho_{k} I\right) & \widehat{A}^{\top} \\
\widehat{A} & \delta_{k} I
\end{array}\right]\left[\begin{array}{l}
\widehat{\Delta x} \\
\widehat{\Delta y}
\end{array}\right]=\left[\begin{array}{l}
\widehat{r}_{1, k} \\
\widehat{r}_{2, k}
\end{array}\right] \quad \text { much smaller system! }
$$

NOTE: a simple test at the end of the optimization process allows us to check if a variable was incorrectly dropped

Multi-period portfolio optimization: test setting

10 test problems generated from

- FF48-FF100 (Fama \& French 48-100 Industry portfolios, USA), Jul 1926 - Dec 2015
- ES50 (EURO STOXX 50), 50 stocks from 9 Eurozone countries, Jan 2008 - Dec 2013
- FTSE100 (Financial Times Stock Exchange, UK), 100 assets, Jul 2002 - Apr 2016
- SP500 (Standard \& Poors, USA), 500 assets, Jan 2008 - Dec 2016
- NASDAQC, almost all stocks in this stock market, Feb 2003 - Apr 2016

Comparison of IP-PMM with ASB-Chol (ad-hoc Alternating Split Bregman method) MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkiakiotis \& Viola, to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)

Performance metrics (comparison with multi-period naive portfolio)

- risk reduction factor: ratio $=\frac{w_{\text {naive }}^{\top} C w_{\text {naive }}}{w_{\text {opt }}^{\top} C w_{\text {opt }}}$
- holding cost reduction factor: ratio $h_{h}=\frac{\# \text { active positions of } w_{\text {naive }}}{\# \text { active positions of } w_{\text {opt }}}$
- transaction reduction factor: ratio $_{t}=\frac{\mathcal{T}_{\text {naive }}}{\mathcal{T}_{\text {opt }}}$
$\mathcal{T}=$ transaction cost $=\operatorname{trace}\left(V^{\top} V\right), \quad v^{i j}= \begin{cases}1 & \text { if }\left|w_{j}^{i}-w_{j+1}^{i}\right| \geq \epsilon=10^{-4} \\ 0 & \text { otherwise }\end{cases}$

Multi-period portfolio optimization: results

Problem (\bar{n})	Time (s)	Iters	ratio	ratio $_{h}$	ratio $_{t}$
	IP-PMM				
FF48-10 (1632)	$1.37 \mathrm{e}-1$	12	$2.32 \mathrm{e}+0$	$6.67 \mathrm{e}+0$	$1.66 \mathrm{e}+1$
FF48-20 (3552)	$3.77 \mathrm{e}-1$	16	$2.28 \mathrm{e}+0$	$6.58 \mathrm{e}+0$	$2.13 \mathrm{e}+1$
FF48-30 (5472)	$8.43 \mathrm{e}-1$	21	$4.64 \mathrm{e}+0$	$6.15 \mathrm{e}+0$	$1.69 \mathrm{e}+1$
FF100-10 (3264)	$4.92 \mathrm{e}-1$	12	$1.58 \mathrm{e}+0$	$1.78 \mathrm{e}+1$	$4.36 \mathrm{e}+1$
FF100-20 (7104)	$1.63 \mathrm{e}+0$	15	$1.81 \mathrm{e}+0$	$2.04 \mathrm{e}+1$	$4.92 \mathrm{e}+1$
FF100-30 (10,944)	$3.93 \mathrm{e}+0$	21	$5.82 \mathrm{e}+0$	$1.34 \mathrm{e}+1$	$3.60 \mathrm{e}+1$
ES50 4300$)$	$4.59 \mathrm{e}-1$	14	$2.12 \mathrm{e}+0$	$4.42 \mathrm{e}+0$	$5.75 \mathrm{e}+1$
FTSE100 (3154)	$4.64 \mathrm{e}-1$	14	$1.85 \mathrm{e}+0$	$5.37 \mathrm{e}+1$	$6.09 \mathrm{e}+1$
SP500 (11,206)	$3.43 \mathrm{e}+1$	16	$1.57 \mathrm{e}+0$	$8.62 \mathrm{e}+1$	$1.50 \mathrm{e}+2$
NASDAQC (45,714)	$7.05 \mathrm{e}+2$	20	$3.15 \mathrm{e}+0$	$2.73 \mathrm{e}+0$	$3.89 \mathrm{e}+2$
			ASB-Chol		
FF48-10 (1632)	$1.67 \mathrm{e}-1$	1431	$2.33 \mathrm{e}+0$	$6.67 \mathrm{e}+0$	$1.66 \mathrm{e}+1$
FF48-20 (3552)	$3.72 \mathrm{e}-1$	1985	$2.31 \mathrm{e}+0$	$7.93 \mathrm{e}+0$	$2.09 \mathrm{e}+1$
FF48-30 (5472)	$1.12 \mathrm{e}+0$	4125	$4.64 \mathrm{e}+0$	$6.08 \mathrm{e}+0$	$1.66 \mathrm{e}+1$
FF100-10 (3264)	$8.49 \mathrm{e}-1$	3087	$1.58 \mathrm{e}+0$	$1.78 \mathrm{e}+1$	$4.36 \mathrm{e}+1$
FF100-20 (7104)	$2.09 \mathrm{e}+0$	3635	$1.80 \mathrm{e}+0$	$1.78 \mathrm{e}+1$	$4.27 \mathrm{e}+1$
FF100-30 (10,944)	$8.54 \mathrm{e}+0$	9043	$5.83 \mathrm{e}+0$	$1.12 \mathrm{e}+1$	$2.97 \mathrm{e}+1$
ES50 (4300)	$9.70 \mathrm{e}-1$	4297	$2.05 \mathrm{e}+0$	$2.94 \mathrm{e}+0$	$4.26 \mathrm{e}+1$
FTSE100 (3154)	$4.29 \mathrm{e}-1$	1749	$1.80 \mathrm{e}+0$	$5.07 \mathrm{e}+1$	$5.71 \mathrm{e}+1$
SP500 (11,206)	$1.98 \mathrm{e}+1$	3728	$1.74 \mathrm{e}+0$	$6.16 \mathrm{e}+1$	$1.01 \mathrm{e}+2$
NASDAQC (45,714)	$8.84 \mathrm{e}+2$	14264	$3.15 \mathrm{e}+0$	$2.73 \mathrm{e}+0$	$3.89 \mathrm{e}+2$

Application 2: binary classification of FMRI data

- $s_{(-1)} 3 d$ scans in class " -1 " and $s_{(1)} 3 d$ scans in class " 1 ", $s=s_{(-1)}+s_{(1)}$
- Each 3 d scan is a $q_{1} \times q_{2} \times q_{3}$ real array $\left(q=q_{1} q_{2} q_{3}\right.$ voxels $)$
- $D \in \mathbb{R}^{s \times q}$ matrix containing as rows the 3 d scans (reshaped as vectors)
- \hat{y} vector containing the labels associated with each scan
- Square loss function for determining a separating hyperplane in \mathbb{R}^{q}
- \# patients much smaller than the scan size i.e. $s \ll q$ (ill-posed problem), similar weights of the classification hyperplane sought for contiguous brain regions ("structured" sparsity)
\Longrightarrow regularization with ℓ_{1} and anisotropic Total Variation (TV) terms

Application 2: binary classification of fMRI data

- $s_{(-1)} 3 d$ scans in class " -1 " and $s_{(1)} 3 d$ scans in class " 1 ", $s=s_{(-1)}+s_{(1)}$
- Each 3 d scan is a $q_{1} \times q_{2} \times q_{3}$ real array $\left(q=q_{1} q_{2} q_{3}\right.$ voxels $)$
- $D \in \mathbb{R}^{s \times q}$ matrix containing as rows the 3 d scans (reshaped as vectors)
- \hat{y} vector containing the labels associated with each scan
- Square loss function for determining a separating hyperplane in \mathbb{R}^{q}
- \# patients much smaller than the scan size i.e. $s \ll q$ (ill-posed problem), similar weights of the classification hyperplane sought for contiguous brain regions ("structured" sparsity)
\Longrightarrow regularization with ℓ_{1} and anisotropic Total Variation (TV) terms

$$
\begin{gathered}
\min _{w} \frac{1}{2 s}\|D w-\hat{y}\|^{2}+\tau_{1}\|w\|_{1}+\tau_{2}\|L w\|_{1} \\
\tau_{1}, \tau_{2}>0, \quad\|L w\|_{1} \text { discrete anisotropic TV of } w \\
L=\left[\begin{array}{lll}
L_{x}^{\top} & L_{y}^{\top} & L_{z}^{\top}
\end{array}\right]^{\top} \in \mathbb{R}^{\prime \times q} \text { first-order forward finite differences in } x, y, z
\end{gathered}
$$

[Baldassarre, Pontil \& Mouraõ-Miranda, Front Neurosci 2017]

Application 2: binary classification of fMRI data (cont'd)

Smooth problem reformulation

$$
\begin{aligned}
\min _{x} & \frac{1}{2} x^{\top} Q x+c^{\top} x \\
\text { s.t. } & A x=b, \quad x_{\mathcal{I}} \geq 0, \quad x_{\mathcal{F}} \text { free, } \mathcal{I}=\{s+1, \ldots, n\}, \mathcal{F}=\{1, \ldots, s\},
\end{aligned}
$$

$$
\begin{gathered}
u=D w, \quad d=L w, \quad w=w^{+}-w^{-}, d=d^{+}-d^{-} \\
x=\left[u^{\top},\left(w^{+}\right)^{\top},\left(w^{-}\right)^{\top},\left(d^{+}\right)^{\top},\left(d^{-}\right)^{\top}\right]^{\top} \\
Q=\left[\begin{array}{cc}
\frac{1}{s} I_{s} & 0_{s,(n-s)} \\
O_{(n-s), s} & 0_{(n-s),(n-s)}
\end{array}\right], \quad A=\left[\begin{array}{ccccc}
-I_{s} & D & -D & 0_{s, l} & 0_{s, l} \\
0_{l, s} & L & -L & -I_{l} & I_{l}
\end{array}\right] \\
\quad \text { (diagonal Hessian) }
\end{gathered}
$$

$$
c=\left[-\frac{\hat{y}^{\top}}{s}, \tau_{1} e_{w}^{\top}, \tau_{1} e_{w}^{\top}, \tau_{2} e_{d}^{\top}, \tau_{2} e_{d}^{\top}\right]^{\top} \in \mathbb{R}^{n}, \quad b=0_{s+1} \in \mathbb{R}^{m}, \quad m=l+s, \quad n=s+2 \underline{\underline{\underline{q}}+2 l}
$$

Classification of fMRI data: solution of Newton system

- $\nabla^{2} f\left(x_{k}\right)=Q$ diagonal \Longrightarrow solve the (spd) normal equations:

$$
M_{k} \Delta y=r, \quad M_{k}=A\left(Q+\bar{\Xi}_{k}+\rho_{k} I_{n}\right)^{-1} A^{\top}+\delta_{k} I_{m}
$$

- $M_{k}=\left[\begin{array}{ll}M_{1, k} & M_{2, k}^{\top} \\ M_{2, k} & M_{3, k}\end{array}\right] \quad \begin{aligned} & M_{1, k}, M_{2, k} \text { dense } \\ & M_{3, k} \text { sparse, size } / \gg s\end{aligned}$
\Longrightarrow use Preconditioned Conjugate Gradient (PCG) method
- Preconditioner:

$$
P_{k}=\left[\begin{array}{cc}
M_{1, k} & 0 \\
0 & M_{3, k}
\end{array}\right] \quad \text { block diagonal }
$$

$M_{3, k}$ has a sparse Cholesky factor (thanks to TV matrix L)
$M_{1, k}$ has a dense Cholesky factor, requiring only $O\left(s^{3}\right)$ operations and $O\left(s^{2}\right)$ storage

Classification of fMRI data: spectral analysis

Theorem

The preconditioned matrix $R_{k}=P_{k}^{-1} M_{k}$ has $I-\operatorname{rank}(D)$ eigenvalues $\lambda=1$, whose respective eigenvectors form a basis for $\left\{0_{s}\right\} \times\left\{\operatorname{Null}\left(M_{2, k}^{\top}\right)\right\}$. All the remaining eigenvalues of the preconditioned matrix satisfy

$$
\lambda \in(\chi, 1) \cup(1,2), \quad \chi=\frac{\delta_{k} \rho_{k}}{\sigma_{\max }^{2}(A)+\rho_{k} \delta_{k}}
$$

where δ_{k}, ρ_{k} are the regularization parameters of IP-PMM.

The preconditioner remains effective as long as ρ_{k} and δ_{k} are not too small
$\mathcal{A} \times \mathcal{B}$ denotes a vector space with elements $\left[a^{\top}, b^{\top}\right]^{\top}, a \in \mathcal{A}$ and $b \in \mathcal{B}$

Classification of fMRI data: dropping strategy

- ρ_{k} and δ_{k} must be reduced to attain convergence of IP-PMM
- the optimal solution is expected to be sparse
\Longrightarrow drop primal variables converging to 0 to improve matrix conditioning (same strategy as in the portfolio problem)

Reduced normal equations

$$
\begin{gathered}
\left(\widetilde{A}\left(\widetilde{Q}+\widetilde{\Xi}_{k}+\rho_{k} I\right)^{-1} \widehat{A}^{\top}+\delta_{k} I\right) \widehat{\Delta y}=\widehat{r} \\
\text { smaller and "safer" system! }
\end{gathered}
$$

Classification of fMRI data: test setting

(Preprocessed) data from https://github.com/lucabaldassarre/neurosparse

- fMRI scans for 16 male healthy US college students (age 20 to 25), two active conditions: viewing unpleasant and pleasant images
- 1344 scans of size 122,128 voxels (only voxels with probability >0.5 of being in the gray matter), 42 scans per subject and active condition (i.e., 84 scans per subject in total)
- Leave-One-Subject-Out (LOSO) cross-validation test over the full dataset of patients \Longrightarrow size of $w: q=122,128$, \# rows $D: s=1260$, size of $d=L w: I=339,553$

Comparison of IP-PMM with ad-hoc FISTA and ADMM MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkakiotis \& Viola, to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)]

Performance metrics [Baldassarre, Pontil \& Mouraõ-Miranda, Front Neurosci 2017]

- classification accuracy (ACC): percentage of vectors correctly classified
- solution density (DEN): percentage of nonzero entries
- corrected pairwise overlap (CORR OVR): measure of "stability" of the voxel selection, the higher the better

Classification of fMRI data: results

Algorithm	$\tau_{1}=\tau_{2}$	ACC	DEN	CORR OVR
IP-PMM	10^{-2}	86.16 ± 7.11	20.56 ± 6.63	43.47 ± 9.09
	$5 \cdot 10^{-2}$	84.90 ± 4.80	3.77 ± 0.84	62.70 ± 10.39
	10^{-1}	82.29 ± 6.22	2.49 ± 0.34	82.60 ± 9.24
FISTA	10^{-2}	86.90 ± 5.01	88.97 ± 0.71	$5.43 \pm$
	$5 \cdot 10^{-2}$	84.15 ± 5.92	19.36 ± 0.86	$65.50 \pm$
	10^{-1}	81.62 ± 7.58	5.14 ± 0.44	$80.44 \pm$
		5.72		
ADMM	10^{-2}	86.46 ± 6.91	98.70 ± 0.03	$0.03 \pm$
	$5 \cdot 10^{-2}$	85.57 ± 5.37	97.97 ± 0.05	$0.15 \pm$
	10^{-1}	82.07 ± 6.51	97.50 ± 0.19	$0.26 \pm$

Classification of fMRI data: results (cont'd)

Application 3: TV-based Poisson image restoration

- Object to be restored: $w \in \mathbb{R}^{n}$, measured data: $g \in \mathbb{N}_{0}^{m}$, with entries g^{j} that are samples of m independent random variables $G^{j} \sim \operatorname{Poisson}\left((D w+a)^{j}\right)$
- $D=\left[d^{i j}\right] \in \mathbb{R}^{m \times n}$ modeling the imaging system, $d^{i j} \geq 0$ for all i, j, $\sum_{i=1}^{m} d^{i j}=1$ for all j, BCCB structure assumed
- $a \in \mathbb{R}_{+}^{m}$ modeling the background radiation detected by the sensors
- Maximum-likelihood approach \Longrightarrow minimization of Kullback-Leibler (KL) divergence (highly ill-conditioned problem) \Longrightarrow TV regularization
- Non-negative image intensity, total image intensity preserved \Longrightarrow non-negativity + single linear constraint

Application 3: TV-based Poisson image restoration

- Object to be restored: $w \in \mathbb{R}^{n}$, measured data: $g \in \mathbb{N}_{0}^{m}$, with entries g^{j} that are samples of m independent random variables $G^{j} \sim \operatorname{Poisson}\left((D w+a)^{j}\right)$
- $D=\left[d^{i j}\right] \in \mathbb{R}^{m \times n}$ modeling the imaging system, $d^{i j} \geq 0$ for all i, j, $\sum_{i=1}^{m} d^{i j}=1$ for all j, BCCB structure assumed
- $a \in \mathbb{R}_{+}^{m}$ modeling the background radiation detected by the sensors
- Maximum-likelihood approach \Longrightarrow minimization of Kullback-Leibler (KL) divergence (highly ill-conditioned problem) \Longrightarrow TV regularization
- Non-negative image intensity, total image intensity preserved \Longrightarrow non-negativity + single linear constraint

$$
\begin{gathered}
\min _{w} \quad D_{K L}(w)+\lambda\|L w\|_{1} \\
\text { s.t. } e_{n}^{\top} w=r, w \geq 0 \\
D_{K L}(w)=\sum_{j=1}^{m}\left(g^{j} \ln \frac{g^{j}}{(D w+a)^{j}}+(D w+a)^{j}-g^{j}\right) \\
L \in \mathbb{R}^{\prime \times n} \text { discrete TV operator, } r=\sum_{j=1}^{m}\left(g^{j}-a^{j}\right)
\end{gathered}
$$

Appl. 3: TV-based Poisson image restoration (cont'd)

Smooth problem reformulation

$$
\begin{array}{ll}
\min _{x} & f(x) \equiv D_{K L}(w)+c^{\top} u, \\
\text { s.t. } & A x=b, \quad x \geq 0
\end{array}
$$

$$
\begin{gathered}
d=L w, \quad u=\left[\left(d^{+}\right)^{\top},\left(d^{-}\right)^{\top}\right]^{\top}, \quad x=\left[w^{\top}, u^{\top}\right]^{\top} \\
A=\left[\begin{array}{ccc}
e_{n}^{\top} & 0_{1}^{\top} & 0_{1}^{\top} \\
L & -I_{I} & I_{l}
\end{array}\right]
\end{gathered}
$$

$$
c=\lambda e_{2 l}, \quad b=\left[r, 0_{l}^{\top}\right]^{\top} \in \mathbb{R}^{\bar{m}}, \quad \bar{m}=l+1, \quad \bar{n}=n+2 l, \quad m=l+s, \quad n=s+2 q+2 l
$$

TV-based Poisson image restoration: Newton system

- $\underbrace{\left[\begin{array}{cc}-H_{k} & A^{\top} \\ A & \delta_{k} I\end{array}\right]}_{M_{k}}\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}r_{1, k} \\ r_{2, k}\end{array}\right], \quad H_{k}=\left(\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}+\rho_{k} I\right)$
\Longrightarrow use preconditioned MINimum RESidual (MINRES) method
- Preconditioner:

$$
\widetilde{M}_{k}=\left[\begin{array}{cc}
\widetilde{H}_{k} & 0 \\
0 & A \widetilde{H}_{k}^{-1} A^{\top}+\delta_{k} I
\end{array}\right], \quad \widetilde{H}_{k} \text { diagonal approx of } H_{k}
$$

Theorem

The eigenvalues of $\widetilde{M}_{k}^{-1} M_{k}$ lie in the union of the intervals

$$
I_{-}=\left[-\beta_{H}-1,-\alpha_{H}\right], \quad I_{+}=\left[\frac{1}{1+\beta_{H}}, 1\right],
$$

where $\alpha_{H}=\lambda_{\min }\left(\widehat{H}_{k}\right), \beta_{H}=\lambda_{\max }\left(\widehat{H}_{k}\right)$ and $\widehat{H}_{k}=\widetilde{H}_{k}^{-\frac{1}{2}} H_{k} \widetilde{H}_{k}^{\frac{1}{2}}$.
[Bergamaschi, Gondzio, Martínez, Pearson \& Pougkakiotis, NLAA 2021]

$$
\text { If } \widetilde{H}_{k}=\operatorname{diag}\left(H_{k}\right) \text {, then } \alpha_{H} \leq 1 \leq \beta_{H}
$$

TV-based Poisson image restoration: Newton sys (cont'd)

- $\left[\begin{array}{cc}-H_{k} & A^{\top} \\ A & \delta_{k} l\end{array}\right]\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{l}r_{1, k} \\ r_{2, k}\end{array}\right], \quad H_{k}=\left(\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}+\rho_{k} l\right)$
- $\nabla^{2} f(x)=\left[\begin{array}{cc}\nabla^{2} D_{K L}(w) & 0 \\ 0 & 0\end{array}\right], \quad \nabla^{2} D_{K L}(w)=D^{\top} U(w)^{2} D$
$U(w)=\operatorname{diag}\left(\frac{\sqrt{g}}{D w+a}\right), \quad \tilde{H}_{k}=U\left(w_{k}\right)^{2}$
D may be dense, but its action of a vector can be computed via FFT
$\widetilde{H}_{k}=U\left(w_{k}\right)^{2}$ better than $\widetilde{H}_{k}=\operatorname{diag}\left(H_{k}\right)$

TV-based Poisson image restoration: test setting

Test images

- 256×256, grayscale

- Poisson noise and Gaussian blur (GB), motion blur (MB), out-of-focus blur (OF)

Comparison of IP-PMM with Primal-Dual Algorithm with Linesearch (PDAL) MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkakiotis \& Viola, to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)]

Performance metrics

- $\operatorname{RMSE}(w)=\frac{1}{\sqrt{n}}\|w-\bar{w}\|_{2}, \bar{w}$ original image
- $\operatorname{PSNR}(w)=20 \log _{10}\left(\max _{i} \bar{w}^{i} / \operatorname{RMSE}(w)\right)$
- $\mathrm{MSSIM}=$ structural similarity measure, the higher the better

TV-based Poisson image restoration: results

TV-based Poisson image restoration: results (cont'd)

	IP-PMM			PDAL		
Problem	RMSE	PSNR	MSSIM	RMSE	PSNR	MSSIM
cameraman - GB	$4.85 \mathrm{e}-2$	$2.63 \mathrm{e}+1$	$8.33 \mathrm{e}-1$	$5.02 \mathrm{e}-2$	$2.60 \mathrm{e}+1$	$8.22 \mathrm{e}-1$
cameraman - MB	$5.52 \mathrm{e}-2$	$2.52 \mathrm{e}+1$	$8.11 \mathrm{e}-1$	$5.59 \mathrm{e}-2$	$2.51 \mathrm{e}+1$	$7.77 \mathrm{e}-1$
cameraman - OF	$5.14 \mathrm{e}-2$	$2.58 \mathrm{e}+1$	$7.98 \mathrm{e}-1$	$5.26 \mathrm{e}-2$	$2.56 \mathrm{e}+1$	$7.62 \mathrm{e}-1$
house - GB	$9.71 \mathrm{e}-2$	$2.03 \mathrm{e}+1$	$7.51 \mathrm{e}-1$	$9.88 \mathrm{e}-2$	$2.01 \mathrm{e}+1$	$6.92 \mathrm{e}-1$
house - MB	$2.70 \mathrm{e}-2$	$3.14 \mathrm{e}+1$	$8.67 \mathrm{e}-1$	$2.77 \mathrm{e}-2$	$3.11 \mathrm{e}+1$	$8.43 \mathrm{e}-1$
house - OF	$3.80 \mathrm{e}-2$	$2.84 \mathrm{e}+1$	$8.33 \mathrm{e}-1$	$4.09 \mathrm{e}-2$	$2.78 \mathrm{e}+1$	$7.70 \mathrm{e}-1$
peppers - GB	$1.23 \mathrm{e}-1$	$1.82 \mathrm{e}+1$	$7.46 \mathrm{e}-1$	$1.25 \mathrm{e}-1$	$1.81 \mathrm{e}+1$	$6.57 \mathrm{e}-1$
peppers - MB	$8.76 \mathrm{e}-2$	$2.12 \mathrm{e}+1$	$8.90 \mathrm{e}-1$	$8.78 \mathrm{e}-2$	$2.11 \mathrm{e}+1$	$8.72 \mathrm{e}-1$
peppers - OF	$9.47 \mathrm{e}-2$	$2.05 \mathrm{e}+1$	$8.01 \mathrm{e}-1$	$9.70 \mathrm{e}-2$	$2.03 \mathrm{e}+1$	$6.60 \mathrm{e}-1$

TV-based Poisson image restoration: results (cont'd)

blurry and noisy

blurry and noisy

Restored image - IP-PMM

Restored image - IP-PMM

Restored image - IP-PMM

Restored image - PDAL

Restored image - PDAL

Restored image - PDAL

Appl. 4: linear classification via Logistic Regression

- Training set with n binary-labeled samples and s features
- $D \in \mathbb{R}^{n \times s}$ with rows $\left(d^{i}\right)^{\top}$ representing the training points
- $g \in\{-1,1\}^{n}$ vector of labels
- Logistic model to define the conditional probability of having the label g^{i} given the point d^{i}
- Maximum-likelihood approach \Longrightarrow minimization of logistic loss function (ill posedness - e.g. redundant features) $\Longrightarrow \ell_{1}$ regularization

Appl. 4: linear classification via Logistic Regression

- Training set with n binary-labeled samples and s features
- $D \in \mathbb{R}^{n \times s}$ with rows $\left(d^{i}\right)^{\top}$ representing the training points
- $g \in\{-1,1\}^{n}$ vector of labels
- Logistic model to define the conditional probability of having the label g^{i} given the point d^{i}
- Maximum-likelihood approach \Longrightarrow minimization of logistic loss function (ill posedness - e.g. redundant features) $\Longrightarrow \ell_{1}$ regularization

$$
\begin{gathered}
\min _{w} \phi(w)+\tau\|w\|_{1} \\
\phi(w)=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}(w), \quad \phi_{i}(w)=\log \left(1+e^{-g^{i} w^{\top} d^{i}}\right)
\end{gathered}
$$

Appl. 4: linear classification via Logistic Regression (cont'd)

Smooth problem reformulation

$$
\left.\begin{array}{c}
\min _{x} f(x) \equiv \phi(w)+c^{\top} u \\
\text { s.t. } A x=b, u \geq 0
\end{array}\right] \begin{gathered}
u=w, \quad u=\left[\left(d^{+}\right)^{\top},\left(d^{-}\right)^{\top}\right]^{\top}, \quad x=\left[w^{\top}, u^{\top}\right]^{\top} \\
A=\left[\begin{array}{lll}
l_{s} & -l_{s} & l_{s}
\end{array}\right] \\
c=\tau e_{2 s}, \quad b=0_{\bar{m}}, \quad \bar{m}=l+1, \quad \bar{m}=s, \quad \bar{n}=3 s
\end{gathered}
$$

Classific. via Logistic Regression: solution of Newton system

- Solution of Newton system by preconditioned MINRES (similar to Poisson image restoration)
- Preconditioner:

$$
\begin{gathered}
\tilde{M}_{k}=\left[\begin{array}{cc}
\widetilde{H}_{k} & 0 \\
0 & A \tilde{H}_{k}^{-1} A^{\top}+\delta_{k} I
\end{array}\right] \\
\tilde{H}_{k}=\operatorname{diag}\left(H_{k}\right), \quad H_{k}=\left(\nabla^{2} f\left(x_{k}\right)+\Theta_{k}^{-1}+\rho_{k} l\right)
\end{gathered}
$$

Classification via Logistic Regression: test setting

Linear classification problems from the LIBSVM dataset for binary classification, https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Problem	Features	Train pts	Test pts
gisette	5000	6000	1000
rcv1	47,236	20,242	677,399
real-sim	20,958	50,617	21,692

Comparison of IP-PMM with ADMM (http://www.stanford.edu/~boyd/papers/distr_ opt_stat_learning_admm.html) and newGLMNET used in LIBSVM (https://github.com/ ZiruiZhou/IRPN)
MATLAB, implementation details in [De Simone, dS, Gondzio, Pougkakiotis \& Viola, to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)]

Performance metrics

- objective function value versus execution time
- classification error versus execution time

Classification via Logistic Regression: results

Conclusions

- Specialized IPMs for quadratic and general convex nonlinear optimization problems with sparse solutions have been presented
- By a proper choice of linear algebra solvers, IPMs can efficiently solve larger but smooth optimization problems coming from a standard reformulation of the original ones
- Computational experiments on diverse applications provide evidence that IPMs can offer a noticeable advantage over state-of-the-art first-order methods, especially when dealing with not-so-well conditioned problems
- This work may provide a basis for an in-depth analysis of the application of IPMs to many sparse approximation problems

Some references

- V. De Simone, dS, J. Gondzio, S. Pougkakiotis, M. Viola, Sparse Approximations with Interior Point Methods, to appear in SIAM Review 2022 (arXiv:2102.13608, 2021)
- S. Cafieri, M. D'Apuzzo, V. De Simone, dS, On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems, Computational Optimization and Applications, 38 (2007)
- S. Corsaro, V. De Simone, Z. Marino, Fused lasso approach in portfolio selection, Annals of Operations Research (2019)
- M. D'Apuzzo, V. De Simone, D. di Serafino, On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods, Computational Optimization and Applications, 45 (2010)
- dS, G. Landi, M. Viola, ACQUIRE: an inexact iteratively reweighted norm approach for TV-based Poisson image restoration Applied Mathematics and Computation, 364 (2020)
- J. Gondzio, Interior point methods 25 years later, European Journal of Operational Research, 218 (2012)
- S. Pougkakiotis, J. Gondzio, An interior point-proximal method of multipliers for convex quadratic programming, Computational Optimization and Applications, 78 (2021)

Thank you for your attention!

