THE UNIVERSITY
of EDINBURGH

Primal Dual Regularized IPM: a Proximal Point perspective

Stefano Cipolla*, J. Gondzio*
Modern Techniques of Very Large Scale Optimization, Edinburgh, 19th - 20th May 2022
*University of Edinburgh

Overview

The Problem \& Investigation Perspectives
Interior Point Methods
Convergence \& Stability
Complexity \& Rate of Convergence

Our Contribution [CG22]
Part 1: Inexact Proximal Point Algorithm \& Convergence
Part 2: Replication of Variables \& Complexity

The Problem \& Investigation
Perspectives

The Quadratic Programming (QP) Problem

In this talk we address the solution of the problem

$$
\begin{align*}
\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x}) & :=\frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x} \\
\text { s.t. } A \mathbf{x} & =\mathbf{b} \tag{1}\\
\mathbf{x}_{\mathcal{C}} & \geq 0, \mathbf{x}_{\mathcal{F}} \text { free },
\end{align*}
$$

using Interior Point Methods (IPM).
$H \in \mathbb{R}^{d \times d}, H \succeq 0, A \in \mathbb{R}^{m \times d}, \mathcal{C} \subset\{1, \ldots, d\}$ and $\mathcal{F}:=\{1, \ldots, d\} \backslash \mathcal{C}$.
A is required to have full rank and we assume that the condition $m \leq d$ holds.

IPM overview [Gon12]

Replace inequality constraints with logarithmic barrier function, i.e.,

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{d}} \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}-\mu \sum_{i \in \mathcal{C}} \ln \left(x_{i}\right) \\
& \text { s.t. } A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

IPM overview [Gon12]

Replace inequality constraints with logarithmic barrier function, i.e.,

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{d}} \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}-\mu \sum_{i \in \mathcal{C}} \ln \left(x_{i}\right) \\
& \text { s.t. } A \mathbf{x}=\mathbf{b}
\end{aligned}
$$

- Feasible region

$$
\mathcal{F}:=\left\{\mathbf{x} \in \mathbb{R}^{d} \text { s.t. } A \mathbf{x}=\mathbf{b} \text { and } \mathbf{x}_{\mathcal{C}} \geq 0\right\} ;
$$

- Directions are computed solving a Newton linear system of the form

$$
\left[\begin{array}{cc}
H+\Theta^{-1} & -A^{T} \\
A & 0
\end{array}\right]
$$

- $\max \Theta_{i i}^{-1}=O\left(\frac{1}{\mu}\right)$ and $\min \Theta_{i i}^{-1}=O(\mu)$;
- μ is progressively driven to zero.

Investigation Perspective Part 1: Convergence \& Stability

Primal-Dual Regularization of problem (1), i.e.,

$$
\begin{aligned}
\min _{\mathrm{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{\top} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{P_{k}}^{2}+\frac{1}{2}\|\mathbf{y}\|_{D_{k}}^{2} \\
\text { s.t. } & A \mathbf{x}+D_{k}\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free, }
\end{aligned}
$$

has been proposed [AG99] to:

Investigation Perspective Part 1: Convergence \& Stability

Primal-Dual Regularization of problem (1), i.e.,

$$
\begin{align*}
\min _{\mathrm{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{\top} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{P_{k}}^{2}+\frac{1}{2}\|\mathbf{y}\|_{D_{k}}^{2} \\
\text { s.t. } & A \mathbf{x}+D_{k}\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \tag{RP}\\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free, }
\end{align*}
$$

has been proposed [AG99] to:

- Alleviate (near) rank deficiency of A;
- Avoid factorization issues of the matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \\
A & 0
\end{array}\right]
$$

(or of its Schur complement).

Investigation Perspective Part 1: Convergence \& Stability

Primal-Dual Regularization of problem (1), i.e.,

$$
\begin{align*}
\min _{\mathrm{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{P_{k}}^{2}+\frac{1}{2}\|\mathbf{y}\|_{D_{k}}^{2} \\
\text { s.t. } & A \mathbf{x}+D_{k}\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \tag{RP}\\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free },
\end{align*}
$$

has been proposed [AG99] to:

- Alleviate (near) rank deficiency of A;
- Avoid factorization issues of the matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \\
A & 0
\end{array}\right]
$$

(or of its Schur complement).

Indeed, applying the IPM to (RP), the corresponding Newton matrix assumes the form

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1}+P_{k} & -A^{T} \\
A & D_{k}
\end{array}\right],
$$

and suitable choices of P_{k}, D_{k} may fix the above issues...

Investigation Perspective Part 1: Convergence \& Stability

Primal-Dual Regularization of problem (1), i.e.,

$$
\begin{align*}
\min _{\mathrm{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{P_{k}}^{2}+\frac{1}{2}\|\mathbf{y}\|_{D_{k}}^{2} \\
\text { s.t. } & A \mathbf{x}+D_{k}\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \tag{RP}\\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free, }
\end{align*}
$$

has been proposed [AG99] to:

- Alleviate (near) rank deficiency of A;
- Avoid factorization issues of the matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \\
A & 0
\end{array}\right]
$$

(or of its Schur complement).

Indeed, applying the IPM to (RP), the corresponding Newton matrix assumes the form

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1}+P_{k} & -A^{T} \\
A & D_{k}
\end{array}\right]
$$

and suitable choices of P_{k}, D_{k} may fix the above issues...
...but what about the convergence of the overall method?

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Interior Point Methods (IPM)

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Interior Point Methods (IPM) PROs

- Solves the Primal-Dual pair;
- Overall fast rate of convergence;
- Suitable for high accuracy solutions.

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Interior Point Methods (IPM)

PROs

- Solves the Primal-Dual pair;
- Overall fast rate of convergence;
- Suitable for high accuracy solutions.

CONs

- High computational cost per iteration:
one (or more) linear system(s) involving the iteration dependent matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \tag{*}\\
A & 0
\end{array}\right]
$$

has to be so solved.

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Interior Point Methods (IPM)
PROs

- Solves the Primal-Dual pair;
- Overall fast rate of convergence;
- Suitable for high accuracy solutions.

CONs

- High computational cost per iteration:
one (or more) linear system(s) involving the iteration dependent matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \tag{*}\\
A & 0
\end{array}\right]
$$

has to be so solved.

Alternating Direction Method of Multipliers (ADMM) [BPCE11]

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Interior Point Methods (IPM)
PROs

- Solves the Primal-Dual pair;
- Overall fast rate of convergence;
- Suitable for high accuracy solutions.

CONs

- High computational cost per iteration: one (or more) linear system(s) involving the iteration dependent matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \tag{*}\\
A & 0
\end{array}\right]
$$

has to be so solved.

Alternating Direction Method of Multipliers (ADMM) [BPCE11]

PROs

- Solves Primal-Dual pair;
- Low computational cost per iteration: one linear system involving always the same matrix

$$
\left[\begin{array}{cc}
H+\beta I & -A^{T} \\
A & 0
\end{array}\right]
$$

has to be solved;

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Interior Point Methods (IPM)
PROs

- Solves the Primal-Dual pair;
- Overall fast rate of convergence;
- Suitable for high accuracy solutions.

CONs

- High computational cost per iteration: one (or more) linear system(s) involving the iteration dependent matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \tag{*}\\
A & 0
\end{array}\right]
$$

has to be so solved.

Alternating Direction Method of Multipliers (ADMM) [BPCE11]

PROs

- Solves Primal-Dual pair;
- Low computational cost per iteration: one linear system involving always the same matrix

$$
\left[\begin{array}{cc}
H+\beta I & -A^{T} \\
A & 0
\end{array}\right]
$$

has to be solved;

CONs

- Slow rate of convergence;
- Not Suitable for high accuracy solutions.

Investigation Perspective Part 2: Complexity \& Rate of Convergence

Interior Point Methods (IPM)
PROs

- Solves the Primal-Dual pair;
- Overall fast rate of convergence;
- Suitable for high accuracy solutions.

CONs

- High computational cost per iteration: one (or more) linear system(s) involving the iteration dependent matrix

$$
\left[\begin{array}{cc}
H+\Theta_{k}^{-1} & -A^{T} \tag{*}\\
A & 0
\end{array}\right]
$$

has to be so solved.

Alternating Direction Method of Multipliers (ADMM) [BPCE11]

PROs

- Solves Primal-Dual pair;
- Low computational cost per iteration: one linear system involving always the same matrix

$$
\left[\begin{array}{cc}
H+\beta I & -A^{T} \\
A & 0
\end{array}\right]
$$

has to be solved;

CONs

- Slow rate of convergence;
- Not Suitable for high accuracy solutions.

A method which benefits from the advantages of these two methodologies should be able to limit the dependence on Θ^{-1} in the Newton IPM matrix (*).

Our Contribution [CG22]

The Inexact Proximal Point Framework [Luq84]

The Inexact Proximal Point Framework [Luq84]

Introduce

$$
\mathcal{L}(\mathbf{x}, \mathbf{y})=\frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}-\mathbf{y}^{T}(A \mathbf{x}-\mathbf{b})+I_{D}(\mathbf{x}, \mathbf{y})
$$

where $I_{D}(\mathbf{x}, \mathbf{y})$ is the indicator function of the convex closed set

$$
D:=\mathbb{R}^{|\mathcal{C}|} \times \mathbb{R}_{\geq 0}^{d-|\mathcal{C}|} \times \mathbb{R}^{m}
$$

The Inexact Proximal Point Framework [Luq84]

Introduce

$$
\mathcal{L}(\mathbf{x}, \mathbf{y})=\frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}-\mathbf{y}^{T}(A \mathbf{x}-\mathbf{b})+I_{D}(\mathbf{x}, \mathbf{y})
$$

where $I_{D}(\mathbf{x}, \mathbf{y})$ is the indicator function of the convex closed set

$$
D:=\mathbb{R}^{|\mathcal{C}|} \times \mathbb{R}_{\geq 0}^{d-|\mathcal{C}|} \times \mathbb{R}^{m}
$$

Consider the saddle sub-differential

$$
T_{\mathcal{L}}(\mathbf{x}, \mathbf{y}):=\left[\begin{array}{c}
\partial_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mathbf{y}) \\
\partial_{\mathbf{y}}(-\mathcal{L}(\mathbf{x}, \mathbf{y}))
\end{array}\right]=\left[\begin{array}{c}
H \mathbf{x}+\mathbf{g}-A^{T} \mathbf{y}+\partial_{\mathbf{x}} I_{D}(\mathbf{x}, \mathbf{y}) \\
A \mathbf{x}-\mathbf{b}+\partial_{\mathbf{y}} I_{D}(\mathbf{x}, \mathbf{y})
\end{array}\right],
$$

The Inexact Proximal Point Framework [Luq84]

Introduce

$$
\mathcal{L}(\mathbf{x}, \mathbf{y})=\frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}-\mathbf{y}^{T}(A \mathbf{x}-\mathbf{b})+I_{D}(\mathbf{x}, \mathbf{y})
$$

where $I_{D}(\mathbf{x}, \mathbf{y})$ is the indicator function of the convex closed set

$$
D:=\mathbb{R}^{|\mathcal{C}|} \times \mathbb{R}_{\geq 0}^{d-|\mathcal{C}|} \times \mathbb{R}^{m}
$$

Consider the saddle sub-differential

$$
T_{\mathcal{L}}(\mathbf{x}, \mathbf{y}):=\left[\begin{array}{c}
\partial_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mathbf{y}) \\
\partial_{\mathbf{y}}(-\mathcal{L}(\mathbf{x}, \mathbf{y}))
\end{array}\right]=\left[\begin{array}{c}
H \mathbf{x}+\mathbf{g}-A^{T} \mathbf{y}+\partial_{\mathbf{x}} I_{D}(\mathbf{x}, \mathbf{y}) \\
A \mathbf{x}-\mathbf{b}+\partial_{\mathbf{y}} I_{D}(\mathbf{x}, \mathbf{y})
\end{array}\right],
$$

then the Proximal Point Method (PPM) reads as

$$
\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right)=\mathcal{P}\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right), \text { where } \mathcal{P}=\left(I+\Sigma^{-1} T_{\mathcal{L}}\right)^{-1} \text { and } \Sigma:=\operatorname{blockdiag}\left(\rho I_{d}, \delta I_{m}\right) .
$$

The Inexact Proximal Point Framework

Evaluating the proximal operator \mathcal{P} is equivalent to finding a solution to the problem

$$
\begin{equation*}
0 \in T_{\mathcal{L}}(\mathbf{x}, \mathbf{y})+\Sigma\left((\mathbf{x}, \mathbf{y})-\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right), \tag{2}
\end{equation*}
$$

which is guaranteed to have a unique solution.

The Inexact Proximal Point Framework

Evaluating the proximal operator \mathcal{P} is equivalent to finding a solution to the problem

$$
\begin{equation*}
0 \in T_{\mathcal{L}}(\mathbf{x}, \mathbf{y})+\Sigma\left((\mathbf{x}, \mathbf{y})-\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right) \tag{2}
\end{equation*}
$$

which is guaranteed to have a unique solution.
Problem (2) is equivalent to:

$$
\begin{align*}
\min _{\mathbf{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{\rho}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|^{2}+\frac{\delta}{2}\|\mathbf{y}\|^{2} \\
\text { s.t. } & A \mathbf{x}+\delta\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \tag{RP*}\\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free, }
\end{align*}
$$

The Inexact Proximal Point Framework

Evaluating the proximal operator \mathcal{P} is equivalent to finding a solution to the problem

$$
\begin{equation*}
0 \in T_{\mathcal{L}}(\mathbf{x}, \mathbf{y})+\Sigma\left((\mathbf{x}, \mathbf{y})-\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right) \tag{2}
\end{equation*}
$$

which is guaranteed to have a unique solution.
Problem (2) is equivalent to:

$$
\begin{align*}
\min _{\mathbf{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{\rho}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|^{2}+\frac{\delta}{2}\|\mathbf{y}\|^{2} \\
\text { s.t. } & A \mathbf{x}+\delta\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \tag{RP*}\\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free, }
\end{align*}
$$

i.e., we need to solve problem (RP) where $P_{k} \equiv \rho l$ and $D_{k} \equiv \delta I$.

The Inexact Proximal Point Framework

Evaluating the proximal operator \mathcal{P} is equivalent to finding a solution to the problem

$$
\begin{equation*}
0 \in T_{\mathcal{L}}(\mathbf{x}, \mathbf{y})+\Sigma\left((\mathbf{x}, \mathbf{y})-\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right) \tag{2}
\end{equation*}
$$

which is guaranteed to have a unique solution.
Problem (2) is equivalent to:

$$
\begin{align*}
\min _{\mathbf{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{\rho}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|^{2}+\frac{\delta}{2}\|\mathbf{y}\|^{2} \\
\text { s.t. } & A \mathbf{x}+\delta\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \tag{RP*}\\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free, }
\end{align*}
$$

i.e., we need to solve problem (RP) where $P_{k} \equiv \rho l$ and $D_{k} \equiv \delta l$.

Sufficient condition for convergence of PPM is that (RP*) is solved exactly, but it is not necessary!

The Inexact Proximal Point Framework

Evaluating the proximal operator \mathcal{P} is equivalent to finding a solution to the problem

$$
\begin{equation*}
0 \in T_{\mathcal{L}}(\mathbf{x}, \mathbf{y})+\Sigma\left((\mathbf{x}, \mathbf{y})-\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right) \tag{2}
\end{equation*}
$$

which is guaranteed to have a unique solution.
Problem (2) is equivalent to:

$$
\begin{align*}
\min _{\mathbf{x} \in \mathbb{R}^{d}} & \frac{1}{2} \mathbf{x}^{T} H \mathbf{x}+\mathbf{g}^{T} \mathbf{x}+\frac{\rho}{2}\left\|\mathbf{x}-\mathbf{x}_{k}\right\|^{2}+\frac{\delta}{2}\|\mathbf{y}\|^{2} \\
\text { s.t. } & A \mathbf{x}+\delta\left(\mathbf{y}-\mathbf{y}_{k}\right)=\mathbf{b} \tag{*}\\
& \mathbf{x}_{\mathcal{C}} \geq 0, \mathbf{x}_{\mathcal{F}} \text { free, }
\end{align*}
$$

i.e., we need to solve problem (RP) where $P_{k} \equiv \rho l$ and $D_{k} \equiv \delta l$.

Sufficient condition for convergence of PPM is that (RP*) is solved exactly, but it is not necessary!

Inexact versions of the PPM are well understood [Luq84].

Proximal Stabilized Interior Point Method (PS-IPM) [CG22]

Input: tol $>0, \sigma_{r} \in(0,1)$.
Initialization: Iteration counter $k=0$; initial point ($\mathrm{x}_{0}, \mathrm{y}_{0}$)
1 while Stopping Condition False do
Use IPM with starting point $\left(\mathbf{x}_{k}^{0}, \mathbf{y}_{k}^{0}\right)=\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)$ to find $\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right)$ s.t.

$$
\left\|r_{k}\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right)\right\|<C \sigma_{r}^{k} \min \left\{1,\left\|\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right)-\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right\|\right.
$$

Update the iteration counter: $k:=k+1$.
end
Algorithm 1: PS-IPM for QP
where $r_{k}(\mathbf{x}, \mathbf{y})$ is a computable residual associated with the variational formulation of the problem.

Proximal Stabilized Interior Point Method (PS-IPM) [CG22]

Input: tol $>0, \sigma_{r} \in(0,1)$.
Initialization: Iteration counter $k=0$; initial point ($\mathrm{x}_{0}, \mathrm{y}_{0}$)
1 while Stopping Condition False do
Use IPM with starting point $\left(\mathbf{x}_{k}^{0}, \mathbf{y}_{k}^{0}\right)=\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)$ to find $\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right)$ s.t.
$\left\|r_{k}\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right)\right\|<C \sigma_{r}^{k} \min \left\{1,\left\|\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right)-\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right)\right\|\right.$
Update the iteration counter: $k:=k+1$.
end
Algorithm 2: PS-IPM for QP
where $r_{k}(\mathbf{x}, \mathbf{y})$ is a computable residual associated with the variational formulation of the problem.

Primal-Dual CONVERGENCE IS GUARANTEED (if the problem is feasible)!

Important Observations on Algorithm 1

Important Observations on Algorithm 1

1. Asymptotic rate of convergence: (a is the "Lipschitz constant of $T_{\mathcal{L}}^{-1}(0)$ ")

$$
\lim \sup _{k \rightarrow \infty} \frac{\operatorname{dist}\left(\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right), T_{\mathcal{L}}^{-1}(0)\right)}{\operatorname{dist}\left(\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right), T_{\mathcal{L}}^{-1}(0)\right)} \leq \frac{a}{\left(a^{2}+(1 / \max \{\rho, \delta\})^{2}\right)^{1 / 2}}<1
$$

i.e., ρ and δ should be chosen small for problems with large a.

Important Observations on Algorithm 1

1. Asymptotic rate of convergence: (a is the "Lipschitz constant of $T_{\mathcal{L}}^{-1}(0)$ ")

$$
\lim \sup _{k \rightarrow \infty} \frac{\operatorname{dist}\left(\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right), T_{\mathcal{L}}^{-1}(0)\right)}{\operatorname{dist}\left(\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right), T_{\mathcal{L}}^{-1}(0)\right)} \leq \frac{a}{\left(a^{2}+(1 / \max \{\rho, \delta\})^{2}\right)^{1 / 2}}<1
$$

i.e., ρ and δ should be chosen small for problems with large a.
2. Warm Starting (the proximal operator is Lipschitz) and:

$$
\begin{aligned}
& \left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathbf{t}_{k}\right\| \leq\left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathcal{P}\left(\mathbf{t}_{k-1}\right)\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \\
& \leq \eta\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\|,
\end{aligned}
$$

and using the convergence, we have

$$
\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \rightarrow 0 \text { and }\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\| \rightarrow 0
$$

Important Observations on Algorithm 1

1. Asymptotic rate of convergence: (a is the "Lipschitz constant of $T_{\mathcal{L}}^{-1}(0)$ ")

$$
\lim \sup _{k \rightarrow \infty} \frac{\operatorname{dist}\left(\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right), T_{\mathcal{L}}^{-1}(0)\right)}{\operatorname{dist}\left(\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right), T_{\mathcal{L}}^{-1}(0)\right)} \leq \frac{a}{\left(a^{2}+(1 / \max \{\rho, \delta\})^{2}\right)^{1 / 2}}<1
$$

i.e., ρ and δ should be chosen small for problems with large a.
2. Warm Starting (the proximal operator is Lipschitz) and:

$$
\begin{aligned}
& \left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathbf{t}_{k}\right\| \leq\left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathcal{P}\left(\mathbf{t}_{k-1}\right)\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \\
& \leq \eta\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\|,
\end{aligned}
$$

and using the convergence, we have

$$
\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \rightarrow 0 \text { and }\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\| \rightarrow 0
$$

\Rightarrow The proximal sub-problems will need a non-increasing number of IPM iterations to be solved.

Important Observations on Algorithm 1

1. Asymptotic rate of convergence: (a is the "Lipschitz constant of $T_{\mathcal{L}}^{-1}(0)$ ")

$$
\lim \sup _{k \rightarrow \infty} \frac{\operatorname{dist}\left(\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right), T_{\mathcal{L}}^{-1}(0)\right)}{\operatorname{dist}\left(\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right), T_{\mathcal{L}}^{-1}(0)\right)} \leq \frac{a}{\left(a^{2}+(1 / \max \{\rho, \delta\})^{2}\right)^{1 / 2}}<1
$$

i.e., ρ and δ should be chosen small for problems with large a.
2. Warm Starting (the proximal operator is Lipschitz) and:

$$
\begin{aligned}
& \left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathbf{t}_{k}\right\| \leq\left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathcal{P}\left(\mathbf{t}_{k-1}\right)\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \\
& \leq \eta\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\|,
\end{aligned}
$$

and using the convergence, we have

$$
\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \rightarrow 0 \text { and }\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\| \rightarrow 0
$$

\Rightarrow The proximal sub-problems will need a non-increasing number of IPM iterations to be solved.

Item 2. justifies the computational evidence that changing the reference point at every IPM iteration works very well in practice [AG99; FO12], but convergence was not clear and proved only under the strong assumption of the uniform boundedness of the computed Newton directions [FO12]...

Important Observations on Algorithm 1

1. Asymptotic rate of convergence: (a is the "Lipschitz constant of $T_{\mathcal{L}}^{-1}(0)$ ")

$$
\lim _{k \rightarrow \infty} \sup _{k \rightarrow \infty} \frac{\operatorname{dist}\left(\left(\mathbf{x}_{k+1}, \mathbf{y}_{k+1}\right), T_{\mathcal{L}}^{-1}(0)\right)}{\operatorname{dist}\left(\left(\mathbf{x}_{k}, \mathbf{y}_{k}\right), T_{\mathcal{L}}^{-1}(0)\right)} \leq \frac{a}{\left(a^{2}+(1 / \max \{\rho, \delta\})^{2}\right)^{1 / 2}}<1
$$

i.e., ρ and δ should be chosen small for problems with large a.
2. Warm Starting (the proximal operator is Lipschitz) and:

$$
\begin{aligned}
& \left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathbf{t}_{k}\right\| \leq\left\|\mathcal{P}\left(\mathbf{t}_{k}\right)-\mathcal{P}\left(\mathbf{t}_{k-1}\right)\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \\
& \leq \eta\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\|+\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\|,
\end{aligned}
$$

and using the convergence, we have

$$
\left\|\mathcal{P}\left(\mathbf{t}_{k-1}\right)-\mathbf{t}_{k}\right\| \rightarrow 0 \text { and }\left\|\mathbf{t}_{k}-\mathbf{t}_{k-1}\right\| \rightarrow 0
$$

\Rightarrow The proximal sub-problems will need a non-increasing number of IPM iterations to be solved.

Item 2. justifies the computational evidence that changing the reference point at every IPM iteration works very well in practice [AG99; FO12], but convergence was not clear and proved only under the strong assumption of the uniform boundedness of the computed Newton directions [FO12]...
...ASSUMPTION NOT NEEDED IN OUR APPROACH!

Item 2.:

Figure 1: Problem PILOT. Upper panels: PPM Iterations \& IPM Iterations. Lower panels: Behaviour of Residuals.

Item 2.:

Figure 1: Problem PILOT. Upper panels: PPM Iterations \& IPM Iterations. Lower panels: Behaviour of Residuals.

Figure 2: Average IPM sweeps per PPM iteration, Large Scale LP problems

Item 1.:

It is better to choose small regularization parameters rather than driving regularization to zero!

Item 1.:

It is better to choose small regularization parameters rather than driving regularization to zero!

Figure 3: Performance Profiles for Netlib's LP problems.

Comparison with [PG21], where regularization is driven to zero.

Item 1.:

It is better to choose small regularization parameters rather than driving regularization to zero!

Figure 4: Performance Profiles for Maros-Mészáros test set.

Comparison with [PG21], where regularization is driven to zero.

Item 1.:

It is better to choose small regularization parameters rather than driving regularization to zero!

Figure 5: Performance Profiles for Large Scale LP Problems.

Comparison with [PG21], where regularization is driven to zero.

Replication of variables: the ADMM trick

Suppose we want to solve the problem

$$
\begin{aligned}
\min _{\mathbf{x} \in \mathbb{R}^{d_{1}}} & \frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & B \mathbf{x}=\mathbf{f} \\
& \mathbf{x} \geq 0
\end{aligned}
$$

Replication of variables: the ADMM trick

Suppose we want to solve the problem

$$
\begin{aligned}
& \min _{\mathbf{x} \in \mathbb{R}^{d_{1}}} \frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x} \\
& \text { s.t. } B \mathbf{x}=\mathbf{f} \\
& \mathbf{x} \geq 0
\end{aligned}
$$

which can be reformulated as

$$
\begin{align*}
& \min _{\mathbf{x} \in \mathbb{R}^{d_{1}}} \frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x} \\
& \text { s.t. } B \mathbf{x}=\mathbf{f}, \mathbf{x}-\mathbf{z}=0 \tag{VR}\\
& \mathbf{z} \geq 0
\end{align*}
$$

This reformulation fits the original framework setting

$$
d=2 d_{1}, m=d_{1}+m_{1}, H=\operatorname{blockdiag}(Q, 0), \mathbf{g}=\left[\begin{array}{l}
\mathbf{c} \\
0
\end{array}\right], A:=\left[\begin{array}{cc}
B & 0 \\
1 & -1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
\mathbf{f} \\
0
\end{array}\right] .
$$

Applying the PS-IPM method to the reformulation (VR) we need to solve a Newton system of the form

$$
\left[\begin{array}{cccc}
Q+\rho l & 0 & -B^{T} & -I \\
0 & \Theta^{-1}+\rho I & 0 & I \\
B & 0 & \delta I & 0 \\
I & -I & 0 & \delta I
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x} \\
\Delta \mathbf{z} \\
\Delta \mathbf{y}_{1} \\
\Delta \mathbf{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
\xi_{d}^{1} \\
\xi_{d}^{2}+Z^{-1} \xi_{\mu, \sigma} \\
\xi_{p}^{1} \\
\xi_{p}^{2}
\end{array}\right]
$$

LP/QP part
VS
IPM contribution \& Variables Replication.

Applying the PS-IPM method to the reformulation (VR) we need to solve a Newton system of the form

$$
\left[\begin{array}{cccc}
Q+\rho l & 0 & -B^{T} & -I \\
0 & \Theta^{-1}+\rho I & 0 & I \\
B & 0 & \delta I & 0 \\
I & -I & 0 & \delta I
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x} \\
\Delta \mathbf{z} \\
\Delta \mathbf{y}_{1} \\
\Delta \mathbf{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
\xi_{d}^{1} \\
\xi_{d}^{2}+Z^{-1} \xi_{\mu, \sigma} \\
\xi_{p}^{1} \\
\xi_{p}^{2}
\end{array}\right]
$$

LP/QP part
vs
IPM contribution \& Variables Replication.

This system can be transformed as:

$$
\underbrace{\left[\begin{array}{cccc}
\Theta^{-1}+\rho l & -l & 0 & 0 \\
-l & -\delta I & I & 0 \\
0 & I & Q+\rho I & B^{T} \\
0 & 0 & B & -\delta I
\end{array}\right]}_{=: \mathcal{N}(\Theta)}\left[\begin{array}{c}
\Delta \mathbf{z} \\
-\Delta \mathbf{y}_{2} \\
\Delta \mathbf{x} \\
-\Delta \mathbf{y}_{1}
\end{array}\right]=\left[\begin{array}{c}
\xi_{d}^{2}+Z^{-1} \xi_{\mu, \sigma} \\
\xi_{p}^{2} \\
\xi_{d}^{1} \\
\xi_{p}^{1}
\end{array}\right]
$$

Applying the PS-IPM method to the reformulation (VR) we need to solve a Newton system of the form

$$
\left[\begin{array}{cccc}
Q+\rho l & 0 & -B^{T} & -I \\
0 & \Theta^{-1}+\rho I & 0 & I \\
B & 0 & \delta I & 0 \\
I & -I & 0 & \delta I
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x} \\
\Delta \mathbf{z} \\
\Delta \mathbf{y}_{1} \\
\Delta \mathbf{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
\xi_{d}^{1} \\
\xi_{d}^{2}+Z^{-1} \xi_{\mu, \sigma} \\
\xi_{p}^{1} \\
\xi_{p}^{2}
\end{array}\right]
$$

LP/QP part
vs
IPM contribution \& Variables Replication.

This system can be transformed as:

$$
\underbrace{\left[\begin{array}{cccc}
\Theta^{-1}+\rho l & -I & 0 & 0 \\
-l & -\delta I & I & 0 \\
0 & I & Q+\rho I & B^{T} \\
0 & 0 & B & -\delta I
\end{array}\right]}_{=: \mathcal{N}(\Theta)}\left[\begin{array}{c}
\Delta \mathbf{z} \\
-\Delta \mathbf{y}_{2} \\
\Delta \mathbf{x} \\
-\Delta \mathbf{y}_{1}
\end{array}\right]=\left[\begin{array}{c}
\xi_{d}^{2}+Z^{-1} \xi_{\mu, \sigma} \\
\xi_{p}^{2} \\
\xi_{d}^{1} \\
\xi_{p}^{1}
\end{array}\right]
$$

Since linear systems involving the red part are easy to solve, its solution can be obtained by reducing it further to the Schur complement.

The Schur complement of $\mathcal{N}(\Theta)$:

$$
S(\Theta):=\left[\begin{array}{cc}
Q+\rho I+\left(\delta I+\left(\Theta^{-1}+\rho I\right)^{-1}\right)^{-1} & B^{T} \\
B & -\delta I
\end{array}\right],
$$

The Schur complement of $\mathcal{N}(\Theta)$:

$$
S(\Theta):=\left[\begin{array}{cc}
Q+\rho I+\left(\delta I+\left(\Theta^{-1}+\rho I\right)^{-1}\right)^{-1} & B^{T} \\
B & -\delta I
\end{array}\right],
$$

which has exactly the same sparsity pattern as the Newton matrix of PS-IPM obtained without replication of variables, i.e.,

$$
\mathcal{N}_{C}(\Theta):=\left[\begin{array}{cc}
Q+\rho l+\Theta^{-1} & A^{T} \\
A & -\delta l
\end{array}\right] .
$$

The Schur complement of $\mathcal{N}(\Theta)$:

$$
S(\Theta):=\left[\begin{array}{cc}
Q+\rho I+\left(\delta I+\left(\Theta^{-1}+\rho I\right)^{-1}\right)^{-1} & B^{T} \\
B & -\delta I
\end{array}\right],
$$

which has exactly the same sparsity pattern as the Newton matrix of PS-IPM obtained without replication of variables, i.e.,

$$
\mathcal{N}_{C}(\Theta):=\left[\begin{array}{cc}
Q+\rho l+\Theta^{-1} & A^{T} \\
A & -\delta l
\end{array}\right] .
$$

What advantages do we get from the new reformulation using VR?

$S(\Theta)$ "varies less" than $\mathcal{N}_{C}(\Theta)$

Consider $\widehat{\Theta}^{-1}$ and Θ^{-1} two IPM matrices obtained, respectively, in two different IPM iterations.

$S(\Theta)$ "varies less" than $\mathcal{N}_{C}(\Theta)$

Consider $\widehat{\Theta}^{-1}$ and Θ^{-1} two IPM matrices obtained, respectively, in two different IPM iterations.

Lemma ([CG22])
Define

$$
D_{A}:=\left(\delta I+\left(\widehat{\Theta}^{-1}+\rho I\right)^{-1}\right)^{-1}-\left(\delta I+\left(\Theta^{-1}+\rho I\right)^{-1}\right)^{-1}
$$

and

$$
D_{C}:=\widehat{\Theta}^{-1}-\Theta^{-1}
$$

Then,

$$
\begin{equation*}
\|S(\widehat{\Theta})-S(\Theta)\|_{2}=\left\|D_{A}\right\|_{2}<\left\|D_{C}\right\|_{2}=\left\|\mathcal{N}_{C}(\widehat{\Theta})-\mathcal{N}_{C}(\Theta)\right\|_{2} \tag{3}
\end{equation*}
$$

$S(\Theta)$ "varies less" than $\mathcal{N}_{C}(\Theta)$

Consider $\widehat{\Theta}^{-1}$ and Θ^{-1} two IPM matrices obtained, respectively, in two different IPM iterations.

Lemma ([CG22])
Define

$$
D_{A}:=\left(\delta I+\left(\widehat{\Theta}^{-1}+\rho I\right)^{-1}\right)^{-1}-\left(\delta I+\left(\Theta^{-1}+\rho I\right)^{-1}\right)^{-1}
$$

and

$$
D_{C}:=\widehat{\Theta}^{-1}-\Theta^{-1}
$$

Then,

$$
\begin{equation*}
\|S(\widehat{\Theta})-S(\Theta)\|_{2}=\left\|D_{A}\right\|_{2}<\left\|D_{C}\right\|_{2}=\left\|\mathcal{N}_{C}(\widehat{\Theta})-\mathcal{N}_{C}(\Theta)\right\|_{2} \tag{3}
\end{equation*}
$$

Suppose we computed a preconditioner for $S(\Theta)$, e.g., an incomplete factorization. Equation (3) shows that any accurate preconditioner for $S(\Theta)$ approximates $S(\widehat{\Theta})$ better than an accurate preconditioner for $\mathcal{N}_{C}(\Theta)$ would approximate $\mathcal{N}_{C}(\widehat{\Theta})$.

$S(\Theta)$ "varies less" than $\mathcal{N}_{C}(\Theta)$

Consider $\widehat{\Theta}^{-1}$ and Θ^{-1} two IPM matrices obtained, respectively, in two different IPM iterations.

Lemma ([CG22])
Define

$$
D_{A}:=\left(\delta I+\left(\widehat{\Theta}^{-1}+\rho I\right)^{-1}\right)^{-1}-\left(\delta I+\left(\Theta^{-1}+\rho I\right)^{-1}\right)^{-1}
$$

and

$$
D_{C}:=\widehat{\Theta}^{-1}-\Theta^{-1}
$$

Then,

$$
\begin{equation*}
\|S(\widehat{\Theta})-S(\Theta)\|_{2}=\left\|D_{A}\right\|_{2}<\left\|D_{C}\right\|_{2}=\left\|\mathcal{N}_{C}(\widehat{\Theta})-\mathcal{N}_{C}(\Theta)\right\|_{2} \tag{3}
\end{equation*}
$$

Suppose we computed a preconditioner for $S(\Theta)$, e.g., an incomplete factorization. Equation (3) shows that any accurate preconditioner for $S(\Theta)$ approximates $S(\widehat{\Theta})$ better than an accurate preconditioner for $\mathcal{N}_{C}(\Theta)$ would approximate $\mathcal{N}_{C}(\widehat{\Theta})$.

COMPUTED PRECONDITIONERS ARE REUSABLE!!

More in details:

$$
\left(D_{A}\right)_{i i}=\frac{\left(D_{C}\right)_{i i}}{1+\delta^{2}\left(\Theta_{i i}^{-1}+\rho\right)\left(\widehat{\Theta}_{i i}^{-1}+\rho\right)+\delta\left(\Theta_{i i}^{-1}+\rho\right)+\delta\left(\widehat{\Theta}_{i i}^{-1}+\rho\right)} .
$$

More in details:

$$
\left(D_{A}\right)_{i i}=\frac{\left(D_{C}\right)_{i i}}{1+\delta^{2}\left(\Theta_{i i}^{-1}+\rho\right)\left(\widehat{\Theta}_{i i}^{-1}+\rho\right)+\delta\left(\Theta_{i i}^{-1}+\rho\right)+\delta\left(\widehat{\Theta}_{i i}^{-1}+\rho\right)} .
$$

For large regularization parameters ρ, δ the IPM diagonal in the VR reformulation is expected to have limited changes.

Trade-off between PS-IPM rate of convergence and computational footprint related to the re-computation of preconditioners.

Numerical Results

Details:

- Regularization [PG21]: reg $=\max \left\{\frac{1}{\max \left\{\|A\|_{\infty},\|Q\|_{\infty}\right\}}, 10^{-10}\right\}$ and we consider $\delta=\rho=f * r e g$;
- linear systems involving $S(\widehat{\Theta})$ are solved using $\operatorname{GMRES}(100,1)$;
- as preconditioner is used Matlab's ldl factorization of a previous $S(\Theta)$;
- the factorization is recomputed if GMRES needs more Maxit/2 iter.

Table 4: Large Scale Problems $f=10$

Problem	PPM It.	IPM It.	Kryl. It.	Fact.	Time(s)	Obj Val	Reg. Par.	Status
Mittelmann/fome21	20	75	5057	23	700.63	47346318912.00	$5.43 \mathrm{e}-09$	opt
LPnetlib/lp_cre_b	23	48	3760	16	81.57	23129639.89	$5.00 \mathrm{e}-09$	opt
LPnetlib/lp_cre_d	22	46	3084	18	59.21	24454969.78	$5.00 \mathrm{e}-09$	opt
LPnetlib/lp_ken_18	14	38	2241	14	215.48	-52217025287.38	$5.00 \mathrm{e}-09$	opt
Qaplib/lp_nug20	17	17	1056	8	310.74	2181.64	$1.25 \mathrm{e}-07$	opt
LPnetlib/lp_osa_30	19	29	1548	10	42.96	2142139.87	$5.00 \mathrm{e}-09$	opt
LPnetlib/lp_osa_60	17	36	1992	11	121.06	4044072.51	$5.00 \mathrm{e}-09$	opt
LPnetlib/lp-pds_10	19	46	3239	14	80.81	26727094976.01	$5.43 \mathrm{e}-09$	opt
LPnetlib/lp-pds_20	19	60	4125	19	339.66	23821658640.00	$5.43 \mathrm{e}-09$	opt
LPnetlib/lp_stocfor3	32	35	1808	11	19.82	-39976.78	$5.00 \mathrm{e}-09$	opt
Mittelmann/pds-100	20	85	5971	29	5638.99	10928229968.00	$5.00 \mathrm{e}-09$	opt
Mittelmann/pds-30	22	77	5087	23	709.16	21385445736.00	$5.43 \mathrm{e}-09$	opt
Mittelmann/pds-40	20	75	4953	23	1265.16	18855198824.08	$5.43 \mathrm{e}-09$	opt
Mittelmann/pds-50	19	78	5188	25	1666.61	16603525724.02	$5.43 \mathrm{e}-09$	opt
Mittelmann/pds-60	19	82	5909	26	2655.46	14265904407.03	$5.43 \mathrm{e}-09$	opt
Mittelmann/pds-70	20	80	5763	26	3511.44	12241162812.00	$5.43 \mathrm{e}-09$	opt
Mittelmann/rail2586	34	84	5734	33	2412.17	936.55	$5.00 \mathrm{e}-09$	opt
Mittelmann/rail4284	35	76	5353	27	2892.35	1054.89	$5.00 \mathrm{e}-09$	opt
Mittelmann/rail582	35	35	2461	11	56.05	209.75	$5.00 \mathrm{e}-09$	opt

Average Krylov It. per fact.

$$
\begin{aligned}
-f & =10 \\
f & =500
\end{aligned}
$$

RED \geq BLUE \Rightarrow the computed factorization has been "exploited more".

Conclusions

- Primal-Dual Regularized IPM can be naturally framed in the context of the Inexact Proximal Point Method;

Conclusions

- Primal-Dual Regularized IPM can be naturally framed in the context of the Inexact Proximal Point Method;
- in this framework convergence and rate of convergence of the Primal Dual Regularized IPMs are clear;

Conclusions

- Primal-Dual Regularized IPM can be naturally framed in the context of the Inexact Proximal Point Method;
- in this framework convergence and rate of convergence of the Primal Dual Regularized IPMs are clear;
- using the trick of replication of variables, the computational footprint related to the re-computation of preconditioners can be greatly reduced;

Conclusions

- Primal-Dual Regularized IPM can be naturally framed in the context of the Inexact Proximal Point Method;
- in this framework convergence and rate of convergence of the Primal Dual Regularized IPMs are clear;
- using the trick of replication of variables, the computational footprint related to the re-computation of preconditioners can be greatly reduced;
- if large regularization parameters are allowed, virtually, one factorization would be enough!

THANK YOU FOR YOUR ATTENTION!
[AG99] A. Altman and J. Gondzio. "Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization". In: vol. 11/12. 1-4. Interior point methods. 1999, pp. 275-302
[BPCE11] S. Boyd, N. Parikh, E. Chu, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc, 2011
[CG22] S. Cipolla and J. Gondzio. "Proximal stabilized Interior Point Methods for quadratic programming and low-frequency-updates preconditioning techniques". In: Preprint: https://arxiv.org/abs/2205.01775 (2022)
[FO12] M. P. Friedlander and D. Orban. "A primal-dual regularized interior-point method for convex quadratic programs". In: Math. Program. Comput. 4.1 (2012), pp. 71-107
[Gon12] J. Gondzio. "Interior point methods 25 years later". In: European J. Oper. Res. 218.3 (2012), pp. 587-601
[Luq84] F. J. Luque. "Asymptotic convergence analysis of the proximal point algorithm". In: SIAM J. Control Optim. 22.2 (1984), pp. 277-293
[PG21] S. Pougkakiotis and J. Gondzio. "An interior point-proximal method of multipliers for convex quadratic programming". In: Comput. Optim. Appl. 78.2 (2021), pp. 307-351

QUESTIONS?

