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Outline

Splitting methods: numerically hard, large scale problems
(particularly successful for relaxations of hard nonlinear
discrete optimization problems.)
We consider a Restricted Dual Peaceman-Rachford
Splitting Method with strengthened bounds for a
DNN relaxation; and we solve many NP-hard problems to
(provable) optimality
Here: quadratic assignment problem, QAP, a fundamental
HARD combinatorial optimization problems; QAP models
many real-life problems such as facility location, VLSI
design.
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Outline II

Exploiting Structure/Novel

We use facial reduction, FR, to obtain a natural splitting of
variables into cone/polyhedral constraints.
We modify the subproblems by adding redundant
constraints.
We us provable lower and upper bounds.
We modify dual variable update by exploiting scaling.
We present extensive numerical experiments. In many
instances the DNN relaxation resulted in the global optimal
solution of the QAP.

Our Main Reference
A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP,

Graham/Hu/Im/Li/Wolkowicz in INFORMS J. Comput. 2022.

Further historical and current references are in the paper.
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QAP, Quadratic Assignment Problem

Facility Location
Given: n facilities and n locations;
distance Bst between locations s, t ;
flow Ai,j between facilities i , j ;
location (building) cost Cis facility i in location s.
X = Xij ∈ Π permutation matrix unkown 0,1 variables
X (:) ∈ Rn2

, n = 30 instances still considered hard

trace formulation, ⟨Y ,X ⟩ = trace(YX T )

minimize total flow and location costs

p∗
QAP := min

X∈Π
⟨AXB − 2C,X ⟩,
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Matrix Lifting to Sn2+1

X ∈ Rn×n; x = vec (X ) ∈ Rn2
(columnwise)

Y :=

(
1
x

)
(1 xT ) ∈ Sn2+1

Block Representation

Indexing the rows and columns of Y from 0 to n2,

Y =
[

Y00 ȳT

ȳ Y

]
, ȳ =

Y(10)
Y(20)

.

.

.
Y(n0)

 , Y = xxT =


Y
(11) Y

(12) · · · Y
(1n)

Y
(21) Y

(22) · · · Y
(2n)

.

.

.
. . .

. . .
.
.
.

Y
(n1)

. . .
. . . Y

(nn)


where

Y
(ij) = X:iX T

:j ∈ Rn×n, ∀i , j = 1, . . . ,n, Y(j0) ∈ Rn, ∀j = 1, . . . ,n
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Reformulation of QAP

Lifted Objective

LQ :=

[
0 −(vec (C)T )

−vec (C) B ⊗ A

]
, ( ⊗ is Kronecker product)

Lifted QAP

p∗
QAP = min ⟨AXB − 2C,X ⟩ = ⟨LQ,Y ⟩

s.t. Y :=

(
1
x

)(
1
x

)T

∈ Sn2+1
+

X = Mat (x) ∈ Π,

where Mat = vec ∗, the adjoint transformation.
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Quadratic Constraints; Facial Reduction, FR

Characterizing Permutation Matrices

∥Xe − e∥2 = ∥X T e − e∥2 = 0, X ◦ X = X , X T X = XX T = I,

◦ is Hadamard product; e is vector of all ones.

Facial reduction FR using Xe − e = IXe − e = 0

Let x = vec (X ); y =

(
1
x

)
, Y = yyT

We have IXe = (eT ⊗ I)vec (X ) and

Xe − e = 0 ⇐⇒ yT
[

−e
(eT ⊗ I)

]
= 0

⇐⇒ Y

([
−e

(eT ⊗ I)

] [
−e

(eT ⊗ I)

]T
)

= 0

We have an exposing matrix and can do FR, Y = V̂RV̂ T .
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FR Model; Simplified; Regularized

After FR, Y = V̂RV̂ T ; Primal-Dual Strong Duality Holds

smaller, greatly simplified, many constraints are redundant:

(SDP)

min
R

⟨V̂ T LQV̂ ,R⟩

s.t. GJ̄(V̂RV̂ T ) = u0 (0-unit vector)

R ∈ S(n−1)2+1
+ .

GJ̄(·) so-called gangster operator ( [6] ZKRW’94)

fixes the elements in set J̄.
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Details: V̂ , Facial Reduction

Ŷ
barycenter of set of feasible lifted Y of rank one for the
SDP relaxation;

V̂ ∈ R(n2+1)×((n−1)2+1)

have orthonormal columns that span the range of Ŷ (explicit
representation is available)

Minimal Face
every feasible Y of the SDP relaxation is contained in the
minimal face, F of Sn2+1

+ :

F = V̂S(n−1)2+1
+ V̂ T ⊴ Sn2+1

+ ;

Y ∈ F(∈ ri(F)) =⇒ Range(Y ) ⊆ (=)Range(V̂ ),
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Details: Gangster Operator GJ̄

linear map GJ̄ : Sn2+1 → R|J̄|; (shoots holes in the matrix)

By abuse of notation, also from Sn2+1 to Sn2+1, depending on
the context:

GJ̄ : Sn2+1 → Sn2+1,
[
GJ̄(Y )

]
ij =

{
Yij if (i , j) ∈ J̄ or (j , i) ∈ J̄,
0 otherwise.

Gangster index set J̄

union of the top left index (00) with set of indices J, i < j in
submatrix Y ∈ Sn2

:

(a) the off-diagonal elements in the n diagonal blocks in Y

(b) the diagonal elements in the off-diagonal blocks in Y

Many of these are redundant; still used in subproblems.
The notation u0 in eq:sdp1 denotes a vector in {0,1}|J̄| with 1
only in the first coordinate, i.e., the 0-th unit vector. Therefore
eq:sdp1 forces all the values of V̂RV̂ T corresponding to the
indices in J̄ to be zero. It also implies that the first entry of
GJ̄(V̂RV̂ T ) is equal to 1, which reflects the fact that Y00 = 1
from eq : blocked . Using the alternative definition of GJ̄ in the
equivalent constraint is GJ̄(Y ) = E00 where E00 ∈ Sn2+1 is the
(0,1)-matrix with 1 only in the (00)-position. Therefore eq:sdp1
forces all the values of V̂RV̂ T corresponding to the indices in J̄
to be zero, except for the 00 element of V̂RV̂ T .
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Doubly Nonnegative Relaxation, DNN

Motivated by natural splitting of variables from FR

Y - in polyhedral constraints subproblem
R - in SDP constraints subproblem

(DNN)

min
R,Y

⟨LQ,Y ⟩

s.t. Y = V̂RV̂ T (splitting)
GJ̄(Y ) = u0 (polyhedral)
0 ≤ Y ≤ 1 (polyhedral)
R ⪰ 0 (convex cone)

And, add redundant constraints to polyhedral and cone
constraints.
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Redundant Constraints Added to Subproblems

Let Y ∈ Sn2+1 be blocked as above.

Linearizations of Orthogonality: XX T = X T X = I

bodiag(Y ) : Sn2+1→ Sn, sum of n × n diagonal blocks of Y :

bodiag(Y ) :=
n∑

k=1

Y(kk)= In

oodiag(Y ) : Sn2+1→ Sn: traces of blocks Y
(ij):

oodiag(Y ) :=
(
trace

(
Y

(ij)

))
= In
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More Redundant Constraints

Linearizations of 0,1,X 2
ij − Xij = 0

arrow(Y ) : Sn2+1 → Rn2+1; difference of first column and
diagonal of Y :

arrow(Y ) :=
(
Y(:1) − diag (Y )

)
= 0

trace constraint

By commutativity of the trace operator and V̂ T V̂ = I:

trace(R) = trace(RV̂ T V̂ ) = trace
(

V̂RV̂ T
)
= trace(Y ) = n + 1.
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Set Constraints

Cone constraints

R :=
{

R ∈ S(n−1)2+1 : R ⪰ 0, trace(R) = n + 1
}
,

Polyhedral constraints

Y : =
{

Y ∈ Sn2+1 : GJ̄(Y ) = u0,0 ≤ Y ≤ 1,
bodiag(Y ) = I, oodiag(Y ) = I, arrow(Y ) = 0}
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Main Model

(Split) Model

(DNN )

p∗
DNN := min

R,Y
⟨LQ,Y ⟩

s.t. Y = V̂RV̂ T

R ∈ R
Y ∈ Y.

Recovering original X from Y with redundant constraints

Y ∈ Y =⇒ X = Mat (diagonal(Y )) = Mat (Row1(Y )) satisfy
Xe = X T e = e; (so doubly stochastic)
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Optimality Conditions

Lagrangian function, dual variable Z

L(R,Y ,Z ) = ⟨LQ,Y ⟩+ ⟨Z ,Y − V̂RV̂ T ⟩.

Strictly feasibility/onto R̂ ≻ 0, Ŷ = V̂ R̂V̂ holds
first order optimality conditions:

0 ∈ −V̂ T ZV̂ +NR(R), (dual R feasibility) (1a)
0 ∈ LQ + Z +NY(Y ), (dual Y feasibility) (1b)

Y = V̂RV̂ T , R ∈ R, Y ∈ Y, (primal feasibility) (1c)

where NR(R) (resp. NY(Y )) is normal cone to R (resp. Y) at R
(resp. Y ).
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Characterization of Optimality; Stopping Criteria

For subproblems
The primal-dual R,Y ,Z are optimal if, and only if, normal cone
conditions hold if, and only if,

R = PR(R + V̂ T ZV̂ ) (2a)
Y = PY(Y − LQ − Z ) (2b)

Y = V̂RV̂ T . (2c)
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Dual Multiplier Z

Exploit structure
Let

ZA :=
{

Z ∈ Sn2+1 : (Z + LQ)ij = 0, ∀i , j (in arrow positions),
and ∀ij ∈ JR (redundant gangster positions)} .
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Modified PRSM Algorithm

(restricted contractive Peaceman-Rachford splitting; redundant
constraints in subproblems; modified dual variable)

Augmented Lagrangian function

LA(R,Y ,Z ) = ⟨LQ,Y ⟩+ ⟨Z ,Y − V̂RV̂ T ⟩+ β

2

∥∥∥Y − V̂RV̂ T
∥∥∥2

F
,

where β is a positive penalty parameter.

Dual variable Z

Z0 := {Z ∈ Sn2+1 : Zi,i = 0, Z0,i = Zi,0 = 0, i = 1, . . . ,n2}
PZ0 projection onto Z0
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The Algorithm

PRSM for DNN
Initialize: LA is augmented Lagrangian; γ ∈ (0,1) is
under-relaxation parameter; β ∈ (0,∞) is penalty
parameter; R,Y are subproblem sets; Y 0; and Z 0 ∈ ZA;

WHILE tolerances not met DO

Rk+1 = argminR∈R LA(R,Y k ,Z k )

Z k+ 1
2 = Z k + γβ · PZ0

(
Y k − V̂Rk+1V̂ T

)
Y k+1 = argminY∈Y LA(Rk+1,Y ,Z k+ 1

2 )

Z k+1 = Z k+ 1
2 + γβ · PZ0

(
Y k+1 − V̂Rk+1V̂ T

)
ENDWHILE
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Robustness/Convergence

Algorithm outline/remarks

alternate minimization of variables R and Y interlaced by
the dual variable Z update;
R-update and the Y -update in are well-defined
subproblems with unique solutions;
many of the constraints are redundant in the SDP part but
not within the subproblems; this improves rate of
convergence and quality of Y when stopping early.
modified dual update Z both after R-update and Y -update.

Theorem

Let {Rk}, {Y k}, {Z k} be the sequences generated by the
algorithm Then the sequence {(Rk ,Y k )} converges to a primal
optimal pair (R∗,Y ∗), and {Z k} converges to an optimal dual
solution Z ∗ ∈ ZA.
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R-subproblem

R :=
{

R ∈ S(n−1)2+1
+ : trace(R) = n + 1

}
.

•PR(W ) projection of W onto R
• completing the square at current Y k ,Z k : the R-subproblem
can be explicitly solved by the projection operator PR as
follows:

Rk+1 = argmin
R∈R

−⟨Z k , V̂RV̂ T ⟩+ β
2

∥∥∥Y k − V̂RV̂ T
∥∥∥2

F

= argmin
R∈R

β
2

∥∥∥Y k − V̂RV̂ T + 1
βZ k

∥∥∥2

F

= argmin
R∈R

β
2

∥∥∥R − V̂ T (Y k + 1
βZ k )V̂

∥∥∥2

F

= PR(V̂ T (Y k + 1
βZ k )V̂ )

• Eigendecomposition and projection onto simplex.
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Y-Subproblem

Y := {Y ∈ Sn2+1 : GJ̄ (Y ) = u0, 0 ≤ Y ≤ 1, bodiag(Y ) = I, oodiag(Y ) = I, arrow(Y ) = 0}

•PY(W ) projection of W onto Y
• completing the square at current Rk+1,Z k+ 1

2 : the
Y -subproblem can be explicitly solved by the projection
operator PY as follows:

Y k+1 = argmin
Y∈Y

⟨LQ,Y ⟩+ ⟨Z k+ 1
2 ,Y − V̂Rk+1V̂ T ⟩

+β
2

∥∥∥Y − V̂Rk+1V̂ T
∥∥∥2

F

= argmin
Y∈Y

β
2

∥∥∥Y −
(

V̂Rk+1V̂ T − 1
β (LQ + Z k+ 1

2 )
)∥∥∥2

F

= PY

(
V̂Rk+1V̂ T − 1

β

(
LQ + Z k+ 1

2

))
• shooting holes; rounding to 0,1
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Provable Lower Bounds from Approximate Solutions

g(Z ) := minY∈Y ⟨LQ + Z ,Y ⟩ − (n + 1)λmax(V̂ T ZV̂ )

where λmax(V̂ T ZV̂ ) denotes largest eigenvalue of V̂ T ZV̂ .

Theorem
d∗

Z := maxZ g(Z ) is a concave maximization problem.
Furthermore, strong duality holds with main DNN problem:

p∗
DNN = d∗

Z , and d∗
Z is attained.

Z dual feasible =⇒ g(Z ) is a provable lower bound
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Upper Bound from Nearest Permutation Matrix

Seemingly quadratic nearest discrete problem is a simplest LP

Given X̄ ∈ Rn×n

X ∗ = argmin
X∈Π

1
2
∥X − X̄∥2

F = argmin
X∈Π

−⟨X̄ ,X ⟩ = argmin
X∈D

−⟨X̄ ,X ⟩,

since Von Neumann-Birkoff Theorem implies extreme points of
doubly stochastic D are the permutation matrices Π; so can
apply a simplex method or Hungarian method for assignment
problem.

Upper bound
a feasible solution X ∗ ∈ Π to the original QAP, gives a valid
upper bound trace(AX ∗B(X ∗)T ).
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Randomized Upper Bound

Previous Approaches using an approximate optimum Y out

(Exploit Perron-Frobenius to conclude v1 ≥ 0.)
1 vec (X̄ ) ∼= col. 1( Y out); find nearest X ∗ ∈ Π.
2 Y out =

∑r
i=1 λivivT

i spectral decomposition,
λ1 ≥ λ2 ≥ · · · ≥ λr > 0; wlog vi ∈ Rn2

; vec (X̄ ) = λ1v1;
find nearest X ∗ ∈ Π.

Goemans-Williams type approximation algorithm, [3]

•ξ ∈ (0,1)r ; in decreasing order; perturb eigenvalues;
•vec (X̄ ) =

∑r
i=1 ξiλivi .; find nearest X ∗ ∈ Π.

• repeat max{1,min(3 ∗ ⌈log(n)⌉,ubest − lbest} number of
times; ‘ubest’ and ‘lbest’ best current upper and lower bounds
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Numerical Experiments with PRSM

improved performance with PRSM : cnvrgnce rates; rel. gap

• [4, ADMM ] Oliveira/W./Xu, ADMM for the SDP relaxation of
the QAP, Math. Program. Comput., 10 (2018).
• recent: relaxation methods [1, C-SDP], [2, F2-RLT2-DA]
and [5, SDPNAL].

sizes n: small, medium, large

n ∈ {10, . . . ,20}, {21, . . . ,40}, {41, . . . ,64}.

n = 64 : t(n2 + 1) = 8,394,753 variables;
nonnegativity cuts; SDP constraints
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Conclusion

We introduced a strengthened splitting method for solving
the facially reduced DNN relaxation for the QAP.
Our strengthened model and algorithm incorporates
redundant constraints to the model that are not redundant
in the subproblems; more specifically, the trace constraint
in R-subproblem and projection onto doubly stochastic
matrices in Y -subproblem.
We exploit the structure of dual optimal multipliers and
provide customized dual updates; leads to a new strategy
for strengthening the provable lower bounds.
codes can be downloaded with link
https://www.math.uwaterloo.ca/%7Ehwolkowi/
henry/reports/ADMMnPRSMcodes.zip.
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