A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada
Thur. May 19, 13:45-14:35 (BST) (08:45-09:35 EDT) 2022
At: Modern Techniques of Very Large Scale Optimization

joint with: Naomi Graham, Hao Hu, Jiyoung Im, Xinxin Li ${ }^{1}$

Outline

- Splitting methods: numerically hard, large scale problems (particularly successful for relaxations of hard nonlinear discrete optimization problems.)
- We consider a Restricted Dual Peaceman-Rachford Splitting Method with strengthened bounds for a DNN relaxation; and we solve many NP-hard problems to (provable) optimality
- Here: quadratic assignment problem, QAP, a fundamental HARD combinatorial optimization problems; QAP models many real-life problems such as facility location, VLSI design.

Outline II

Exploiting Structure/Novel

- We use facial reduction, FR, to obtain a natural splitting of variables into cone/polyhedral constraints.
- We modify the subproblems by adding redundant constraints.
- We us provable lower and upper bounds.
- We modify dual variable update by exploiting scaling.
- We present extensive numerical experiments. In many instances the DNN relaxation resulted in the global optimal solution of the QAP.

Our Main Reference

A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP,
Graham/Hu/lm/Li/Wolkowicz in INFORMS J. Comput. 2022.
Further historical and current references are in the paper.

QAP, Quadratic Assignment Problem

> Facility Location
> Given: n facilities and n locations; distance $B_{s t}$ between locations s, t; flow $A_{i, j}$ between facilities i, j;
> location (building) cost $C_{i s}$ facility i in location s.
> $X=X_{i j} \in \Pi$ permutation matrix unkown 0,1 variables
> $X(:) \in \mathbb{R}^{n^{2}}, n=30$ instances still considered hard

trace formulation, $\langle Y, X\rangle=\operatorname{trace}\left(Y X^{T}\right)$
minimize total flow and location costs

$$
p_{\mathrm{QAP}}^{*}:=\min _{X \in \Pi}\langle A X B-2 C, X\rangle,
$$

Matrix Lifting to $\mathbb{S}^{n^{2}+1}$

$X \in \mathbb{R}^{n \times n} ; \quad x=\operatorname{vec}(X) \in \mathbb{R}^{n^{2}}$ (columnwise)

$$
Y:=\binom{1}{x}\left(\begin{array}{ll}
1 & x^{T}
\end{array}\right) \in \mathbb{S}^{n^{2}+1}
$$

Block Representation

Indexing the rows and columns of Y from 0 to n^{2},

$$
Y=\left[\begin{array}{cc}
Y_{00} & \bar{y}^{T} \\
\bar{Y} & \bar{Y}
\end{array}\right], \quad \overline{\boldsymbol{y}}=\left[\begin{array}{c}
Y_{(10)} \\
Y_{(20)} \\
\vdots \\
Y_{(n 0)}
\end{array}\right], \bar{Y}=x x^{T}=\left[\begin{array}{cccc}
\bar{Y}_{(11)} & \bar{Y}_{(12)} & \cdots & \bar{Y}_{(1 n)} \\
\bar{\gamma}_{(21)} & \bar{Y}_{(22)} & \cdots & \bar{Y}_{(2 n)} \\
\vdots & \ddots & \ddots & \vdots \\
\bar{Y}_{(n 1)} & \ddots & \ddots & \bar{Y}_{(n n)}
\end{array}\right]
$$

where

$$
\bar{Y}_{(i j)}=X_{: i} X_{: j}^{\top} \in \mathbb{R}^{n \times n}, \forall i, j=1, \ldots, n, \quad Y_{(j 0)} \in \mathbb{R}^{n}, \forall j=1, \ldots, n
$$

Reformulation of QAP

Lifted Objective

$$
L_{Q}:=\left[\begin{array}{cc}
0 & -\left(\operatorname{vec}(C)^{T}\right) \\
-\operatorname{vec}(C) & B \otimes A
\end{array}\right], \quad(\otimes \text { is Kronecker product })
$$

Lifted QAP

$$
\begin{aligned}
p_{\mathrm{QAP}}^{*}=\min & \langle A X B-2 C, X\rangle=\left\langle L_{Q}, Y\right\rangle \\
\text { s.t. } & Y:=\binom{1}{x}\binom{1}{x}^{T} \in \mathbb{S}_{+}^{n^{2}+1} \\
& X=\operatorname{Mat}(x) \in \Pi,
\end{aligned}
$$

where Mat $=\mathrm{vec}^{*}$, the adjoint transformation.

Quadratic Constraints; Facial Reduction, FR

Characterizing Permutation Matrices

$$
\|X e-e\|^{2}=\left\|X^{\top} e-e\right\|^{2}=0, X \circ X=X, X^{\top} X=X X^{\top}=I,
$$

- is Hadamard product; e is vector of all ones.

Facial reduction FR using $X e-e=I X e-e=0$
Let $x=\operatorname{vec}(X) ; y=\binom{1}{x}, Y=y y^{\top}$
We have $I X e=\left(e^{T} \otimes I\right) \operatorname{vec}(X)$ and

$$
\begin{aligned}
X e-e=0 & \Longleftrightarrow y^{T}\left[\begin{array}{c}
-e \\
\left(e^{T} \otimes I\right)
\end{array}\right]=0 \\
& \Longleftrightarrow Y\left(\left[\begin{array}{c}
-e \\
\left(e^{T} \otimes I\right)
\end{array}\right]\left[\begin{array}{c}
-e \\
\left(e^{T} \otimes I\right)
\end{array}\right]^{T}\right)=0
\end{aligned}
$$

We have an exposing matrix and can do FR, $Y=\widehat{V} R \widehat{V}^{\top}$.

FR Model; Simplified; Regularized

After FR, $Y=\widehat{V} R \widehat{V}^{\top}$; Primal-Dual Strong Duality Holds smaller, greatly simplified, many constraints are redundant:

$$
\begin{array}{lll}
& \min _{R} & \left\langle\widehat{V}^{\top} L_{Q} \widehat{V}, R\right\rangle \\
\text { (SDP) } \quad \text { s.t. } & \mathcal{G}_{j}\left(\widehat{V} R \widehat{V}^{T}\right)=u_{0} \quad \text { (0-unit vector) } \\
& R \in \mathbb{S}_{+}^{(n-1)^{2}+1} .
\end{array}
$$

$\mathcal{G}_{\bar{j}}(\cdot)$ so-called gangster operator ([6] ZKRW'94)

fixes the elements in set \bar{J}.

Details: \widehat{V}, Facial Reduction

barycenter of set of feasible lifted Y of rank one for the SDP relaxation;

$$
\widehat{V} \in \mathbb{R}^{\left(n^{2}+1\right) \times\left((n-1)^{2}+1\right)}
$$

have orthonormal columns that span the range of \widehat{Y} (explicit representation is available)

Minimal Face

every feasible Y of the SDP relaxation is contained in the minimal face, \mathcal{F} of $\mathbb{S}_{+}^{n^{2}+1}$:

$$
\begin{gathered}
\mathcal{F}=\widehat{V} \mathbb{S}_{+}^{(n-1)^{2}+1} \widehat{V}^{\top} \unlhd \mathbb{S}_{+}^{n^{2}+1} ; \\
Y \in \mathcal{F}(\in \operatorname{ri}(\mathcal{F})) \Longrightarrow \operatorname{Range}(Y) \subseteq(=) \operatorname{Range}(\widehat{V}),
\end{gathered}
$$

Details: Gangster Operator \mathcal{G}_{J}

linear map $\mathcal{G}_{\mathcal{J}}: \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{R}^{\mid \bar{J}}$; (shoots holes in the matrix)

By abuse of notation, also from $\mathbb{S}^{n^{2}+1}$ to $\mathbb{S}^{n^{2}+1}$, depending on the context:
$\mathcal{G}_{\bar{J}}: \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{S}^{n^{2}+1}, \quad\left[\mathcal{G}_{\bar{J}}(Y)\right]_{i j}=\left\{\begin{array}{cl}Y_{i j} & \text { if }(i, j) \in \bar{J} \text { or }(j, i) \in \bar{J}, \\ 0 & \text { otherwise. }\end{array}\right.$
Gangster index set \bar{J}
union of the top left index (00) with set of indices $J, i<j$ in submatrix $\bar{Y} \in \mathbb{S}^{n^{2}}$:
(a) the off-diagonal elements in the n diagonal blocks in \bar{Y}
(b) the diagonal elements in the off-diagonal blocks in \bar{Y}

Many of these are redundant; still used in subproblems.

Doubly Nonnegative Relaxation, DNN

Motivated by natural splitting of variables from FR

Y - in polyhedral constraints subproblem
R - in SDP constraints subproblem

	$\min _{R, Y}$	$\left\langle L_{Q}, Y\right\rangle$	
(DNN)	s.t.	$Y=\widehat{V} R \widehat{V}^{T}$	(splitting)
		$\mathcal{G}_{\bar{J}}(Y)=u_{0}$	(polyhedral)
		$0 \leq Y \leq 1$	(polyhedral)
	$R \succeq 0$	(convex cone)	

And, add redundant constraints to polyhedral and cone constraints.

Redundant Constraints Added to Subproblems

Let $Y \in \mathbb{S}^{n^{2}+1}$ be blocked as above.
Linearizations of Orthogonality: $X X^{\top}=X^{\top} X=1$

- bo $\operatorname{diag}(Y): \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{S}^{n}$, sum of $n \times n$ diagonal blocks of Y :

$$
\mathrm{b}^{\circ} \operatorname{diag}(Y):=\sum_{k=1}^{n} Y_{(k k)}=I_{n}
$$

- $\circ^{\circ} \operatorname{diag}(Y): \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{S}^{n}$: traces of blocks $\bar{Y}_{(i j)}$:

$$
\circ^{\circ} \operatorname{diag}(Y):=\left(\operatorname{trace}\left(\bar{Y}_{(i j)}\right)\right)=I_{n}
$$

More Redundant Constraints

Linearizations of $0,1, X_{i j}^{2}-X_{i j}=0$

$\operatorname{arrow}(Y): \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{R}^{n^{2}+1} ;$ difference of first column and diagonal of Y :

$$
\operatorname{arrow}(Y):=\left(Y_{(: 1)}-\operatorname{diag}(Y)\right)=0
$$

trace constraint

By commutativity of the trace operator and $\widehat{V}^{T} \widehat{V}=I$:

$$
\operatorname{trace}(R)=\operatorname{trace}\left(R \widehat{V}^{T} \widehat{V}\right)=\operatorname{trace}\left(\widehat{V} R \widehat{V}^{T}\right)=\operatorname{trace}(Y)=n+1
$$

Set Constraints

Cone constraints

$$
\mathcal{R}:=\left\{R \in \mathbb{S}^{(n-1)^{2}+1}: R \succeq 0, \operatorname{trace}(R)=n+1\right\}
$$

Polyhedral constraints

$$
\begin{aligned}
& \mathcal{Y}:=\left\{Y \in \mathbb{S}^{n^{2}+1}: \mathcal{G}_{\bar{J}}(Y)=u_{0}, 0 \leq Y \leq 1\right. \\
&\left.\operatorname{b}^{\circ} \operatorname{diag}(Y)=I, \circ^{\circ} \operatorname{diag}(Y)=I, \operatorname{arrow}(Y)=0\right\}
\end{aligned}
$$

Main Model

(Split) Model

$$
\begin{array}{rll}
p_{\mathrm{DNN}}^{*}:=\min _{R, Y} & \left\langle L_{Q}, Y\right\rangle \\
\text { (DNN) } \quad & \text { s.t. } & Y=\widehat{V} R \widehat{V}^{T} \\
& R \in \mathcal{R} \\
& & Y \in \mathcal{Y} .
\end{array}
$$

Recovering original X from \mathcal{Y} with redundant constraints

$Y \in \mathcal{Y} \Longrightarrow X=\operatorname{Mat}(\operatorname{diagonal}(Y))=\operatorname{Mat}(\operatorname{Row} 1(Y))$ satisfy $X e=X^{\top} e=e$; (so doubly stochastic)

Optimality Conditions

Lagrangian function, dual variable Z

$$
\mathcal{L}(R, Y, Z)=\left\langle L_{Q}, Y\right\rangle+\left\langle Z, Y-\widehat{V} R \widehat{V}^{T}\right\rangle
$$

Strictly feasibility/onto $\hat{R} \succ 0, \hat{Y}=\widehat{V} \hat{R} \widehat{V}$ holds

first order optimality conditions:

$$
\begin{array}{ll}
0 \in-\widehat{V}^{T} Z \widehat{V}+\mathcal{N}_{\mathcal{R}}(R), & \text { (dual } R \text { feasibility) } \\
0 \in L_{Q}+Z+\mathcal{N}_{\mathcal{Y}}(Y), & \text { (dual } Y \text { feasibility) } \tag{1b}\\
Y=\widehat{V} R \widehat{V}^{T}, \quad R \in \mathcal{R}, Y \in \mathcal{Y}, & \text { (primal feasibility) }
\end{array}
$$

where $\mathcal{N}_{\mathcal{R}}(R)\left(\right.$ resp. $\left.\mathcal{N}_{\mathcal{Y}}(Y)\right)$ is normal cone to \mathcal{R} (resp. $\left.\mathcal{Y}\right)$ at R (resp. Y).

Characterization of Optimality; Stopping Criteria

For subproblems

The primal-dual R, Y, Z are optimal if, and only if, normal cone conditions hold if, and only if,

$$
\begin{align*}
& R=\mathcal{P}_{\mathcal{R}}\left(R+\widehat{V}^{\top} Z \widehat{V}\right) \tag{2a}\\
& Y=\mathcal{P}_{\mathcal{Y}}\left(Y-L_{Q}-Z\right) \tag{2b}\\
& Y=\widehat{V} R \widehat{V}^{\top} . \tag{2c}
\end{align*}
$$

Dual Multiplier Z

> Exploit structure
> Let
> $\mathcal{Z}_{A}:=\left\{Z \in \mathbb{S}^{n^{2}+1}:\left(Z+L_{Q}\right)_{i j}=0, \forall i, j\right.$ (in arrow positions), and $\forall i j \in J_{R}$ (redundant gangster positions) $\}$.

Modified PRSM Algorithm

(restricted contractive Peaceman-Rachford splitting; redundant constraints in subproblems; modified dual variable)

Augmented Lagrangian function

$$
\mathcal{L}_{A}(R, Y, Z)=\left\langle L_{Q}, Y\right\rangle+\left\langle Z, Y-\widehat{V} R \widehat{V}^{\top}\right\rangle+\frac{\beta}{2}\left\|Y-\widehat{V} R \widehat{V}^{\top}\right\|_{F^{\prime}}^{2},
$$

where β is a positive penalty parameter.

Dual variable Z

$\mathcal{Z}_{0}:=\left\{Z \in \mathbb{S}^{n^{2}+1}: Z_{i, i}=0, Z_{0, i}=Z_{i, 0}=0, i=1, \ldots, n^{2}\right\}$
$\mathcal{P}_{\mathcal{Z}_{0}}$ projection onto \mathcal{Z}_{0}

The Algorithm

PRSM for DNN

- Initialize: \mathcal{L}_{A} is augmented Lagrangian; $\gamma \in(0,1)$ is under-relaxation parameter; $\beta \in(0, \infty)$ is penalty parameter; \mathcal{R}, \mathcal{Y} are subproblem sets; Y^{0}; and $Z^{0} \in \mathcal{Z}_{A}$;

WHILE tolerances not met DO

- $R^{k+1}=\operatorname{argmin}_{R \in \mathcal{R}} \mathcal{L}_{A}\left(R, Y^{k}, Z^{k}\right)$
- $Z^{k+\frac{1}{2}}=Z^{k}+\gamma \beta \cdot \mathcal{P}_{\mathcal{Z}_{0}}\left(Y^{k}-\widehat{V} R^{k+1} \widehat{V}^{T}\right)$
- $Y^{k+1}=\operatorname{argmin}_{Y \in \mathcal{Y}} \mathcal{L}_{A}\left(R^{k+1}, Y, Z^{k+\frac{1}{2}}\right)$
- $Z^{k+1}=Z^{k+\frac{1}{2}}+\gamma \beta \cdot \mathcal{P}_{\mathcal{Z}_{0}}\left(Y^{k+1}-\widehat{V} R^{k+1} \widehat{V}^{\top}\right)$

ENDWHILE

Robustness/Convergence

Algorithm outline/remarks

- alternate minimization of variables R and Y interlaced by the dual variable Z update;
- R-update and the Y-update in are well-defined subproblems with unique solutions;
- many of the constraints are redundant in the SDP part but not within the subproblems; this improves rate of convergence and quality of Y when stopping early.
- modified dual update Z both after R-update and Y-update.

Theorem

Let $\left\{R^{k}\right\},\left\{Y^{k}\right\},\left\{Z^{k}\right\}$ be the sequences generated by the algorithm Then the sequence $\left\{\left(R^{k}, Y^{k}\right)\right\}$ converges to a primal optimal pair $\left(R^{*}, Y^{*}\right)$, and $\left\{Z^{k}\right\}$ converges to an optimal dual solution $Z^{*} \in \mathcal{Z}_{A}$.

R-subproblem

$$
\mathcal{R}:=\left\{R \in \mathbb{S}_{+}^{(n-1)^{2}+1}: \operatorname{trace}(R)=n+1\right\} .
$$

- $\mathcal{P}_{\mathcal{R}}(W)$ projection of W onto \mathcal{R}
- completing the square at current Y^{k}, Z^{k} : the R-subproblem can be explicitly solved by the projection operator $\mathcal{P}_{\mathcal{R}}$ as follows:

$$
\begin{aligned}
R^{k+1} & =\underset{R \in \mathcal{R}}{\operatorname{argmin}}-\left\langle Z^{k}, \widehat{V} R \widehat{V}^{T}\right\rangle+\frac{\beta}{2}\left\|Y^{k}-\widehat{V} R \widehat{V}^{T}\right\|_{F}^{2} \\
& =\underset{R \in \mathcal{R}}{\operatorname{argmin}} \frac{\beta}{2}\left\|Y^{k}-\widehat{V} R \widehat{V}^{T}+\frac{1}{\beta} Z^{k}\right\|_{F}^{2} \\
& =\underset{R \in \mathcal{R}}{\operatorname{argmin}} \frac{\beta}{2}\left\|R-\widehat{V}^{T}\left(Y^{k}+\frac{1}{\beta} Z^{k}\right) \widehat{V}\right\|_{F}^{2} \\
& =\mathcal{P}_{\mathcal{R}}\left(\widehat{V}^{T}\left(Y^{k}+\frac{1}{\beta} Z^{k}\right) \widehat{V}\right)
\end{aligned}
$$

- Eigendecomposition and projection onto simplex.

Y-Subproblem

$\mathcal{Y}:=\left\{Y \in \mathbb{S}^{n^{2}+1}: \mathcal{G}_{\mathcal{J}}(Y)=u_{0}, 0 \leq Y \leq 1, \operatorname{b}^{\circ} \operatorname{diag}(Y)=I, \circ^{\circ} \operatorname{diag}(Y)=I, \operatorname{arrow}(Y)=0\right\}$

- $\mathcal{P}_{\mathcal{Y}}(W)$ projection of W onto \mathcal{Y}
- completing the square at current $R^{k+1}, Z^{k+\frac{1}{2}}$: the Y-subproblem can be explicitly solved by the projection operator $\mathcal{P}_{\mathcal{Y}}$ as follows:

$$
\begin{aligned}
Y^{k+1}= & \underset{Y \in \mathcal{Y}}{\operatorname{argmin}}\left\langle L_{Q}, Y\right\rangle+\left\langle Z^{k+\frac{1}{2}}, Y-\widehat{V} R^{k+1} \widehat{V}^{T}\right\rangle \\
& +\frac{\beta}{2}\left\|Y-\widehat{V} R^{k+1} \widehat{V}^{T}\right\|_{F}^{2} \\
= & \underset{Y \in \mathcal{Y}}{\operatorname{argmin}} \frac{\beta}{2}\left\|Y-\left(\widehat{V} R^{k+1} \widehat{V}^{T}-\frac{1}{\beta}\left(L_{Q}+Z^{k+\frac{1}{2}}\right)\right)\right\|_{F}^{2} \\
= & \mathcal{P}_{\mathcal{Y}}\left(\widehat{V} R^{k+1} \widehat{V}^{T}-\frac{1}{\beta}\left(L_{Q}+Z^{k+\frac{1}{2}}\right)\right)
\end{aligned}
$$

- shooting holes; rounding to 0,1

Provable Lower Bounds from Approximate Solutions

$$
g(Z):=\min _{Y \in \mathcal{Y}}\left\langle L_{Q}+Z, Y\right\rangle-(n+1) \lambda_{\max }\left(\widehat{V}^{\top} Z \widehat{V}\right)
$$

where $\lambda_{\max }\left(\widehat{V}^{\top} Z \widehat{V}\right)$ denotes largest eigenvalue of $\widehat{V}^{\top} Z \widehat{V}$.

Theorem

$d_{Z}^{*}:=\max _{z} g(Z)$ is a concave maximization problem.
Furthermore, strong duality holds with main DNN problem:

$$
p_{\text {DNN }}^{*}=d_{Z}^{*} \text {, and } d_{Z}^{*} \text { is attained. }
$$

Z dual feasible $\Longrightarrow g(Z)$ is a provable lower bound

Upper Bound from Nearest Permutation Matrix

Seemingly quadratic

 isGiven $\bar{X} \in \mathbb{R}^{n \times n}$
$X^{*}=\underset{X \in \Pi}{\operatorname{argmin}} \frac{1}{2}\|X-\bar{X}\|_{F}^{2}=\underset{X \in \Pi}{\operatorname{argmin}}-\langle\bar{X}, X\rangle=\underset{X \in \mathcal{D}}{\operatorname{argmin}}-\langle\bar{X}, X\rangle$,
since Von Neumann-Birkoff Theorem implies extreme points of doubly stochastic \mathcal{D} are the permutation matrices Π; so can apply a simplex method or Hungarian method for assignment problem.

Upper bound

a feasible solution $X^{*} \in \Pi$ to the original QAP, gives a valid upper bound trace $\left(A X^{*} B\left(X^{*}\right)^{T}\right)$.

Randomized Upper Bound

Previous Approaches using an approximate optimum $Y^{\text {out }}$

(Exploit Perron-Frobenius to conclude $v_{1} \geq 0$.)
(1) $\operatorname{vec}(\bar{X}) \cong \operatorname{col}$. 1 ($Y^{\text {out }}$); find nearest $X^{*} \in \Pi$.
(2) $Y^{\text {out }}=\sum_{i=1}^{r} \lambda_{i} v_{i} v_{i}^{T}$ spectral decomposition,
$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$; wlog $v_{i} \in \mathbb{R}^{n^{2}} ; \operatorname{vec}(\bar{X})=\lambda_{1} v_{1} ;$ find nearest $X^{*} \in \Pi$.

Goemans-Williams type approximation algorithm, [3]

$\bullet \xi \in(0,1)^{r}$; in decreasing order; perturb eigenvalues;
$\bullet \operatorname{vec}(\bar{X})=\sum_{i=1}^{r} \xi_{i} \lambda_{i} \boldsymbol{v}_{i}$.; find nearest $X^{*} \in \Pi$.

- repeat $\max \{1, \min (3 *\lceil\log (n)\rceil$, ubest -lbest$\}$ number of times; 'ubest' and 'lbest' best current upper and lower bounds

Numerical Experiments with PRSM

improved performance with PRSM : cnvrgnce rates; rel. gap

- [4, ADMM] Oliveira/W./Xu, ADMM for the SDP relaxation of the QAP, Math. Program. Comput., 10 (2018).
- recent: relaxation methods [1, C-SDP], [2, F2-RLT2-DA] and [5, SDPNAL].
sizes n : small, medium, large

$$
n \in\{10, \ldots, 20\},\{21, \ldots, 40\},\{41, \ldots, 64\}
$$

$n=64: t\left(n^{2}+1\right)=8,394,753$ variables;
nonnegativity cuts; SDP constraints

Conclusion

- We introduced a strengthened splitting method for solving the facially reduced DNN relaxation for the QAP.
- Our strengthened model and algorithm incorporates redundant constraints to the model that are not redundant in the subproblems; more specifically, the trace constraint in R-subproblem and projection onto doubly stochastic matrices in Y-subproblem.
- We exploit the structure of dual optimal multipliers and provide customized dual updates; leads to a new strategy for strengthening the provable lower bounds.
- codes can be downloaded with link

```
https://www.math.uwaterloo.ca/%7Ehwolkowi/
henry/reports/ADMMnPRSMcodes.zip.
```


References I

E J.F.S. Bravo Ferreira, Y. Khoo, and A. Singer.
Semidefinite programming approach for the quadratic assignment problem with a sparse graph.
Comput. Optim. Appl., 69(3):677-712, 2018.
R. K. Date and R. Nagi.

Level 2 reformulation linearization technique-based parallel algorithms for solving large quadratic assignment problems on graphics processing unit clusters.
INFORMS J. Comput., 31(4):771-789, 2019.
M.X. Goemans and D.P. Williamson.

Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach., 42(6):1115-1145, 1995.

References II

D.E. Oliveira, H. Wolkowicz, and Y. Xu.

ADMM for the SDP relaxation of the QAP.
Math. Program. Comput., 10(4):631-658, 2018.
E. L. Yang, D. Sun, and K.-C. Toh.

SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints.
Math. Program. Comput., 7(3):331-366, 2015.
囦 Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz.
Semidefinite programming relaxations for the quadratic assignment problem.
J. Comb. Optim., 2(1):71-109, 1998.

Semidefinite Programming and Interior-point Approaches for Combinatorial Optimization Problems (Fields Institute, Toronto, ON, 1996).

Thanks for your attention!

A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada
Thur. May 19, 13:45-14:35 (BST) (08:45-09:35 EDT) 2022
At: Modern Techniques of Very Large Scale Optimization
joint with: Naomi Graham, Hao Hu, Jiyoung Im, Xinxin Li ${ }^{2}$

