Solving unconstrained binary quadratic optimization problems by Lasserre hierarchy and an interior-point method

Michal Kočvara

University of Birmingham
jointly with Soodeh Habibi and Michael Stingl
Modern Techniques of Very Large Scale Optimization, Edinburgh, May 2022
oema
Polynomial Optimization, Efficiency
through Moments and Algebra

Linear Semidefinite Optimization, notation

Primal problem

$$
\begin{aligned}
& \max _{x \in \mathbb{S}^{m}, x_{\text {lin }} \in \mathbb{R}^{m}} C \bullet X+d^{\top} x_{\text {lin }} \\
& \text { subject to } \\
& \quad A_{i} \bullet X+\left(D^{\top} x_{\text {lin }}\right)_{i}=b_{i}, \quad i=1, \ldots, n \\
& \quad X \succeq 0, x_{\text {lin }} \geq 0
\end{aligned}
$$

Dual problem

$$
\begin{aligned}
& \min _{y \in \mathbb{R}^{n}, S \in \mathbb{S}^{m}, S \operatorname{lin} \in \mathbb{R}^{m}} c^{\top} y \\
& \text { subject to } \\
& \quad \sum_{i=1}^{n} y_{i} A_{i}+S=C, \quad S \succeq 0 \\
& D y+S_{\text {lin }}=d, \quad S_{\text {lin }} \geq 0
\end{aligned}
$$

Here: $\quad A_{i}, C \in \mathbb{R}^{m \times m}$, symmetric, $\quad X \bullet Y=\operatorname{trace}\left(X^{\top} Y\right)$

Unconstrained BQP

Find a global minimum of the non-convex binary problem

$$
\begin{equation*}
\min _{x \in \mathbb{S} \mathcal{S}} x^{\top} Q x \quad \text { subject to } \quad x_{i} \in \mathcal{B}, \quad i=1, \ldots, s \tag{BQP}
\end{equation*}
$$

$Q \in \mathbb{R}^{s \times s}$ symmetric, \mathcal{B} either $\{0,1\}$ or $\{-1,1\}$.
We do not assume any sparsity in Q, it is a generally dense matrix.

Technique: Hierarchy of convex conic relaxations
Kim-Kojima (2017): "BQP instances . . can serve as challenging problems for developing conic relaxation methods" (MK: "and/or SDP software").

Unconstrained BQP

To find a global optimum, we use Lasserre hierarchy of semidefinite optimization (SDP) problems-relaxations-of growing dimension.
The SDP relaxations have the form

$$
\begin{align*}
& \min _{y \in \mathbb{R}^{n}} q^{\top} y \tag{BQP-rel}\\
& \text { subject to } M(y):=\sum_{i=1}^{n} y_{i} M_{i}-M_{0} \succeq 0 .
\end{align*}
$$

Here M is a moment matrix, a (generally) dense matrix of a very specific form. (For $\omega=1$, we have $q=\operatorname{svec}(Q)$.)

In particular, if the solution of (BQP) is unique and the order of the relaxation is high enough, then rank $\mathrm{M}\left(\mathrm{y}^{*}\right)=2$.

Dimensions of the relaxations

variables	matrix size
n	$\sum_{i=1}^{\omega}\binom{s}{i}$

$\omega .$. relaxation order $(\omega=1,2, \ldots)$
s... dimension of BQP
$\frac{s^{4}}{24} \lesssim n \leq 2^{s}-1$
For instance, for $s=9$:

ω	vars	matrix size
2	255	46
3	465	130
4	510	256
5	511	382

Dimensions of the relaxations

The theoretical lower bound on ω to get exact solution is $\lceil s / 2\rceil$ (Laurent 2003 and Fawzi et al. 2016).

This is confirmed by (specially constructed) examples!
This gives

s	ω	matrix size
21	11	784625
31	16	759852346
41	21	$7.5 \cdot 10^{11}$
51	26	$7.5 \cdot 10^{14}$

So problems with $s>20$ seem unsolvable by this approach.

Introducing Loraine

Loraine - LOw-RAnk INtErior point method
Loraine uses a primal-dual predictor-corrector interior-point method together with iterative solution of the resulting linear systems.
The iterative solver is a preconditioned Krylov-type method with a preconditioner utilizing low rank of the solution. Implemented in Matlab (Julia version on the way)

Proved to be very efficient for SDP problems with very-low-rank solutions.

Only efficient under assumptions.

Loraine assumptions

Recall:
(P) $\max _{X, X_{\text {in }}} C \bullet X$

$$
\begin{aligned}
& \text { s.t. } A_{i} \bullet X+\left(D^{\top} x_{\text {lin }}\right)_{i}=b_{i} \forall i \\
& \\
& \quad X \succeq 0, \quad x_{\text {lin }} \geq 0
\end{aligned}
$$

We assume that the solution X^{*} has very low rank and develop a preconditioner based on this.

Loraine assumptions

Recall:
(P) $\max _{X, X_{\text {in }}} C \bullet X$
s.t. $A_{i} \bullet X+\left(D^{\top} x_{\text {lin }}\right)_{i}=b_{i} \forall i$

$$
x \succeq 0, \quad x_{\text {in }} \geq 0
$$

(D) $\min _{y, S, S \text { in }} c^{\top} y$

$$
\begin{gathered}
\text { s.t. } \sum_{i=1}^{n} y_{i} A_{i}-C=S, \quad S \succeq 0 \\
D y+s_{\text {lin }}=d, \quad s_{\text {lin }} \geq 0
\end{gathered}
$$

Further assumptions:

- Slater condition + strict complementarity
- Sparsity: Define the matrix

$$
\mathcal{A}=\left[\operatorname{svec} A_{1}, \ldots, \operatorname{svec} A_{n}\right] .
$$

We assume that matrix-vector products with \mathcal{A} and \mathcal{A}^{T} may each be applied in $O(n)$ flops and memory.

- "Sparsity" of D : The inverse $\left(D^{\top} D\right)^{-1}$ and matrix-vector product with $\left(D^{\top} D\right)^{-1}$ may each be computed in $\mathcal{O}(n)$ flops and memory.

Low-rank preconditioner for Interior-Point method

In each iteration of the (primal-dual, predictor-corrector) interior-point method we have to solve two systems of linear equations in variable y :

$$
\left((H y)_{i}=\right) A_{i} \bullet\left[W\left(\sum_{j=1}^{n} y_{j} A_{j}\right) W\right]=r_{i} \quad \text { for } i=1, \ldots, n .
$$

Critical observation: If the solution X^{*} is low-rank, W will be low-rank.
Hence $W=W_{0}+U U^{T}$ and

$$
H=\mathcal{A}^{\top}\left(W_{0} \otimes W_{0}\right) \mathcal{A}+\underbrace{\mathcal{A}^{\top}(U \otimes Z)}_{V} \underbrace{(U \otimes Z)^{\top} \mathcal{A}}_{V^{\top}}
$$

Preconditioner

$$
\mathcal{H}_{\alpha}=\left(\sum_{i=1}^{p} \tau_{i}^{2} I+D^{\top} X_{\operatorname{lin}} S_{\operatorname{lin}}^{-1} D\right)+\widetilde{V} \widetilde{V}^{T} .
$$

Loraine and relaxed BQP?

Recall:

$$
\begin{aligned}
& (P) \max _{X, x_{\text {lin }}} C \bullet X \\
& \text { s.t. } A_{i} \bullet X+\left(D^{\top} x_{\text {lin }}\right)_{i}=b_{i} \forall i \\
& \quad X \succeq 0, \quad x_{\text {lin }} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (D) } \min _{y, S, S \operatorname{lin}} c^{\top} y \\
& \text { s.t. } \\
& \sum_{i=1}^{n} y_{i} A_{i}-C=S, \quad S \succeq 0 \\
& \quad D y+S_{\text {lin }}=d, \quad s_{\text {lin }} \geq 0
\end{aligned}
$$

Loraine assumes that the solution X^{*} has very low rank.
The SDP relaxation of BQP has the form of (D) with low-rank solution S, just the oposite of our assumption!

Using additional variables and equality constraints, we will reformulate it as (P) with low-rank solution X.

Re-writing the BQP relaxation

The dual problem to

$$
\min _{y \in \mathbb{R}^{n}} q^{\top} y
$$

(BQP-rel)
can be written as

$$
\begin{aligned}
& \max _{z \in \mathbb{R}^{\tilde{n}}}(\operatorname{svec}(I))^{\top} z \\
& \operatorname{subject~to~} \operatorname{smat}(z) \succeq 0 \\
& \operatorname{Mz}=\tilde{q},
\end{aligned}
$$

where $\tilde{n}=m(m+1) / 2, \mathbf{M}=\left(\operatorname{svec}\left(M_{1}\right), \ldots, \operatorname{svec}\left(M_{n}\right)\right)^{T} \in \mathbb{R}^{n \times \tilde{n}}$.
Now the dual solution to (BQP-rel-dual) has rank two, just as Loraine needs.

Handling linear equalities

Problem

$$
\begin{aligned}
& \max _{z \in \mathbb{R}^{\tilde{n}}}(\operatorname{svec}(I))^{\top} z \\
& \text { subject to } \operatorname{smat}(z) \succeq 0 \\
& \operatorname{Mz}=\tilde{q}
\end{aligned}
$$

is now in the right form.
But what about the (many) linear equality constraints? Interior-point methods do not like them.
Treat them by ℓ_{1} penalty:

$$
\begin{aligned}
& \max _{z \in \mathbb{R}^{\tilde{n}}}(\operatorname{svec}(I))^{\top} z+\mu\|\mathbf{M} z-\tilde{q}\|_{1} \\
& \text { subject to } \operatorname{smat}(z) \succeq 0,
\end{aligned}
$$

with a penalty parameter $\mu>0$.

Handling linear equalities

Introduce two new variables, $r \in \mathbb{R}^{n}$, $s \in \mathbb{R}^{n}$, satisfying

$$
\mathbf{M} z-\tilde{q}=r-s, \quad r \geq 0, s \geq 0
$$

Using the identity $r=\mathbf{M z}-\tilde{q}+s$ to eliminate variable r, we arrive at our final problem

$$
\max _{z \in \mathbb{R}^{\tilde{n}}, s \in \mathbb{R}^{n}}(\operatorname{svec}(I))^{\top} z+\mu \sum_{i=1}^{n}\left((\mathbf{M} z-\tilde{q})_{i}+2 s_{i}\right) \quad(\text { BQP-rel-final) }
$$

subject to $\operatorname{smat}(z) \succeq 0$

$$
\begin{aligned}
& \mathbf{M} z-\tilde{q}+s \geq 0 \\
& s \geq 0
\end{aligned}
$$

Problem (BQP-rel-final) is now in the required form.

Sparsity assumption

Recall the sparsity assumptions:

- Sparsity: Define the matrix

$$
\mathcal{A}=\left[\operatorname{svec} A_{1}, \ldots, \operatorname{svec} A_{n}\right]
$$

We assume that matrix-vector products with \mathcal{A} and \mathcal{A}^{T} may each be applied in $O(n)$ flops and memory.
Every matrix A_{i} contains at most two nonzero elements, hence this is trivially satisfied.

- "Sparsity" of D : The inverse $\left(D^{\top} D\right)^{-1}$ and matrix-vector product with $\left(D^{\top} D\right)^{-1}$ may each be computed in $\mathcal{O}(n)$ flops and memory.
Lemma: There exists a permutation matrix $P \in \mathbb{R}^{\tilde{n} \times \tilde{n}}$ such that $P \mathbf{M}^{\top} \mathbf{M} P^{\top}$ is a block diagonal matrix with small full blocks. In particular, $\mathbf{M}^{\top} \mathbf{M}$ is a sparse chordal matrix.

Numerical experiments

We solve

$$
\min _{x \in \mathbb{R}^{s}} \top^{\top} Q x \text { subject to } x_{i} \in\{-1,1\}, \quad i=1, \ldots, s \quad \text { (BQP) }
$$

with randomly generated full-rank Q :

```
\(q=\operatorname{randn}(s, 1) ; Q=q * q^{\prime} ;\)
for \(k=1: s-1\)
    if ceil(k/2)*2 == k
        \(q=\operatorname{randn}(s, 1) ; Q=Q-q * q^{\prime} ;\)
    else
        \(q=\operatorname{randn}(s, 1) ; Q=Q+q * q^{\prime} ;\)
    end
end
```

Conjecture: For Q constructed as above, relaxation order $\omega=2$ is sufficient to get exact solution of (BQP).

Numerical experiments, problem sizes

$$
\min _{x \in \mathbb{R}^{s}} x^{\top} Q x \quad \text { subject to } \quad x_{i} \in\{-1,1\}, \quad i=1, \ldots, s
$$

Problems of growing dimension, from $s=10$ to $s=50$, relaxation order $\omega=2$.

BQP size	problem (BQP-rel) variables		problem (BQP-rel-final)		
matrix size	variables	matrix size	lin. con.		
10	385	56	1981	56	770
15	1940	121	9321	121	3880
20	6195	211	28561	211	12390
25	15275	326	68576	326	30550
30	31930	466	140741	466	63860
35	59535	631	258904	631	119070
40	102090	821	439521	821	204180
45	164220	1036	701386	1036	328440
50	251175	1276	1065901	1276	502350

Numerical experiments, results

Randomly generated BQP problems, relaxation order $\omega=2$.

	(BQP-rel-final)			(BQP-rel)			
BQP size	iter	CG iter	CPU	Coraine	CPU	ADMM	
iter	CPU						
10	10	256	0.1	0.27	995	0.38	
15	10	725	1.3	1.13	1036	1.62	
20	11	423	2.4	9.3	3836	19	
25	13	294	5.5	81	5888	59	
30	13	326	14	496	8906	166	
35	15	530	43	mem	10903	436	
40	14	730	106		13258	960	
45	16	896	230		16731	1737	
50	16	1114	431		21589	3689	

iMac with 3.6 GHz 8-Core Intel Core i9 and 40 GB RAM

Numerical Results

BQP problems:

Mosek (direct solver) vs Loraine (iterative solver) vs ADMM

(a) Mosek vs Loraine vs ADMM CPU time

~THE END ~

Loraine preprint available: arXiv:2105.08529

S. Habibi, A. Kavand, M. Kočvara and M. Stingl:

Barrier and penalty methods for low-rank semidefinite programming with application to truss topology design

