ADMM-based Unit and Time Decomposition for Price Arbitrage by Cooperative Price-Maker Electricity Storage Units

Albert Solà Vilalta¹

Joint work with Miguel F. Anjos¹ and James R. Cruise²

¹University of Edinburgh, Edinburgh, UK

²Heriot-Watt University, Edinburgh, United Kingdom

Modern Techniques of Very Large Optimization, 19-20 May 2022, Edinburgh, UK.

19/05/2022

Introduction - The Electric Power System

• Electric power systems must be in close balance at any time:

GENERATION = CONSUMPTION

Introduction - The Electric Power System

• Electric power systems must be in close balance at any time:

$\mathsf{GENERATION} = \mathsf{CONSUMPTION}$

- Traditional approach: Keep flexible power plants on call:
 - 1. Hydro
 - 2. Gas
 - 3. Diesel, coal and biomass

Introduction - The Electric Power System

• Electric power systems must be in close balance at any time:

$\mathsf{GENERATION} = \mathsf{CONSUMPTION}$

- Traditional approach: Keep flexible power plants on call:
 - 1. Hydro
 - 2. Gas
 - 3. Diesel, coal and biomass
- Challenges:
 - 1. Hydro resources are limited.
 - 2. Other resources produce carbon emissions.

Introduction - Increasing Flexibility Needs

Most countries worldwide aim to reduce carbon emissions.

Image: A matrix and a matrix

Introduction - Increasing Flexibility Needs

Most countries worldwide aim to reduce carbon emissions.

This increases flexibility needs for two reasons:

1. Higher shares of wind, solar and/or nuclear.

Introduction - Increasing Flexibility Needs

Most countries worldwide aim to reduce carbon emissions.

This increases flexibility needs for two reasons:

- 1. Higher shares of wind, solar and/or nuclear.
- 2. Reduction of the sources that currently provide a substantial amount of flexibility: gas, diesel and coal.

1. A well-connected grid

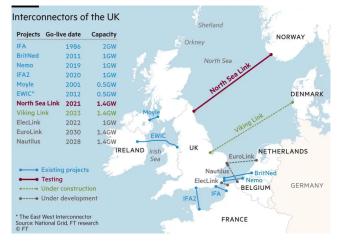


Figure: Interconnectors between the UK and other European countries: operational (blue and purple) and under construction or planned (other).

A D N A B N A B N A B N

2. Electric energy storage

Figure: A pumped-storage hydro station.

Figure: A lithium-ion battery.

< 1 k

3. Demand-side response

Figure: The canal network and an electric vehicle.

Figure: A fridge and an electric water heater.

A. Solà Vilalta (UoE)

6/21

4. Fossil fuels + carbon capture and storage

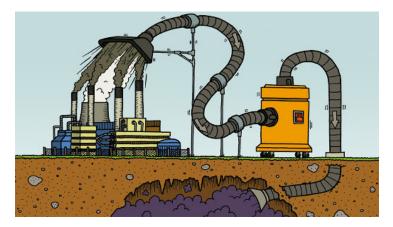


Figure: Liberal representation of carbon capture and storage.

The future flexibility requirements will probably be met from many sources. We study one of them:

Electric energy storage

Image: A matrix and A matrix

The future flexibility requirements will probably be met from many sources. We study one of them:

Electric energy storage

The future flexibility requirements will probably be met from many sources. We study one of them:

Electric energy storage

The future flexibility requirements will probably be met from many sources. We study one of them:

Electric energy storage

The future flexibility requirements will probably be met from many sources. We study one of them:

Electric energy storage

The future flexibility requirements will probably be met from many sources. We study one of them:

Electric energy storage

The future flexibility requirements will probably be met from many sources. We study one of them:

Electric energy storage

Research Question: How should we control multiple price-maker electric energy storage units that cooperate for price arbitrage?

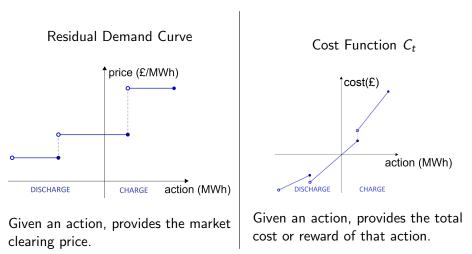
We extend previous work on a single unit by Cruise et al. (2019), and our previous work on two units (Anjos, Cruise, SV (2020)).

Modelling Price-Makers



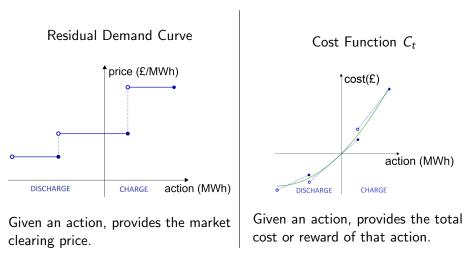
Given an action, provides the market clearing price.

Modelling Price-Makers



19/05/2022 9/21

Modelling Price-Makers



```
Key assumption: C_t is convex.
```

19/05/2022 9/21

Let $x_{j,t} \in \mathbb{R}$ be the action taken by unit $j \in S$ at time $t \in \mathcal{T}$.

 $\underset{x_{j,t}}{\mathsf{Minimize}}$

 $\sum_{t\in\mathcal{T}} C_t \Big(\sum_{j\in\mathcal{S}} x_{j,t}\Big)$

э

イロト 不得 トイヨト イヨト

Let $x_{j,t} \in \mathbb{R}$ be the action taken by unit $j \in S$ at time $t \in \mathcal{T}$.

$$\begin{array}{ll} \text{Minimize} & \sum_{t \in \mathcal{T}} C_t \Big(\sum_{j \in \mathcal{S}} x_{j,t} \Big) \\ \text{subject to} & -P_i \leq x_{i,t} \leq P_i & \forall i \in \mathcal{S}, \ \forall t \in \mathcal{I} \end{array}$$

ubject to
$$-P_j \leq x_{j,t} \leq P_j$$
 $\forall j \in \mathcal{S}, \ \forall t \in \mathcal{T}$

э

(日)

Let $x_{i,t} \in \mathbb{R}$ be the action taken by unit $j \in S$ at time $t \in \mathcal{T}$.

Minimize $X_{i,t}$

$$\sum_{t\in\mathcal{T}} C_t \Big(\sum_{j\in\mathcal{S}} x_{j,t}\Big)$$

subject to

$$\begin{aligned} &-P_{j} \leq x_{j,t} \leq P_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ &0 \leq \bar{S}_{j,0} + \sum_{l=1}^{t} x_{j,l} \leq E_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \end{aligned}$$

イロト イヨト イヨト -

Let $x_{j,t} \in \mathbb{R}$ be the action taken by unit $j \in S$ at time $t \in \mathcal{T}$.

 $\underset{x_{j,t}}{\mathsf{Minimize}}$

$$\sum_{t\in\mathcal{T}}C_t\Big(\sum_{j\in\mathcal{S}}x_{j,t}\Big)$$

subject to

$$\begin{aligned} -P_{j} &\leq x_{j,t} \leq P_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ 0 &\leq \bar{S}_{j,0} + \sum_{l=1}^{t} x_{j,l} \leq E_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ \bar{S}_{j,0} + \sum_{l=1}^{T} x_{j,l} = \bar{S}_{j,T} & \forall j \in \mathcal{S} \end{aligned}$$

< 4 ₽ × <

Let $x_{i,t} \in \mathbb{R}$ be the action taken by unit $j \in S$ at time $t \in \mathcal{T}$.

Minimize $X_{i,t}$

$$\sum_{t\in\mathcal{T}}C_t\Big(\sum_{j\in\mathcal{S}}x_{j,t}\Big)$$

0

subject to

$$\begin{aligned} -P_{j} \leq x_{j,t} \leq P_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ 0 \leq \bar{S}_{j,0} + \sum_{l=1}^{t} x_{j,l} \leq E_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ \bar{S}_{j,0} + \sum_{l=1}^{T} x_{j,l} = \bar{S}_{j,T} & \forall j \in \mathcal{S} \end{aligned}$$

We assume:

- Discrete Time
- Deterministic Prices

A. Solà Vilalta (UoE)

Let $x_{j,t} \in \mathbb{R}$ be the action taken by unit $j \in S$ at time $t \in \mathcal{T}$.

Minimize $X_{i,t}$

$$\sum_{t\in\mathcal{T}}C_t\Big(\sum_{j\in\mathcal{S}}x_{j,t}\Big)$$

(

subject to

$$\begin{aligned} &-P_{j} \leq x_{j,t} \leq P_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ &0 \leq \bar{S}_{j,0} + \sum_{l=1}^{t} x_{j,l} \leq E_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ &\bar{S}_{j,0} + \sum_{l=1}^{T} x_{j,l} = \bar{S}_{j,T} & \forall j \in \mathcal{S} \end{aligned}$$

We assume:

- Discrete Time
- Deterministic Prices

*The model can account for round-trip efficiencies, leakage and negative electricity prices.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

10/21

 $\underset{x_{j,t}}{\mathsf{Minimize}} \qquad \sum_{t \in \mathcal{T}} \mathbf{0}$

 $\sum_{t\in\mathcal{T}} C_t \Big(\sum_{j\in\mathcal{S}} x_{j,t}\Big)$

subject to

$$\begin{aligned} -P_{j} &\leq x_{j,t} \leq P_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ 0 &\leq \bar{S}_{j,0} + \sum_{l=1}^{t} x_{j,l} \leq E_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ \bar{S}_{j,0} + \sum_{l=1}^{T} x_{j,l} = \bar{S}_{j,T} & \forall j \in \mathcal{S} \end{aligned}$$

3

イロン イ理 とく ヨン イ ヨン

Minimize $x_{j,t}, z_t$

$$\sum_{t\in\mathcal{T}}C_t(\mathbf{z}_t)$$

subject to

$$\begin{aligned} -P_{j} &\leq x_{j,t} \leq P_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ 0 &\leq \bar{S}_{j,0} + \sum_{l=1}^{t} x_{j,l} \leq E_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ \bar{S}_{j,0} + \sum_{l=1}^{T} x_{j,l} = \bar{S}_{j,T} & \forall j \in \mathcal{S} \\ z_{t} &= \sum_{j \in \mathcal{S}} x_{j,t} & \forall t \in \mathcal{T} \end{aligned}$$

イロン イ理 とく ヨン イ ヨン

$$\begin{array}{ll} \underset{x_{j,t},z_{t}}{\text{Minimize}} & \sum_{t \in \mathcal{T}} \left[\mathcal{C}_{t}(z_{t}) + \nu_{t} \Big(\sum_{j \in \mathcal{S}} x_{j,t} - z_{t} \Big) + \frac{\gamma}{2} \Big(\sum_{j \in \mathcal{S}} x_{j,t} - z_{t} \Big)^{2} \right] \\ \text{subject to} & -P_{j} \leq x_{j,t} \leq P_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ & 0 \leq \bar{S}_{j,0} + \sum_{l=1}^{t} x_{j,l} \leq E_{j} & \forall j \in \mathcal{S}, \ \forall t \in \mathcal{T} \\ & \bar{S}_{j,0} + \sum_{l=1}^{T} x_{j,l} = \bar{S}_{j,\mathcal{T}} & \forall j \in \mathcal{S} \end{array}$$

3

イロン イ理 とく ヨン イ ヨン

Convexity and linear constraints imply strong duality $$\downarrow$$ Use the Alternating Direction Method of Multipliers (ADMM)

< 4³ ► <

Convexity and linear constraints imply strong duality \downarrow Use the Alternating Direction Method of Multipliers (ADMM)

This results in N + 1 1-Unit Subproblems:

- A subproblem for every storage unit.
- A subproblem for the auxiliary variable z.

They are solved iteratively until the linking constraints are satisfied.

Convexity and linear constraints imply strong duality \downarrow Use the Alternating Direction Method of Multipliers (ADMM)

This results in N + 1 1-Unit Subproblems:

- A subproblem for every storage unit.
- A subproblem for the auxiliary variable z.

They are solved iteratively until the linking constraints are satisfied.

Decomposition in Time

Q: Do we need to solve the subproblems until the final time T?

э

Image: A mathematical states and a mathem

Decomposition in Time

Q: Do we need to solve the subproblems until the final time T?

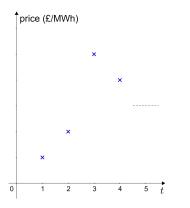
A: No, use the time decomposition of the algorithm by Cruise et al. (2019).

Decomposition in Time

Q: Do we need to solve the subproblems until the final time T?

A: No, use the time decomposition of the algorithm by Cruise et al. (2019).

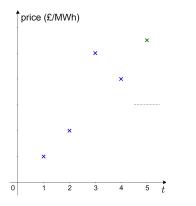
Ex: Consider a price-taker storage unit with energy capacity E = 2 and power rate P = 1 with initial SoC $\overline{S}_0 = 0$. Assume prices are given by:



Q: Do we need to solve the subproblems until the final time T?

A: No, use the time decomposition of the algorithm by Cruise et al. (2019).

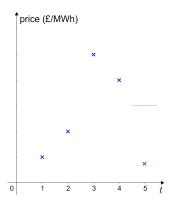
Ex: Consider a price-taker storage unit with energy capacity E = 2 and power rate P = 1 with initial SoC $\overline{S}_0 = 0$. Assume prices are given by:



Q: Do we need to solve the subproblems until the final time T?

A: No, use the time decomposition of the algorithm by Cruise et al. (2019).

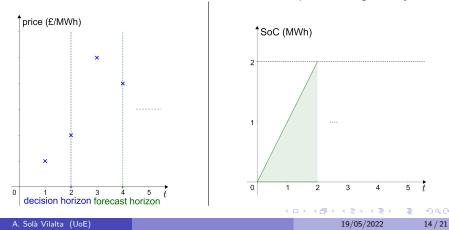
Ex: Consider a price-taker storage unit with energy capacity E = 2 and power rate P = 1 with initial SoC $\overline{S}_0 = 0$. Assume prices are given by:



Q: Do we need to solve the subproblems until the final time T?

A: No, use the time decomposition of the algorithm by Cruise et al. (2019).

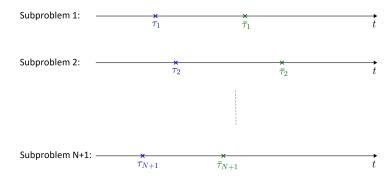
Ex: Consider a price-taker storage unit with energy capacity E = 2 and power rate P = 1 with initial SoC $\overline{S}_0 = 0$. Assume prices are given by:



Q: How to decompose if we have to solve several 1-Units Problem?

(日)

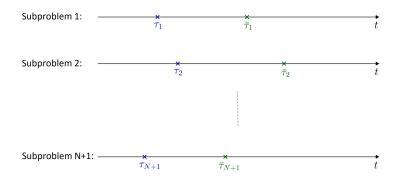
Q: How to decompose if we have to solve several 1-Units Problem?



19/05/2022 15/21

Image: A math a math

Q: How to decompose if we have to solve several 1-Units Problem?



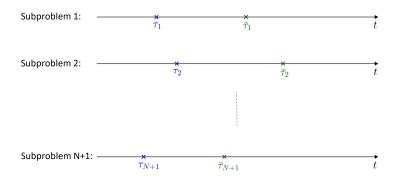
A: Pick the longest forecast horizon and solve all subproblems until then.

Α.	Solà	Vilalta	(UoE)

19/05/2022 15/21

Image: A matrix and a matrix

Q: How to decompose if we have to solve several 1-Units Problem?



A: Pick the longest forecast horizon and solve all subproblems until then. \downarrow It is the forecast horizon of the unit with the largest energy-to-power ratio.

	•	₽▶ ∢ ≣ ▶	< ≣ >	Ξ.	500
A. Solà Vilalta (UoE)		19/05/2	2022		15 / 21

Results

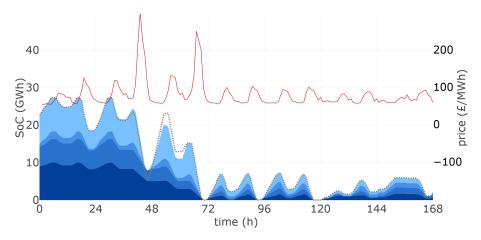


Figure: Left axis: Stacked SoC of unit 1 [very dark blue], unit 2 [dark blue], unit 3 [light blue] and unit 4 [very light blue]. SoC of aggregated unit [dotted grey line]. Right axis: Electricity market-clearing prices [red].

Computational Performance I

Instance	Anjos et al. (2020)	Anjos et al. (2021)	Gap
Oct '19	$-6.231 imes10^{6}$	$-6.230 imes10^{6}$	0.02%
Nov '19	$-5.689 imes10^{6}$	$-5.688 imes10^{6}$	0.02%
Dec '19		$-7.091 imes10^{6}$	
Jan '20	$-5.988 imes10^{6}$	$-5.986 imes10^6$	0.03%
Feb '20	$-6.558 imes10^{6}$	$-6.953 imes10^{6}$	-6.03%
Mar '20	$6.384 imes10^{6}$	$6.378 imes10^{6}$	0.09%

Table: Objective function values and gap between the methods in Anjos, Cruise, SV (2020) and Anjos, Cruise, SV (2021). One month instances of 2-Unit Problems.

イロト イポト イヨト イヨト

Computational Performance II

Month	Anjos et al. (2020)	Anjos et al. (2021)
Oct '19	91s	0.83s
Nov '19	89s	0.54s
Dec '19		0.45s
Jan '20	112s	0.56s
Feb '20	83s	0.28s
Mar '20	103s	0.19s

Table: Computational time comparison of the solution methods in Anjos, Cruise, SV (2020) and Anjos, Cruise, SV (2021). One month instances of 2-Unit Problems.

< □ > < 同 > < 回 > < 回 > < 回 >

Computational Performance III

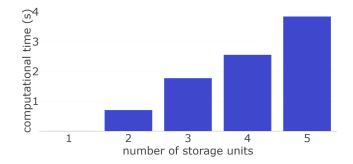


Figure: Average computational time of one month instances for different number of storage units.

- ∢ /⊐ >

• Round-trip efficiencies and leakage can be incorporated in the model and algorithm, in contrast to the algorithm in Anjos, Cruise, SV (2020).

Image: A match a ma

- Round-trip efficiencies and leakage can be incorporated in the model and algorithm, in contrast to the algorithm in Anjos, Cruise, SV (2020).
- Consistently solves instances with more than 2 storage units.

< A > < E

- Round-trip efficiencies and leakage can be incorporated in the model and algorithm, in contrast to the algorithm in Anjos, Cruise, SV (2020).
- Consistently solves instances with more than 2 storage units.
- Two orders of magnitude computational time reduction compared to the algorithm in Anjos, Cruise, SV (2020) in 2-unit instances, with minor solution quality losses (< 0.1%).

- Round-trip efficiencies and leakage can be incorporated in the model and algorithm, in contrast to the algorithm in Anjos, Cruise, SV (2020).
- Consistently solves instances with more than 2 storage units.
- Two orders of magnitude computational time reduction compared to the algorithm in Anjos, Cruise, SV (2020) in 2-unit instances, with minor solution quality losses (< 0.1%).
- Linear scaling of computational time w.r.t. the number of units.

- Round-trip efficiencies and leakage can be incorporated in the model and algorithm, in contrast to the algorithm in Anjos, Cruise, SV (2020).
- Consistently solves instances with more than 2 storage units.
- Two orders of magnitude computational time reduction compared to the algorithm in Anjos, Cruise, SV (2020) in 2-unit instances, with minor solution quality losses (< 0.1%).
- Linear scaling of computational time w.r.t. the number of units.
- The energy-to-power ratio of storage units plays a crucial role.

References

- Anjos MF, Cruise JR, Solà Vilalta A (2020) Control of two energy storage units with market impact: Lagrangian approach and horizons. *Proc. 2020 International Conference on Probabilistic Methods Applied* to Power Systems (PMAPS IEEE, Liege), 1–6.
- Anjos MF, Cruise JR, Solà Vilalta A (2021) ADMM-based Unit and Time Decomposition for Price Arbitrage by Cooperative Price-Maker Electricity Storage Units. Working paper.
- Cruise JR, Flatley L, Gibbens RJ, Zachary S (2019) Control of energy storage with market impact: Lagrangian approach and horizons. Operations Research 67(1):1–9.

< □ > < □ > < □ > < □ > < □ > < □ >