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Nataša Krejić
University of Novi Sad, Serbia

Philippe Toint
University of Namur, Belgium

S.Bellavia Oprimization & random models Modern Techniques 2 / 31



Outline

Introduction: random models and motivating applications.

Trust-region procedures with random models: adaptive choice of
sample size and learning rate.

Complexity results in expectation.

Finite sum: trust region & Inexact restoration.

Conclusions.

S.Bellavia Oprimization & random models Modern Techniques 3 / 31



Optimization with random models

Unconstrained Optimization Problems

min
x∈Rn

f (x),

with f : Rn → R sufficiently smooth (f ∈ C2 for second-order methods), bounded below,
possibly nonconvex.

f (x), ∇f (x) and ∇2f (x) evaluations are subject to random noise and we can only
compute random estimates

f (x) = f (x , ξ), ∇f (x) = ∇f (x , ξ) ∇2f (x) = ∇2f (x , ξ)

where ξ is a random variable.

S.Bellavia Oprimization & random models Modern Techniques 4 / 31



Random model and optimality measures

First-order

• first-order random model: m(p) = f (x) +∇f (x)Tp;
• first-order regularized random model: m(p) = f (x) +∇f (x)Tp + σ

2 ‖x‖
2, σ > 0

• ε- approximate first-order critical point:

‖∇f (x̂)‖2 ≤ ε.

Second-order

• second-order random model: m(p) = f (x) +∇f (x)Tp + 1
2p

T∇2f (x)p

• second-order regularized random model: m(p) = f (x) +∇f (x)Tp + 1
2p

T∇2f (x)p + σ
3 ‖x‖

3

• ε approximate first and second-order critical point:{
‖∇f (x̂)‖2 ≤ ε
λmin(∇2f (x̂)) ≥ −ε.

.
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Motivating applications
Finite-sum minimization problem:

min
x∈Rn

f (x) =
1
N

N∑
i=1

φi (x),

where φi : Rn → R, i = 1, . . . ,N.

Several problems can be cast in the previous form: classification, data fitting, sample
average approximation ...

Supervised machine learning: given a family of prediction function h(·; x), x ∈ Rn, a loss
function ` and a set of examples {(ai , bi )}Ni=1 (training set), ai ∈ IRd (feature), bi ∈ IR
(label),

min
x∈Rn

f (x) =
1
N

N∑
i=1

`(h(ai ; x), bi )︸ ︷︷ ︸
φi (x)

Empirical Risk

The function f is often nonconvex, e.g. in the case of neural networks

Big data applications ⇒ N very large ⇒ f and derivatives are very expensive!
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Subsampled functions, gradients and Hessians
N is large

M: sample size
IM : a randomly selected nonempty subset of {1, . . . ,N} of cardinality M

IM ⊆ {1, . . . ,N}, |IM | = M, M ≥ 1,

Use:

f (x) =
1
M

∑
i∈IM

φi (x)

∇f (x) =
1
M

∑
i∈IM

∇φi (x)

∇2f (x) =
1
M

∑
i∈IM

∇2φi (x)

A training set shows redundancy in the data ⇒ using all the sample data in every
optimization iteration is inefficient

Overall less expensive when N is large

Computational evidence that they are more robust than fully deterministic approaches.
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Stochastic gradient methods
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xk+1 = xk − αk∇f (xk ), k = 0, 1, . . .

3 The expected value of the average norm of the gradients can be made small by picking a
sufficiently small α

7 ... but the smaller α, the slower the convergence rate!
7 The optimal α (and the mini-batch size) are problem-dependent!
7 For large-scale, real-world systems, expensive parameter tuning efforts is required!

Bottou, Curtis and Nocedal, SIREV 2018, Curtis, Scheinberg, IEEE Sign. Proc. Mag., 2020.
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Adaptive stochastic optimization methods

SGD and its variants employ stochastic (possibly and occasionally full) gradient estimates
and do not rely on any machinery from standard globally convergent optimization
procedures, such as linesearch or trust-region.

Strategies for selecting the steplength that mimic traditional step acceptance rules using
stochastic estimates of functions and gradients:

Some criterion to accept/reject the step is tested
Stochastic estimates of functions and derivatives are computed.

⇓
random models are employed.

Bandeira, Vicente Scheinberg, SIOPT, 2014, Trust-region
Chen, Menickelly, Scheinberg, Math. Prog., 2018, Trust-region
Bollapragada, Byrd, and Nocedal, IMA JNA, Inexact Newton
Blanchet, Cartis, Menickelly, Scheinberg, INFORMS J. on Opt. 2019, Trust-region
B., Gurioli, Morini, Toint, SIOPT 2019, & J. of Complexity 2021, Adaptive regularized
B., Krejić, N Krklec Jerinkić ,Inexact-Newton, Line-search Paquette, Scheinberg, SIOPT 2020 Line-search
Xu, Roosta, Mahoney, Math. Prog. 2020 Newton, Trust-region and Adaptive regularized
Berahas, Cao, Scheinberg, SIOPT 2021 Line-search
B., Gurioli, Morini, Toint, ArXiv, 2021 Trust-region.
B., Krejić, Morini, Rebegoldi, ArXiv, 2021, Trust-region
di Serafino, Krejić, Krklec Jerinkić, Viola, ArXiv 2021, Quasi-Newton, Line-search
Bergou, Diouane, Kunc, Kungurstev, Royer, INFORMS J. Optim., 2022, Quasi-Newton, Line-search
Wang, Yuan, JCAM, 2022, Trust-region
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Deterministic Trust-Region method
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius δk > 0.

1. Compute a trial step
Compute the model mk (p) and an (approximate) solution of the trust-region
problem

min
p

mk (p) s.t. ‖p‖ ≤ δk

2. Check decrease

ρk (pk ) =
f (xk )− f (xk + pk )

mk (0)−mk (pk )

3. Successful iteration
If ρk ≥ η then set δk+1 = γδk and xk+1 = xk + pk .

4. Unsuccessful iteration
If ρk < η then δk+1 = γ−1δk and xk+1 = xk
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Trust-Region method with random models
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius δk > 0.

1. Compute a trial step
Compute a random model mk (p) and an (approximate) solution of the
trust-region problem

min
p

mk (p) s.t. ‖p‖ ≤ δk

2. Check decrease

ρk (pk ) =
f (xk )− f (xk + pk )

mk (0)−mk (pk )

3. Successful iteration
If ρk ≥ η then set δk+1 = γδk and xk+1 = xk + pk .

4. Unsuccessful iteration
If ρk < η then set δk+1 = γ−1δk and xk+1 = xk
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Stochastic Trust-Region
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius δk > 0.
1. Compute a trial step

Compute a random model mk (p) and an (approximate) solution of the
trust-region problem

min
p

mk (p) s.t. ‖p‖ ≤ δk

2. Guess decrease
Compute f (xk ) and f (xk + pk ) estimate of f (xk ) and f (xk + pk ) and

ρk (pk ) =
f (xk )− f (xk + pk )

mk (0)−mk (pk )

3. Successful iteration
If ρk ≥ η then set δk+1 = γδk and xk+1 = xk + pk .

4. Unsuccessful iteration
If ρk < η then set δk+1 = γ−1δk and xk+1 = xk

Blanchet, Cartis, Menickelly, Scheinberg, INFORMS J. on Opt. (2019)

Wang, Yuan, JCAM, (2022)

B., Gurioli, Morini, Toint, arXiv:2112.06176 (2021)
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Stochastic Trust-Region -First order method
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius δk > 0,

1. Compute a trial step
Compute a a random estimate ∇f (xk ) of ∇f (xk ) and set

pk = −
δk

‖∇f (xk )‖︸ ︷︷ ︸
αk

∇f (xk )

2. Guess decrease
Compute f (xk ) and f (xk + pk ) estimate of f (xk ) and f (xk + pk ) and

ρk (pk ) =
f (xk )− f (xk + pk )

‖∇f (xk )‖δk

3. Successful/unsuccesful iteration
If ρk ≥ η then set δk+1 = γδk and xk+1 = xk + pk .
If ρk < η then set ∆k+1 = γ−1δk and xk+1 = xk

Stochastic gradient method with adaptive choice of the steplenght (learning rate)!
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Possible iteration outcomes
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What does it mean "good" model/estimations?

How often can we have false successful/unsuccessful iterations?
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Adaptive accuracy requirements

What does it mean "good" model/estimations?

mk (p) = f (xk ) +∇f (xk )Tp is a "good" model if

‖∇f (xk )−∇f (xk )‖ ≤ ν‖∇f (xk )‖ ν =
1
4

(1− η)

f (xk ) and f (xk + pk ) are "good" function estimates if

max{|f (xk )− f (xk )|, |f (xk + pk )− f (xk + pk )|} ≤ ν‖∇f (xk )‖δk

B., Gurioli, Morini, Toint, arXiv:2112.06176 (2021)

Similar accuracy requirements are used in other TR approaches and in linesearch and adaptive
regularized methods.

S.Bellavia Oprimization & random models Modern Techniques 16 / 31



The probabilistic setting

Consider the events
Mk =

{
‖Gk −∇f (Xk )‖ ≤ ν‖Gk‖)

}
Fk =

{
max{|F 0

k − f (Xk )|, |F p
k − f (Xk + Pk )|} ≤ ν‖Gk‖∆k

}
How often can we have false successful/unsuccessful iterations?

An informal statement of our assumptions:
We assume that

Probability
[
Mk ∩ Fk |conditioned by the past

]
= p∗ > 1

2

the expected value of f (Xk )− f (Xk + Pk) at false successful iterations, conditioned by the past,
is positive.

+ f bounded below and Lipschitz continuity of ∇f (x)

============
Xk ,∆k , Pk are the random variables corresponding to the realizations xk , δk , pk .
Gk is the random variable associate with the realization ∇f (xk ).
F0
k , F

p
k
are the random variables associated with the realizations f (xk ), f (xk + pk ).
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Iteration complexity

Let
Nε = inf {k ≥ 0 | ‖∇f (Xk )‖ ≤ ε} .

If the stochastic Trust-region algorithm is applied to the problem

min f (x)

then, under the stated assumptions,

E
[
Nε
]

= O
(
ε−2
)

O
(
ε−2
)
iteration bound is sharp for TR methods using exact function and gradient evaluations.

Probability p∗ is constant along the iterations and we only require p∗ > 1/2.
Accurate model and accurate functions “happen more often than not”

B., Gurioli, Morini, Toint arXiv:2112.06176 (2021)
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Ensuring the Accuracy Requirements
The Finite-Sum Minimisation Setting - Uniform Random Subsampling

Consider the finite-sum minimisation setting: minx∈Rn f (x), f = 1
N

∑N
i=1 φi (x).

Subsampling:

f (xk ) =
1
|Df

k |

∑
i∈Df

k

φi (xk ), ∇f (xk ) =
1
|Dg

k |
∑
i∈Dg

k

∇φi (xk ),

with Df
k ,D

g
k ⊆ {1, 2, . . . ,N} (randomly and uniformly taken).

assume that ∃ κϕ(xk ) > 0 s.t. κφ(xk ) ≥ maxi∈{1,...,N} ‖φi (xk )‖;
Then, given the accuracy requirement ζk and a prefixed probability α∗ ∈ (0, 1), using the
Bernstein Inequality

|Dk | ≥ min

{
N,

⌈
4κφ(xk )

ζk

(
2κϕ(xk )

ζk
+

1
3

)
ln

(
1

1− α∗

)⌉}
⇓

Pr(|f (xk )− f (xk )| ≤ ζk ) ≥ α∗.

Troop, Foundations and Trends in Machine Learning, 2015
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The Finite-Sum Minimisation Setting - Adaptive choice of
the sample size

Events:

Mk =
{
‖Gk −∇f (Xk )‖ ≤ ν‖Gk‖)

}
,

Fk =
{
max{|F 0

k − f (Xk )|, |F p
k − f (Xk + Pk )|} ≤ ν‖Gk‖∆k

}
Given α∗, β∗ ∈ [0, 1] such that p∗ = α∗β∗ > 1

2 . if

|Df
k | = O

(
1

ν‖∇f (xk )‖2δ2k
log(

1
1− α∗

)

)

|Dg
k | = O

(
1
ζ2k

log(
1

1− β∗
)

)
ζk < ν‖∇f (xk )‖

then
Probability

[
Mk ∩ Fk |conditioned by the past

]
≥ p∗.

The computation of Dg
k requires an inner loop.

This choice of |Df
k | also provide a positive expected value of f (Xk )− f (Xk + Pk) at false

successful iterations, conditioned by the past.
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An example: classification problems

Logistic loss: given {(ai , bi )}Ni=1

f (x) =
1
N

N∑
i=1

log(1 + e−bi a
T
i x )︸ ︷︷ ︸

φi (x)

+
1
2N
‖x‖2,

Nonlinear least squares problems: given {(ai , bi )}Ni=1

f (x) =
1
N

N∑
i=1

(
bi −

1

1 + e−aTi x

)2

︸ ︷︷ ︸
φi (x)

The classifier is such that

1

1 + e−aTi x
≥ 0.5 bi = 1

1

1 + e−aTi x
< 0.5, bi = 0

Props: Number of Propagations (1 full function and gradient evaluation is counted as 2
Prop). A maximum number of Props is considered as a termination criterion.

Computing f (x) and ∇f (x) costs
|Df

k |+|D
g
k
|

N
props.
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STR - first and second order: Adaptive sample size choice
N: 4800 n = 5000, Testing 1200
Average Accuracy STR- first order 87.85%, STR- second order 94.67%

GISETTE: percentage of samples used

0 5 10 15 20 25 30

Cost

0

50

100
%

 s
am

pl
e 

si
ze

 fo
r 

f Percentage sample size for f

STR-second order
STR-first order

0 5 10 15 20 25 30

Cost

0

10

20

%
 s

am
pl

e 
si

ze
 fo

r 
H Percentage sample size for H

STR-second order

0 5 10 15 20 25 30

Cost

0

20

40

60

%
 s

am
pl

e 
si

ze
 fo

r 
g Percentage sample size for g

STR - second order

STR- first order

S.Bellavia Oprimization & random models Modern Techniques 22 / 31



Stocastic trust region & inexact restoration
kth iteration

0. Given xk ∈ Rn, η ∈ (0, 1), γ > 1, and the trust-region radius ∆k > 0,
1. Compute a trial step

Choose randomly and uniformly Dg
k ,⊆ {1, 2, . . . ,N}, compute

∇f (xk ) = 1
|Dg

k
|
∑

i∈Dg
k
∇φi (xk ) and set

pk = −
δk

‖∇f (xk )‖
∇f (xk )

2. Guess decrease
Compute f (xk + pk ) and f (xk ) by subsampling in Dg

k
and ρk (pk ) given by the inexact-restoration step acceptance rule.

3. Successful/unsuccessful iteration
If ρk ≥ η and ‖∇f (xk )‖ ≥ η2δk then set δk+1 = γδk and xk+1 = xk + pk .
Otherwise set δk+1 = γ−1δk and xk+1 = xk

The function approximation is computed averaging in the same subsample used for the gradient
approximation!

B., Krejić, Morini, Rebegoldi A stochastic first-order trust-region method with inexact restoration for
finite-sum minimization, Arxiv2107.03129, 2021
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Inexact-restoration step acceptance

Given xk ,Dg
k ,D

g
k−1, θk , pk .

Let f k−1(xk ) = 1
|Dg

k−1|
∑

i∈Dg
k−1

φi (xk ) be the estimate computed at the previous

iteration and

ρk =
Aredk (θk+1)

Predk (θk+1)

Predk (θk+1) = θk+1(f k−1(xk )− (f (xk ) +∇f (xk )Tpk )︸ ︷︷ ︸
mk (pk )

) + (1− θk+1)
|Dg

k
|−|Dg

k−1|
N

Aredk (θk+1) = θk+1(f k−1(xk )− f (xk + pk )) + (1− θk+1)
|Dg

k
|−|Dg

k−1|
N

θk+1 ∈ (0, 1) s.t.

Predk (θk+1) ≥ η
|Dg

k | − |D
g
k−1|

N
.

We balance the increase/decrease in the approximated objective function with the
increase/decrease in the sample size.
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History: sample size versus iterations

MNIST problem N = 60000 A9A problem N = 22793.
Average accuracy: 86,90% Average accuracy: 98,32%
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TRISH: trust-region without adaptive choice of the learning
rate

SIRTR versus Trust-Region-ish algorithm (TRish)
TRish is a stochastic gradient method based on a trust-region methodology. Normalized steps
are used in a dynamic manner whenever the norm of the stochastic gradient is within a prefixed
interval. The k−th iteration of TRish is given by

xk+1 = xk −


γ1,kαk∇f (xk ), if ‖∇f (xk )‖ ∈

[
0, 1
γ1,k

)
αk
∇f (xk )

‖∇f (xk )‖
, if ‖∇f (xk )| ∈

[
1
γ1,k

, 1
γ2,k

]
γ2,kαk∇f (xk ), if ‖∇f (xk )‖ ∈

(
1
γ2,k

,∞
)

where αk > 0 is the steplength parameter and 0 < γ2,k < γ1,k are positive constants.

F.E. Curtis, K. Scheinberg, R. Shi, INFORMS Journal on Optimization (2019)
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Avoiding learning rate tuning
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SIRTR versus TRish algorithm for several choices of the steplength α.
Decrease of the (average) testing loss f (xk ) w.r.t. the (average) computational time.

From left to right: a9a and htru2 datasets.
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Avoiding Learning rate tuning (2)
Mushrooms dataset, Training N = 5000, n = 112, Testing 1600, batch-size=50
TRrish2 γ1 = 4/G , γ2 = 1/(2G) G : average norm of stochastic gradient estimates provided by SGD, α = 0.1.
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Conclusion, remarks ..

The stocastic trust-region approach has been extended to polynomial models of arbitrary
degree:

seek for first- and second-order critical points,
and also for critical points of arbitrary order

Adaptive accuracy, finite sum context:
adaptive choice of the steplength and of the subsample sizes

Second order methods:
Inexact steps + matrix-free implementation produce
a significative reduction of each iteration cost

More numerical results: Training neural network for monitoring the electricity
consumption of a healtcare facility.

Thank you!
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Approximated function and derivative evaluations

∇j f (xk ) of ∇j f (xk ) (define ∇0f
def
= f ) at iteration k are given by

∇j f (xk ) =
1
|Dk,j |

N∑
i=1

∇j fi (xk ), j ∈ {0, 1, 2},

with Dk,j ⊆ {1, 2, . . . ,N} (randomly and uniformly taken) such that

|Dk,j | = min

{
N,

⌈
4κf ,j
ζk,j

(
2κf ,j
ζk,j

+
1
3

)
log

(
dj

t

)⌉}
, j ∈ {0, 1, 2},

where d0 = 2, d1 = n + 1, d2 = 2n, t = 0.2.

κf ,0 = 10−3, κf ,1 = 5 10−4, κf ,2 = 10−4: set in order to control the growth of the sample
sizes throughout the running of the algorithm
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