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Alternating Direction Methof of Multipliers (ADMM)

Canonical problem:

min
x∈Rn, z∈Rm

f(x) + g(z)

subject to Ax + Bz = b

Functions f : Rn → R̄ and g : Rm → R̄ are closed, proper, and convex

Often used to re-write problems of the form

min
x

f(x) + g(Hx)

as
min
x,z

f(x) + g(z) subject to Hx = z
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Alternating Direction Method of Multipliers (ADMM)

Canonical problem: min
x∈Rn, z∈Rm

f(x) + g(z)

subject to Ax + Bz = b

Canonical ADMM (in scaled form)

xk+1 = arg min
x
f(x) +

ρ

2

∥∥Ax + Bzk − b + uk
∥∥2

2

zk+1 = arg min
z
g(z) +

ρ

2

∥∥Axk+1 + Bz− b + uk
∥∥2

2

uk+1 = uk+1 + Axk+1 + Bzk+1 − b

Can be derived in several ways: method of multipliers (augmented
Lagrangian); Douglas-Rachford for the dual; ...

Introduced by French mathematicians in the 1970s
[Gabay and Mercier, 1976], [Glowinski and Marrocco, 1975]

Cornerstone work in the 1990s by Eckstein and Bertsekas [1992]
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Explosion of Interest in ADMM

Citations to paper by Eckstein and Bertsekas [1992]:

Citations to review paper by Boyd et al. [2011]:
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Classical Convergence Result

Problem: minx f(x) + g(Hx)

ADMM:

x(k+1) = arg min
x
f(x) +

ρ

2

∥∥Hx− v(k) − u(k)
∥∥2

2

(not a prox)

v(k+1) = arg min
v
g(v) +

ρ

2

∥∥Hx(k+1) − v − u(k)
∥∥2

2
,

(a prox)

u(k+1) = u(k) −Hx(k+1) + v(k+1),

Theorem (Eckstein and Bertsekas [1992] (simplified version))

Let H have full column rank, and f : Rn → R̄ and g : Rm → R̄ be closed, proper,

convex functions; let v0,u0 ∈ Rm, and ρ > 0 be given. Then (x(k))k=1,2,...

converges to a solution, if one exists. If no solution exists, then at least one of the

sequences (v(k))k=1,2,... or (u(k))k=1,2,... diverges.

Proximity operator: proxφ(u) := arg min
x

φ(x) + 1
2‖u− x‖22

Moreau [1965]
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Two or More Functions

Problem template: min
x∈Rn

J∑
j=1

gj
(
Hj x

)

X gj : Rmj → R̄ are closed, proper, and convex.

X Hj ∈ Rmj×n

Can be re-written in canonical form

min
x

f(x) + g(Hx),

with

f = 0, z =

z
(1)

...

z(J)

, g(z) =
J∑
j=1

gj(z
(j)), H =

H1
...

HJ
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ADMM for Two or More Functions

General problem template: min
x∈Rn

J∑
j=1

gj
(
Hj x

)

ADMM after re-writing in canonical form:

xk+1 = arg min
x

J∑
j=1

‖Hj x− z
(j)
k + u

(j)
k

∥∥2

2

z
(1)
k+1 = arg min

v∈Rm1
g1(v) +

ρ

2

∥∥H1 xk+1 − v + u
(1)
k

∥∥2

2

...
...

z
(J)
k+1 = arg min

v∈RmJ
gJ(v) +

ρ

2

∥∥HJ xk+1 − v + u
(J)
k

∥∥2

2

uk+1 = uk+1 + Axk+1 + Bzk+1

SALSA, PIDAL, PIDSplit, SDMM
[Figueiredo and Bioucas-Dias, 2010], [Setzer et al., 2010],
[Combettes and Pesquet, 2011]
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A Closer Look

A closer look at the algorithm

xk+1 =

( J∑
j=1

HT
j Hj

)−1 J∑
j=1

Hj

(
z

(j)
k − u

(j)
k

)

z
(1)
k+1 = proxg1/ρk

(
H1 xk+1 + u

(1)
k

)
...

...

z
(J)
k+1 = proxgJ/ρk

(
HJ xk+1 + u

(J)
k

)
uk+1 = uk+1 + Axk+1 + Bzk+1

Decoupled: a linear problem; a set of proximity operators

Hinges on: fast matrix inversion; simple proximity operators

Matrix inverse independent of ρk (good, if not kept constant)
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Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+

(ui)− yi log(zi)+

)
X Multiplicative noise: Ψ(u,y) = M

∑
i

(
zi + eyi−zi

)

Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear (observation) operator; e.g., blur, tomographic projections,
partial Fourier observations (MRI),...

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 11/∞



Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+

(ui)− yi log(zi)+

)
X Multiplicative noise: Ψ(u,y) = M

∑
i

(
zi + eyi−zi

)
Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear (observation) operator; e.g., blur, tomographic projections,
partial Fourier observations (MRI),...

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 11/∞



Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+

(ui)− yi log(zi)+

)
X Multiplicative noise: Ψ(u,y) = M

∑
i

(
zi + eyi−zi

)
Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear (observation) operator; e.g., blur, tomographic projections,
partial Fourier observations (MRI),...

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 11/∞



Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+

(ui)− yi log(zi)+

)

X Multiplicative noise: Ψ(u,y) = M
∑
i

(
zi + eyi−zi

)
Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear (observation) operator; e.g., blur, tomographic projections,
partial Fourier observations (MRI),...

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 11/∞



Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+

(ui)− yi log(zi)+

)
X Multiplicative noise: Ψ(u,y) = M

∑
i

(
zi + eyi−zi

)

Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear (observation) operator; e.g., blur, tomographic projections,
partial Fourier observations (MRI),...

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 11/∞



Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+

(ui)− yi log(zi)+

)
X Multiplicative noise: Ψ(u,y) = M

∑
i

(
zi + eyi−zi

)
Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear (observation) operator; e.g., blur, tomographic projections,
partial Fourier observations (MRI),...

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 11/∞



Image Restoration/Reconstruction

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

where y are observations and ιC(x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

Ψ: the observation model (negative log-likelihood); namely,

X Gaussian observations: Ψ(u,y) = 1
2σ2 ‖u− y‖22 = 1

2σ2

∑
i(ui − yi)2

X Poisson observations: Ψ(u,y) =
∑
i

(
ui + ιR+

(ui)− yi log(zi)+

)
X Multiplicative noise: Ψ(u,y) = M

∑
i

(
zi + eyi−zi

)
Φ ◦P is a regularizer; e.g., total variation (TV), or Φ is a norm

A: linear (observation) operator; e.g., blur, tomographic projections,
partial Fourier observations (MRI),...

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 11/∞



Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)
X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 12/∞



Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)
X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 12/∞



Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)
X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 12/∞



Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)

X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 12/∞



Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)
X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 12/∞



Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)
X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 12/∞



Image Restoration: Observation Models Ψ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

All the above observation models have simple, component-wise
proximity operators

X Gaussian observations: proxτΨ(u) =
σ2u+ τy

σ2 + τ

X Poisson observations: proxτΨ(u) =
1

2

(
y − τ +

√
(y − τ)2 + 4yτ

)
X Multiplicative noise: proxτΨ(u) uses Lambert’s W -function

The proximity operator of ιC is simply an Euclidean projection:

proxιC (u) = projC(u);

e.g., if C = Rn+, then
(
projC(u)

)
i

= max{0, ui}

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 12/∞



Image Restoration: Regularizers Φ

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px) + ιC(x)

Classical regularizers with simple proximity operators

X `1 norm:
(
proxτ‖·‖1(u)

)
i

= sign(ui) max{0, ui − τ}

= soft(ui, τ)

X Squared `2 norm: proxτ‖·‖22(u) =
u

1 + τ

(linear shrinkage)

X `2 norm: proxτ‖·‖2(u) =
u max{0, ‖u‖2 − τ}

max{0, ‖u‖2 − τ}+ τ

= vect-soft(u, τ)

Total variation can be written as Φ ◦P, where

P : Rn → (R2)n, with (Px)i =

[
xi − xh(i)

xi − xv(i)

]
, and Φ(v) =

∑
i

‖vi‖2

with h(i) and v(i) the horizontal and vertical neighbours of pixel i
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Image Restoration: Synthesis Formulation

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px)

Synthesis formulation: A = BW and P = I

X x contains representation coefficients, not the image itself

X W the synthesis operator of a Parseval frame: WWT = I

X B is the observation operator

Via the Sherman-Morrison-Woodbury formula

(ATA+PTP)−1 =
(
WTBTBW+I

)−1
= I−WTBT

(
BTB+I

)−1
BW

Can BTB+ I be inverted efficiently?
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Image Restoration: Analysis Formulation

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px)

Analysis formulation: A = B

X x contains the image itself

X P the analysis operator of a Parseval frame: PTP = I

X B is the observation operator

Matrix inversion: (
BTB + PTP

)−1
=
(
BTB + I

)−1

Can BTB + I be inverted efficiently?
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Image Restoration: Constrained (Morozov) Formulations

General formulation: x̂ ∈ arg min
x∈Rn

Ψ(Ax,y) + Φ(Px)

Constrained (or Morozov) formulation:

x̂ ∈ min
x∈Rn

Φ(Px) subject to Λ(Ax,y) ≤ 1

Can be written in the general formulation, with

Ψ(Ax,y) = ιD(y)(Ax), with D(y) = {x : Λ(x,y) ≤ 1}

Classical example: x̂ ∈ arg minx∈Rn Φ(Px) s.t. ξ‖Ax− y‖2 ≤ 1

Thus, D(y) is a unit Euclidean ball around y; projection is trivial.

Applies both to synthesis and analysis formulations
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Image Restoration: Matrix Inversions

The required inversion
(
BTB + I

)−1
is simple in many relevant cases:

[Afonso et al., 2011], [Figueiredo and Bioucas-Dias, 2010]

X Periodic deconvolution: B = UHFU,

F is diagonal; U is the DFT matrix (UHU = UUH = I)(
BTB + I

)−1
= UH

(
|F|2 + I

)−1︸ ︷︷ ︸
diagonal

U

X Inpainting: B ∈ {0, 1}m×n, with m rows of I; thus, BTB is diagonal

X Compressive Fourier imaging (MRI, multi-coil MRI): B = MU, where
M ∈ {0, 1}m×n, with m rows of I; thus, MMT = I(

BTB + I
)−1

= I− 1

2
UH MTM︸ ︷︷ ︸

diagonal

U

Cost is at most O(n log n)
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Non-periodic Deconvolution

Periodic boundary conditions are usually unnatural

...as are other standard BC: Neumann, Dirichlet.

A more natural choice: unknown boundaries [Reeves, 2005],
[Chan et al., 2005], [Almeida and Figueiredo, 2013a], [Ramani and Fessler, 2013]
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Non-periodic Deconvolution (2)

Gaussian noise model: Ψ(Bx,y) = 1
2σ2 ‖

mask︷︸︸︷
M UHFU︸ ︷︷ ︸

period. conv.

x− y‖22

Choosing B = MUHFU, makes
(
BTB+ I

)−1
hard to compute

Better option: B = UHFU (as in periodic deconvolution), and

Ψ(u,y) =
1

2σ2
‖Mu− y‖22

The proximity operator is still simple:

proxτΨ(u) =
(
τMTM + σ2I

)−1︸ ︷︷ ︸
diagonal

(
τMTy + σ2u

)
Similar formulations:

X deconvolution + inpainting (M masks the boundary and missing pixels)

X super-resolution (filtering + downsampling mask)
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Deconvolution with Unknown Boundaries: Example
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Deconvolution + Inpainting with Unknown BC: Example

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 21/∞



Speed

Benchmark deblurring problem (9× 9 blur, 40dB SNR, Haar frame, `1)

and inpainting problem (50% missing data) [Afonso et al., 2011]

Deconvolution with unknown BC [Almeida and Figueiredo, 2013a],
[Ramani and Fessler, 2013]
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Speed

Key issue: choosing parameter ρk

Barzilai-Borwein-type method on the dual [Xu et al., 2016]

Extension to over-relaxed and distributed ADMM [Xu et al., 2017a,b]

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 23/∞



Speed

Key issue: choosing parameter ρk

Barzilai-Borwein-type method on the dual [Xu et al., 2016]

Extension to over-relaxed and distributed ADMM [Xu et al., 2017a,b]

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 23/∞



Intermediate Summary

...a flexible formulation of ADMM for image restoration:

X Frame-based analysis or synthesis regularization

X Total variation regularization

X ...or combinations thereof

X Tikhonov, Morozov, Ivanov formulations

X Gaussian, Poissonian, multiplicative noise, ...

X Deconvolution, inpainting, compressive Fourier sensing (MRI),
super-resolution, ...

X Periodic or unknown boundaries

X Blind deconvolution (later)

Convergence guaranteed by classical results [Eckstein and Bertsekas, 1992]

...functions are closed, proper, convex; matrices have full column rank
(except blind deconvolution)
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Convergence guaranteed by classical results [Eckstein and Bertsekas, 1992]

...functions are closed, proper, convex; matrices have full column rank
(except blind deconvolution)

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 24/∞



Intermediate Summary

...a flexible formulation of ADMM for image restoration:

X Frame-based analysis or synthesis regularization

X Total variation regularization

X ...or combinations thereof

X Tikhonov, Morozov, Ivanov formulations

X Gaussian, Poissonian, multiplicative noise, ...

X Deconvolution, inpainting, compressive Fourier sensing (MRI),
super-resolution, ...

X Periodic or unknown boundaries

X Blind deconvolution (later)

Convergence guaranteed by classical results [Eckstein and Bertsekas, 1992]

...functions are closed, proper, convex; matrices have full column rank
(except blind deconvolution)

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 24/∞



Outline

1 Introduction: ADMM et al. (2007-2011)

2 Image Restoration/Reconstruction (2011-2014)

3 Plug-and-Play and Class-Adaptation (2015-2020)

4 Blind Restoration: Non-Convex Optimization (2013-2019)

5 Hyperspectral Imaging (2017-2020)

6 Final Remarks
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Denoising Step in ADMM

Restoration (w/ Gauss noise): x̂ ∈ arg min
x∈Rn

1

2
‖Ax− y‖22 + Φ(x)

ADMM directly applied to this problem has the form

xk+1 =
(
ATA + ρI

)−1(
ATy + ρ(zk − uk)

)
zk+1 = proxΦ/ρ

(
xk+1 + uk

)
uk+1 = uk+1 + xk+1 − zk+1

The prox of the regularizer Φ is a denoising operation

Prox of convex regularizer (frames, TV): not state-of-the-art denoising

State-of-the-art denoising methods:

X Collaborative filtering (BM3D) [Dabov et al., 2007]

X Non-local Bayes [Lebrun et al., 2013]

X Gaussian mixture models [Zoran and Weiss, 2011], [Teodoro et al., 2015]

X Deep convolutional networks [Ulyanov et al., 2017, Heckel and Hand, 2019]

Can we use one of these denoisers instead of a proximity operator?
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Plug-and-Play ADMM

Plug a black-box denoiser into ADMM [Venkatakrishnan et al., 2013]

xk+1 =
(
ATA + ρI

)−1(
ATy + ρ(zk − uk)

)
zk+1 = denoise

(
xk+1 + uk

)
uk+1 = uk + xk+1 − zk+1

If denoiser = proxφ, for convex φ, convergence is well-known
[Eckstein and Bertsekas, 1992, Boyd et al., 2011, ..., ...].

...what about convergence of PnP-ADMM?
[Sreehari et al., 2016, Teodoro et al., 2017b, 2019, Chan et al., 2017, Xu et al.,

2020, ..., ...]
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GMM-Based Denoising

Observation model: p(y|x) = N (y|x, σ2I)

Decompose noisy image into overlapping patches yi

Denoise each patch independently under GMM prior:

p(xi) =

K∑
j=1

αj N (xi;µj ,Cj)

The minimum mean squared error (MMSE) estimate (not the MAP)
has closed-form:

x̂i = E[Xi|yi]

Assemble the denoised image by putting the estimated patches at their
locations, averaging overlapping pixel estimates

Estimating the mixture:

X From a collection of clean image patches [Zoran and Weiss, 2011]

X From the noisy image itself using EM [Teodoro et al., 2015]
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MMSE Estimate with GMM Prior

Gaussian noisy observations: fY|X(y|x) = N (y|x, σ2I)

Gaussian prior: fX(x) = N (x|µ,C)

MMSE estimate:

arg min
x̂

E[‖x̂−X‖22|y] = E[X|y] =
(
σ2C + I

)−1(
σ2C−1µ + y

)
Gaussian mixture prior: fX(x) =

K∑
j=1

αj N (x|µj ,Cj)

MMSE estimate

(the MAP solution has no closed form)

E[X|y] =
K∑
j=1

βj(y)
(
σ2Cj + I

)−1(
σ2C−1

j µj + y
)

where βj(y) ∝ αjN (y|µj ,Cj + σ2I), with
∑K

j=1 βj(y) = 1
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Plug-and-Play ADMM: Deblurring of Generic Images

Generic GMM prior

Image: Cameraman House

Experiment: 1 2 3 4 5 6 1 2 3 4 5 6

IDD-BM3D [Danielyan et al., 2012] 8.85 7.12 10.45 3.98 4.31 4.89 9.95 8.55 12.89 5.79 5.74 7.13
ADMM-GMM [Teodoro et al., 2016] 8.39 6.36 9.80 3.47 4.16 4.88 9.66 8.22 12.43 5.50 5.42 6.82

(a) Original (b) Blurred (c) IDD-BM3D (d) ADMM-GMM

For generic natural images: competitive, but does not beat state-of-the-art
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Class-Adapted GMM-Based Restoration

Learn a GMM for a class of images, plug the corresponding denoiser
into ADMM [Teodoro et al., 2017b]

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 31/∞



Class-Adapted GMM-Based Restoration

Learn a GMM for a class of images, plug the corresponding denoiser
into ADMM [Teodoro et al., 2017b]

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 31/∞



Class-Adapted GMM-Based Restoration

Learn a GMM for a class of images, plug the corresponding denoiser
into ADMM [Teodoro et al., 2017b]

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 31/∞



Convergence

PnP-ADMM with a patch-based GMM-MMSE denoiser

xk+1 =
(
ATA + ρI

)−1(
ATy + ρ(zk + uk)

)
zk+1 = denoiser

(
xk+1 − uk, 1/ρ

)
uk+1 = uk+1 − xk+1 + zk+1

if denoiser is the prox of a convex function ⇒ convergence.

From Moreau [1965]: some map p : Rn → Rn is the prox of a convex
function if and only if:

a) p is non-expansive, i.e., ∀x,x′, ‖p(x)−p(x′)‖ ≤ ‖x−x′‖

b) and p is subgradient of a convex function, i.e.,
∃φ : Rn → R : p(x) ∈ ∂φ(x), ∀x

Does the patch-based GMM-MMSE denoiser satisfy these conditions?
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Convergence (2)

Is the patch-based GMM-MMSE denoiser non-expansive?

No! A simple univariate counter-example:

X Spike-and-slab-type prior: p(x) = 1
2N (x; 0, τ1) + 1

2N (x; 0, τ2), τ2 � τ1

X MMSE estimate under Gaussian noise of unit variance:

x̂ = E[X|y] =

τ1 y
τ1+1 β1(y) + τ2 y

τ2+1 β2(y)
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, where βi(y) = N (y; 0, τi+1)
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Convergence (3)

Freeze the weights (βm) after a certain number of iterations.

Patch estimate:

x̂i =

K∑
m=1

βim Cm

(
Cm + σ2 I

)−1
yi

= Fi(σ
2)yi = Fi(σ

2)Pi y

Pi is the operator (binary matrix) that extracts the i-th patch

(weights are normalized, to simplify the notation: βim ← βim/
∑

j β
i
j)

Global image estimate: aggregate the patch estimates:

x̂ =
1

np

N∑
i=1

PT
i Fi(σ

2)Pi y = W(σ2) y

Key properties of W [Teodoro et al., 2019]: for any σ2 > 0,

W(σ2) = W(σ2)T , W(σ2) � 0, λmax

(
W(σ2)

)
< 1
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Convergence (4)

Freezing the weights (βm) after a certain number of iterations,

denoiser(y, σ2) = W(σ2)y

Recalling Moreau’s corollary, this is a proximity operator:

It is non-expansive: W(σ2) is symmetric with λmax

(
W(σ2)

)
< 1

It is the gradient of a convex function: W(σ2)y = ∇y

(
1
2y

TW(σ2)y
)

Can we identify the function of which this denoiser is the prox?

φ(x) = ιS(W)(x) +
1

2
xT Q̄(Λ̄−1 − I)Q̄Tx

where S(W) is the column span of W, Λ̄ has the positive eigenvalues
of W, and Q̄ the corresponding eigenvectors.

Conclusion: the problem has a solution and PnP-ADMM converges
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Outline

1 Introduction: ADMM et al. (2007-2011)

2 Image Restoration/Reconstruction (2011-2014)

3 Plug-and-Play and Class-Adaptation (2015-2020)

4 Blind Restoration: Non-Convex Optimization (2013-2019)

5 Hyperspectral Imaging (2017-2020)

6 Final Remarks

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 36/∞



Blind Deblurring

Blind image deblurring/deconvolution

y = h ∗ x + n

= H(h) x + n = X(x) h + n

where both x and h are unknown

Joint criterion (under Gaussian noise) [Almeida and Figueiredo, 2013b]

(x̂, ĥ) ∈ arg min
x,h

1

2
‖h ∗ x− y‖22 + Φ(x) + Ψ(h)︸ ︷︷ ︸

O(x,h)

where Φ and Ψ are regularizers

Even if Φ and Ψ are convex, this is a non-convex problem
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Algorithm

Proximal alternating minimization [Attouch et al., 2007]

Solver for each minimization: ADMM/SALSA

Initialization: x̂ = y, ĥ - identity filter
while stopping criterion is not satisfied do

x̂← argmin
x

O(x, ĥ) + ρx
2 ‖x− x̂previous‖2

ĥ← argmin
h

O(x̂,h) + ρh
2 ‖h− ĥprevious‖2

end while

Image regularizer: class-adapted plug-and-play priors

Filter regularizer: positivity and support, or sparsity
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while stopping criterion is not satisfied do

x̂← argmin
x

O(x, ĥ) + ρx
2 ‖x− x̂previous‖2
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Priors

Plug-and-play image priors:

X GMM-based patch denoiser, trained on a dataset of clean images (text,
faces, fingerprint)

X Dictionary-based patch denoiser, learned from clean images (same
classes)

X General-purpose BM3D denoiser.

Blur filter priors

X Constraint: positivity and maximum support

X Sparsity (adequate for motion blur)
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Results: GMM-based prior for text images

original blurred

[Pan et al., 2014] BM3D: 9.97 dB GMM: 11.16 dB
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Experiments

original blurred

[Almeida and Figueiredo, 2013b] BM3D: 0.66 dB GMM: 1.19 dB
0.36 dB
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Experiments

(a) Blurred image (b) [Almeida and Figueiredo, 2013b]

(c) [Pan et al., 2014] (d) Proposed

Uses a concatenation of two dictionaries: face and text
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Experiments
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Blind Deconvolution: Real Examples

Results from [Almeida and Figueiredo, 2013b]

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 44/∞



Outline

1 Introduction: ADMM et al. (2007-2011)

2 Image Restoration/Reconstruction (2011-2014)

3 Plug-and-Play and Class-Adaptation (2015-2020)

4 Blind Restoration: Non-Convex Optimization (2013-2019)

5 Hyperspectral Imaging (2017-2020)

6 Final Remarks

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 45/∞



An Extreme Case of Adaptation: Hyperspectral Fusion

Spectral-spatial resolution trade-off:

Hyper-spectral:

low spatial resolution

high spectral resolution

Multi-spectral:

high spatial resolution

low spectral resolution

Fuse MS and HS data:

high spatial & spectral resolutions

Extreme case: pansharpening (panchromatic rather than MS image).
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Hyperspectral Fusion: Formulation

Observation model [Simões et al., 2015]

Yh =

Z︷︸︸︷
EX BM + Nh hyperspectral data ∈ RLh×nh

Ym = R EX︸︷︷︸
Z

+Nm multispectral data ∈ RLm×nm

Lh > Lm and nh < nm

X E ∈ RLh×p: the p-dimensional subspace containing the fused image Z

X X ∈ Rp×nh : the corresponding coefficients (p� Lh)

X (BM) ∈ Rnm×nh models spatial convolution & subsampling

X R ∈ RLm×Lh models the spectral responses of the MS sensors

X Nh and Nm model noise
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Hyperspectral Fusion via PnP-ADMM

Assuming Gaussian noise:

X̂ ∈ arg min
X∈Rp×nh

1

2
‖EXBM−Yh‖2F +

λm
2
‖REX−Ym‖2F + “φ(X)”

...which fits nicely the SALSA template (J = 3): min
x

J∑
j=1

gj
(
Hj x

)
Matrix inversion computable via FFT (with periodic or unknown BC)

Proximity operators:

X The one involving RE: a single p× p inversion; decoupled across pixels

X The one involving BM: solved by FFT, decoupled across bands

X The prox of φ is replaced by an adapted GMM-based denoiser

The GMM is learned from patches of Ym (high spatial resolution)
[Teodoro et al., 2019]
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Hyperspectral Fusion: Synthetic Example

[Teodoro et al., 2017a]
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Hyperspectral Fusion: Synthetic Example

[Teodoro et al., 2017a]M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 50/∞



Outline

1 Introduction: ADMM et al. (2007-2011)

2 Image Restoration/Reconstruction (2011-2014)

3 Plug-and-Play and Class-Adaptation (2015-2020)

4 Blind Restoration: Non-Convex Optimization (2013-2019)

5 Hyperspectral Imaging (2017-2020)

6 Final Remarks

M. Figueiredo (IT, IST, ULisbon) Edinburgh, 2022 51/∞



Final Remarks

ADMM/SALSA: a flexible toolbox for a variety inverse problems

Its speed hinges on the inversion of (BTB + I) (à la quasi-Newton)

Plug-and-play (PnP) denoisers “can” be used with ADMM

Convergence properties of PnP-ADMM with fixed linear denoiser

Extension to blind deblurring (non-convex)

Ideally suited for hyperspectral imaging
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Thank you.
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