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Linear Semidefinite Optimization, notation
Primal problem

max
X2Sm, xlin2Rm

C • X + d>xlin

subject to

Ai • X + (D>xlin)i = bi , i = 1, . . . , n
X ⌫ 0, xlin � 0

Dual problem
min

y2Rn, S2Sm, slin2Rm
c>y

subject to
nX

i=1

yiAi + S = C, S ⌫ 0

Dy + slin = d , slin � 0

Here: Ai ,C 2 Rm⇥m, symmetric, X • Y = trace(X T Y )
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Unconstrained BQP

Find a global minimum of the non-convex binary problem

min
x2Rs

x>Qx subject to xi 2 B , i = 1, . . . , s (BQP)

Q 2 Rs⇥s symmetric, B either {0, 1} or {�1, 1}.

We do not assume any sparsity in Q, it is a generally dense
matrix.

Technique: Hierarchy of convex conic relaxations

Kim-Kojima (2017): “BQP instances . . . can serve as
challenging problems for developing conic relaxation methods”
(MK: “and/or SDP software”).
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Unconstrained BQP

To find a global optimum, we use Lasserre hierarchy of
semidefinite optimization (SDP) problems—relaxations—of
growing dimension.
The SDP relaxations have the form

min
y2Rn

q>y (BQP-rel)

subject to M(y) :=
nX

i=1

yiMi � M0 ⌫ 0 .

Here M is a moment matrix, a (generally) dense matrix of a
very specific form. (For ! = 1, we have q = svec(Q).)
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In particular, if the solution of (BQP) is unique and the order of 
the relaxation is high enough, then rank M(y*) = 2.



Dimensions of the relaxations
variables matrix size

n
!X

i=1

✓
s
i

◆

!. . . relaxation order (! = 1, 2, . . .)
s. . . dimension of BQP
s4

24
/ n  2s � 1

For instance, for s = 9:

! vars matrix size

2 255 46
3 465 130
4 510 256
5 511 382
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Dimensions of the relaxations

The theoretical lower bound on ! to get exact solution is ds/2e
(Laurent 2003 and Fawzi et al. 2016).

This is confirmed by (specially constructed) examples!

This gives

s ! matrix size

21 11 784 625
31 16 759 852 346
41 21 7.5 · 1011

51 26 7.5 · 1014

So problems with s > 20 seem unsolvable by this approach.
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Introducing Loraine

Loraine — LOw-RAnk INtErior point method

Loraine uses a primal-dual predictor-corrector interior-point
method together with iterative solution of the resulting linear
systems.
The iterative solver is a preconditioned Krylov-type method with
a preconditioner utilizing low rank of the solution.

Implemented in Matlab (Julia version on the way)

Proved to be very efficient for SDP problems with very-low-rank
solutions.

Only efficient under assumptions.

Edinburgh, May 2022 Michal Kočvara (University of Birmingham) 7 / 20



Loraine assumptions

Recall:

(P) max
X , xlin

C • X

s.t. Ai • X + (D>xlin)i = bi 8i
X ⌫ 0, xlin � 0

(D) min
y, S, slin

c>y

s.t.
nX

i=1

yiAi � C = S, S ⌫ 0

Dy + slin = d , slin � 0

We assume that the solution X ⇤ has very low rank and develop
a preconditioner based on this.
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Loraine assumptions
Recall:

(P) max
X , xlin

C • X

s.t. Ai • X + (D>xlin)i = bi 8i
X ⌫ 0, xlin � 0

(D) min
y, S, slin

c>y

s.t.
nX

i=1

yiAi � C = S, S ⌫ 0

Dy + slin = d , slin � 0

Further assumptions:
• Slater condition + strict complementarity
• Sparsity: Define the matrix

A = [svec A1, . . . , svec An].

We assume that matrix-vector products with A and AT

may each be applied in O(n) flops and memory.
• “Sparsity” of D: The inverse (D>D)�1 and matrix-vector

product with (D>D)�1 may each be computed in O(n)
flops and memory.
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Low-rank preconditioner for Interior-Point method
In each iteration of the (primal-dual, predictor-corrector)
interior-point method we have to solve two systems of linear
equations in variable y :

((Hy)i =) Ai • [W (
nX

j=1

yjAj)W ] = ri for i = 1, . . . , n .

Critical observation: If the solution X ⇤ is low-rank, W will be
low-rank.
Hence W = W0 + UUT and

H = AT (W0 ⌦ W0)A+AT (U ⌦ Z )| {z }
V

(U ⌦ Z )TA| {z }
V T

Preconditioner

H↵ =

 pX

i=1

⌧2
i I + DT XlinS�1

lin D

!
+ ‹V‹V T .
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Loraine and relaxed BQP?

Recall:

(P) max
X , xlin

C • X

s.t. Ai • X + (D>xlin)i = bi 8i
X ⌫ 0, xlin � 0

(D) min
y, S, slin

c>y

s.t.
nX

i=1

yiAi � C = S, S ⌫ 0

Dy + slin = d , slin � 0

Loraine assumes that the solution X ⇤ has very low rank.

The SDP relaxation of BQP has the form of (D) with low-rank
solution S, just the oposite of our assumption!

Using additional variables and equality constraints, we will
reformulate it as (P) with low-rank solution X .
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Re-writing the BQP relaxation
The dual problem to

min
y2Rn

q>y (BQP-rel)

subject to M(y) :=
nX

i=1

yiMi � M0 ⌫ 0 .

can be written as

max
z2Rñ

(svec(I))>z (BQP-rel-dual)

subject to smat(z) ⌫ 0
Mz = q̃ ,

where en = m(m + 1)/2, M = (svec(M1), . . . , svec(Mn))T 2 Rn⇥en.

Now the dual solution to (BQP-rel-dual) has rank two, just as
Loraine needs.
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Handling linear equalities
Problem

max
z2Rñ

(svec(I))>z (BQP-rel-dual)

subject to smat(z) ⌫ 0
Mz = q̃

is now in the right form.
But what about the (many) linear equality constraints?
Interior-point methods do not like them.
Treat them by `1 penalty:

max
z2Rñ

(svec(I))>z + µkMz � q̃k1

subject to smat(z) ⌫ 0 ,

with a penalty parameter µ > 0.
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Handling linear equalities

Introduce two new variables, r 2 Rn, s 2 Rn, satisfying

Mz � q̃ = r � s, r � 0, s � 0 .

Using the identity r = Mz � q̃ + s to eliminate variable r , we
arrive at our final problem

max
z2Rñ, s2Rn

(svec(I))>z + µ
nX

i=1

((Mz � q̃)i + 2si) (BQP-rel-final)

subject to smat(z) ⌫ 0
Mz � q̃ + s � 0
s � 0

Problem (BQP-rel-final) is now in the required form.
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Sparsity assumption
Recall the sparsity assumptions:

• Sparsity: Define the matrix

A = [svec A1, . . . , svec An].

We assume that matrix-vector products with A and AT

may each be applied in O(n) flops and memory.
Every matrix Ai contains at most two nonzero elements, hence
this is trivially satisfied.

• “Sparsity” of D: The inverse (D>D)�1 and matrix-vector
product with (D>D)�1 may each be computed in O(n)
flops and memory.

Lemma: There exists a permutation matrix P 2 Ren⇥en such that
PMT MPT is a block diagonal matrix with small full blocks. In
particular, MT M is a sparse chordal matrix.
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Numerical experiments
We solve

min
x2Rs

x>Qx subject to xi 2 {�1, 1} , i = 1, . . . , s (BQP)

with randomly generated full-rank Q:

Conjecture: For Q constructed as above, relaxation order ! = 2
is sufficient to get exact solution of (BQP).
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q = randn(s,1); Q = q*q’;      
for k=1:s-1
 if ceil(k/2)*2 == k
 q = randn(s,1); Q = Q - q*q’;
 else
 q = randn(s,1); Q = Q + q*q’;
 end
end



Numerical experiments, problem sizes

min
x2Rs

x>Qx subject to xi 2 {�1, 1} , i = 1, . . . , s (BQP)

Problems of growing dimension, from s = 10 to s = 50,
relaxation order ! = 2.

BQP problem (BQP-rel) problem (BQP-rel-final)
size variables matrix size variables matrix size lin. con.

10 385 56 1 981 56 770
15 1 940 121 9 321 121 3 880
20 6 195 211 28 561 211 12 390
25 15 275 326 68 576 326 30 550
30 31 930 466 140 741 466 63 860
35 59 535 631 258 904 631 119 070
40 102 090 821 439 521 821 204 180
45 164 220 1 036 701 386 1 036 328 440
50 251 175 1 276 1 065 901 1 276 502 350
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Numerical experiments, results
Randomly generated BQP problems, relaxation order ! = 2.

(BQP-rel-final) (BQP-rel)

BQP Loraine Mosek ADMM
size iter CG iter CPU CPU iter CPU

10 10 256 0.1 0.27 995 0.38
15 10 725 1.3 1.13 1036 1.62
20 11 423 2.4 9.3 3836 19
25 13 294 5.5 81 5888 59
30 13 326 14 496 8906 166
35 15 530 43 mem 10903 436
40 14 730 106 13258 960
45 16 896 230 16731 1737
50 16 1114 431 21589 3689

iMac with 3.6 GHz 8-Core Intel Core i9 and 40 GB RAM
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Numerical Results

BQP problems:
Mosek (direct solver) vs Loraine (iterative solver) vs ADMM

(a) Mosek vs Loraine vs ADMM
CPU time (b) Loraine: time per CG iterations
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s THE END s

Loraine preprint available: arXiv:2105.08529
S. Habibi, A. Kavand, M. Kočvara and M. Stingl:
Barrier and penalty methods for low-rank semidefinite programming
with application to truss topology design
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