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Outline

@ Splitting methods: numerically hard, large scale problems
(particularly successful for relaxations of hard nonlinear
discrete optimization problems.)

@ We consider a Restricted Dual Peaceman-Rachford
Splitting Method with strengthened bounds for a
DNN relaxation; and we solve many NP-hard problems to
(provable) optimality

@ Here: quadratic assignment problem, QAP, a fundamental
HARD combinatorial optimization problems; QAP models
many real-life problems such as facility location, VLSI
design.




Outline I

Exploiting Structure/Novel

@ We use facial reduction, FR, to obtain a natural splitting of
variables into cone/polyhedral constraints.

@ We modify the subproblems by adding redundant
constraints.

@ We us provable lower and upper bounds.
@ We modify dual variable update by exploiting scaling.

@ We present extensive numerical experiments. In many
instances the DNN relaxation resulted in the global optimal
solution of the QAP.

Our Main Reference
A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP,

Graham/Hu/Im/Li/Wolkowicz in INFORMS J. Comput. 2022.
Further historical and current references are in the paper.
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QAP, Quadratic Assignment Problem

Facility Location

Given: n facilities and n locations;

distance Bg: between locations s, t;

flow A; ; between facilities 1, j;

location (building) cost Cjs facility 7 in location s.

X = Xjj € Tl permutation matrix unkown 0, 1 variables

X(:) € R™, n = 30 instances still considered hard

\,

trace formulation, (Y, X) = trace(YXT)
minimize total flow and location costs

PQap ‘= )'PE'HMXB —2C, X),

.




Matrix Lifting to S” "

X = RI’)XH.

x = vec (X) € R™ (columnwise)

Y = < 1 )(1 xT) e s+
X

Block Representation

Indexing the rows and columns of Y from 0 to n?,

Vo) Yan Yo o Yan
. e || ; Yey Yey 0 Yen
Y:[;O yv},y: S, Y=xx'=| e ;
Y(no) :
(n1) ) : (nn)
where

Y(U):X,)(/TG]R”X”, Vijj=1,....n, Y e R.Vj=1,....n
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Reformulation of QAP

Lifted Objective

_ T
0 (vec (C) )] , ( ®is Kronecker product)

Lifted QAP

Poap = min (AXB—2C, X) = (Lq, Y)

N /N -
s.t. Y::< ) ( ) e ST
X X

X = Mat(x) €I,

where Mat = vec *, the adjoint transformation.




Quadratic Constraints; Facial Reduction, FR

Characterizing Permutation Matrices

IXe—e|?=|X"Te—€|?=0,XoX=X, X" X=XX"=1,

o is Hadamard product; e is vector of all ones.

Facial reduction FRusing Xe —e=IXe—e =0

Let x = vec(X); y = <)1(> Y=y
We have IXe = (e ® I)vec (X) and

—e
Xe—e=0 — y’ [(eT®I)] =0

= Y@e;@e@ ) L7 ) T) =0

We have an exposing matrix and can do FR, Y = VRVT.




FR Model; Simplified; Regularized

After FR, Y = VRVT; Primal-Dual Strong Duality Holds
smaller, greatly simplified, many constraints are redundant:

mHi‘n <VTLQV, R)
(SDP) st Gy(VRVT)=uy (0-unitvector)
Bec S(nf1)2+1
iy :

G;(+) so-called gangster operator ( [6] ZKRW’94)

fixes the elements in set J.




Details: V, Facial Reduction

~

Y

barycenter of set of feasible lifted Y of rank one for the
SDP relaxation;

V e RIPHD)x((-1)2+1)

have orthonormal columns that span the range of Y (explicit
representation is available)

Minimal Face
every feasible Y of the SDPrelaxation is contained in the
minimal face, F of ST *':

_ s DPHpT 4 g
F=VsY vi<asTH,

Y € F(€ri(F)) => Range(Y) C (=) Range(V),

.
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Details: Gangster Operator G5

linear map G5 : S™+1 — RIYI; (shoots holes in the matrix)

By abuse of notation, also from S+ to S”*1, depending on
the context:

Yi If(lvj) < ‘_jor (]7 I) € ‘77

QP+ mP+1 =
Gy:STH T [gJ(Y)]ij_{ 0 otherwise.

Gangster index set J
union of the top left index (00) with set of indices J, i < j in
submatrix Y € S™:

(a) the off-diagonal elements in the n diagonal blocks in Y J

(b) the diagonal elements in the off-diagonal blocks in Y

L

Many of these are redundant; s1tgll used in subproblems.



Doubly Nonnegative Relaxation, DNN

Motivated by from FR

Y - in polyhedral constraints subproblem
R - in SDP constraints subproblem

i (La, \:> )
st. Y =VRVT (splitting)
(DNN) G5(Y) =uo (polyhedral)
0<Y<1 (polyhedral)
R >0 (convex cone)

And, add redundant constraints to polyhedral and cone
constraints.




Redundant Constraints Added to Subproblems

Let Y € S”+1 be blocked as above.

Linearizations of Orthogonality: XX™ = XTX = I

@ bediag(Y) : S™*+1— S", sum of n x n diagonal blocks of Y:
n
b°diag( Y) = Z Y(kk): /n
k=1
@ o°diag(Y) : S™+1— S": traces of blocks V(I.j):

o°diag(Y) := (trace (?(ij)» =1




More Redundant Constraints

Linearizations of 0, 1, XU2 —X;j=0

arrow(Y) : S™+1 — R+, difference of first column and
diagonal of Y:

arrow(Y) := (Y.1) — diag(Y)) =0

trace constraint

By commutativity of the trace operator and VTV =1

trace(R) = trace(F:’VTV) = trace (VRVT) =trace(Y)=n+1.




Set Constraints

Cone constraints

R = {Fr’ s . g~ 0, trace(R) = n+1},

Polyhedral constraints

y: = {YES”Z“ G5 (Y) =, 0< Y <1,
b°diag(Y) = I, o°diag(Y) = I, arrow(Y) = 0}




Main Model

(Split) Model
Ppnn = rg"{) (La, i) )
(DNN) st. Y=VRVT
ReR
Ye).

Recovering original X from )’ with redundant constraints

Y € Y = X = Mat(diagonal(Y)) = Mat (Row1(Y)) satisfy
Xe = X" e = e; (so doubly stochastic)

.
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Optimality Conditions

Lagrangian function, dual variable Z

L(R,Y,Z)=(Lq,Y)+(Z, Y — VRVT).

~

Strictly feasibility/onto B = 0, ¥ = VRV holds
first order optimality conditions:

0e-VTZV 4+ Nx(R), (dual R feasibility) (1)
0€lg+Z+Ny(Y), (dual Y feasibility)  (1b)

Y=VRVT, ReR,Ye)y, [(primalfeasibility) (ic)

where Nz (R) (resp. Ny(Y)) is normal cone to R (resp. )) at R
(resp. Y).



Characterization of Optimality; Stopping Criteria

For subproblems

The primal-dual R, Y, Z are optimal if, and only if, normal cone
conditions hold if, and only if,

R=7Pr(R+VTZV) (2a)
Y =Py(Y - Lg-2) (2b)
Y = VRV, (2c)




Dual Multiplier Z

Exploit structure

Zp = {Z es™H . (Z+ Lg)j = 0,Vi,j (in arrow positions),
and Vij € Jg (redundant gangster positions)} .




Modified PRSM Algorithm

(restricted contractive Peaceman-Rachford splitting; redundant
constraints in subproblems; modified dual variable)

A\

Augmented Lagrangian function

La(RY.Z) = (L Y)+(Z,Y — VRVT) + gH y - VRVTHi,

where 3 is a positive penalty parameter.

.

Dual variable Z

ZO::{ZGSHZ-FI:ZI-J:O, ZO,/: ,-70:071':1,...,/72}
Pz, projection onto 2

\,
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The Algorithm

PRSM for DNN

@ Initialize: £4 is augmented Lagrangian; v € (0,1) is
under-relaxation parameter; 8 € (0, c0) is penalty
parameter; R,) are subproblem sets; Y?; and Z° € Zy;

WHILE tolerances not met DO

o R*' = argminger La(R, YK, Z¥)

o ZKt = ZK 4 3. Pg, (Yk _ VRKH VT)

o YK = argminyey La(RFH Y, ZKH3)
o ZKH = Zkt} 4 ~B . Py (yk+1 _ VR VT)
ENDWHILE )




Robustness/Convergence

Algorithm outline/remarks

@ alternate minimization of variables R and Y interlaced by
the dual variable Z update;

@ R-update and the Y-update in are well-defined
subproblems with unique solutions;

@ many of the constraints are redundant in the SDP part but
not within the subproblems; this improves rate of
convergence and quality of Y when stopping early.

@ modified dual update Z both after R-update and Y-update.

Let {R*}, { Yk}, {Z¥} be the sequences generated by the
algorithm Then the sequence {(R¥, Y*)} converges to a primal
optimal pair (R*, Y*), and {Z¥} converges to an optimal dual
solution Z* € Z,.
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R-subproblem

R = {R € ST_”ZH trace(R) =n+1 }

oPr (W) projection of W onto R

e completing the square at current Y*, Zk: the R-subproblem
can be explicitly solved by the projection operator Px as
follows:

Rk = argmin —(ZK, VRVT) + g” W — VF:’VTHIZE

ReR B
= argmin g” Yk - VRVT + %ZkH

ReR F2
— argmin gHR —VT(Yk + %Z")VH

ReR F

= Pr(VT(Y*+ 32KV

e Eigendecomposition and projection onto simplex.
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Y-Subproblem

Y:={Ye€e S"Z'H 1 G3(Y) =, 0 < Y < 1, bdiag(Y) = /, o°diag(Y) = /, arrow(Y) = 0}

Py (W) projection of W onto

e completing the square at current R¥*1, Zk+3: the
Y-subproblem can be explicitly solved by the projection
operator Py as follows:

YK+ = argmin(Lg, Y) + (ZK+2, Y — VRKHIVT)
Yey

||y - vRen DT
—argmmzHY ( VRKHVT — f(LQ+Zk+%))Hi_

Yey
— Py (VRK+1 = (LQ + zk+§))

¢ shooting holes; rounding to 0, 1
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Provable Lower Bounds from Approximate Solutions

9(Z) :=minyey (Lg+ Z,Y) — (n+ 1) Anax(VTZV)

where )\max(VTZV) denotes largest eigenvalue of VTZzv.

d; := maxz g(Z) is a concave maximization problem.
Furthermore, strong duality holds with main DNN problem:

PbnN = 0z, and d3 is attained.

Z dual feasible = g(Z) is a lower bound
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Upper Bound from Nearest Permutation Matrix

Seemingly quadratic is
Given X € R™"

X = argmlanX X|2 = argmln—(X X) = argmin —(X, X),
XeD

since Von Neumann-Birkoff Theorem implies extreme points of
doubly stochastic D are the permutation matrices I1; so can

apply a simplex method or Hungarian method for assignment
problem.

Upper bound

a feasible solution X* € I to the original QAP, gives a valid
upper bound trace(AX*B(X*)T).




Randomized Upper Bound

Previous Approaches using an approximate optimum Y°ut
(Exploit Perron-Frobenius to conclude vy > 0.)

@ vec (X) = col. 1( YoU); find nearest X* < IN.

Q@ You =31, \jv;v/ spectral decomposition,

Al > o> > A > 0; wlog v; ER”z;VeC()_() = \Vy;
find nearest X* e I.

Goemans-Williams type approximation algorithm, [3]

o € (0,1)"; in decreasing order; perturb eigenvalues;

evec (X) = YI_, &v;.; find nearest X* € I.

e repeat max{1, min(3 x [log(n)], ubest — Ibest} number of
times; ‘ubest’ and ‘Ibest’ best current upper and lower bounds
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Numerical Experiments with PRSM

improved performance with PRSM : cnvrgnce rates; rel. gap

e [4, ADMM ] Oliveira/W./Xu, ADMM for the SDP relaxation of
the QAP, Math. Program. Comput., 10 (2018).

e recent: relaxation methods [1, C-SDP], [2, F2-RLT2-DA]
and [5, SDPNAL].

.

sizes n: small, medium, large

ne {10,...,20},{21,...,40},{41,...,64)}.

n=64:t(n? +1) = 8,394,753 variables;
nonnegativity cuts; SDP constraints

\




Conclusion

@ We introduced a strengthened splitting method for solving
the facially reduced DNN relaxation for the QAP.

@ Our strengthened model and algorithm incorporates
redundant constraints to the model that are not redundant
in the subproblems; more specifically, the trace constraint
in R-subproblem and projection onto doubly stochastic
matrices in Y-subproblem.

@ We exploit the structure of dual optimal multipliers and
provide customized dual updates; leads to a new strategy
for strengthening the provable lower bounds.

@ codes can be downloaded with link
https://www.math.uwaterloo.ca/%$7Ehwolkowi/
henry/reports/ADMMnPRSMcodes. zip.

28


https://www.math.uwaterloo.ca/%7Ehwolkowi/henry/reports/ADMMnPRSMcodes.zip
https://www.math.uwaterloo.ca/%7Ehwolkowi/henry/reports/ADMMnPRSMcodes.zip

References |

[§ J.FS. Bravo Ferreira, Y. Khoo, and A. Singer.
Semidefinite programming approach for the quadratic
assignment problem with a sparse graph.

Comput. Optim. Appl., 69(3):677-712, 2018.

[§ K. Date and R. Nagi.
Level 2 reformulation linearization technique-based parallel
algorithms for solving large quadratic assignment problems
on graphics processing unit clusters.
INFORMS J. Comput., 31(4):771-789, 2019.

[l M.X. Goemans and D.P. Williamson.
Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.
J. Assoc. Comput. Mach., 42(6):1115—-1145, 1995.

29



References Il

[@ D.E. Oliveira, H. Wolkowicz, and Y. Xu.
ADMM for the SDP relaxation of the QAP.
Math. Program. Comput., 10(4):631-658, 2018.

[§ L.Yang, D. Sun, and K.-C. Toh.
SDPNAL+: a majorized semismooth Newton-CG
augmented Lagrangian method for semidefinite
programming with nonnegative constraints.
Math. Program. Comput., 7(3):331-366, 2015.

[@ Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz.
Semidefinite programming relaxations for the quadratic
assignment problem.

J. Comb. Optim., 2(1):71-109, 1998.

Semidefinite Programming and Interior-point Approaches
for Combinatorial Optimization Problems (Fields Institute,
Toronto, ON, 1996).

20



Thanks for your attention!

A Restricted Dual Peaceman-Rachford
Splitting Method for a Strengthened
DNN Relaxation for QAP

Henry Wolkowicz
Dept. Comb. and Opt., University of Waterloo, Canada

Thur. May 19, 13:45-14:35 (BST) (08:45-09:35 EDT) 2022

At: Modern Techniques of Very Large Scale Optimization

joint with: Naomi Graham, Hao Hu, Jiyoung Im, Xinxin Li2

1


https://www.maths.ed.ac.uk/~gondzio/admm2020/home.html

