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The k-equipartition Problem

Partition an undirected graph G (V ,E ) into k groups with equal
cardinality such that the weight of edges cut by the partition is
minimized.

The k-equipartition problem is NP-hard.
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Semidefinite Programming

Positive semidefinite (PSD) matrices:
X ∈ Sn,X � 0 ⇐⇒ v>Xv ≥ 0 ∀v ∈ Rn.
The set of PSD matrices is a convex cone, denoted by Sn+.

Semidefinite programming (SDP) problems:

min 〈C ,X 〉
s.t. A(X ) = b,X � 0.

(SDP-Primal)

where A : Sn → Rm, C ∈ Sn, b ∈ Rm, and

〈C ,X 〉 = trace(CX ) =
∑

ij CijXij , and A(X ) =

〈A1,X 〉
...

〈Am,X 〉

.

SDP problems can be solved by polynomial-time algorithms.
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Duality in Semidefinite Programming

max b>y

s.t. A∗y + Z = C ,

Z � 0.

(SDP-Dual)

where A∗ : Rm → Sn is the adjoint operator of A(·) and
A∗y =

∑m
i=1 A

>
i y .

The strong duality theorem

If both, the primal and dual problems, are strictly feasible, then p∗ = d∗

and both optima are attained.
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The k-equipartition Problem
An undirected graph G (V ,E ), |V | = n, A is the adjacency matrix where
Aij is the weight of edge (i , j) ∈ E , k is a divisor of n.

Y ∈ {0, 1}n×k encodes a k-equipartition for G (V ,E ) if certain
constraints are satisfied.

L: Laplacian matrix, L = diag(Aen)− A.

1

2
〈L,YY>〉 =

1

2

∑
i,j

Lijy
>
i yj =

∑
i,j,i<j

Aij(1− y>i yj),

where yi is the i-th row of Y , en is the all-ones vector of length n.
m: Cardinality in each group, m = n

k .

min
1

2
〈L,YY>〉

s.t. Yek = en,

Y>en = mek ,

Y ∈ {0, 1}n×k .
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X := YY>.

Xij =

{
1, i , j in the same group

0, otherwise

min
1

2
〈L,X 〉

s.t. diag(X ) = e,

Xe = me,

X ∈ {0, 1}n×n,X ∈ Sn.
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The Doubly Nonnegative (DNN) Relaxation for
k-equipartitioning

Relax the binary variables:

X = YY> =⇒ X � 0,X ≥ 0.

min
1

2
〈L,X 〉

s.t. diag(X ) = e,

Xe = me,

X � 0,

X ≥ 0.

(DNN)
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Valid Inequalities

Triangle inequality constraints:
HT := {X ∈ Sn | Xij + Xi` ≤ 1 + Xj`,∀i , j , ` ∈ [n], i 6= j 6= `}.
Number of Constraints.: 3

(
n
3

)
= n(n−1)(n−2)

2 .

Independent set constraints:
HC := {X ∈ Sn |

∑
i,j∈I Xij ≥ 1 ∀I ⊂ V |I | = k + 1}.

Number of Constraints.:
(

n
k+1

)
= n(n−1)···(n−k)

(k+1)! .
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The Cutting-plane Framework

1 Solve DNN relaxations and obtain X 0

2 While stopping criteria not met

1 Add numCuts most violated cuts and form a new relaxation
2 Solve the new relaxation and obtain X 0

Use ADMM with post-processing to solve each SDP problem

Problems to solve:

The DNN relaxation;

The DNN relaxation + Polyhedral cuts.

Algorithm for Solving SDPs
1 Interior point methods (IPMs): failed to solve large scale instances,

e.g., Mosek.

2 The alternating direction method of multipliers (ADMM): efficient
on solving large instances but cannot reach a high precision.
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Variants of ADMM for Solving SDPs

Malick, Povh, Rendl, and Wiegele (2009) and Wen, Goldfarb, and
Yin (2010): Apply the ADMM on the dual SDP:

min{〈C ,X 〉 | A(X ) = b,X � 0}, (SDP-Primal)

max{b>y | A∗y + Z = C ,Z � 0}. (SDP-Dual)

Sun, Toh, Yuan, and Zhao (2020), Cerulli, Santis, Gaar, and Wiegele
(2021), and Wiegele and Zhao (2022): Variants of ADMM for
solving SDP problems with inequality constraints.

Oliveira, Wolkowicz, and Xu (2018), Hu, Sotirov, and Wolkowicz
(2019), and Li, Pong, Sun, and Wolkowicz (2021): The
ADMM-based algorithm for symmetry and facially reduced DNN
relaxations.

de Meijer and Sotirov (2021): An augmented Lagrangian method
incorporated in a cutting-plane framework for quadratic cycle cover
problems.
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The Reformulated DNN Relaxation with Facial Reduction

Facial Reduction

Given V ∈ Rn×(n−1) such that V>e = 0 and rank(V ) = n − 1, we have
X = VRV> + 1

kE for R ∈ Sn−1.

min
1

2
〈L,X 〉

s.t. diag(X ) = e,

Xe = me,

X ≥ 0,

X � 0.

(DNN)

min 〈1
2
L,VRV>〉

s.t. diag(VRV>) =
k − 1

k
en,

VRV> ≥ − 1

k
En,

R � 0,

where

V =

(
In−1

−e>n−1

)
.
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The ADMM on the Facial Reduced Primal SDPs1

min 〈1
2
L,X 〉

s.t. X = VRV>,X ∈ X ,R ∈ R,

X := {X ∈ Sn | diag(X ) =
k − 1

k
en, X ≥ −

1

k
En},

R := {R ∈ Sn−1 | R � 0}.
The augmented Lagrangian function is

Lσ(X ,R,Z ) = 〈1
2
L,X 〉+ 〈Z ,X − VRV>〉+

σ

2
‖X − VRV>‖2

F . (2)

The p-th iterate is

Rp+1 = arg min
R∈R

Lσ(R,X p,Z p), (3a)

X p+1 = arg min
X∈X

Lσ(Rp+1,X ,Z p), (3b)

Z p+1 =Z p + σ(X p+1 − VRp+1V>). (3c)

1Shudian Zhao (2022). “Splitting into Pieces: Alternating Direction Methods of
Multipliers and Graph Partitioning”. PhD thesis. Alpen-Adria-Universität Klagenfurt.
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R-subproblem and X -subproblem
The R-subproblem (3a) can be solved as follows

Rp+1 = arg min
R∈R

Lσ(R,X p,Z p)

= arg min
R∈R

〈Z p,−VRV>〉+
σ

2

∥∥X p − VRV>
∥∥2

F

= arg min
R∈R

∥∥∥∥V>(X p +
1

σ
Z p

)
V − R

∥∥∥∥2

F

=P�0
(
V>

(
X p +

1

σ
Z p

)
V

)
,

where P�0(·) is the projection onto the cone of positive semidefinite
matrices.

Similarly, X -subproblem is a projection problem onto X

X p+1 = arg min
X∈X

Lσ(Rp+1,X ,Z p)

=PX
(
VRp+1V> − 1

σ

(
1

2
L + Z p

))
,

where X = {X ∈ Sn | diag(X ) = k−1
k en, X ≥ − 1

kEn}.
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X -subproblem with Cutting Planes

The Cutting-plane Framework
1 Solve DNN relaxations and obtain X

2 While stopping criteria not met

1 Add numCuts most violated cuts and form a new relaxation
X  XT .

2 Solve the new relaxation and obtain X
 Solve X p+1 = PXT

(
VRp+1V> − 1

σ

(
1
2
L + Z p

))
in the p-th

iterate.

Given an index set T for triangle cuts, then adding the cuts in T to the
DNN relaxation, the polyhedral set X has to be replaced by

XT := X ∩

(⋂
t∈T
Ht

)
,

∀t = (i , j , `), Hij` :=

{
X ∈ Sn : Xij + Xi` ≤

k − 1

k
+ Xj`

}
.
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Projection onto Hij`

Lemma

Let M ∈ Sn and let M̂ := PHij`
(M). If M ∈ Hij`, then M̂ = M. If

M /∈ Hij`, then M̂ is such that

M̂pq =


2
3Mij − 1

3Mi` + 1
3Mj` + 1

3 −
1

3k if (p, q) ∈ {(i , j), (j , i)},
− 1

3Mij + 2
3Mi` + 1

3Mj` + 1
3 −

1
3k if (p, q) ∈ {(i , `), (`, i)},

1
3Mij + 1

3Mi` + 2
3Mj` − 1

3 + 1
3k if (p, q) ∈ {(j , `), (`, j)},

Mpq otherwise.

Proof.
Solve the best approximation problem by KKT condition.

min ‖M̂ −M‖2
F s.t. M̂ ∈ Hij`. (4)

18



Dykstra’s Algorithm

Dykstra’s algorithm (Boyle and Dykstra, 1985) can project onto the
intersection of a finite number of polyhedral sets.
Input: M ∈ Sn.
Output: X p = arg min ‖M̂ −M‖2 s.t. M̂ ∈ XT .

Initialize: The normal matrices N0
X = 0 and N0

t = 0 for all t ∈ T .
X 0 = M.
The algorithm iterates for p ≥ 1 as follows:
while ‖X p+1 − X p‖F > εproj do

X p = PX
(
X p−1 + Np−1

X

)
Np
X = X p−1 + Np−1

X − X p

Lt = X p + Np−1
t

X p = PHt (Lt)

Np
t = Lt − X p

 for all t ∈ T

(CycDyk)

end
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The Cutting Plane ADMM-based Algorithm

Algorithm 1: The CP–ADMM

Data: The weighted Laplacian matrix L, m = n
k

, V ;
Input: UB, εADMM, εproj, maxIter , numCuts, maxOuterLoops;
Output: Valid lower bound lb(Zp) ;

1 Initialization: Set (R0,X 0,Z0) and σ0, p = 0, T = ∅ ;
2 while stopping criteria not met do
3 while stopping criteria not met do
4 Rp+1 = P�0

(
V>

(
X p + 1

σp Z
p
)
V
)
;

5 X p+1 = PXT

(
VRp+1V> − 1

σp

(
1
2
L + Zp

))
using (CycDyk);

6 Zp+1 = Zp + σp(X p+1 − VRp+1V>);

7 Update σp+1;
8 p ← p + 1;

9 end
10 Compute a valid lower bound lb(Zp) by post-processing ;
11 Identify the violated inequalities and add the numCuts most violated cuts to

T ;

12 end

20



Numerical Results

graph n k ub lbDH
2 lbDNN lbDNN+Cuts

mesh.70.120 70 2 7 1.93 2.91 6.02
KKT.lowt01 82 2 13 2.47 4.88 12.43
mesh.148.265 148 4 22 5.46 8.13 21.23
G124,2.5 124 2 13 4.59 7.29 12.01
G124,10 124 2 178 138.24 152.86 170.88
G124,20 124 2 449 403.08 418.67 439.96
G250,2.5 250 2 29 10.99 15.16 28.30
G250,5 250 2 114 70.21 81.52 105.00
G250,10 250 2 357 280.25 303.02 330.40

Table 1: Comparison between different relaxations

2Wilm E. Donath and Alan J. Hoffman (1973). “Lower bounds for the partitioning
of graphs”. In: Ibm Journal of Research and Development 17, pp. 420–425.
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Numerical Results

graph ub lbDNN CPU(s) lbDNN+Cuts Imp. CPU(s) numCut
G500,2.5 49 24.89 266.625 44.38 80.00% 4609.69 25000
G500,5 218 155.58 133.03 196.61 26.68% 2144.08 25000
G500,10 626 512.13 94.23 553.43 7.99% 567.77 13782
G500,20 1744 1565.59 86.75 1612.89 3.00% 192.02 10781

Table 2: Computational results on large instances with n = 500, k = 2 1

graph ub lbDNN CPU(s) lbDNN+Cuts Imp. CPU(s) numCut
G1000,2.5 102 44.29 2091.5 73.33 64.44% 21443.89 45000
G1000,5 451 306.24 1009 378.98 23.45% 6977.61 50000
G1000,10 1367 1112.76 742.94 1178.94 5.93% 1947.53 26685
G1000,20 3389 3006.96 683.25 3078.70 2.39% 1311.66 21008

Table 3: Computational results on large instances with n = 1000, k = 2 1

1G|V |,|V |p : graphs G(V ,E), with |V | ∈ {500, 1000} and four individual edge
probabilities p.
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The full results are included in

Frank de Meijer, Renata Sotirov, Angelika Wiegele, and Shudian Zhao
(2022). “Partitioning through projections: strong SDP bounds for large
graph partition problems”. http://arxiv.org/abs/2205.06788

What else . . .

1 Implementation details: Clustering methods and warm-starting can
help speed up Dykstra’s projection;

2 Further application: The variant of this framework can solve other
graph partition problems, e.g., bisection problems.
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Appendix
Stopping criteria for the inner loop of CP–ADMM:

max

{
‖X p − VRpV>‖F

1 + ‖X p‖F
, σ
‖X p+1 − X p‖F

1 + ‖Z p‖F

}
< εADMM,

where εADMM is the prescribed tolerance precision.

The adaptive stepsize as introduced in (Lorenz and Tran-Dinh,
2018).

σp+1 := (1− ωp+1)σp + ωp+1P[σmin,σmax]
‖Z p+1‖F
‖X p+1‖F

, (5)

where ωp+1 := 2−p/100 is the weight, σmin and σmax are the box
bounds for σp, and P[σmin,σmax] is the projection onto [σmin, σmax].

Valid lower bound: For any Z ∈ Sq one can obtain a valid lower
bound by computing:

lb(Z ) = min
X∈XT

〈1
2
L + Z ,X 〉 − trace(R)λmax(V>ZV ). (6)

Since the minimization problem above is a linear programming
problem, we compute valid lower bounds efficiently.
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