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The Quadratic Programming (QP) Problem

In this talk we address the solution of the problem

1
min f(x) ;= =x' Hx+g'x
xERd 2

st. Ax=b )
xc > 0, xr free ,
using Interior Point Methods (IPM).

HE]RdXd,HEO,AGRde,CC{L"'vd} and F:={1,...,d}\C.

A is required to have full rank and we assume that the condition m < d holds.
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IPM overview [Gon12]

Replace inequality constraints with logarithmic barrier function, i.e.,

x€RY

st. Ax=b

Iterates y-centers

Central paith Directions with

step-size
Feasible

region

e—approximate
solution

1
min EXTHX +gTx—p Z In(x;)

ieC

= Feasible region
F:={xe RY s.t. Ax=Db and xc > 0};

= Directions are computed solving a
Newton linear system of the form

A 0

H+o-! AT] _

. max@;1 = O(%) and
min©; ! = O(k);

= 4 is progressively driven to zero.
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Primal-Dual Regularization of problem (1), i.e.,

L7 T L 2 L2
“xTHx+gTx+ Zx— =
[l e 5 % =xllz, + S lIyll,
RP
st. Ax+ Di(y—yx) =b (RP)

xc > 0, xr free

has been proposed [AG99] to:

Indeed, applying the IPM to (RP), the
= Alleviate (near) rank deficiency of A; corresponding Newton matrix assumes the

= Avoid factorization issues of the form

matrix H + @,:1 + P —AT
A D |

A 0 and suitable choices of Py, D, may fix the

H+oe.! —AT}
above issues...

(or of its Schur complement). ...but what about the convergence of the
overall method?
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Alternating Direction Method of
Multipliers (ADMM) [BPCE11]
PROs

Solves Primal-Dual pair;

Low computational cost per iteration:
one linear system involving always the
same matrix

A 0

H+ Bl —AT}

has to be solved;
CONs
Slow rate of convergence;

Not Suitable for high accuracy
solutions.

A method which benefits from the advantages of these two methodologies should be
able to limit the dependence on ©~1! in the Newton IPM matrix (*).
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The Inexact Proximal Point Framework [Luq84]

Introduce 1
l:(X,y) = §XTHX + gTX - yT(AX - b) + ID(X7 y)7
where Ip(x,y) is the indicator function of the convex closed set

d—|C|

D :=RI€l x RL;

x R™.
Consider the saddle sub-differential

axﬁ(x, y)
Ay (—L(x,y))

Hx+g— ATy + dulp(x,y)
Ax — b + dyIp(x,y) ’

Te(xy) =

then the Proximal Point Method (PPM) reads as

(Xks1, Yir1) = P(xk,yx), where P = (I +X71T.)71 and X := blockdiag(ply, §Im).
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The Inexact Proximal Point Framework

Evaluating the proximal operator P is equivalent to finding a solution to the problem

0€ Te(xy)+X((xy) — (x,¥4)), (2)
which is guaranteed to have a unique solution.

Problem (2) is equivalent to:

1 )
min =x Hx +g7x + 2|jx — x |2 + 2ly]1?
xeRd 2 2

st. Ax+d(y—yx)=Db

xc > 0, xr free

(RP¥)

i.e., we need to solve problem (RP) where Py = pl and D, = §I.

Sufficient condition for convergence of PPM is that (RP*) is solved exactly, but it
is not necessary!

Inexact versions of the PPM are well understood [Luq84].



Proximal Stabilized Interior Point Method (PS-IPM) [CG22]

Input: tol >0, o, € (0,1).
Initialization: Iteration counter k = 0; initial point (xo, yo)
1 while Stopping Condition False do
2 Use IPM with starting point (x,y?) = (x4, y) to find (xki1,¥k41) s:t.
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3 Update the iteration counter: k := k + 1.

4 end
Algorithm 1: PS-IPM for QP

where ri(x,y) is a computable residual associated with the variational formulation of
the problem.
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Input: tol >0, o, € (0,1).
Initialization: Iteration counter k = 0; initial point (xo, yo)
1 while Stopping Condition False do
2 Use IPM with starting point (x,y?) = (x4, y) to find (xki1,¥k41) s:t.

7k (%k15 i)l < Cofmin{L, [|(xks1, Yir1) — (xk, ¥i)

3 Update the iteration counter: k := k + 1.

4 end
Algorithm 2: PS-IPM for QP

where ri(x,y) is a computable residual associated with the variational formulation of
the problem.

Primal-Dual CONVERGENCE IS GUARANTEED (if the problem is feasible)!
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1. Asymptotic rate of convergence: (a is the “Lipschitz constant of TZI(O)”)
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2. Warm Starting (the proximal operator is Lipschitz) and:
P (ti) — tiell < [P (te) — P(t—1)ll + P (tk—1) — till
<tk — te—all + 1P (tk—1) — tll,

and using the convergence, we have

[P(te—1) — tll = 0 and ||tk — tx—sf| = O.
= The proximal sub-problems will need a non-increasing number of IPM

iterations to be solved.

Item 2. justifies the computational evidence that changing the reference point at
every IPM iteration works very well in practice [AG99; FO12], but convergence was
not clear and proved only under the strong assumption of the uniform boundedness of
the computed Newton directions [FO12]...

...ASSUMPTION NOT NEEDED IN OUR APPROACH!
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Figure 2: Average IPM sweeps per PPM iteration, Large Scale LP problems
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Figure 3: Performance Profiles for Netlib's LP problems.

Comparison with [PG21], where regularization is driven to zero.
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Figure 4: Performance Profiles for Maros—Mészaros test set.

Comparison with [PG21], where regularization is driven to zero.
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Comparison with [PG21], where regularization is driven to zero.
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Replication of variables: the ADMM trick

Suppose we want to solve the problem
N T
min —x' @x+c¢'x
x€RY
s.t. Bx =f,
x > 0,

which can be reformulated as
. T
min —x' Qx+c'x

x€R%
st.Bx=f, x—z=0 ()
z>0.

This reformulation fits the original framework setting

d=2dy, m=dy +my, H= blockdiag(Q,0), g = H A= {’lg OI} b= m .
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Applying the PS-IPM method to the reformulation (VR) we need to solve a Newton
system of the form

Q+pl 0 —-BT 1] [Ax &
0 o 14pl 0 / Az | |&E2+Z27%,
B 0 5l 0 Ay | £ ’
I —1 0 51| Ay, £
LP/QP part Vs IPM contribution & Variables Replication.

This system can be transformed as:

o l4pl —I 0 0 Az 2+77%,,
=(] -5l / 0 —Ay, | &
0 I Q+pl BT Ax | &
0 0 B —6l| |—Ay; g
=N(9)

Since linear systems involving the red part are easy to solve, its solution can be
obtained by reducing it further to the Schur complement.
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The Schur complement of A/(

5(0):= B -y

Q-+ pl+ (81 + (971 + pl)~1) BT}

which has exactly the same sparsity pattern as the Newton matrix of PS-IPM obtained
without replication of variables, i.e.,

Nc(©) =

Q+pl+071 AT
A —8l| "

What advantages do we get from the new reformulation using VR?
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Consider ©~ ! and ©! two IPM matrices obtained, respectively, in two different IPM
iterations.

Lemma ([CG22])

Define
Da:=(81+(©  +p) ) L= (8I+(© 7 +pN)H)!
and
D¢ = o l-o L
Then,

I5(8) — S(®)ll2 = lIDall2 < IDcll2 = [INc(®) — Nc(©)]l2. 3)

Suppose we computed a preconditioner for S(©), e.g., an incomplete factorization.
Equation (3) shows that any accurate preconditioner for S(©) approximates S(©)
better than an accurate preconditioner for NV'¢(®) would approximate N¢(©).

COMPUTED PRECONDITIONERS ARE REUSABLE!!
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More in details:

(D¢)ii
1+62(0; 1 +p)(O; 1 +p) +6(0; +p) +3(0; 1 +p)

(Da)ii =

For large regularization parameters p, 6 the IPM diagonal in the VR reformulation is

expected to have limited changes.

Trade-off between PS-IPM rate of convergence and computational footprint related to
the re-computation of preconditioners.



Numerical Results

Details:

= Regularization [PG21]: reg = max{ ,10719} and we consider

1
max{[[Alloo,|

Qlloo
d=p="~Fxreg;

= linear systems involving S(é) are solved using GMRES (100,1);
= as preconditioner is used Matlab’s 1d1 factorization of a previous S(©);
= the factorization is recomputed if GMRES needs more Maxit/2 iter.

Table 4: Large Scale Problems f = 10

Problem PPM It. IPMIt. Kryl. It. Fact. Time(s) Obj Val Reg. Par.  Status

Mittelmann/fome21 20 75 5057 23 700.63 47346318912.00 5.43e-09 opt
LPnetlib/lp_cre_b 23 48 3760 16 81.57 23129639.89 5.00e-09 opt
LPnetlib/lp_cre_d 22 46 3084 18 59.21 24454969.78 5.00e-09 opt
LPnetlib/lp_ken_18 14 38 2241 14 215.48 -52217025287.38 5.00e-09 opt
Qaplib/Ip_nug20 17 17 1056 8 310.74 2181.64 1.25e-07 opt
LPnetlib/lp_osa_30 1) 29 1548 10 42.96 2142139.87 5.00e-09 opt
LPnetlib/lp_osa_60 17 36 1992 11 121.06 4044072.51 5.00e-09 opt
LPnetlib/lp_pds_10 19 46 3239 14 26727094976.01 5.43e-09 opt
LPnetlib/Ip_pds_20 19 60 4125 19 9.6 23821658640.00 5.43e-09 opt
LPnetlib/Ip_stocfor3 32 35 1808 11 19.82 -39976.78 5.00e-09 opt
Mittelmann/pds-100 20 85 5971 29 5638.99 10928229968.00 5.00e-09 opt
Mittelmann/pds-30 22 7 5087 23 709.16 21385445736.00 5.43e-09 opt
Mittelmann/pds-40 20 75 4953 23 1265.16 18855198824.08 5.43e-09 opt
Mittelmann/pds-50 19 78 5188 25 1666.61 16603525724.02 5.43e-09 opt
Mittelmann/pds-60 19 82 5909 26 2655.46 14265904407.03 5.43e-09 opt
Mittelmann /pds-70 20 80 5763 26 3511.44 12241162812.00 5.43e-09 opt
Mittelmann /rail2586 34 84 33 2412.17 936.55 5.00e-09 opt
Mittelmann /rail4284 35 76 27 2892.35 1054.89 5.00e-09 opt
Mittelmann/rail582 35 35 11 56.05 209.75 5.00e-09 opt
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Average IPM It. per fact. Average Krylov It. per fact.
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RED > BLUE = the computed factorization has been “exploited more".
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Inexact Proximal Point Method;
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Conclusions

= Primal-Dual Regularized IPM can be naturally framed in the context of the
Inexact Proximal Point Method;

= in this framework convergence and rate of convergence of the Primal Dual
Regularized IPMs are clear;

= using the trick of replication of variables, the computational footprint related to
the re-computation of preconditioners can be greatly reduced;

= if /arge regularization parameters are allowed, virtually, one factorization would be
enough!
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THANK YOU FOR YOUR ATTENTION!
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