A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada

Thur. May 19, 13:45-14:35 (BST) (08:45-09:35 EDT) 2022

At: Modern Techniques of Very Large Scale Optimization

joint with: Naomi Graham, Hao Hu, Jiyoung Im, Xinxin Li¹

Outline

- Splitting methods: numerically hard, large scale problems (particularly successful for relaxations of hard nonlinear discrete optimization problems.)
- We consider a Restricted Dual Peaceman-Rachford Splitting Method with strengthened bounds for a DNN relaxation; and we solve many NP-hard problems to (provable) optimality
- Here: quadratic assignment problem, QAP, a fundamental HARD combinatorial optimization problems; QAP models many real-life problems such as facility location, VLSI design.

Outline II

Exploiting Structure/Novel

- We use facial reduction, FR, to obtain a natural splitting of variables into cone/polyhedral constraints.
- We modify the subproblems by adding redundant constraints.
- We us provable lower and upper bounds.
- We modify dual variable update by exploiting scaling.
- We present extensive numerical experiments. In many instances the DNN relaxation resulted in the global optimal solution of the QAP.

Our Main Reference

A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP,

Graham/Hu/Im/Li/Wolkowicz in INFORMS J. Comput. 2022.

Further historical and current references are in the paper.

Facility Location

Given: *n* facilities and *n* locations; distance B_{st} between locations *s*, *t*; flow $A_{i,j}$ between facilities *i*, *j*; location (building) cost C_{is} facility *i* in location *s*. $X = X_{ij} \in \Pi$ permutation matrix unkown 0, 1 variables $X(:) \in \mathbb{R}^{n^2}$, n = 30 instances still considered hard

trace formulation, $\langle Y, X \rangle = \text{trace}(YX^T)$

minimize total flow and location costs

$$p^*_{\text{QAP}} := \min_{X \in \Pi} \langle AXB - 2C, X \rangle,$$

Matrix Lifting to \mathbb{S}^{n^2+1}

$$X \in \mathbb{R}^{n \times n}$$
; $x = \operatorname{vec}(X) \in \mathbb{R}^{n^2}$ (columnwise)
 $Y := \begin{pmatrix} 1 \\ x \end{pmatrix} (1 \ x^T) \in \mathbb{S}^{n^2+1}$

Block Representation

Indexing the rows and columns of Y from 0 to n^2 ,

$$\boldsymbol{Y} = \begin{bmatrix} Y_{00} & \bar{\boldsymbol{y}}^{T} \\ \bar{\boldsymbol{y}} & \bar{\boldsymbol{Y}} \end{bmatrix}, \quad \bar{\boldsymbol{y}} = \begin{bmatrix} Y_{(10)} \\ Y_{(20)} \\ \vdots \\ Y_{(n0)} \end{bmatrix}, \quad \bar{\boldsymbol{Y}} = \boldsymbol{x}\boldsymbol{x}^{T} = \begin{bmatrix} \overline{Y}_{(11)} & \overline{Y}_{(12)} & \cdots & \overline{Y}_{(1n)} \\ \overline{Y}_{(21)} & \overline{Y}_{(22)} & \cdots & \overline{Y}_{(2n)} \\ \vdots & \ddots & \ddots & \vdots \\ \overline{Y}_{(n1)} & \ddots & \ddots & \overline{Y}_{(nn)} \end{bmatrix}$$

where

$$\overline{Y}_{(jj)} = X_{:i}X_{:j}^{T} \in \mathbb{R}^{n \times n}, \forall i, j = 1, \dots, n, Y_{(j0)} \in \mathbb{R}^{n}, \forall j = 1, \dots, n$$

Reformulation of QAP

Lifted Objective

$$L_Q := \begin{bmatrix} 0 & -(\operatorname{vec} (C)^{\mathsf{T}}) \\ -\operatorname{vec} (C) & B \otimes A \end{bmatrix}, \quad (\otimes \text{ is Kronecker product})$$

Lifted QAP

$$p_{\text{QAP}}^* = \min \quad \langle AXB - 2C, X \rangle = \langle L_Q, Y \rangle$$

s.t.
$$Y := \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}^T \in \mathbb{S}_+^{n^2 + 1}$$
$$X = \text{Mat}(x) \in \Pi,$$

where $Mat = vec^*$, the adjoint transformation.

Quadratic Constraints; Facial Reduction, FR

Characterizing Permutation Matrices

$$\|\boldsymbol{X}\boldsymbol{e}-\boldsymbol{e}\|^2 = \|\boldsymbol{X}^T\boldsymbol{e}-\boldsymbol{e}\|^2 = 0, \, \boldsymbol{X} \circ \boldsymbol{X} = \boldsymbol{X}, \, \boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{X}\boldsymbol{X}^T = \boldsymbol{I},$$

 \circ is Hadamard product; \emph{e} is vector of all ones.

Facial reduction FR using Xe - e = IXe - e = 0

Let
$$x = \operatorname{vec}(X)$$
; $y = \begin{pmatrix} 1 \\ X \end{pmatrix}$, $Y = yy^T$
We have $IXe = (e^T \otimes I)\operatorname{vec}(X)$ and

$$\begin{aligned} Xe - e &= 0 \quad \Longleftrightarrow \quad y^T \begin{bmatrix} -e \\ (e^T \otimes I) \end{bmatrix} = 0 \\ & \Leftrightarrow \quad Y \left(\begin{bmatrix} -e \\ (e^T \otimes I) \end{bmatrix} \begin{bmatrix} -e \\ (e^T \otimes I) \end{bmatrix}^T \right) = 0 \end{aligned}$$

We have an exposing matrix and can do FR, $Y = \hat{V}R\hat{V}^{T}$.

After FR, $Y = \widehat{V}R\widehat{V}^{T}$; Primal-Dual Strong Duality Holds

smaller, greatly simplified, many constraints are redundant:

(SDP)
$$\begin{array}{l} \min_{R} & \langle \widehat{V}^{T} L_{Q} \widehat{V}, R \rangle \\ \text{s.t.} & \mathcal{G}_{\overline{J}}(\widehat{V} R \widehat{V}^{T}) = u_{0} \quad (0\text{-unit vector}) \\ & R \in \mathbb{S}_{+}^{(n-1)^{2}+1}. \end{array}$$

 $\mathcal{G}_{\overline{J}}(\cdot)$ so-called *gangster operator* ([6] ZKRW'94)

fixes the elements in set \bar{J} .

Details: \hat{V} , Facial Reduction

Ŷ

barycenter of set of feasible lifted Y of rank one for the SDP relaxation;

$$\widehat{V} \in \mathbb{R}^{(n^2+1) \times ((n-1)^2+1)}$$

have orthonormal columns that span the range of \widehat{Y} (explicit representation is available)

Minimal Face

every feasible Y of the SDP relaxation is contained in the minimal face, \mathcal{F} of $\mathbb{S}^{n^2+1}_+$:

$$\mathcal{F} = \widehat{V} \mathbb{S}_{+}^{(n-1)^2+1} \widehat{V}^T \trianglelefteq \mathbb{S}_{+}^{n^2+1};$$

 $Y \in \mathcal{F}(\in \mathsf{ri}(\mathcal{F})) \implies \mathsf{Range}(Y) \subseteq (=) \mathsf{Range}(\widehat{V}),$

Details: Gangster Operator $G_{\bar{J}}$

linear map $\mathcal{G}_{\overline{J}}: \mathbb{S}^{n^2+1} \to \mathbb{R}^{|\overline{J}|}$; (shoots holes in the matrix)

By abuse of notation, also from \mathbb{S}^{n^2+1} to \mathbb{S}^{n^2+1} , depending on the context:

$$\mathcal{G}_{\bar{J}}: \mathbb{S}^{n^2+1} \to \mathbb{S}^{n^2+1}, \quad \left[\mathcal{G}_{\bar{J}}(Y)\right]_{ij} = \left\{ egin{array}{cc} Y_{ij} & ext{if } (i,j) \in ar{J} ext{ or } (j,i) \in ar{J}, \ 0 & ext{otherwise.} \end{array}
ight.$$

Gangster index set \bar{J}

union of the top left index (00) with set of indices J, i < j in submatrix $\overline{Y} \in \mathbb{S}^{n^2}$:

(a) the off-diagonal elements in the n diagonal blocks in Y

(b) the diagonal elements in the off-diagonal blocks in Y

Many of these are redundant; still used in subproblems.

Motivated by natural splitting of variables from FR

Y - in polyhedral constraints subproblem

R - in SDP constraints subproblem

(DNN)
$$\begin{array}{l} \min_{R,Y} & \langle L_Q, Y \rangle \\ \text{s.t.} & Y = \widehat{V}R\widehat{V}^T \quad (\text{splitting}) \\ & \mathcal{G}_{\overline{J}}(Y) = u_0 \quad (\text{polyhedral}) \\ & 0 \leq Y \leq 1 \quad (\text{polyhedral}) \\ & R \succeq 0 \quad (\text{convex cone}) \end{array}$$

And, add redundant constraints to polyhedral and cone constraints.

Redundant Constraints Added to Subproblems

Let $Y \in \mathbb{S}^{n^2+1}$ be blocked as above.

Linearizations of Orthogonality: $XX^T = X^TX = I$

• $b^{o}diag(Y) : \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{S}^{n}$, sum of $n \times n$ diagonal blocks of Y:

$$b^{o}diag(Y) := \sum_{k=1}^{n} Y_{(kk)} = I_{n}$$

• $o^{o}diag(Y) : \mathbb{S}^{n^{2}+1} \rightarrow \mathbb{S}^{n}$: traces of blocks $\overline{Y}_{(ij)}$:

$$o^{o}diag(Y) := \left(trace\left(\overline{Y}_{(ij)}\right)\right) = I_{n}$$

Linearizations of $0, 1, X_{ii}^2 - X_{ij} = 0$

 $\operatorname{arrow}(Y): \mathbb{S}^{n^2+1} \to \mathbb{R}^{n^2+1}$; difference of first column and diagonal of Y:

$$\operatorname{arrow}(Y) := (Y_{(:1)} - \operatorname{diag}(Y)) = 0$$

trace constraint

By commutativity of the trace operator and $\hat{V}^T \hat{V} = I$:

$$\operatorname{trace}(R) = \operatorname{trace}(R\widehat{V}^T\widehat{V}) = \operatorname{trace}\left(\widehat{V}R\widehat{V}^T\right) = \operatorname{trace}(Y) = n+1.$$

Set Constraints

Cone constraints

$$\mathcal{R} := \left\{ R \in \mathbb{S}^{(n-1)^2+1} : R \succeq 0, \text{ trace}(R) = n+1 \right\},$$

Polyhedral constraints

$$\begin{aligned} \mathcal{Y} : &= \left\{ Y \in \mathbb{S}^{n^2 + 1} : \mathcal{G}_{\overline{J}}(Y) = u_0, 0 \le Y \le 1, \\ & \mathsf{b}^{\mathsf{o}}\mathsf{diag}(Y) = I, \, \mathsf{o}^{\mathsf{o}}\mathsf{diag}(Y) = I, \, \mathsf{arrow}(Y) = 0 \right\} \end{aligned}$$

(Split) Model

Recovering original X from \mathcal{Y} with redundant constraints

 $Y \in \mathcal{Y} \implies X = \operatorname{Mat}(diagonal(Y)) = \operatorname{Mat}(Row1(Y))$ satisfy $Xe = X^T e = e$; (so doubly stochastic)

Optimality Conditions

Lagrangian function, dual variable Z

$$\mathcal{L}(R, Y, Z) = \langle L_Q, Y \rangle + \langle Z, Y - \widehat{V}R\widehat{V}^T \rangle.$$

Strictly feasibility/onto $\hat{R} \succ 0$, $\hat{Y} = \hat{V}\hat{R}\hat{V}$ holdsfirst order optimality conditions: $0 \in -\hat{V}^T Z \hat{V} + \mathcal{N}_{\mathcal{R}}(R)$, (dual R feasibility) (1a) $0 \in L_Q + Z + \mathcal{N}_{\mathcal{Y}}(Y)$, (dual Y feasibility) (1b) $Y = \hat{V}R\hat{V}^T$, $R \in \mathcal{R}$, $Y \in \mathcal{Y}$, (primal feasibility) (1c)

where $\mathcal{N}_{\mathcal{R}}(R)$ (resp. $\mathcal{N}_{\mathcal{Y}}(Y)$) is normal cone to \mathcal{R} (resp. \mathcal{Y}) at R (resp. Y).

Characterization of Optimality; Stopping Criteria

For subproblems

The primal-dual R, Y, Z are optimal if, and only if, normal cone conditions hold if, and only if,

$$R = \mathcal{P}_{\mathcal{R}}(R + \widehat{V}^T Z \widehat{V})$$
(2a)

$$Y = \mathcal{P}_{\mathcal{Y}}(Y - L_Q - Z) \tag{2b}$$

$$Y = \widehat{V}R\widehat{V}^{T}.$$
 (2c)

Exploit structure

Let

$$\mathcal{Z}_A := \left\{ Z \in \mathbb{S}^{n^2+1} : (Z + L_Q)_{ij} = 0, \forall i, j \text{ (in arrow positions)}, \\ \text{and } \forall ij \in J_R \text{ (redundant gangster positions)} \right\}.$$

(restricted contractive Peaceman-Rachford splitting; redundant constraints in subproblems; modified dual variable)

Augmented Lagrangian function

$$\mathcal{L}_{A}(R, Y, Z) = \langle L_{Q}, Y \rangle + \langle Z, Y - \widehat{V}R\widehat{V}^{T} \rangle + \frac{\beta}{2} \left\| Y - \widehat{V}R\widehat{V}^{T} \right\|_{F}^{2},$$

where β is a positive penalty parameter.

Dual variable Z

$$\mathcal{Z}_0 := \{ Z \in \mathbb{S}^{n^2+1} : Z_{i,i} = 0, \ Z_{0,i} = Z_{i,0} = 0, \ i = 1, \dots, n^2 \}$$

 $\mathcal{P}_{\mathcal{Z}_0}$ projection onto \mathcal{Z}_0

The Algorithm

PRSM for DNN

Initialize: *L_A* is augmented Lagrangian; *γ* ∈ (0, 1) is under-relaxation parameter; *β* ∈ (0, ∞) is penalty parameter; *R*, *Y* are subproblem sets; *Y*⁰; and *Z*⁰ ∈ *Z_A*;

WHILE tolerances not met DO

•
$$R^{k+1} = \operatorname{argmin}_{R \in \mathcal{R}} \mathcal{L}_A(R, Y^k, Z^k)$$

• $Z^{k+\frac{1}{2}} = Z^k + \gamma \beta \cdot \mathcal{P}_{Z_0} \left(Y^k - \widehat{V} R^{k+1} \widehat{V}^T \right)$
• $Y^{k+1} = \operatorname{argmin}_{Y \in \mathcal{Y}} \mathcal{L}_A(R^{k+1}, Y, Z^{k+\frac{1}{2}})$
• $Z^{k+1} = Z^{k+\frac{1}{2}} + \gamma \beta \cdot \mathcal{P}_{Z_0} \left(Y^{k+1} - \widehat{V} R^{k+1} \widehat{V}^T \right)$

ENDWHILE

Algorithm outline/remarks

- alternate minimization of variables *R* and *Y* interlaced by the dual variable *Z* update;
- *R*-update and the *Y*-update in are well-defined subproblems with unique solutions;
- many of the constraints are redundant in the SDP part but not within the subproblems; this improves rate of convergence and quality of *Y* when stopping early.
- modified dual update Z both after R-update and Y-update.

Theorem

Let $\{R^k\}, \{Y^k\}, \{Z^k\}$ be the sequences generated by the algorithm Then the sequence $\{(R^k, Y^k)\}$ converges to a primal optimal pair (R^*, Y^*) , and $\{Z^k\}$ converges to an optimal dual solution $Z^* \in \mathcal{Z}_A$.

R-subproblem

$$\mathcal{R} := \left\{ R \in \mathbb{S}_+^{(n-1)^2+1} : \operatorname{trace}(R) = n+1
ight\}.$$

\$\mathcal{P}_R(W)\$ projection of \$W\$ onto \$\mathcal{R}\$
\$ completing the square at current \$Y^k, Z^k\$: the \$R\$-subproblem can be explicitly solved by the projection operator \$\mathcal{P}_R\$ as follows:

$$R^{k+1} = \underset{R \in \mathcal{R}}{\operatorname{argmin}} - \langle Z^{k}, \widehat{V}R\widehat{V}^{T} \rangle + \frac{\beta}{2} \left\| Y^{k} - \widehat{V}R\widehat{V}^{T} \right\|_{F}^{2}$$
$$= \underset{R \in \mathcal{R}}{\operatorname{argmin}} \frac{\beta}{2} \left\| Y^{k} - \widehat{V}R\widehat{V}^{T} + \frac{1}{\beta}Z^{k} \right\|_{F}^{2}$$
$$= \underset{R \in \mathcal{R}}{\operatorname{argmin}} \frac{\beta}{2} \left\| R - \widehat{V}^{T}(Y^{k} + \frac{1}{\beta}Z^{k})\widehat{V} \right\|_{F}^{2}$$
$$= \mathcal{P}_{\mathcal{R}}(\widehat{V}^{T}(Y^{k} + \frac{1}{\beta}Z^{k})\widehat{V})$$

• Eigendecomposition and projection onto simplex.

$\mathcal{Y} := \{Y \in \mathbb{S}^{n^2+1} : \mathcal{G}_{\bar{J}}(Y) = u_0, \ 0 \leq Y \leq 1, \ b^{\mathsf{o}}\mathsf{diag}(Y) = I, \ \mathsf{o}^{\mathsf{o}}\mathsf{diag}(Y) = I, \ \mathsf{arrow}(Y) = 0\}$

• $\mathcal{P}_{\mathcal{Y}}(W)$ projection of W onto \mathcal{Y}

• completing the square at current R^{k+1} , $Z^{k+\frac{1}{2}}$: the *Y*-subproblem can be explicitly solved by the projection operator $\mathcal{P}_{\mathcal{Y}}$ as follows:

$$Y^{k+1} = \underset{Y \in \mathcal{Y}}{\operatorname{argmin}} \langle L_Q, Y \rangle + \langle Z^{k+\frac{1}{2}}, Y - \widehat{V}R^{k+1}\widehat{V}^T \rangle \\ + \frac{\beta}{2} \left\| Y - \widehat{V}R^{k+1}\widehat{V}^T \right\|_F^2 \\ = \underset{Y \in \mathcal{Y}}{\operatorname{argmin}} \frac{\beta}{2} \left\| Y - \left(\widehat{V}R^{k+1}\widehat{V}^T - \frac{1}{\beta}(L_Q + Z^{k+\frac{1}{2}}) \right) \right\|_F^2 \\ = \mathcal{P}_{\mathcal{Y}} \left(\widehat{V}R^{k+1}\widehat{V}^T - \frac{1}{\beta}\left(L_Q + Z^{k+\frac{1}{2}}\right) \right)$$

shooting holes; rounding to 0, 1

Provable Lower Bounds from Approximate Solutions

$$g(Z) := \min_{Y \in \mathcal{Y}} \langle L_Q + Z, Y
angle - (n+1) \lambda_{\max}(\widehat{V}^T Z \widehat{V})$$

where $\lambda_{\max}(\widehat{V}^T Z \widehat{V})$ denotes largest eigenvalue of $\widehat{V}^T Z \widehat{V}$.

Theorem

 $d_Z^* := \max_Z g(Z)$ is a concave maximization problem. Furthermore, strong duality holds with main DNN problem:

$$p_{\text{DNN}}^* = d_Z^*$$
, and d_Z^* is attained.

Z dual feasible $\implies g(Z)$ is a provable lower bound

Seemingly quadratic nearest discrete problem is a simplest LP

Given $\bar{X} \in \mathbb{R}^{n \times n}$

$$X^* = \operatorname*{argmin}_{X \in \Pi} \frac{1}{2} \|X - \bar{X}\|_F^2 = \operatorname{argmin}_{X \in \Pi} - \langle \bar{X}, X \rangle = \operatorname{argmin}_{X \in \mathcal{D}} - \langle \bar{X}, X \rangle,$$

since Von Neumann-Birkoff Theorem implies extreme points of doubly stochastic \mathcal{D} are the permutation matrices Π ; so can apply a simplex method or Hungarian method for assignment problem.

Upper bound

a feasible solution $X^* \in \Pi$ to the original QAP, gives a valid upper bound trace($AX^*B(X^*)^T$).

Previous Approaches using an approximate optimum Yout

(Exploit Perron-Frobenius to conclude $v_1 \ge 0$.)

- vec $(\bar{X}) \cong$ col. 1(Y^{out}); find nearest $X^* \in \Pi$.
- **2** $Y^{\text{out}} = \sum_{i=1}^{r} \lambda_i v_i v_i^T$ spectral decomposition, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > 0$; wlog $v_i \in \mathbb{R}^{n^2}$; vec $(\bar{X}) = \lambda_1 v_1$; find nearest $X^* \in \Pi$.

Goemans-Williams type approximation algorithm, [3]

•ξ ∈ (0, 1)^r; in decreasing order; perturb eigenvalues;
•vec (X
) = Σ^r_{i=1} ξ_iλ_iν_i.; find nearest X* ∈ Π.
• repeat max{1, min(3 * [log(n)], ubest - lbest} number of times; 'ubest' and 'lbest' best current upper and lower bounds

Numerical Experiments with PRSM

improved performance with PRSM: cnvrgnce rates; rel. gap

[4, ADMM] Oliveira/W./Xu, ADMM for the SDP relaxation of the QAP, Math. Program. Comput., 10 (2018).
recent: relaxation methods [1, C-SDP], [2, F2-RLT2-DA] and [5, SDPNAL].

sizes n: small, medium, large

$$n \in \{10, \dots, 20\}, \{21, \dots, 40\}, \{41, \dots, 64\}.$$

n = 64: $t(n^2 + 1) = 8,394,753$ variables; nonnegativity cuts; SDP constraints

Conclusion

- We introduced a strengthened splitting method for solving the facially reduced DNN relaxation for the QAP.
- Our strengthened model and algorithm incorporates redundant constraints to the model that are not redundant in the subproblems; more specifically, the trace constraint in *R*-subproblem and projection onto doubly stochastic matrices in *Y*-subproblem.
- We exploit the structure of dual optimal multipliers and provide customized dual updates; leads to a new strategy for strengthening the provable lower bounds.
- codes can be downloaded with link https://www.math.uwaterloo.ca/%7Ehwolkowi/ henry/reports/ADMMnPRSMcodes.zip.

References I

J.F.S. Bravo Ferreira, Y. Khoo, and A. Singer.

Semidefinite programming approach for the quadratic assignment problem with a sparse graph. *Comput. Optim. Appl.*, 69(3):677–712, 2018.

K. Date and R. Nagi.

Level 2 reformulation linearization technique-based parallel algorithms for solving large quadratic assignment problems on graphics processing unit clusters.

INFORMS J. Comput., 31(4):771–789, 2019.

M.X. Goemans and D.P. Williamson.

Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *J. Assoc. Comput. Mach.*, 42(6):1115–1145, 1995.

References II

- D.E. Oliveira, H. Wolkowicz, and Y. Xu. ADMM for the SDP relaxation of the QAP. Math. Program. Comput., 10(4):631–658, 2018.
- L. Yang, D. Sun, and K.-C. Toh. SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. *Math. Program. Comput.*, 7(3):331–366, 2015.
- Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the quadratic assignment problem.

J. Comb. Optim., 2(1):71–109, 1998. Semidefinite Programming and Interior-point Approaches for Combinatorial Optimization Problems (Fields Institute, Toronto, ON, 1996). Thanks for your attention!

A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP

Henry Wolkowicz

Dept. Comb. and Opt., University of Waterloo, Canada

Thur. May 19, 13:45-14:35 (BST) (08:45-09:35 EDT) 2022

At: Modern Techniques of Very Large Scale Optimization

joint with: Naomi Graham, Hao Hu, Jiyoung Im, Xinxin Li²

