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The Problem & Investigation
Perspectives



The Quadratic Programming (QP) Problem

In this talk we address the solution of the problem

min
x∈Rd

f (x) := 1
2
xTHx + gT x

s.t. Ax = b

xC ≥ 0, xF free ,

(1)

using Interior Point Methods (IPM).

H ∈ Rd×d , H � 0, A ∈ Rm×d , C ⊂ {1, . . . , d} and F := {1, . . . , d} \ C.

A is required to have full rank and we assume that the condition m ≤ d holds.
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IPM overview [Gon12]

Replace inequality constraints with logarithmic barrier function, i.e.,

min
x∈Rd

1
2
xTHx + gT x− µ

∑
i∈C

ln(xi )

s.t. Ax = b

• Feasible region

F := {x ∈ Rd s.t. Ax = b and xC ≥ 0};

• Directions are computed solving a
Newton linear system of the form[

H + Θ−1 −AT

A 0

]
;

• max Θ−1ii = O( 1
µ

) and
min Θ−1ii = O(µ);

• µ is progressively driven to zero.
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Investigation Perspective Part 1: Convergence & Stability

Primal-Dual Regularization of problem (1), i.e.,

min
x∈Rd

1
2
xTHx + gT x + 1

2
‖x− xk‖2Pk + 1

2
‖y‖2Dk

s.t. Ax + Dk(y− yk) = b

xC ≥ 0, xF free ,

(RP)

has been proposed [AG99] to:

• Alleviate (near) rank deficiency of A;
• Avoid factorization issues of the

matrix [
H + Θ−1k −AT

A 0

]
(or of its Schur complement).

Indeed, applying the IPM to (RP), the
corresponding Newton matrix assumes the
form [

H + Θ−1k + Pk −AT

A Dk

]
,

and suitable choices of Pk , Dk may fix the
above issues...
...but what about the convergence of the

overall method?
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Investigation Perspective Part 2: Complexity & Rate of Convergence

Interior Point Methods (IPM)
PROs

• Solves the Primal-Dual pair;
• Overall fast rate of convergence;
• Suitable for high accuracy solutions.

CONs
• High computational cost per iteration:

one (or more) linear system(s)
involving the iteration dependent
matrix [

H + Θ−1k −AT

A 0

]
(*)

has to be so solved.

Alternating Direction Method of
Multipliers (ADMM) [BPCE11]

PROs
• Solves Primal-Dual pair;
• Low computational cost per iteration:

one linear system involving always the
same matrix[

H + βI −AT

A 0

]
has to be solved;

CONs
• Slow rate of convergence;
• Not Suitable for high accuracy

solutions.

A method which benefits from the advantages of these two methodologies should be
able to limit the dependence on Θ−1 in the Newton IPM matrix (*).
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Our Contribution [CG22]



The Inexact Proximal Point Framework [Luq84]

Introduce
L(x, y) = 1

2
xTHx + gT x− yT (Ax− b) + ID(x, y),

where ID(x, y) is the indicator function of the convex closed set

D := R|C| × Rd−|C|
≥0 × Rm.

Consider the saddle sub-differential

TL(x, y) :=
[

∂xL(x, y)
∂y(−L(x, y))

]
=
[
Hx + g− AT y + ∂xID(x, y)

Ax− b + ∂yID(x, y)

]
,

then the Proximal Point Method (PPM) reads as

(xk+1, yk+1) = P(xk , yk), where P = (I + Σ−1TL)−1 and Σ := blockdiag(ρId , δIm).
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The Inexact Proximal Point Framework

Evaluating the proximal operator P is equivalent to finding a solution to the problem

0 ∈ TL(x, y) + Σ((x, y)− (xk , yk)), (2)

which is guaranteed to have a unique solution.

Problem (2) is equivalent to:

min
x∈Rd

1
2
xTHx + gT x + ρ

2
‖x− xk‖2 + δ

2
‖y‖2

s.t. Ax + δ(y− yk) = b

xC ≥ 0, xF free ,

(RP*)

i.e., we need to solve problem (RP) where Pk ≡ ρI and Dk ≡ δI.

Sufficient condition for convergence of PPM is that (RP*) is solved exactly, but it
is not necessary!

Inexact versions of the PPM are well understood [Luq84].
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Proximal Stabilized Interior Point Method (PS-IPM) [CG22]

Input: tol > 0, σr ∈ (0, 1).
Initialization: Iteration counter k = 0; initial point (x0, y0)

1 while Stopping Condition False do
2 Use IPM with starting point (x0k , y0k) = (xk , yk) to find (xk+1, yk+1) s.t.

‖rk(xk+1, yk+1)‖ < Cσkr min{1, ‖(xk+1, yk+1)− (xk , yk)‖

3 Update the iteration counter: k := k + 1.
4 end

Algorithm 1: PS-IPM for QP

where rk(x, y) is a computable residual associated with the variational formulation of
the problem.

Primal-Dual CONVERGENCE IS GUARANTEED (if the problem is feasible)!
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Important Observations on Algorithm 1

1. Asymptotic rate of convergence: (a is the “Lipschitz constant of T−1L (0)”)

lim sup
k→∞

dist((xk+1, yk+1),T−1L (0))
dist((xk , yk),T−1L (0))

≤
a

(a2 + (1/max{ρ, δ})2)1/2
< 1,

i.e., ρ and δ should be chosen small for problems with large a.
2. Warm Starting (the proximal operator is Lipschitz) and:

‖P(tk)− tk‖ ≤ ‖P(tk)− P(tk−1)‖+ ‖P(tk−1)− tk‖

≤ η‖tk − tk−1‖+ ‖P(tk−1)− tk‖,

and using the convergence, we have

‖P(tk−1)− tk‖ → 0 and ‖tk − tk−1‖ → 0.
⇒ The proximal sub-problems will need a non-increasing number of IPM
iterations to be solved.

Item 2. justifies the computational evidence that changing the reference point at
every IPM iteration works very well in practice [AG99; FO12], but convergence was
not clear and proved only under the strong assumption of the uniform boundedness of
the computed Newton directions [FO12]...

...ASSUMPTION NOT NEEDED IN OUR APPROACH!
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‖P(tk−1)− tk‖ → 0 and ‖tk − tk−1‖ → 0.
⇒ The proximal sub-problems will need a non-increasing number of IPM
iterations to be solved.

Item 2. justifies the computational evidence that changing the reference point at
every IPM iteration works very well in practice [AG99; FO12], but convergence was
not clear and proved only under the strong assumption of the uniform boundedness of
the computed Newton directions [FO12]...
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10



Important Observations on Algorithm 1

1. Asymptotic rate of convergence: (a is the “Lipschitz constant of T−1L (0)”)

lim sup
k→∞

dist((xk+1, yk+1),T−1L (0))
dist((xk , yk),T−1L (0))

≤
a

(a2 + (1/max{ρ, δ})2)1/2
< 1,

i.e., ρ and δ should be chosen small for problems with large a.
2. Warm Starting (the proximal operator is Lipschitz) and:

‖P(tk)− tk‖ ≤ ‖P(tk)− P(tk−1)‖+ ‖P(tk−1)− tk‖

≤ η‖tk − tk−1‖+ ‖P(tk−1)− tk‖,

and using the convergence, we have

‖P(tk−1)− tk‖ → 0 and ‖tk − tk−1‖ → 0.
⇒ The proximal sub-problems will need a non-increasing number of IPM
iterations to be solved.

Item 2. justifies the computational evidence that changing the reference point at
every IPM iteration works very well in practice [AG99; FO12], but convergence was
not clear and proved only under the strong assumption of the uniform boundedness of
the computed Newton directions [FO12]...

...ASSUMPTION NOT NEEDED IN OUR APPROACH!

10



Item 2.:

0 5 10 15 20 25 30

2

4

6

8

0 5 10 15 20 25 30

10
0

0 5 10 15 20 25

2

4

6

8

0 5 10 15 20 25
10

-10

10
0

Figure 1: Problem PILOT. Upper panels: PPM Iterations & IPM Iterations. Lower panels:
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Item 1.:

It is better to choose small regularization parameters rather than driving regularization
to zero!
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Figure 3: Performance Profiles for Netlib’s LP problems.

Comparison with [PG21], where regularization is driven to zero.
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Replication of variables: the ADMM trick

Suppose we want to solve the problem

min
x∈Rd1

1
2
xTQx + cT x

s.t. Bx = f,

x ≥ 0,

which can be reformulated as

min
x∈Rd1

1
2
xTQx + cT x

s.t. Bx = f, x− z = 0
z ≥ 0.

(VR)

This reformulation fits the original framework setting

d = 2d1, m = d1 + m1, H = blockdiag(Q, 0), g =
[
c
0

]
, A :=

[
B 0
I −I

]
, b =

[
f
0

]
.
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Applying the PS-IPM method to the reformulation (VR) we need to solve a Newton
system of the formQ + ρI 0 −BT −I

0 Θ−1 + ρI 0 I
B 0 δI 0
I −I 0 δI


∆x

∆z
∆y1
∆y2

 =

 ξ1d
ξ2d + Z−1ξµ,σ

ξ1p
ξ2p

 ,
LP/QP part vs IPM contribution & Variables Replication.

This system can be transformed as:Θ−1 + ρI −I 0 0
−I −δI I 0
0 I Q + ρI BT

0 0 B −δI


︸ ︷︷ ︸

=:N (Θ)

 ∆z
−∆y2

∆x
−∆y1

 =

ξ
2
d + Z−1ξµ,σ

ξ2p
ξ1d
ξ1p

 .

Since linear systems involving the red part are easy to solve, its solution can be
obtained by reducing it further to the Schur complement.
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The Schur complement of N (Θ):

S(Θ) :=
[
Q + ρI + (δI + (Θ−1 + ρI)−1)−1 BT

B −δI

]
,

which has exactly the same sparsity pattern as the Newton matrix of PS-IPM obtained
without replication of variables, i.e.,

NC (Θ) :=
[
Q + ρI + Θ−1 AT

A −δI

]
.

...

What advantages do we get from the new reformulation using VR?
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S(Θ) “varies less” than NC (Θ)

Consider Θ̂−1 and Θ−1 two IPM matrices obtained, respectively, in two different IPM
iterations.

Lemma ([CG22])

Define
DA := (δI + (Θ̂−1 + ρI)−1)−1 − (δI + (Θ−1 + ρI)−1)−1

and
DC := Θ̂−1 −Θ−1.

Then,
‖S(Θ̂)− S(Θ)‖2 = ‖DA‖2 < ‖DC‖2 = ‖NC (Θ̂)−NC (Θ)‖2. (3)

Suppose we computed a preconditioner for S(Θ), e.g., an incomplete factorization.
Equation (3) shows that any accurate preconditioner for S(Θ) approximates S(Θ̂)
better than an accurate preconditioner for NC (Θ) would approximate NC (Θ̂).

COMPUTED PRECONDITIONERS ARE REUSABLE!!
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More in details:

(DA)ii = (DC )ii
1 + δ2(Θ−1ii + ρ)(Θ̂−1ii + ρ) + δ(Θ−1ii + ρ) + δ(Θ̂−1ii + ρ)

.

For large regularization parameters ρ, δ the IPM diagonal in the VR reformulation is
expected to have limited changes.

Trade-off between PS-IPM rate of convergence and computational footprint related to
the re-computation of preconditioners.

19



More in details:

(DA)ii = (DC )ii
1 + δ2(Θ−1ii + ρ)(Θ̂−1ii + ρ) + δ(Θ−1ii + ρ) + δ(Θ̂−1ii + ρ)

.

For large regularization parameters ρ, δ the IPM diagonal in the VR reformulation is
expected to have limited changes.

Trade-off between PS-IPM rate of convergence and computational footprint related to
the re-computation of preconditioners.

19



Numerical Results

Details:

• Regularization [PG21]: reg = max{ 1
max{‖A‖∞,‖Q‖∞}

, 10−10} and we consider
δ = ρ = f ∗ reg ;

• linear systems involving S(Θ̂) are solved using GMRES(100,1);
• as preconditioner is used Matlab’s ldl factorization of a previous S(Θ);
• the factorization is recomputed if GMRES needs more Maxit/2 iter.
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RED ≥ BLUE ⇒ the computed factorization has been “exploited more”.
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Conclusions

• Primal-Dual Regularized IPM can be naturally framed in the context of the
Inexact Proximal Point Method;

• in this framework convergence and rate of convergence of the Primal Dual
Regularized IPMs are clear;

• using the trick of replication of variables, the computational footprint related to
the re-computation of preconditioners can be greatly reduced;

• if large regularization parameters are allowed, virtually, one factorization would be
enough!
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THANK YOU FOR YOUR ATTENTION!
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