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Thank You! 

• I would like to thank the organizers for the opportunity to give 
this keynote presentation 

 Jacek Gondzio 

 Stefano Cipolla 

 Fillipo Zanetti 

• And Jacek for sponsoring my one-month sabbatical visit to U. 
Edinburgh 

Disclaimer 

• Some of the early references I will mention are not online 

• I did not bring my copies with me to Edinburgh 

• So, there is a chance that some citations I will give are not 
exactly correct 
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The ADMM: Past 

• The ADMM is now considered a standard optimization algorithm 

• But it has an unusual history: 
 

1. It was discovered empirically before it was analyzed 
mathematically 
 

2. The initial discoverers and analyzers were French applied 
mathematics researchers specializing in large-scale 
discretized PDEs  
 

3. Over 20 years elapsed between its initial analysis and its 
becoming popular 
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The ADMM – Background from the Standard ALM 

In the mid-1970’s, this group of researchers (Fortin, Glowinski, 
Marrocco, Gabay, Mercier) had reformulated their discretized 
PDEs (roughly) as follows: 

• : { }nf → ∪ +∞   is a convex function 

• : { }mg → ∪ +∞   is a convex function 

• M is an m n×  matrix 

min ( ) ( )f x g Mx+    

• Equivalent formulation: 

min ( ) ( )
ST

f x g z
Mx z

+
=
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Applying the Augmented Lagrangian Method 

• To this formulation, they applied the augmented Lagrangian 
method (ALM) 

o   A “hot” new method at the time 

• Standard augmented Lagrangian method (ALM) for this 
formulation: 

( )1 1

,

1 1

2

1

, Arg min (

)
2

) ( ) ,

(

n m

k k k

x z

k

k

k k k
k

x z f x g z p Mx

p

c

p

M

z

zz

Mx

x

c

+ +

∈ ∈

+ + +

 ∈ + + − + 
 

= −

−

+

   

• Although the equality constraints are gone, the cross terms in 
2Mx z−  make the augmented Lagrangian harder to optimize 

than the ordinary Lagrangian (without 2Mx z− ) 

o Cannot handle f and g independently 

• But the ALM is much more stable than minimizing the ordinary 
Lagrangian & multiplier update (subgradient in the dual) 
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Interpretation of the ALM 

• The ALM method does an implicit subgradient step on the dual 
problem (as shown by Rockafellar; a form of “dual ascent”) 

 
• The step direction is a subgradient of the function at the end 

of the step, not the beginning 
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Interpretation of the ALM 

• The ALM method does an implicit subgradient step on the dual 
problem (as shown by Rockafellar; a form of “dual ascent”) 

 
• The step direction is a subgradient of the function at the end 

of the step, not the beginning 

• Much more stable, but at the cost of those cross terms 

Subgradient step 
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Alternating Directions 

• To make the cross terms less painful, Glowinski and Marrocco 
(1976) suggested an alternating direction method for the inner 
problem:   

o Minimize over x with z held fixed 

o Then minimize over z with x held fixed 

• They suggested executing this loop a fixed number of times, 
then update the multipliers 

• This inner iteration was later shown to converge by Tseng 
(2001) under fairly loose assumptions 

o But not in a fixed number of steps 

o Unless you can show that you have (at least approximately) 
minimized the inner problem, the multiplier update is no 
longer dual ascent 
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The ADMM is Born 

• Interestingly, Glowinski and Marrocco observed the best 
performance when making only one pass through x and z at 
every iteration – the ADMM: 
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Omitting constants from the minimands, 
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No Theory Yet 

• But they did not have any theory to support this result 

• The multiplier update is definitely not dual ascent now, 
because we are nowhere close to minimizing the augmented 
Lagrangian 

The ADMM Does Not Approximate the ALM 

• I have done experiments in which I use alternating 
minimization for the inner problem until some (rigorous) 
approximation criterion for the augmented Lagrangian is met, 
then update the multipliers 

• This generally produces far fewer multiplier updates 
(usually an order of magnitude or so) 

• But many orders of magnitude more total inner iterations 

• Alternating minimization is in general a poor algorithm for the 
inner problems 

• So how to understand the convergence of the ADMM? 
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Four Years After Glowinski & Marrocco, Some Theory 

• The following edited volume of papers appeared in 1983 
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Aside: Amazon’s Search Engine 

• When I searched for this book on Amazon, I got 
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Aside: Amazon’s Search Engine 

• When I searched for this book on Amazon, I got 
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Two Proofs of Convergence in this Book 

• In Fortin & Glowinski (1983), a convergence proof using a 
variational inequality analysis 

• In Gabay (1983), a proof showing that the ADMM is an operator 
splitting method 

o The “Douglas-Rachford” splitting method for monotone 
(set-valued) operators analyzed by Lion and Mercier in 1979 

o Applied to the dual of min ( ) ( )f x g Mx+  

o Operator splitting methods also have their roots in the PDE 
world – so relatively natural for these researchers to have 
this insight 
 

• I will follow the Gabay path since it is more intuitive 

• The relationship between the two proofs could still use 
clarification 

o They lead to different forms of over-relaxation 
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Subgradients of a Convex Function 

• Suppose that : { }nd → ∪ +∞   is a convex function 

• d  may not be smooth, but it has subgradients 

• ( )d x∂  denotes the set of subgradients of d at x : 

{ }( ) ( ') ( ) , ' ' md x y d x d x y x x x∂ = ≥ + − ∀ ∈  
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Monotonicity 

• Subgradient maps of convex functions are monotone 

( ), ' ( ') ', ' 0y d x y d x x x y y∈∂ ∈∂ ⇒ − − ≥  

 
• This condition is a natural generalization to higher dimension 

of a function being monotone nondecreasing 

( ') ( ) , '
( ) ( ') ', '

0 ' , '

d x d x y x x
d x d x y x x

y y x x

− ≥ −

− ≥ −

≥ − −
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The Dual of min ( ) ( )f x g Mx+  

• The dual of min ( ) ( )f x g Mx+  can be written in the form 
1 2min ( ) ( )

p
d p d p+ , for two convex functions d1 and d2 

• Namely, *
1( ) ( )d p f M p= − T  and *

2 ( ) ( )d p g p=  
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Splitting the Dual 

• This is the same as solving 

1 20 ( )( )d d p∈∂ +   

 

• Unless things are really ugly, the same as solving 

1 20 ( ) ( )d p d p∈∂ + ∂  

where + denotes the Minkowski sum of sets 
{ },A B a b a A b B+ = + ∈ ∈   
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Resolvents 

• Suppose that T is any point-to-set map on n
  that is 

monotone: ( ), ' ( ') ', ' 0y T x y T x x x y y∈ ∈ ⇒ − − ≥  

• Consider any fixed scalar 0c >   

• Then the resolvent of T with stepsize c is 1( )cTJ I cT −= +   

• The same operation as an implicit step in ODE/PDE integration 

• Conceptually, to evaluate ( )cTJ r : 

o  Find ,x y  such that x cy r+ =  and ( )y T x∈   
(can only be done one way if T is monotone) 

o Return x 
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Resolvents and “Reflectants” 

• If T is monotone, then the resolvent 1( )cTJ I cT −= +  is defined 
everywhere, single valued, and firmly nonexpansive 

( ) ( ) 22 2( , ') ( ) ( ') ' ( ) ' ( ')x x J x J x x x x J x x J x∀ − ≤ − − − − −   

• And the “reflectant” 2cT cTR J I= −  is defined everywhere, 
single valued, and nonexpansive 

2 2( , ') ( ) ( ') 'x x R x R x x x∀ − ≤ −  

• Conceptually, evaluating the reflectant amounts to: 

o Find ,x y  such that x cy r+ =  and ( )y T x∈   
(can only be done one way if T is monotone) 

o Return 2 2 ( )x r x x cy x cy− = − + = −   
 

1 1
2 22cT cT cT cTR J I J R I= − ⇔ = +  
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Symmetric Relationships 

• The relationships between monotone operators, resolvents, 
and reflectants are symmetric in all directions  

 
o A map is firmly nonexpansive if and only if it is the 

resolvent of some monotone operator 

o A map is nonexpansive if and only if it is the reflectant of 
some monotone operator 

o A map J is firmly nonexpansive if and only if it is of the 
form 1 1

2 2J R I= + , where R is nonexpansive 

Monotone set-valued maps 

Firmly nonexpansive maps 
(resolvents) 

Nonexpansive maps 
(reflectants) 
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Convergence of the ADMM I 

Fundamentally, the convergence theory of the ADMM relies on a 
very simple observation: 

The composition of two nonexpansive 
mappings is nonexpansive 

• Nonexpansive map 
1
: m m

c dR ∂ →   corresponding to 1d  

• Nonexpansive map 
2

: m m
c dR ∂ →   corresponding to 2d  

• Their composition 
1 2c d c dR R∂ ∂ is nonexpansive 

 

Furthermore, the fixed points of 
1 2c d c dR R∂ ∂  are of the form 

{ }2 1( ), ( )p cz z d p z d p+ ∈∂ − ∈∂  

Sketch of proof.  
2 1c d c dN N

p cz p cz p cz
∂ ∂

+ − +  .  Easy to show this is 
the only possibility (two equations in two unknowns).              □ 
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Convergence of the ADMM II 

• From a fixed point t of 
1 2c d c dR R∂ ∂ , we can find the optimal dual 

solution by just applying 
2
( )c dJ t∂ , and we can also easily find the 

primal solution 

• It would be nice to just iterate the map 
1 2c d c dR R∂ ∂ to converge to 

a fixed point, but since its Lipschitz constant is 1, this process 
might just “orbit” around the set of fixed points 

• But (Krasnosel'skii 1955), if we blend it with the identity, it will 
converge 

( ) ( )1 2 1 2
1 1 1 1 1

2 2 2 2( ) ( )k k k k k
c d c d c d c ds s R R s s R R s+
∂ ∂ ∂ ∂= + = +  

• This is the essence of “Douglas-Rachford splitting”  

• Converts the nonexpansive map 
1 2c d c dR R∂ ∂ to a firmly 

nonexpansive one (with the same fixed points) 
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Picture of Krasnosel'skii 
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What is Meant by “Operator Splitting”? 

• Douglas-Rachford splitting is a kind of operator splitting 

• We are solving the problem 1 2min ( ) ( )
p

d p d p+  

• Or (usually) equivalently 1 20 ( ) ( )d p d p∈∂ + ∂  

• But we only deal with the individual reflectant maps 
1c dR ∂  and 

2c dR ∂  respectively associated with with 1d  and 2d  

• That’s the essence of operator splitting 
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Getting the History Right 

• Douglas and Rachford had a different representation of the 
operations in their method, but equivalent 

• However, the original Douglas-Rachford publication was only for 
linear operators 

o Applied to very specific linear operators related to the 
discretized 2-D heat equation 

• Lions and Mercier (1979) generalized the idea from linear maps 
to general monotone set-valued maps (but kept the name) 

• Gabay (1983) showed that the ADMM is just this idea applied to 
the dual of min ( ) ( )f x g Mx+  

• The composition-of-nonexpansive maps interpretation may first 
be found (as an aside) in Lawrence & Spingarn (1987) 

• E & Bertsekas (1992) contains some equivalent analysis and 
exploits the relationship with the proximal point algorithm to 
derive approximate and over-relaxed versions 
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Some Insights from the Convergence Analysis 

• ADMM convergence based on evaluation of 
1 2c d c dR R∂ ∂ , which is 

not an approximation of of 
1 2( )c d dR ∂ +∂  (the mapping for ALM) 

• Unlike the ALM, changing c in the ADMM is problematic 
because it shifts the set of fixed points 
{ }2 1( ), ( )p cv v d p v d p+ ∈∂ − ∈∂  of 

1 2c d c dR R∂ ∂  

o There are results for variable c, but they need extra 
assumptions and get “messy”  

• Also, the 
1 2c d c dR R∂ ∂  convergence theory of the ADMM does not 

have a “clean” extension to more than two blocks: 

{ }1 1 1 2 2 2min ( ) ( ) ( )
n p p px

f M x f M x f M x
∈

+ + +


  

1 2 pc d c d c dR R R∂ ∂ ∂  does not have “nice” fixed points 

o Must use a product-space reformulation, or make things 
“messier” 
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The ADMM: More Past 

• The standard theory of the ADMM was settled by the early 90’s 

• But it remained an obscure algorithm for 15+ years 

• During the period 2008-2014, things changed 
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The ADMM: Present 

• Now the ADMM is considered part of the standard optimization 
“toolbox” 
 

Some typical current applications: 

• Image denoising 

• Data fitting / machine learning 

o Along with other operator-splitting methods, like forward-
backward 

• Stochastic programming (progressive hedging) 

• … 

• Even some general conic QP solvers 
 

• Also, a dizzying profusion of new variants 
(not covered much here) 
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Features of Successful Applications 
 

1. Low accuracy solutions are sufficient 
(fairly common knowledge) 
 

2. Nonlinear convex objectives can often work better than 
linear ones 
 

3. Do not try to “atomize” problems 
(although that can be tempting for parallelism) 
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Low Accuracy Requirement 

• The ADMM does not have very fast asymptotic / tail 
convergence 

• It is typically linear/geometric, but the constant can be poor 

 
• However, applications like machine learning and image 

denoising typically don’t require high-accuracy solutions 
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Nonlinear Objectives (Intuition) 

• The ADMM is a form of the proximal point algorithm (PPA) 
(shown for example in E & Bertsekas 1992) 

• Solving an LP-like problem with the PPA 
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Nonlinear Objectives (Intuition) 

• Solving a QP-like problem with the PPA 
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Don’t Atomize Problems 

In successful ADMM applications… 

• At least one side of the splitting ( f or g ) should model a 
substantial portion of the global interconnections between 
problem elements 

• My former postdoc Patrick Johnstone calls this property “being 
meaty” 
 

• What does that mean? 
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Don’t Atomize Problems II 

• Example: in data fitting / ML problems, one often has a 
structure like 
 

min ( ) ( )
x

x r x+   

•   is a smooth loss function 

• r is a regularizer (for example, an L1 penalty) 
 

• All the connections between the model parameters x and 
fitting the observations are contained in   

• So,   is “meaty” (it contains essentially all the connections 
between model elements) and one can set , ,f g r M I= = =   
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Don’t Atomize Problems III 
 

In OSQP (Stellato et al. 2020) 

• f models all the linear relationships within the model 

• g contains only conic constraints on individual vectors 

• So, f  is “meaty” 
 

In E & Ferris 1998 for optimal control problems 

• f enforces a block-tridiagonal linear system capturing all the 
time dynamics in the model 

• g enforces all the inequalities and nonsmooth elements 
(confined within each time step) 

• So, f  is “meaty” 
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Don’t Atomize Models IV 

In progressive hedging for stochastic programming problems 
(originally Rockafellar and Wets 1991) 

• f contains the entire time dynamics within each scenario 

• g enforces “nonanticipativity” (not seeing the future) 
relationships between scenarios 

• So, they are both fairly “meaty” 
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A Tempting Example of “Non-Meatiness”:  
The Classic “Transportation” Problem 

Given a bipartite graph ( , , )S D E , 

:( , )

:( , )

min
ST

0 ( , )

ij i
j i j E

ij j
i i j E

ij

r x
x s i S

x d i D

x i j E

∈

∈

= ∀ ∈

= ∀ ∈

≥ ∀ ∈

∑

∑

T

 

 

• Illustration of how the ADMM can lead to highly parallel 
algorithms 

• But ones that are typically not competitively efficient 
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Modeling Transportation in the ADMM Form 

With , Ex z∈ , 
1
2

:( , )
, 0

( )
if  and

otherwise

ij i
j i j E

r x x x s i S
f x ∈

 ≥ = ∀ ∈= 
+∞

∑T

 

 
1
2

:( , )
, 0

( )
if  and

otherwise

ij j
i i j E

r z z z d i D
g z ∈

 ≥ = ∀ ∈= 
+∞

∑T

 

Then the problem reduces to  

min ( ) ( )
ST 0

f x g z
x z

+
− =

 

• The x-minimization step separates by source node i S∈  

• The z-minimization step separates by destination node j D∈  
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ADMM for Transportation 

For example, the x minimization reduces to, for each i S∈  
2

2
:( , ) :( , ) :( , )

:( , )

min ( )

ST

0 : ( , )

c
ij ij ij ij ij ij

j i j E j i j E j i j E

ij i
j i j E

ij

r x p x x z

x s

x j i j E

∈ ∈ ∈

∈

+ + −

=

≥ ∀ ∈

∑ ∑ ∑

∑  

 

This is just projection on a simplex, so it’s an easy problem 

• A simple implementation is O( log )δ δ , where δ  is the node 
degree 

• Can be done in O( )δ  time if one is careful 
(related to linear-time median finding;  
 only matters for large δ ) 
 

• The z minimization step is similar 
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ADMM for Transportation — (Parallel) Implementation 

High potential for parallelism:  

• x minimization consists of S  independent, easy tasks 

• z minimization consists of D  independent, easy tasks 

• Multiplier update consists of E  independent, easy tasks 

• Simple communication pattern between these tasks 

• An example of how ADMM can lead to highly parallel 
algorithms 

• Studied these kinds of applications in my dissertation 
 

• Unfortunately, it’s very slow compared to network simplex 
etc. 

• And parallelism is not enough to save it 

 



May 2022        42 of 52 

Slowness Intuition and the Moral of the Story 

• Both sides of the splitting decompose into optimizations that 
only “see” individual nodes 

• The whole “big picture” is left to the ADMM to coordinate 

• But ADMM / DR is not an outstanding linear equation solver 

• So it takes a long time for all the pieces of the problem to 
come into alignment 
 

• ADMM is a useful algorithm 

• But don’t ask too much of it 
 

• Don’t leave the entire coordination of small problem elements 
to the ADMM 

• Keep at least some of the global connections within f or g 
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Approximate Iterations 

• With “meatiness” of subproblems comes the need to solve 
them inexactly 

• E & Bertsekas 1992 was the first publication to rigorously cover 
inexact solution of subproblems 

• But requires bounding the distance between the approximate 
iterate and the exact one 

• In general, finding such a bound can be difficult 
 

• I have repeatedly seen people using only the distance-based 
1992 approximation result, not realizing that there is more 
recent work on the subject 
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Better Approximation Criteria 

Two papers: 

• E & Yao 2017 (COAP) 

• E & Yao 2018 (Math Programming A) 
 

• Neither require estimating the distance to the exact 
subproblem solution 

• So, easier to implement in general than the 1992 criterion 

• Absolute error criteria involve a summable sequence of 
allowable errors that is (formally) an external parameter 

• Relative error criteria use a single parameter to compare two 
quantities generated by the algorithm 

o One of which would be zero in the exact case 

• The above two papers contain both kinds 

• If you are using inexact ADMM, please look at these papers! 
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The ADMM:  Future 

• What can are the directions for the future? 
 

1. Other operator splitting methods might make and impact 
 

2. Upper and lower bounds 
 

3. A wider range of applications, if we can solve the tail 
convergence issues 
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Other Operator Splitting Methods 

• For a long while, there were basically three classes of operator 
splitting method 

o Forward-backward (generalizes gradient projection) 

o Douglas-Rachford (as in the ADMM), which forms a 
continuous family with Peaceman-Rachford 

o Double-backward:  solves 2
1 2min ( ) ( )

2p

cd p p q d q+ − +  

instead of 1 2min ( ) ( )
p

d p d p+  

• Once the math programming and machine learning 
communities got interested in operator splitting, new varieties 
started appearing 

o Forward-backward-forward (Tseng 200) 

o Projective splitting (starting with E & Svaiter 2008) 

o Forward-reflected-backward (Malitsky & Tam 2020) … 



May 2022        47 of 52 

Other Splitting Methods 

• The picture is not clear yet 

• There are so many methods and variations now 

• And so many problems to apply them too 

• But there are specific cases in which new operator splitting 
methods can outperform the ADMM 
 

An Example 

Progressive hedging (PH) for stochastic programming: 

• The x minimization separately optimizes a quadratic 
perturbation of each scenario 

• The z minimization and multiplier update try to make your 
overall strategy non-clairvoyant 
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“Projective Hedging” 

• Apply an “asynchronous” projective splitting variant 
(Combettes and E 2018, E 2017) to the same problem 

• Obtain a similar algorithm to PH, except 

o You don’t have to optimize every scenario at every 
iteration 

o You can just optimize a subset 

o Called asynchronous projective hedging (APH) 

• Generally, if you don’t re-optimize all the scenarios 

o The convergence slows down somewhat 

o But each iteration takes much less time 

o So overall time may be reduced, as in… 
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An Example Stochastic Programming Problem 

 
• 1,000,000 scenarios!  (And 5 stages) 

• 600 processor cores 

• Here, APH only solves 10% of the scenarios at each iteration 
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Upper and Lower Bounds 

• ADMM, like many other operator-splitting methods… 

• Converges asymptotically to solution (both primal and dual) 

• But is typically never feasible: x z=  only in the limit 

o So in general there are no upper bounds 

o Although in ML problems everything is usually feasible, so 
upper bounds are easy 

• And doesn’t provide lower bounds 

o Since it never truly minimizes the (augmented) Lagrangian 

• But if you’re solving problems to low accuracy, you would 
often like to have upper and lower bounds 

• Workarounds are generally application-specific 

o E 2020 gives a possible lower bound when all else fails… 

• It would be nice to have a systematic approach 
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Tail Convergence 

• Slow tail convergence is probably the biggest issue with ADMM-
class methods 

• There are “accelerated” versions 

• But these often address the global rates: O(1/ )k  etc. 

• Whereas the real issue is tends to be slow linear/geometric 
asymptotic tail 

o Asymptotically much faster than O(1/ )k , 2O(1/ )k , etc. 

o But still too slow 

• Sometimes one can periodically test and try to “jump” to a 
basic solution (in simplex terms, or some generalization); 
see for example E & Ferris 1998 

• But that’s not very satisfactory in general 

• If we could speed up the tail, we could see a lot more 
applications (Patrinos etc. are working on this topic) 
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