Strong SDP bounds for large k-equipartition problems via a cutting plane ADMM-based algorithm

Shudian Zhao ${ }^{\dagger}$

Frank de Meijer*, Renata Sotirov*, Angelika Wiegele ${ }^{\dagger}$
${ }^{\dagger}$ Alpen-Adria-Universität Klagenfurt

* Tilburg University

May 19
Modern Techniques of Very Large Scale Optimization

Table of Contents

(1) The k-equipartition Problem
(2) Semidefinite Relaxations for the k-equipartition Problem
(3) The Cutting-Plane ADMM-based Algorithm

The k-equipartition Problem

Partition an undirected graph $G(V, E)$ into k groups with equal cardinality such that the weight of edges cut by the partition is minimized.

$n=10$

The k-equipartition problem is NP-hard.

Table of Contents

(1) The k-equipartition Problem

(2) Semidefinite Relaxations for the k-equipartition Problem
(3) The Cutting-Plane ADMM-based Algorithm

Semidefinite Programming

Positive semidefinite (PSD) matrices:
$X \in \mathcal{S}^{n}, X \succeq 0 \Longleftrightarrow v^{\top} X v \geq 0 \forall v \in \mathbb{R}^{n}$.
The set of PSD matrices is a convex cone, denoted by \mathcal{S}_{+}^{n}.

Semidefinite Programming

Positive semidefinite (PSD) matrices:
$X \in \mathcal{S}^{n}, X \succeq 0 \Longleftrightarrow v^{\top} X v \geq 0 \forall v \in \mathbb{R}^{n}$.
The set of PSD matrices is a convex cone, denoted by \mathcal{S}_{+}^{n}.

- Semidefinite programming (SDP) problems:

$$
\begin{aligned}
& \min \langle C, X\rangle \\
& \text { s.t. } \mathcal{A}(X)=b, X \succeq 0 .
\end{aligned}
$$

(SDP-Primal)
where $\mathcal{A}: \mathcal{S}^{n} \rightarrow \mathbb{R}^{m}, C \in \mathcal{S}^{n}, b \in \mathbb{R}^{m}$, and

$$
\langle C, X\rangle=\operatorname{trace}(C X)=\sum_{i j} C_{i j} X_{i j} \text {, and } \mathcal{A}(X)=\left(\begin{array}{c}
\left\langle A_{1}, X\right\rangle \\
\vdots \\
\left\langle A_{m}, X\right\rangle
\end{array}\right)
$$

- SDP problems can be solved by polynomial-time algorithms.

Duality in Semidefinite Programming

$$
\begin{align*}
\max & b^{\top} y \\
\text { s.t. } & \mathcal{A}^{*} y+Z=C \tag{SDP-Dual}\\
& Z \succeq 0
\end{align*}
$$

where $\mathcal{A}^{*}: \mathbb{R}^{m} \rightarrow \mathcal{S}^{n}$ is the adjoint operator of $\mathcal{A}(\cdot)$ and $\mathcal{A}^{*} y=\sum_{i=1}^{m} A_{i}^{\top} y$.

Duality in Semidefinite Programming

$$
\begin{align*}
\max & b^{\top} y \\
\text { s.t. } & \mathcal{A}^{*} y+Z=C, \tag{SDP-Dual}\\
& Z \succeq 0 .
\end{align*}
$$

where $\mathcal{A}^{*}: \mathbb{R}^{m} \rightarrow \mathcal{S}^{n}$ is the adjoint operator of $\mathcal{A}(\cdot)$ and $\mathcal{A}^{*} y=\sum_{i=1}^{m} A_{i}^{\top} y$.

The strong duality theorem

If both, the primal and dual problems, are strictly feasible, then $p^{*}=d^{*}$ and both optima are attained.

The k-equipartition Problem

An undirected graph $G(V, E),|V|=n, A$ is the adjacency matrix where $A_{i j}$ is the weight of edge $(i, j) \in E, k$ is a divisor of n.

The k-equipartition Problem

An undirected graph $G(V, E),|V|=n, A$ is the adjacency matrix where $A_{i j}$ is the weight of edge $(i, j) \in E, k$ is a divisor of n.
$Y \in\{0,1\}^{n \times k}$ encodes a k-equipartition for $G(V, E)$ if certain constraints are satisfied.

The k-equipartition Problem

An undirected graph $G(V, E),|V|=n, A$ is the adjacency matrix where $A_{i j}$ is the weight of edge $(i, j) \in E, k$ is a divisor of n.
$Y \in\{0,1\}^{n \times k}$ encodes a k-equipartition for $G(V, E)$ if certain constraints are satisfied.

- L: Laplacian matrix, $L=\operatorname{diag}\left(A e_{n}\right)-A$.

$$
\frac{1}{2}\left\langle L, Y Y^{\top}\right\rangle=\frac{1}{2} \sum_{i, j} L_{i j} y_{i}^{\top} y_{j}=\sum_{i, j, i<j} A_{i j}\left(1-y_{i}^{\top} y_{j}\right)
$$

where y_{i} is the i-th row of Y, e_{n} is the all-ones vector of length n.

The k-equipartition Problem

An undirected graph $G(V, E),|V|=n, A$ is the adjacency matrix where $A_{i j}$ is the weight of edge $(i, j) \in E, k$ is a divisor of n.
$Y \in\{0,1\}^{n \times k}$ encodes a k-equipartition for $G(V, E)$ if certain constraints are satisfied.

- L: Laplacian matrix, $L=\operatorname{diag}\left(A e_{n}\right)-A$.

$$
\frac{1}{2}\left\langle L, Y Y^{\top}\right\rangle=\frac{1}{2} \sum_{i, j} L_{i j} y_{i}^{\top} y_{j}=\sum_{i, j, i<j} A_{i j}\left(1-y_{i}^{\top} y_{j}\right)
$$

where y_{i} is the i-th row of Y, e_{n} is the all-ones vector of length n.

The k-equipartition Problem

An undirected graph $G(V, E),|V|=n, A$ is the adjacency matrix where $A_{i j}$ is the weight of edge $(i, j) \in E, k$ is a divisor of n.
$Y \in\{0,1\}^{n \times k}$ encodes a k-equipartition for $G(V, E)$ if certain constraints are satisfied.

- L: Laplacian matrix, $L=\operatorname{diag}\left(A e_{n}\right)-A$.

$$
\frac{1}{2}\left\langle L, Y Y^{\top}\right\rangle=\frac{1}{2} \sum_{i, j} L_{i j} y_{i}^{\top} y_{j}=\sum_{i, j, i<j} A_{i j}\left(1-y_{i}^{\top} y_{j}\right)
$$

where y_{i} is the i-th row of Y, e_{n} is the all-ones vector of length n.

- m : Cardinality in each group, $m=\frac{n}{k}$.

$$
\begin{array}{ll}
\min & \frac{1}{2}\left\langle L, Y Y^{\top}\right\rangle \\
\text { s.t. } & Y e_{k}=e_{n}, \\
& Y^{\top} e_{n}=m e_{k} \\
& Y \in\{0,1\}^{n \times k} .
\end{array}
$$

- $X:=Y Y^{\top}$.

$$
X_{i j}= \begin{cases}1, & i, j \text { in the same group } \\ 0, & \text { otherwise }\end{cases}
$$

$$
\min \frac{1}{2}\langle L, X\rangle
$$

s.t. $\operatorname{diag}(X)=e$,

$$
\begin{aligned}
& X e=m e \\
& X \in\{0,1\}^{n \times n}, X \in \mathcal{S}^{n}
\end{aligned}
$$

The Doubly Nonnegative (DNN) Relaxation for k-equipartitioning

Relax the binary variables:

$$
X=Y Y^{\top} \Longrightarrow X \succeq 0, X \geq 0
$$

$$
\begin{aligned}
\min & \frac{1}{2}\langle L, X\rangle \\
\text { s.t. } & \operatorname{diag}(X)=e, \\
& X e=m e, \\
& X \succeq 0, \\
& X \geq 0 .
\end{aligned}
$$

The Doubly Nonnegative (DNN) Relaxation for k-equipartitioning

Relax the binary variables:

$$
X=Y Y^{\top} \Longrightarrow X \succeq 0, X \geq 0
$$

$$
\begin{array}{ll}
\min & \frac{1}{2}\langle L, X\rangle \\
\text { s.t. } & \operatorname{diag}(X)=e, \\
& X e=m e, \\
& X \succeq 0, \\
& X \geq 0 . \quad \text { Number of Constraints: } \frac{(n+1) n}{2}
\end{array}
$$

Valid Inequalities

- Triangle inequality constraints:

$$
\mathcal{H}_{T}:=\left\{X \in \mathcal{S}^{n} \mid X_{i j}+X_{i \ell} \leq 1+X_{j \ell,}, \forall i, j, \ell \in[n], i \neq j \neq \ell\right\} .
$$ Number of Constraints:: $3\binom{n}{3}=\frac{n(n-1)(n-2)}{2}$.

- Independent set constraints:
$\mathcal{H}_{C}:=\left\{X \in \mathcal{S}^{n}\left|\sum_{i, j \in I} X_{i j} \geq 1 \forall I \subset V\right| I \mid=k+1\right\}$.
Number of Constraints.: $\binom{n}{k+1}=\frac{n(n-1) \cdots(n-k)}{(k+1)!}$.

Table of Contents

(1) The k-equipartition Problem

(2) Semidefinite Relaxations for the k-equipartition Problem
(3) The Cutting-Plane ADMM-based Algorithm

The Cutting-plane Framework

(1) Solve DNN relaxations and obtain X^{0}
(2) While stopping criteria not met
(1) Add numCuts most violated cuts and form a new relaxation
(2) Solve the new relaxation and obtain X^{0}

Problems to solve:

- The DNN relaxation;
- The DNN relaxation + Polyhedral cuts.

The Cutting-plane Framework

(1) Solve DNN relaxations and obtain X^{0}
(2) While stopping criteria not met

- Add numCuts most violated cuts and form a new relaxation
(2) Solve the new relaxation and obtain X^{0}

Problems to solve:

- The DNN relaxation;
- The DNN relaxation + Polyhedral cuts.

Algorithm for Solving SDPs

(1) Interior point methods (IPMs): failed to solve large scale instances, e.g., Mosek.
(2) The alternating direction method of multipliers (ADMM): efficient on solving large instances but cannot reach a high precision.

The Cutting-plane Framework

(1) Solve DNN relaxations and obtain X^{0}
(2) While stopping criteria not met

- Add numCuts most violated cuts and form a new relaxation
- Solve the new relaxation and obtain X^{0}

Use ADMM with post-processing to solve each SDP problem

Problems to solve:

- The DNN relaxation;
- The DNN relaxation + Polyhedral cuts.

Algorithm for Solving SDPs

(1) Interior point methods (IPMs): failed to solve large scale instances, e.g., Mosek.
(2) The alternating direction method of multipliers (ADMM): efficient on solving large instances but cannot reach a high precision.

Variants of ADMM for Solving SDPs

- Malick, Povh, Rendl, and Wiegele (2009) and Wen, Goldfarb, and Yin (2010): Apply the ADMM on the dual SDP:

$$
\begin{align*}
& \min \{\langle C, X\rangle \mid \mathcal{A}(X)=b, X \succeq 0\} \tag{SDP-Primal}\\
& \max \left\{b^{\top} y \mid \mathcal{A}^{*} y+Z=C, Z \succeq 0\right\} .
\end{align*}
$$

(SDP-Dual)

- Sun, Toh, Yuan, and Zhao (2020), Cerulli, Santis, Gaar, and Wiegele (2021), and Wiegele and Zhao (2022): Variants of ADMM for solving SDP problems with inequality constraints.
- Oliveira, Wolkowicz, and Xu (2018), Hu, Sotirov, and Wolkowicz (2019), and Li, Pong, Sun, and Wolkowicz (2021): The ADMM-based algorithm for symmetry and facially reduced DNN relaxations.
- de Meijer and Sotirov (2021): An augmented Lagrangian method incorporated in a cutting-plane framework for quadratic cycle cover problems.

The Reformulated DNN Relaxation with Facial Reduction

Facial Reduction

Given $V \in \mathbb{R}^{n \times(n-1)}$ such that $V^{\top} e=0$ and $\operatorname{rank}(V)=n-1$, we have $X=V R V^{\top}+\frac{1}{k} E$ for $R \in \mathcal{S}^{n-1}$.

$$
\begin{aligned}
& \min \frac{1}{2}\langle L, X\rangle \\
& \text { s.t. } \operatorname{diag}(X)=e, \\
& X e=m e, \\
& X \geq 0, \\
& X \succeq 0 .
\end{aligned}
$$

The Reformulated DNN Relaxation with Facial Reduction

Facial Reduction

Given $V \in \mathbb{R}^{n \times(n-1)}$ such that $V^{\top} e=0$ and $\operatorname{rank}(V)=n-1$, we have $X=V R V^{\top}+\frac{1}{k} E$ for $R \in \mathcal{S}^{n-1}$.

$$
\begin{aligned}
\min & \frac{1}{2}\langle L, X\rangle \\
\text { s.t. } & \operatorname{diag}(X)=e, \\
& X e=m e, \\
& X \geq 0, \\
& X \succeq 0 .
\end{aligned}
$$

$$
\begin{aligned}
& \min \left\langle\frac{1}{2} L, V R V^{\top}\right\rangle \\
& \text { s.t. } \operatorname{diag}\left(V R V^{\top}\right)=\frac{k-1}{k} e_{n}, \\
& \quad V R V^{\top} \geq-\frac{1}{k} E_{n}, \\
& R \succeq 0,
\end{aligned}
$$

where

$$
V=\binom{I_{n-1}}{-e_{n-1}^{\top}} .
$$

The ADMM on the Facial Reduced Primal SDPs ${ }^{1}$

$$
\begin{aligned}
& \min \left\langle\frac{1}{2} L, X\right\rangle \\
& \text { s.t. } X=V R V^{\top}, X \in \mathcal{X}, R \in \mathcal{R}
\end{aligned}
$$

${ }^{1}$ Shudian Zhao (2022). "Splitting into Pieces: Alternating Direction Methods of Multipliers and Graph Partitioning". PhD thesis. Alpen-Adria-Universität Klagenfurt.

The ADMM on the Facial Reduced Primal SDPs ${ }^{1}$

$$
\begin{aligned}
\min & \left\langle\frac{1}{2} L, X\right\rangle \\
\text { s.t. } X & =V R V^{\top}, X \in \mathcal{X}, R \in \mathcal{R} \\
\mathcal{X} & :=\left\{X \in \mathcal{S}^{n} \left\lvert\, \operatorname{diag}(X)=\frac{k-1}{k} e_{n}\right., X \geq-\frac{1}{k} E_{n}\right\} \\
\mathcal{R} & :=\left\{R \in \mathcal{S}^{n-1} \mid R \succeq 0\right\}
\end{aligned}
$$

The augmented Lagrangian function is

$$
\begin{equation*}
\mathcal{L}_{\sigma}(X, R, Z)=\left\langle\frac{1}{2} L, X\right\rangle+\left\langle Z, X-V R V^{\top}\right\rangle+\frac{\sigma}{2}\left\|X-V R V^{\top}\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

[^0]
The ADMM on the Facial Reduced Primal SDPs ${ }^{1}$

$$
\begin{aligned}
\min & \left\langle\frac{1}{2} L, X\right\rangle \\
\text { s.t. } X & =V R V^{\top}, X \in \mathcal{X}, R \in \mathcal{R} \\
\mathcal{X} & :=\left\{X \in \mathcal{S}^{n} \left\lvert\, \operatorname{diag}(X)=\frac{k-1}{k} e_{n}\right., X \geq-\frac{1}{k} E_{n}\right\} \\
\mathcal{R} & :=\left\{R \in \mathcal{S}^{n-1} \mid R \succeq 0\right\}
\end{aligned}
$$

The augmented Lagrangian function is

$$
\begin{equation*}
\mathcal{L}_{\sigma}(X, R, Z)=\left\langle\frac{1}{2} L, X\right\rangle+\left\langle Z, X-V R V^{\top}\right\rangle+\frac{\sigma}{2}\left\|X-V R V^{\top}\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

The p-th iterate is

$$
\begin{align*}
& R^{p+1}=\underset{R \in \mathcal{R}}{\arg \min } \mathcal{L}_{\sigma}\left(R, X^{p}, Z^{p}\right), \tag{3a}\\
& X^{p+1}=\underset{X \in \mathcal{X}}{\arg \min } \mathcal{L}_{\sigma}\left(R^{p+1}, X, Z^{p}\right), \tag{3b}\\
& Z^{p+1}=Z^{p}+\sigma\left(X^{p+1}-V R^{p+1} V^{\top}\right) . \tag{3c}
\end{align*}
$$

[^1]
R-subproblem and X-subproblem

- The R-subproblem (3a) can be solved as follows

$$
\begin{aligned}
R^{p+1} & =\underset{R \in \mathcal{R}}{\arg \min } \mathcal{L}_{\sigma}\left(R, X^{p}, Z^{p}\right) \\
& =\underset{R \in \mathcal{R}}{\arg \min }\left\langle Z^{p},-V R V^{\top}\right\rangle+\frac{\sigma}{2}\left\|X^{p}-V R V^{\top}\right\|_{F}^{2} \\
& =\underset{R \in \mathcal{R}}{\arg \min }\left\|V^{\top}\left(X^{p}+\frac{1}{\sigma} Z^{p}\right) V-R\right\|_{F}^{2} \\
& =\mathcal{P}_{\succeq 0}\left(V^{\top}\left(X^{p}+\frac{1}{\sigma} Z^{p}\right) V\right),
\end{aligned}
$$

where $\mathcal{P}_{\succeq \mathbf{0}}(\cdot)$ is the projection onto the cone of positive semidefinite matrices.

R-subproblem and X-subproblem

- The R-subproblem (3a) can be solved as follows

$$
\begin{aligned}
R^{p+1} & =\underset{R \in \mathcal{R}}{\arg \min } \mathcal{L}_{\sigma}\left(R, X^{p}, Z^{p}\right) \\
& =\mathcal{P}_{\succeq 0}\left(V^{\top}\left(X^{p}+\frac{1}{\sigma} Z^{p}\right) V\right),
\end{aligned}
$$

- Similarly, X-subproblem is a projection problem onto \mathcal{X}

$$
\begin{aligned}
X^{p+1} & =\underset{X \in \mathcal{X}}{\arg \min } \mathcal{L}_{\sigma}\left(R^{p+1}, X, Z^{p}\right) \\
& =\mathcal{P}_{\mathcal{X}}\left(V R^{p+1} V^{\top}-\frac{1}{\sigma}\left(\frac{1}{2} L+Z^{p}\right)\right),
\end{aligned}
$$

where $\mathcal{X}=\left\{X \in \mathcal{S}^{n} \left\lvert\, \operatorname{diag}(X)=\frac{k-1}{k} e_{n}\right., X \geq-\frac{1}{k} E_{n}\right\}$.

X-subproblem with Cutting Planes

The Cutting-plane Framework

(1) Solve DNN relaxations and obtain X
(2) While stopping criteria not met
(1) Add numCuts most violated cuts and form a new relaxation $\mathcal{X} \rightsquigarrow \mathcal{X}_{\mathcal{T}}$.
(2) Solve the new relaxation and obtain X
\rightsquigarrow Solve $X^{p+1}=\mathcal{P}_{\mathcal{X}_{\mathcal{T}}}\left(V R^{p+1} V^{\top}-\frac{1}{\sigma}\left(\frac{1}{2} L+Z^{p}\right)\right)$ in the p-th iterate.

X-subproblem with Cutting Planes

The Cutting-plane Framework

(1) Solve DNN relaxations and obtain X
(2) While stopping criteria not met
(1) Add numCuts most violated cuts and form a new relaxation $\mathcal{X} \rightsquigarrow \mathcal{X}_{\mathcal{T}}$.
(2) Solve the new relaxation and obtain X
\rightsquigarrow Solve $X^{p+1}=\mathcal{P}_{\mathcal{X}_{\mathcal{T}}}\left(V R^{p+1} V^{\top}-\frac{1}{\sigma}\left(\frac{1}{2} L+Z^{p}\right)\right)$ in the p-th iterate.

Given an index set \mathcal{T} for triangle cuts, then adding the cuts in \mathcal{T} to the DNN relaxation, the polyhedral set \mathcal{X} has to be replaced by

$$
\begin{array}{r}
\mathcal{X}_{\mathcal{T}}:=\mathcal{X} \cap\left(\bigcap_{t \in \mathcal{T}} \mathcal{H}_{t}\right), \\
\forall t=(i, j, \ell), \mathcal{H}_{i j \ell}:=\left\{X \in \mathcal{S}^{n}: x_{i j}+X_{i \ell} \leq \frac{k-1}{k}+x_{j \ell}\right\} .
\end{array}
$$

Projection onto $\mathcal{H}_{i j \ell}$

Lemma

Let $M \in \mathcal{S}^{n}$ and let $\hat{M}:=\mathcal{P}_{\mathcal{H}_{i j \ell}}(M)$. If $M \in \mathcal{H}_{i j \ell}$, then $\hat{M}=M$. If $M \notin \mathcal{H}_{i j \ell}$, then \hat{M} is such that

$$
\hat{M}_{p q}= \begin{cases}\frac{2}{3} M_{i j}-\frac{1}{3} M_{i \ell}+\frac{1}{3} M_{j \ell}+\frac{1}{3}-\frac{1}{3 k} & \text { if }(p, q) \in\{(i, j),(j, i)\} \\ -\frac{1}{3} M_{i j}+\frac{2}{3} M_{i \ell}+\frac{1}{3} M_{j \ell}+\frac{1}{3}-\frac{1}{3 k} & \text { if }(p, q) \in\{(i, \ell),(\ell, i)\} \\ \frac{1}{3} M_{i j}+\frac{1}{3} M_{i \ell}+\frac{2}{3} M_{j \ell}-\frac{1}{3}+\frac{1}{3 k} & \text { if }(p, q) \in\{(j, \ell),(\ell, j)\} \\ M_{p q} & \text { otherwise }\end{cases}
$$

Proof.

Solve the best approximation problem by KKT condition.

$$
\begin{equation*}
\min \|\hat{M}-M\|_{F}^{2} \text { s.t. } \hat{M} \in \mathcal{H}_{i j \ell} . \tag{4}
\end{equation*}
$$

Dykstra's Algorithm

Dykstra's algorithm (Boyle and Dykstra, 1985) can project onto the intersection of a finite number of polyhedral sets.
Input: $M \in \mathcal{S}^{n}$.
Output: $X^{p}=\arg \min \|\hat{M}-M\|^{2}$ s.t. $\hat{M} \in \mathcal{X}_{\mathcal{T}}$.

Dykstra's Algorithm

Dykstra's algorithm (Boyle and Dykstra, 1985) can project onto the intersection of a finite number of polyhedral sets.
Input: $M \in \mathcal{S}^{n}$.
Output: $X^{p}=\arg \min \|\hat{M}-M\|^{2}$ s.t. $\hat{M} \in \mathcal{X}_{\mathcal{T}}$. Initialize: The normal matrices $N_{\mathcal{X}}^{0}=\mathbf{0}$ and $N_{t}^{0}=\mathbf{0}$ for all $t \in \mathcal{T}$. $X^{0}=M$.

Dykstra's Algorithm

Dykstra's algorithm (Boyle and Dykstra, 1985) can project onto the intersection of a finite number of polyhedral sets.
Input: $M \in \mathcal{S}^{n}$.
Output: $X^{p}=\arg \min \|\hat{M}-M\|^{2}$ s.t. $\hat{M} \in \mathcal{X}_{\mathcal{T}}$.
Initialize: The normal matrices $N_{\mathcal{X}}^{0}=\mathbf{0}$ and $N_{t}^{0}=\mathbf{0}$ for all $t \in \mathcal{T}$. $X^{0}=M$.
The algorithm iterates for $p \geq 1$ as follows:
while $\left\|X^{p+1}-X^{p}\right\|_{F}>\varepsilon_{\text {proj }}$ do

$$
\begin{aligned}
& X^{p}=\mathcal{P}_{\mathcal{X}}\left(X^{p-1}+N_{\mathcal{X}}^{p-1}\right) \\
& N_{\mathcal{X}}^{p}=X^{p-1}+N_{\mathcal{X}}^{p-1}-X^{p}
\end{aligned}
$$

Dykstra's Algorithm

Dykstra's algorithm (Boyle and Dykstra, 1985) can project onto the intersection of a finite number of polyhedral sets.
Input: $M \in \mathcal{S}^{n}$.
Output: $X^{p}=\arg \min \|\hat{M}-M\|^{2}$ s.t. $\hat{M} \in \mathcal{X}_{\mathcal{T}}$.
Initialize: The normal matrices $N_{\mathcal{X}}^{0}=\mathbf{0}$ and $N_{t}^{0}=\mathbf{0}$ for all $t \in \mathcal{T}$. $X^{0}=M$.
The algorithm iterates for $p \geq 1$ as follows:
while $\left\|X^{p+1}-X^{p}\right\|_{F}>\varepsilon_{\text {proj }}$ do

$$
\left.\begin{array}{c}
X^{p}=\mathcal{P}_{\mathcal{X}}\left(X^{p-1}+N_{\mathcal{X}}^{p-1}\right) \\
N_{\mathcal{X}}^{p}=X^{p-1}+N_{\mathcal{X}}^{p-1}-X^{p} \\
L_{t}=X^{p}+N_{t}^{p-1} \tag{CycDyk}\\
X^{p}=\mathcal{P}_{\mathcal{H}_{t}}\left(L_{t}\right) \\
N_{t}^{p}=L_{t}-X^{p}
\end{array}\right\} \text { for all } t \in \mathcal{T}
$$

end

The Cutting Plane ADMM-based Algorithm

```
Algorithm 1: The CP-ADMM
Data: The weighted Laplacian matrix \(L, m=\frac{n}{k}, V\);
Input: \(U B, \varepsilon_{\text {ADMM }}, \varepsilon_{\text {proj }}\), maxIter, numCuts, maxOuterLoops;
Output: Valid lower bound \(I b\left(Z^{p}\right)\);
Initialization: Set \(\left(R^{0}, X^{0}, Z^{0}\right)\) and \(\sigma^{0}, p=0, \mathcal{T}=\emptyset\);
while stopping criteria not met do
    while stopping criteria not met do
            \(R^{p+1}=\mathcal{P}_{\succeq 0}\left(V^{\top}\left(X^{p}+\frac{1}{\sigma^{p}} Z^{p}\right) V\right) ;\)
            \(X^{p+1}=\mathcal{P}_{\mathcal{X}_{\mathcal{T}}}\left(V R^{p+1} V^{\top}-\frac{1}{\sigma^{p}}\left(\frac{1}{2} L+Z^{p}\right)\right)\) using (CycDyk);
            \(Z^{p+1}=Z^{p}+\sigma^{p}\left(X^{p+1}-V R^{p+1} V^{\top}\right)\);
            Update \(\sigma^{p+1}\);
            \(p \leftarrow p+1 ;\)
        end
            Compute a valid lower bound \(l b\left(Z^{p}\right)\) by post-processing ;
            Identify the violated inequalities and add the numCuts most violated cuts to
            \(\mathcal{T}\);
end
```


Numerical Results

graph	n	k	ub	$1 b_{D H}{ }^{2}$	$l b_{D N N}$	$l b_{D N N+C u t s}$
mesh. 70.120	70	2	7	1.93	2.91	6.02
KKT.lowt01	82	2	13	2.47	4.88	12.43
mesh.148.265	148	4	22	5.46	8.13	21.23
$G_{124,2.5}$	124	2	13	4.59	7.29	12.01
$G_{124,10}$	124	2	178	138.24	152.86	170.88
$G_{124,20}$	124	2	449	403.08	418.67	439.96
$G_{250,2.5}$	250	2	29	10.99	15.16	28.30
$G_{250,5}$	250	2	114	70.21	81.52	105.00
$G_{250,10}$	250	2	357	280.25	303.02	330.40

Table 1: Comparison between different relaxations

[^2]
Numerical Results

graph	ub	$l b_{\text {DNN }}$	CPU(s)	$l b_{D N N+\text { Cuts }}$	Imp.	CPU(s)	numCut
$G_{500,2.5}$	49	24.89	266.625	44.38	80.00%	4609.69	25000
$G_{500,5}$	218	155.58	133.03	196.61	26.68%	2144.08	25000
$G_{500,10}$	626	512.13	94.23	553.43	7.99%	567.77	13782
$G_{500,20}$	1744	1565.59	86.75	1612.89	3.00%	192.02	10781

Table 2: Computational results on large instances with $n=500, k=2^{1}$

graph	ub	$l b_{\text {DNN }}$	CPU(s)	$l b_{\text {DNN }+ \text { Cuts }}$	Imp.	CPU(s)	numCut
$G_{1000,2.5}$	102	44.29	2091.5	73.33	64.44%	21443.89	45000
$G_{1000,5}$	451	306.24	1009	378.98	23.45%	6977.61	50000
$G_{1000,10}$	1367	1112.76	742.94	1178.94	5.93%	1947.53	26685
$G_{1000,20}$	3389	3006.96	683.25	3078.70	2.39%	1311.66	21008

Table 3: Computational results on large instances with $n=1000, k=2^{1}$
${ }^{1} G_{|V|,|V| p}$: graphs $G(V, E)$, with $|V| \in\{500,1000\}$ and four individual edge probabilities p.

The full results are included in
Frank de Meijer, Renata Sotirov, Angelika Wiegele, and Shudian Zhao (2022). "Partitioning through projections: strong SDP bounds for large graph partition problems". http://arxiv.org/abs/2205.06788

What else...
(1) Implementation details: Clustering methods and warm-starting can help speed up Dykstra's projection;
(2) Further application: The variant of this framework can solve other graph partition problems, e.g., bisection problems.

Reference I

國 Boyle，James P．and Richard L．Dykstra（1985）．＂A method for finding projections onto the intersection of convex sets in Hilbert spaces＂．In： Advances in Order Restricted Statistical Inference，Lecture Notes in Statistics．Ed．by R．Dykstra，T．Robertson，and F．T．Wright．Vol． 37. Springer．
目 Cerulli，Martina，Marianna De Santis，Elisabeth Gaar，and Angelika Wiegele（2021）．＂Improving ADMMs for solving doubly nonnegative programs through dual factorization＂．In：4OR 19．3， pp．415－448．DOI：10．1007／s10288－020－00454－x．URL： https：／／doi．org／10．1007／s10288－020－00454－x．
Donath，Wilm E．and Alan J．Hoffman（1973）．＂Lower bounds for the partitioning of graphs＂．In：Ibm Journal of Research and Development 17，pp．420－425．
國 Hu，Hao，Renata Sotirov，and Henry Wolkowicz（2019）．＂Facial Reduction for Symmetry Reduced Semidefinite Doubly Nonnegative Programs＂．https：／／arxiv．org／abs／1912．10245．

Reference II

Ei Li, Xinxin, Ting Kei Pong, Hao Sun, and H. Wolkowicz (2021). "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem". In: Comput. Optim. Appl. 78, pp. 853-891.
E Lorenz, Dirk A and Quoc Tran-Dinh (2018). "Non-stationary
Douglas-Rachford and alternating direction method of multipliers: adaptive stepsizes and convergence". In: arXiv preprint arXiv:1801.03765.
Malick, Jérôme, Janez Povh, Franz Rendl, and Angelika Wiegele (2009). "Regularization methods for semidefinite programming". In: SIAM Journal on Optimization 20.1, pp. 336-356.
圊 de Meijer, Frank and Renata Sotirov (2021). "SDP-Based Bounds for the Quadratic Cycle Cover Problem via Cutting-Plane Augmented Lagrangian Methods and Reinforcement Learning". In: INFORMS Journal on Computing 33.4, pp. 1262-1276.
de Meijer, Frank, Renata Sotirov, Angelika Wiegele, and Shudian Zhao (2022). "Partitioning through projections: strong SDP bounds for large graph partition problems". http://arxiv.org/abs/2205.06788.

Reference III

國 Oliveira，Danilo Elias，Henry Wolkowicz，and Yangyang Xu（2018）． ＂ADMM for the SDP relaxation of the QAP＂．In：Mathematical Programming Computation 10．4，pp．631－658．
圕 Sun，Defeng，Kim－Chuan Toh，Yancheng Yuan，and Xin－Yuan Zhao （2020）．＂SDPNAL＋：A Matlab software for semidefinite programming with bound constraints（version 1．0）＂．In：Optim．Methods Softw． 35．1，pp．87－115．
目 Wen，Zaiwen，Donald Goldfarb，and Wotao Yin（2010）．＂Alternating direction augmented Lagrangian methods for semidefinite programming＂．In：Mathematical Programming Computation 2．3－4， pp．203－230．
－Wiegele，Angelika and Shudian Zhao（2022）．＂SDP－based bounds for graph partition via extended ADMM＂．In：Computational Optimization and Applications．DOI：10．1007／s10589－022－00355－1．
围 Zhao，Shudian（2022）．＂Splitting into Pieces：Alternating Direction Methods of Multipliers and Graph Partitioning＂．PhD thesis． Alpen－Adria－Universität Klagenfurt．

Appendix

- Stopping criteria for the inner loop of CP-ADMM:

$$
\max \left\{\frac{\left\|X^{p}-V R^{p} V^{\top}\right\|_{F}}{1+\left\|X^{p}\right\|_{F}}, \sigma \frac{\left\|X^{p+1}-X^{p}\right\|_{F}}{1+\left\|Z^{p}\right\|_{F}}\right\}<\varepsilon_{\mathrm{ADMM}}
$$

where $\varepsilon_{\text {ADMM }}$ is the prescribed tolerance precision.

- The adaptive stepsize as introduced in (Lorenz and Tran-Dinh, 2018).

$$
\begin{equation*}
\sigma^{p+1}:=\left(1-\omega^{p+1}\right) \sigma^{p}+\omega^{p+1} \mathcal{P}_{\left[\sigma_{\min }, \sigma_{\max }\right]}\left\|Z^{p+1}\right\|_{F} \tag{5}
\end{equation*}
$$

where $\omega^{p+1}:=2^{-p / 100}$ is the weight, $\sigma_{\min }$ and $\sigma_{\max }$ are the box bounds for σ^{p}, and $\mathcal{P}_{\left[\sigma_{\min }, \sigma_{\max }\right]}$ is the projection onto $\left[\sigma_{\min }, \sigma_{\max }\right]$.

- Valid lower bound: For any $Z \in \mathcal{S}^{q}$ one can obtain a valid lower bound by computing:

$$
\begin{equation*}
l b(Z)=\min _{X \in \mathcal{X}_{\mathcal{T}}}\left\langle\frac{1}{2} L+Z, X\right\rangle-\operatorname{trace}(R) \lambda_{\max }\left(V^{\top} Z V\right) \tag{6}
\end{equation*}
$$

Since the minimization problem above is a linear programming problem, we compute valid lower bounds efficiently.

[^0]: ${ }^{1}$ Shudian Zhao (2022). "Splitting into Pieces: Alternating Direction Methods of Multipliers and Graph Partitioning". PhD thesis. Alpen-Adria-Universität Klagenfurt.

[^1]: ${ }^{1}$ Shudian Zhao (2022). "Splitting into Pieces: Alternating Direction Methods of Multipliers and Graph Partitioning". PhD thesis. Alpen-Adria-Universität Klagenfurt.

[^2]: ${ }^{2}$ Wilm E. Donath and Alan J. Hoffman (1973). "Lower bounds for the partitioning of graphs". In: Ibm Journal of Research and Development 17, pp. 420-425.

