THE DIVISIBILITY OF $a^{n}-b^{n}$ BY POWERS OF n

Kálmán Győry
Institute of Mathematics, University of Debrecen, Debrecen H-4010, Hungary. gyory@math.klte.hu Chris Smyth
School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK.
c.smyth@ed.ac.uk

Received: , Accepted: , Published:

Abstract

For given integers a, b and $j \geq 1$ we determine the set $R_{a, b}^{(j)}$ of integers n for which $a^{n}-b^{n}$ is divisible by n^{j}. For $j=1,2$, this set is usually infinite; we determine explicitly the exceptional cases for which a, b the set $R_{a, b}^{(j)}(j=1,2)$ is finite. For $j=2$, we use Zsigmondy's Theorem for this. For $j \geq 3$ and $\operatorname{gcd}(a, b)=1, R_{a, b}^{(j)}$ is probably always finite; this seems difficult to prove, however.

We also show that determination of the set of integers n for which $a^{n}+b^{n}$ is divisible by n^{j} can be reduced to that of $R_{a, b}^{(j)}$.

1. Introduction

Let a, b and j be fixed integers, with $j \geq 1$. The aim of this paper is to find the set $R_{a, b}^{(j)}$ of all positive integers n such that n^{j} divides $a^{n}-b^{n}$. For $j=1,2, \ldots$, these sets are clearly nested, with common intersection $\{1\}$. Our first results (Theorems 1 and 2) describe this set in the case that $\operatorname{gcd}(a, b)=1$. In Section 4 we describe (Theorem 15) the set in the general situation where $\operatorname{gcd}(a, b)$ is unrestricted.
Theorem 1. Suppose that $\operatorname{gcd}(a, b)=1$. Then the elements of the set $R_{a, b}^{(1)}$ consist of those integers n whose prime factorization can be written in the form

$$
\begin{equation*}
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}} \quad\left(p_{1}<p_{2}<\cdots<p_{r}, \text { all } k_{i} \geq 1\right) \tag{1}
\end{equation*}
$$

where $p_{i} \mid a^{n_{i}}-b^{n_{i}}(i=1, \ldots, r)$, with $n_{1}=1$ and $n_{i}=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{i-1}^{k_{i-1}}(i=2, \ldots, r)$.
In this theorem, the k_{i} are arbitrary positive integers. This result is a more explicit version of that proved in Győry [5], where it was shown that if $a-b>1$ then for any
positive integer r the number of elements of $R_{a, b}^{(1)}$ having r prime factors is infinite. The result is also essentially contained in [11], which described the indices n for which the generalised Fibonacci numbers u_{n} are divisible by n. However, we present a self-contained proof in this paper.

On the other hand, for $j \geq 2$, the exponents k_{i} are more restricted.
Theorem 2. Suppose that $\operatorname{gcd}(a, b)=1$, and $j \geq 2$. Then the elements of the set $R_{a, b}^{(j)}$ consist of those integers n whose prime factorization can be written in the form (1), where

$$
p_{1}^{(j-1) k_{1}} \text { divides } \begin{cases}a-b & \text { if } p_{1}>2 \\ \operatorname{lcm}(a-b, a+b) & \text { if } p_{1}=2\end{cases}
$$

and $p_{i}^{(j-1) k_{i}} \mid a^{n_{i}}-b^{n_{i}}$, with $n_{i}=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{i-1}^{k_{i-1}}(i=2, \ldots, r)$.

Again, the result was essentially contained in [5], where it was proved that for $a-b>1$ and for any given r, there exists an $n \in R_{a, b}^{(j)}$ with r distinct prime factors. Further, the number of these n is finite, and all of them can be determined. The paper [5] was stimulated by a problem from the 31st International Mathematical Olympiad, which asked for all those positive integers $n>1$ for which $2^{n}+1$ was divisible by n^{2}. (For the answer, see [5], or Theorem 16.)

Thus we see that construction of $n \in R_{a, b}^{(j)}$ depends upon finding a prime p_{i} not used previously with $a^{n_{i}}-b^{n_{i}}$ being divisible by p_{i}^{j-1}. This presents no problem for $j=2$, so that $R_{a, b}^{(2)}$, as well as $R_{a, b}^{(1)}$, are usually infinite. See Section 5 for details, including the exceptional cases when they are finite. However, for $j \geq 3$ the condition $p_{i}^{j-1} \mid a^{n_{i}}-b^{n_{i}}$ is only rarely satisfied. This suggests strongly that in this case $R_{a, b}^{(j)}$ is always finite for $\operatorname{gcd}(a, b)=1$. This seems very difficult to prove, even assuming the ABC Conjecture. A result of Ribenboim and Walsh [10] implies that, under ABC, the powerful part of $a^{n}-b^{n}$ cannot often be large. But this is not strong enough for what is needed here. On the other hand, $R_{a, b}^{(j)}(j \geq 3)$ can be made arbitrarily large by choosing a and b such that $a-b$ is a powerful number. For instance, choosing $a=1+\left(q_{1} q_{2} \ldots q_{s}\right)^{j-1}$ and $b=1$, where $q_{1}, q_{2}, \ldots, q_{s}$ are distinct primes, then $R_{a, b}^{(j)}$ contains the 2^{s} numbers $q_{1}^{\varepsilon_{1}} q_{2}^{\varepsilon_{2}} \ldots q_{s}^{\varepsilon_{s}}$ where the ε_{i} are 0 or 1 . See Example 6 in Section 7 .

In the next section we give preliminary results needed for the proof of the theorems. We prove them in Section 3. In Section 4 we describe (Theorem 15) $R_{a, b}^{(j)}$, where $\operatorname{gcd}(a, b)$ is unrestricted. In Section 5 we find all a, b for which $R_{a, b}^{(2)}$ is finite (Theorem 16). In Section 6 we discuss the divisibility of $a^{n}+b^{n}$ by powers of n. In Section 7 we give some examples, and make some final remarks in Section 8.

2. Preliminary results

We first prove a version of Fermat's Little Theorem that gives a little bit more information in the case $x \equiv 1(\bmod p)$.
Lemma 3. For $x \in \mathbb{Z}$ and p an odd prime we have

$$
x^{p-1}+x^{p-2}+\cdots+x+1 \equiv \begin{cases}p & \left(\bmod p^{2}\right) \text { if } x \equiv 1 \quad(\bmod p) \tag{2}\\ 1 & (\bmod p) \text { otherwise }\end{cases}
$$

Proof. If $x \equiv 1(\bmod p)$, say $x=1+k p$, then $x^{j} \equiv 1+j k p\left(\bmod p^{2}\right)$, so that

$$
\begin{equation*}
x^{p-1}+x^{p-2}+\cdots+x+1 \equiv p+k p \sum_{j=0}^{p-1} j \equiv p \quad\left(\bmod p^{2}\right) . \tag{3}
\end{equation*}
$$

Otherwise

$$
\begin{equation*}
x(x-1)\left(x^{p-2}+\cdots+x+1\right)=x^{p}-x \equiv 0 \quad(\bmod p), \tag{4}
\end{equation*}
$$

so that for $x \not \equiv 1(\bmod p)$ we have $x\left(x^{p-2}+\cdots+x+1\right) \equiv 0(\bmod p)$, and hence

$$
\begin{equation*}
x^{p-1}+x^{p-2}+\cdots+x+1 \equiv x\left(x^{p-2}+\cdots+x+1\right)+1 \equiv 1 \quad(\bmod p) \tag{5}
\end{equation*}
$$

The following is a result of Birkoff and Vandiver [2, Theorem III]. It is also special case of Lucas [9, p. 210], as corrected for $p=2$ by Carmichael [3, Theorem X].
Lemma 4. Let $\operatorname{gcd}(a, b)=1$ and p be prime with $p \mid a-b$. Define $t>0$ by $p^{t} \| a-b$ for $p>2$ and $2^{t} \| \operatorname{lcm}(a-b, a+b)$ if $p=2$. Then for $\ell>0$

$$
\begin{equation*}
p^{t+\ell} \| a^{p^{\ell}}-b^{p^{\ell}} \tag{6}
\end{equation*}
$$

On the other hand, if $p \nmid a-b$ then for $\ell \geq 0$

$$
\begin{equation*}
p \nmid a^{p^{\ell}}-b^{p^{\ell}} \tag{7}
\end{equation*}
$$

Proof. Put $x=a / b$. First suppose that p is odd and $p^{t} \| a-b$ for some $t>0$. Then as $\operatorname{gcd}(a, b)=1, b$ is not divisible by p, and we have $x \equiv 1\left(\bmod p^{t}\right)$. Then from

$$
\begin{equation*}
a^{p}-b^{p}=(a-b) b^{p-1}\left(x^{p-1}+x^{p-2}+\cdots+x+1\right) \tag{8}
\end{equation*}
$$

we have by Lemma 3 that $p^{t+1} \| a^{p}-b^{p}$. Applying this result ℓ times, we obtain (6).
For $p=2$, we have $p^{t+1} \| a^{2}-b^{2}$ and from $a^{2} \equiv b^{2} \equiv 1(\bmod 8)$, we obtain $2^{1} \| a^{2}+b^{2}$, and so $p^{t+2} \| a^{4}-b^{4}$. An easy induction then gives the required result.

Now suppose that $p \nmid a-b$. Since $\operatorname{gcd}(a, b)=1$, (7) clearly holds if $p \mid a$ or $p \mid b$, as must happen for $p=2$. So we can assume that p is odd and $p \nmid b$. Then $x \not \equiv 1(\bmod p)$ so that, by Lemma 3 and (8), we have $p \nmid a^{p}-b^{p}$. Applying this argument ℓ times, we obtain (7).

For $n \in R_{a, b}^{(j)}$, we now define the set $\mathcal{P}_{a, b}^{(j)}(n)$ to be the set of all prime powers p^{k} for which $n p^{k} \in R_{a, b}^{(j)}$. Our next result describes this set precisely. (Compare with [11, Theorem 1(a)]).
Proposition 5. Suppose that $j \geq 1, \operatorname{gcd}(a, b)=1, n \in R_{a, b}^{(j)}$ and

$$
\begin{equation*}
a^{n}-b^{n}=2^{e_{2}^{\prime}} \prod_{p>2} p^{e_{p}}, \quad n=\prod_{p} p^{k_{p}} \tag{9}
\end{equation*}
$$

and define e_{2} by $2^{e_{2}} \| \operatorname{lcm}\left(a^{n}-b^{n}, a^{n}+b^{n}\right)$. Then

$$
\begin{equation*}
\mathcal{P}^{(1)}(n)=\bigcup_{p \mid a^{n}-b^{n}}\left\{p^{k}, k \in \mathbb{N}\right\} \tag{10}
\end{equation*}
$$

and for $j \geq 2$

$$
\begin{equation*}
\mathcal{P}_{a, b}^{(j)}(n)=\bigcup_{p: p^{j-1} \mid a^{n}-b^{n}}\left\{p^{k}: 1 \leq k \leq\left\lfloor\frac{e_{p}-j k_{p}}{j-1}\right\rfloor\right\} \tag{11}
\end{equation*}
$$

Note that e_{2} is never 1 . Consequently, if $2 m \in R_{a, b}^{(2)}$, where m is odd, then $4 m \in R_{a, b}^{(2)}$. Also, $2 \in R_{a, b}^{(j)}$ for $j \leq 3$ when $a-b$ is even.

Proof. Taking $n \in R_{a, b}^{(j)}$ we have, from (9) and the definition of e_{2} that $j k_{p} \leq e_{p}$ for all primes p. Hence, applying Lemma 4 with a, b replaced by a^{n}, b^{n} we have for p dividing $a^{n}-b^{n}$ that for $\ell>0$

$$
\begin{equation*}
p^{e_{p}+\ell} \| a^{n p^{\ell}}-b^{n p^{\ell}} \tag{12}
\end{equation*}
$$

So $\left(n p^{\ell}\right)^{j} \mid a^{n p^{\ell}}-b^{n p^{\ell}}$ is equivalent to $j\left(k_{p}+\ell\right) \leq e_{p}+\ell$, or $(j-1) \ell \leq e_{p}-j k_{p}$. Thus we obtain (10) for $j \geq 2$, with ℓ unrestricted for $j=1$, giving (10).

On the other hand, if $p \nmid a^{n}-b^{n}$, then by Lemma 4 again, $p^{\ell} \nmid a^{n p^{\ell}}-b^{n p^{\ell}}$, so that certainly $\left(n p^{\ell}\right)^{j} \nmid a^{n p^{\ell}}-b^{n p^{\ell}}$.

We now recall some facts about the order function ord. For m an integer greater than 1 and x an integer prime to m, we define $\operatorname{ord}_{m}(x)$, the order of x modulo m, to be the least positive integer h such that $x^{h} \equiv 1(\bmod m)$. The next three lemmas, containing standard material on the ord function, are included for completeness.

Lemma 6. For $x \in \mathbb{N}$ and prime to m we have $m \mid x^{n}-1$ if and only if $\operatorname{ord}_{m}(x) \mid n$.

Proof. Let $\operatorname{ord}_{m}(x)=h$, and assume that $m \mid x^{n}-1$. Then as $m \mid x^{h}-1$, also $m \mid x^{\operatorname{gcd}(h, n)}-1$. By the minimality of $h, \operatorname{gcd}(h, n)=h$, i.e., $h \mid n$. Conversely, if $h \mid n$ then $x^{h}-1 \mid x^{n}-1$, so that $m \mid x^{n}-1$.

Corollary 7. Let $j \geq 1$. We have $n^{j} \mid x^{n}-1$ if and only if $\operatorname{gcd}(x, n)=1$ and $\operatorname{ord}_{n^{j}}(x) \mid n$.

Lemma 8. For $m=\prod_{p} p^{f_{p}}$ and $x \in \mathbb{N}$ and prime to m we have

$$
\begin{equation*}
\operatorname{ord}_{m}(x)=\operatorname{lcm}_{p} \operatorname{ord}_{p^{f_{p}}}(x) \tag{13}
\end{equation*}
$$

Proof. Put $h_{p}=\operatorname{ord}_{p^{f_{p}}}(x), h=\operatorname{ord}_{m}(x)$ and $h^{\prime}=\operatorname{lcm}_{p} h_{p}$. Then by Lemma 6 we have $p^{f_{p}} \mid x^{h^{\prime}}-1$ for all p, and hence $m \mid x^{h^{\prime}}-1$. Hence $h \mid h^{\prime}$. On the other hand, as $p^{f_{p}} \mid n$ and $m \mid x^{h}-1$, we have $p^{f_{p}} \mid x^{h}-1$, and so $h_{p} \mid h$, by Lemma 6. Hence $h^{\prime}=\operatorname{lcm}_{p} h_{p} \mid h$.

Now put $p_{*}=\operatorname{ord}_{p}(x)$, and define $t>0$ by $p^{t} \| x^{p_{*}}-1$.
Lemma 9. For $\operatorname{gcd}(x, n)=1$ and $\ell>0$ we have $p_{*} \mid p-1$ and $\operatorname{ord}_{p^{\ell}}(x)=p^{\max (\ell-t, 0)} p_{*}$.

Proof. Since $p \mid x^{p-1}-1$, we have $p_{*} \mid p-1$, by Lemma 6. Also, from $p^{\ell} \mid x^{\text {ord }_{p \ell}(x)}-1$ we have $p \mid x^{\operatorname{ord}_{p^{\ell}}(x)}-1$, and so, by Lemma 6 again, $p_{*}=\operatorname{ord}_{p}(x) \mid \operatorname{ord}_{p^{\ell}}(x)$. Further, if $\ell \leq t$ then from $p^{\ell} \mid x^{p_{*}}-1$ we have by Lemma 6 that $\operatorname{ord}_{p^{\ell}}(x) \mid p_{*}$, so $\operatorname{ord}_{p^{\ell}}(x)=p_{*}$. Further, by Lemma 4 for $u \geq t$

$$
\begin{equation*}
p^{u} \| x^{p^{u-t} p_{*}}-1 \tag{14}
\end{equation*}
$$

so that, taking $u=\ell \geq t$ and using Lemma 6, $\operatorname{ord}_{p^{\ell}}(x) \mid p^{\ell-t} p_{*}$. Also, if $t \leq u<\ell$, then, from (14), $x^{p^{t-u} p_{*}} \not \equiv 1\left(\bmod p^{\ell}\right)$. Hence $\operatorname{ord}_{p^{\ell}}(x)=p^{\ell-t} p_{*}$ for $\ell \geq t$.

Corollary 10. Let $j \geq 1$. For $n=\prod_{p} p^{k_{p}}$ and $x \in \mathbb{N}$ prime to n we have $n^{j} \mid x^{n}-1$ if and only if $\operatorname{gcd}(x, n)=1$ and

$$
\begin{equation*}
\operatorname{lcm}_{p} p^{k_{p}^{\prime}} p_{*} \mid \prod_{p} p^{k_{p}} \tag{15}
\end{equation*}
$$

Here the $k_{p}^{\prime}=\max \left(j k_{p}-t_{p}, 0\right)$ are integers with $t_{p}>0$.

Note that p_{*}, k_{p}^{\prime} and t_{p} in general depend on x and j as well as on p.
What we actually need in our situation is the following variant of Corollary 10.
Corollary 11. Let $j \geq 1$. For $n=\prod_{p} p^{k_{p}}$ and integers a, b with $\operatorname{gcd}(a, b)=1$ we have $n^{j} \mid a^{n}-b^{n}$ if and only if $\operatorname{gcd}(n, a)=\operatorname{gcd}(n, b)=1$ and

$$
\begin{equation*}
\operatorname{lcm}_{p} p^{k_{p}^{\prime}} p_{*} \mid \prod_{p} p^{k_{p}} \tag{16}
\end{equation*}
$$

Here the $k_{p}^{\prime}=\max \left(j k_{p}-t_{p}, 0\right)$ are integers with $t_{p}>0$.
This corollary is easily deduced from the previous one by choosing x with $b x \equiv a$ $\left(\bmod n^{j}\right)$.

By contrast with Proposition 5, our next proposition allows us to divide an element $n \in R_{a, b}^{(j)}$ by a prime, and remain within $R_{a, b}^{(j)}$.

Proposition 12. Let $n \in R_{a, b}^{(j)}$ with $n>1$, and suppose that $p_{\max }$ is the largest prime factor of n. Then $n / p_{\max } \in R_{a, b}^{(j)}$.

Proof. Suppose $n \in R_{a, b}^{(j)}$, so that (15) holds, with $x=a / b$, and put $q=p_{\max }$. Then, since for every p all prime factors of p_{*} are less than p, the only possible term on the left-hand side that divides $q^{k_{q}}$ on the right-hand side is the term $q^{k_{q}^{\prime}}$. Now reducing k_{q} by 1 will reduce k_{q}^{\prime} by at least 1 , unless it is already 0 , when it does not change. In either case (15) will still hold with n replaced by n / q, and so $n / q \in R_{a, b}^{(j)}$.

Various versions and special cases of Proposition 12 for $j=1$ have been known for some time, in the more general setting of Lucas sequences, due to Somer [12, Theorem 5(iv)], Jarden [7, Theorem E], Hoggatt and Bergum [6], Walsh [14], André-Jeannin [1] and others. See also Smyth [11, Theorem 3].

In order to work out for which a, b the set $R_{a, b}^{(j)}$ is finite, we need the following classical result. Recall that $a^{n}-b^{n}$ is said to have a primitive prime divisor p if the prime p divides $a^{n}-b^{n}$ but does not divide $a^{k}-b^{k}$ for any k with $1 \leq k<n$.

Theorem 13 (Zsigmondy [15]). Suppose that a and b are nonzero coprime integers with $a>b$ and $a+b>0$. Then, except when

- $n=2$ and $a+b$ is a power of 2
or
- $n=3, a=2, b=-1$
or
- $n=6, a=2, b=1$,
$a^{n}-b^{n}$ has a primitive prime divisor.
(Note that in this statement we have allowed b to be negative, as did Zsigmondy. His theorem is nowadays often quoted with the restriction $a>b>0$ and so has the second exceptional case omitted.)

3. Proof of Theorems 1 and 2

Let $n \in R_{a, b}^{(j)}$ have a factorisation (1), where $p_{1}<p_{2}<\cdots<p_{r}$ and all $k_{i}>0$. First take $j \geq 1$. Then by Proposition $12 n / p_{r}^{k_{r}}=n_{r} \in R_{a, b}^{(j)}$, and hence

$$
\left(n / p_{r}^{k_{r}}\right) / p_{r-1}^{k_{r-1}}=n_{r-1}, \quad \ldots, \quad p_{1}^{k_{1}}=n_{2}, \quad 1=n_{1}
$$

are all in $R_{a, b}^{(j)}$. Now separate the two cases $j=1$ and $j \geq 2$ for Theorems 1 and 2 respectively. Now for $j=1$ Proposition 5 gives us that $p_{i} \mid a^{n_{i}}-b^{n_{i}}(i=1, \ldots, r)$, while for $j \geq 2$ we have, again from Proposition 5, that

$$
p_{1}^{(j-1) k_{1}} \text { divides } \begin{cases}a-b & \text { if } p_{1}>2 \\ \operatorname{lcm}(a-b, a+b) & \text { if } p_{1}=2\end{cases}
$$

and $p_{i}^{(j-1) k_{i}} \mid a^{n_{i}}-b^{n_{i}}(i=2, \ldots, r)$. Here we have used the fact that $\operatorname{gcd}\left(p_{i}, n_{i}\right)=1$, so that if $p_{i}^{k_{i}} \mid\left(a^{n_{i}}-b^{n_{i}}\right) / n_{i}^{2}$ then $p_{i}^{k_{i}} \mid a^{n_{i}}-b^{n_{i}}$ (i.e., we are applying Proposition 5 with all the exponents k_{p} equal to 0 .)

4. Finding $R_{a, b}^{(j)}$ when $\operatorname{gcd}(a, b)>1$.

For $a>1$, define the set \mathcal{F}_{a} to be the set of all $n \in \mathcal{N}$ whose prime factors all divide a. To find $R_{a, b}^{(j)}$ in general, we first consider the case $b=0$.
Proposition 14. We have $R_{a, 0}^{(1)}=R_{a, 0}^{(2)}=\mathcal{F}_{a}$, while for $j \geq 3$ the set $R_{a, 0}^{(j)}=\mathcal{F}_{a} \backslash S_{a}^{(j)}$, where $S_{a}^{(j)}$ is a finite set.

Proof. From the condition $n^{j} \mid a^{n}$, all prime factors of n divide a, so $R_{a, 0}^{(j)} \subset \mathcal{F}_{a}$, say $R_{a, 0}^{(j)}=\mathcal{F}_{a} \backslash S_{a}^{(j)}$. We need to prove that $S_{a}^{(j)}$ is finite. Suppose that $a=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, with p_{1} the smallest prime factor of a. Then $n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}$ for some $k_{i} \geq 0$. From $n^{j} \mid a^{n}$ we have

$$
\begin{equation*}
k_{i} \leq \frac{a_{i}}{j} p_{1}^{k_{1}} \ldots p_{r}^{k_{r}} \quad(i=1, \ldots, r) \tag{17}
\end{equation*}
$$

For these r conditions to be satisfied it is sufficient that

$$
\begin{equation*}
\sum_{i=1}^{r} k_{i} \leq \frac{\min _{i=1}^{r} a_{i}}{j} p_{1}^{\sum_{i=1}^{r} k_{i}} \tag{18}
\end{equation*}
$$

Now (18) holds if $j=1$ or 2 , as in this case, from the simple inequality $k \leq 2^{k-1}$ valid for all $k \in \mathbb{N}$, we have

$$
\begin{equation*}
\sum_{i=1}^{r} k_{i} \leq \frac{1}{2} 2^{\sum_{i=1}^{r} k_{i}} \leq \frac{\min _{i=1}^{r} a_{i}}{j} p_{1}^{\sum_{i=1}^{r} k_{i}} \tag{19}
\end{equation*}
$$

Hence $S_{a}^{(j)}$ is empty if $j=1$ or 2 .
Now take $j \geq 3$, and let $K=K_{a}^{(j)}$ be the smallest integer such that $K p_{1}^{-K} \leq$ $\left(\min _{i=1}^{r} a_{i}\right) / j$. Then (18) holds for $\sum_{i=1}^{r} k_{i} \geq K$, and $S_{a}^{(j)}$ is contained in the finite set $S^{\prime \prime}=\left\{n \in \mathbb{N}, n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}: \sum_{i=1}^{r} k_{i}<K\right\}$. (To compute $S_{a}^{(j)}$ precisely, one need just check for which r-tuples $\left(k_{1}, \ldots, k_{r}\right)$ with $\sum_{i=1}^{r} k_{i}<K$ any of the r inequalities of (17) is violated.

One (at first sight) curious consequence of the equality $R_{a, 0}^{(1)}=R_{a, 0}^{(2)}$ above is that $n \mid a^{n}$ implies $n^{2} \mid a^{n}$.

Now let $g=\operatorname{gcd}(a, b)$ and $a=a_{1} g, b=b_{1} g$. Write $n=G n_{1}$, where all prime factors of G divide g and $\operatorname{gcd}\left(n_{1}, g\right)=1$. Then we have the following general result.

Theorem 15. The set $R_{a, b}^{(j)}$ is given by

$$
\begin{equation*}
R_{a, b}^{(j)}=\left\{n=G n_{1}: G \in \mathcal{F}_{g}, n_{1} \in R_{a_{1}^{G}, b_{1}^{G}}^{(j)} \text { and } \operatorname{gcd}\left(g, n_{1}\right)=1\right\} \backslash R, \tag{20}
\end{equation*}
$$

where R is a finite set. Specifically, all $n=G n_{1} \in R$ have $1 \leq n_{1}<j / 2$ and

$$
\begin{equation*}
G=q_{1}^{\ell_{1}} \ldots q_{m}^{\ell_{m}} \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{i=1}^{m} \ell_{i}<K_{g^{n_{1}}}^{(j)} \tag{22}
\end{equation*}
$$

Here the q_{i} are the primes dividing g, and $K_{g^{n_{1}}}^{(j)}$ is the constant in the proof of Proposition 14 above.

Proof. Supposing that $n \in R_{a, b}^{(j)}$ we have

$$
\begin{equation*}
n^{j} \mid a^{n}-b^{n} \tag{23}
\end{equation*}
$$

and so $n^{j} \mid g^{n}\left(a_{1}^{n}-b_{1}^{n}\right)$. Writing $n=G n_{1}$, as above, we have

$$
\begin{equation*}
n_{1}^{j} \mid\left(a_{1}^{G}\right)^{n_{1}}-\left(b_{1}^{G}\right)^{n_{1}} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{j} \mid g^{G n_{1}}\left(\left(a_{1}^{G}\right)^{n_{1}}-\left(b_{1}^{G}\right)^{n_{1}}\right) \tag{25}
\end{equation*}
$$

Thus (23) holds with n, a, b replaced by $n_{1}, a_{1}^{G}, b_{1}^{G}$. So we have reduced the problem of (23) to a case where $\operatorname{gcd}(a, b)=1$, which we can solve for n_{1} prime to g, along with the extra condition (25). Now, from the fact that $R_{g, 0}^{(2)}=\mathcal{F}_{g}$ from Proposition 14, we have $G^{2} \mid g^{G}$ and hence $G^{j} \mid g^{G n_{1}}$ for all $G \in \mathcal{F}_{g}$, provided that $n_{1} \geq j / 2$. Hence (25) can fail to hold for all $G \in \mathcal{F}_{g}$ only for $1 \leq n_{1}<j / 2$.

Now fix n_{1} with $1 \leq n_{1}<j / 2$. Then note that by Proposition 14, $G^{j} \mid g^{G n_{1}}$ and hence (23) holds for all $G \in \mathcal{F}_{g^{n_{1}}} \backslash S$, where S is a finite set of G 's contained in the set of all G 's given by (21) and (22).

Note that (taking $n_{1}=1$ and using (25)) we always have $R_{g, 0}^{(j)} \subset R_{a, b}^{(j)}$. See example in Section 7.

5. When are $R_{a, b}^{(1)}$ and $R_{a, b}^{(2)}$ finite?

First consider $R_{a, b}^{(1)}$. From Theorem 1 it is immediate that $R_{a, b}^{(1)}$ contains all powers of any primes dividing $a-b$. Thus $R_{a, b}^{(1)}$ is infinite unless $a-b= \pm 1$, in which case $R_{a, b}^{(1)}=\{1\}$. This was pointed out earlier by André-Jeannin [1, Corollary 4].

Next, take $j=2$. Let us denote by $\mathcal{P}_{a, b}^{(2)}$ the set of primes that divide some $n \in R_{a, b}^{(2)}$ and, as before, put $g=\operatorname{gcd}(a, b)$.

Theorem 16. The set $R_{a, b}^{(2)}=\{1\}$ if and only if a and b are consecutive integers, and $R_{a, b}^{(2)}=\{1,3\}$ if and only if $a b=-2$. Otherwise, $R_{a, b}^{(2)}$ is infinite.

If $R_{a / g, b / g}^{(2)}=\{1\}$ (respectively, $=\{1,3\}$) then $\mathcal{P}_{a, b}^{(2)}$ is the set of all prime divisors of g (respectively, $3 g$). Otherwise $\mathcal{P}_{a, b}^{(2)}$ is infinite.

For coprime positive integers a, b with $a-b>1$, the infiniteness of $R_{a, b}^{(2)}$ already follows from the above-mentioned results of [5].

The application of Zsigmondy's Theorem that we require is the following.
Proposition 17. If $R_{a, b}^{(2)}$ contains some integer $n \geq 4$ then both $R_{a, b}^{(2)}$ and $\mathcal{P}_{a, b}^{(2)}$ are infinite sets.

Proof. First note that if $a=2, b=1$ (or more generally $a-b= \pm 1$) then by Theorem 2 , $R^{(2)}=\{1\}$. Hence, taking $n \in R_{a, b}^{(2)}$ with $n \geq 4$ we have, by Zsigmondy's Theorem, that $a^{n}-b^{n}$ has a primitive prime divisor, p say. Now if $p \mid n$ then, by applying Proposition 12 as many times as necessary we find $p \mid n^{\prime}$, where $n^{\prime} \in R_{a, b}^{(2)}$ and now p is the maximal prime divisor of n^{\prime}. Hence, by Proposition 12 again, $n^{\prime \prime}=n^{\prime} / p \in R_{a, b}^{(2)}$ and so, from $n^{\prime}=p n^{\prime \prime}$ and Proposition 5 we have that $p \mid a^{n^{\prime \prime}}-b^{n^{\prime \prime}}$, contradicting the primitivity of p.

Now using Proposition 5 again, $n p \in R_{a, b}^{(2)}$. Repeating the argument with n replaced by $n p$ and continuing in this way we obtain an infinite sequence

$$
n, \quad n p, \quad n p p_{1}, \quad n p p_{1} p_{2}, \quad \ldots, \quad n p p_{1} p_{2} \ldots p_{\ell}, \quad \ldots
$$

of elements of $R_{a, b}^{(2)}$, where $p<p_{1}<p_{2}<\cdots<p_{\ell}<\ldots$ are primes.

Proof of Theorem 16. Assume $\operatorname{gcd}(a, b)=1$, and, without loss of generality, that $a>0$ and $a>b$. (We can ensure this by interchanging a and b and/or changing both their signs.) If $a-b$ is even, then a and b are odd, and $a^{2}-b^{2} \equiv 1\left(\bmod 2^{t+1}\right)$, where $t \geq 2$. Hence $4 \in R_{a, b}^{(2)}$, by Proposition 5, and so both $R_{a, b}^{(2)}$ and $\mathcal{P}_{a, b}^{(2)}$ are infinite sets, by Proposition 17.

If $a-b=1$ then $R^{(2)}=\{1\}$, as we have just seen, above.
If $a-b$ is odd and at least 5 , then $a-b$ must either be divisible by 9 or by a prime $p \geq 5$. Hence 9 or p belong to $R_{a, b}^{(2)}$, by Proposition 5, and again both $R_{a, b}^{(2)}$ and $\mathcal{P}_{a, b}^{(2)}$ are infinite sets, by Proposition 17.

If $a-b=3$ then $3 \in R_{a, b}^{(2)}$, and $a^{3}-b^{3}=9\left(b^{2}+3 b+3\right)$. If $b=-1($ and $a=2, a b=-2)$ or -2 (and $a=1, a b=-2$) then $a^{3}-b^{3}=9$ and so, by Theorem 2 , so $R^{(2)}=\{1,3\}$. Otherwise, using $\operatorname{gcd}(a, b)=1$ we see that $a^{3}-b^{3} \geq 5$, and so the argument for $a-b \geq 5$ but with a, b replaced by a^{3}, b^{3} applies.

6. The powers of n dividing $a^{n}+b^{n}$

Define $R_{a, b}^{(j)+}$ to be the set $\left\{n \in \mathbb{N}: n^{j}\right.$ divides $\left.a^{n}+b^{n}\right\}$. Take $j \geq 1$, and assume that $\operatorname{gcd}(a, b)=1$. (The general case $\operatorname{gcd}(a, b) \geq 1$ can be handled as in Section 4.) We then have the following result.

Theorem 18. Suppose that $j \geq 1, \operatorname{gcd}(a, b)=1, a>0$ and $a \geq|b|$. Then
(a) $R_{a, b}^{(1)+}$ consists of the odd elements of $R_{a,-b}^{(1)}$, along with the numbers of the form $2 n_{1}$, where n_{1} is an odd element of $R_{a^{2},-b^{2}}^{(1)}$;
(b) If $j \geq 2$ the set $R_{a, b}^{(j)+}$ consists of the odd elements of $R_{a,-b}^{(j)}$ only.

Furthermore, for $j=1$ and 2, the set $R_{a, b}^{(j)+}$ is infinite, except in the following cases:

- If $a+b$ is 1 or a power of $2,(j, a, b) \neq(1,1,1)$, when it is $\{1\}$;
- $R_{1,1}^{(1)+}=\{1,2\}$;
- $R_{2,1}^{(2)+}=\{1,3\}$.

Proof. If n is even and $j \geq 2$, or if $4 \mid n$ and $j=1$, then $n^{j} \mid a^{n}+b^{n}$ implies that $4 \mid a^{n}+b^{n}$, contradicting the fact that, as a and b are not both even, $a^{n}+b^{n} \equiv 1$ or 2 $(\bmod 8)$. So either

- n is odd, in which case $n^{j} \mid a^{n}+b^{n}$ is equivalent to finding the odd elements of the set $R_{a,-b}^{(j)}$;
- $j=1$ and $n=2 n_{1}$, where n_{1} is odd, and belongs to $R_{a^{2},-b^{2}}^{(1)}$.

Now suppose that $j=1$ or 2 . If $a+b$ is ± 1 or \pm a power of 2 , then, by Theorem 2 , all $n \in R_{a,-b}^{(j)}$ with $n>1$ are even, so for $j=2$ there are no $n>1$ with $n^{j} \mid a^{n}+b^{n}$ in this case. Otherwise, $a+b$ will have an odd prime factor, and so at least one odd element >1. By Theorem 16 and its proof, we see that $R_{a,-b}^{(2)}$ will have infinitely many odd elements unless $a(-b)=-2$, i.e. $a=2, b=1$ (using $a>0$ and $a \geq|b|$).

For $j=1$, there will be infinitely many n with $n \mid a^{n}+b^{n}$, except when both $a+b$ and $a^{2}+b^{2}$ are 1 or a power of 2 . It is an easy exercise to check that, this can happen only for $a=b=1$ or $a=1, b=0$.

If $g=\operatorname{gcd}(a, b)>1$, then, since $R_{a, b}^{(j)+}$ contains the set $R_{g, 0}^{(j)}$, it will be infinite, by Proposition 14. For $j \geq 3$ and $\operatorname{gcd}(a, b)=1$, the finiteness of the set $R_{a, b}^{(j)+}$ would follow from the finiteness of $R_{a, b}^{(j)}$, using Theorem 16(b).

7. Examples.

The set $R_{a, b}^{(j)}$ has a natural labelled, directed-graph structure, as follows: take the vertices to be the elements of $R_{a, b}^{(j)}$, and join a vertex n to a vertex $n p$ as $n \rightarrow_{p} n p$, where $p \in \mathcal{P}_{a, b}^{(j)}$. We reduce this to a spanning tree of this graph by taking only those edges $n \rightarrow_{p} n p$ for which p is the largest prime factor of $n p$. For our first example we draw this tree (Figure $1)$.

1. Consider the set

$$
\begin{aligned}
R_{3,1}^{(2)}= & 1,2,4,20,220,1220,2420,5060,13420,14740,23620,55660 \\
& 145420,147620,162140,237820,259820,290620,308660 \\
& 339020,447740,847220,899140,1210220, \ldots
\end{aligned}
$$

(sequence A127103 in Neil Sloane's Integer Sequences website). Now

$$
3^{20}-1=2^{4} \cdot 5^{2} \cdot 11^{2} \cdot 61 \cdot 1181
$$

showing that $\mathcal{P}_{3,1}^{(2)}(20)=\left\{11,11^{2}, 61,1181\right\}$. Also

$$
\begin{aligned}
& 3^{220}-1=2^{4} \cdot 5^{3} \cdot 11^{3} \cdot 23 \cdot 61 \cdot 67 \cdot 661 \cdot 1181 \cdot 1321 \cdot 3851 \cdot 5501 \\
& \cdot 177101 \cdot 570461 \cdot 659671 \cdot 24472341743191 \cdot 560088668384411 \\
& \cdot 927319729649066047885192700193701
\end{aligned}
$$

Figure 1: Part of the tree for $R_{3,1}^{(2)}$, showing all elements below 10^{6}.
so that the elements of $\mathcal{P}_{3,1}^{(2)}(220)$ less than $10^{6} / 220$, needed for Figure 1, are

$$
11,23,61,67,661,1181,1321,3851 .
$$

2. Now

$$
R_{5,-1}^{(2)}=1,2,3,4,6,12,21,42,52,84,156,186,372, \ldots
$$

whose odd elements give

$$
R_{5,-1}^{(2)+}=1,3,21,609,903,2667,9429,26187, \ldots
$$

See Section 6.
3. We have

$$
R_{3,2}^{(2)+}=R_{3,-2}^{(2)}=1,5,55,1971145, \ldots
$$

as all elements of $R_{3,-2}^{(2)}$ are odd. Although this set is infinite by Theorem 16, the next term is $1971145 p$ where p is the smallest prime factor of $3^{1971145}+2^{1971145}$ not dividing 1971145. This looks difficult to compute, as it could be very large.
4. We have

$$
R_{4,-3}^{(2)}=R_{4,3}^{(2)+}=1,7,2653, \ldots
$$

Again, this set is infinite, but here only the three terms given are readily computable. The next term is $2653 p$ where p is the smallest prime factor of $4^{2653}+3^{2653}$ not dividing 2653.
5. This is an example of a set where more than one odd prime occurs as a squared factor in elements of the set, in this case the primes 3 and 7. Every element greater
than 9 is of one of the forms $21 m, 63 m, 147 m$, or $441 m$, where m is prime to 21 .

$$
\begin{aligned}
R_{11,2}^{(2)}= & 1,3,9,21,63,147,441,609,1827,4137,4263,7959 \\
& 8001,12411,12789,23877,28959,35931,55713,56007 \\
& 86877,107793,119973,167139,212541,216237,230811 \\
& 232029,251517,359919,389403, \ldots,
\end{aligned}
$$

6. $R_{27001,1}^{(4)}=\{1,2,3,5,6,10,15,30\}$. This is because $27001-1=2^{3} \cdot 3^{3} \cdot 5^{3}$, and none of $27001^{n}-1$ has a factor p^{3} for any prime $p>5$ for any $n=1,2,3,5,6,10,15,30$.
7. $R_{19,1}^{(3)}=\{1,2,3,6,42,1806\}$? Is this the entire set? Yes, unless $19^{1806}-1$ is divisible by p^{2} for some prime p prime to 1806 , in which case $1806 p$ would also be in the set. But determining whether or not this is the case seems to be a hard computational problem.
8. $R_{56,2}^{(4)}$, an example with $\operatorname{gcd}(a, b)>1$. It seems highly probable that

$$
\begin{aligned}
R_{56,2}^{(4)} & =\left(\mathcal{F}_{2} \backslash\{2,4,8\}\right) \cup\left(3 \mathcal{F}_{2}\right) \\
& =1,3,6,12,16,24,32,48,64,96,128,192,256,384,512,768,1024, \ldots
\end{aligned}
$$

However, in order to prove this, Theorem 15 tells us that we need to know that $28^{2^{\ell}} \not \equiv 1\left(\bmod p^{3}\right)$ for every prime $p>3$ and every $\ell>0$. This seems very difficult! Note that $R_{2,0}^{(4)}=\mathcal{F}_{2} \backslash\{2,4,8\}$ and $R_{28,1}^{(4)}=\{1,3\}$.

8. Final remarks.

1. By finding $R_{a, b}^{(j)}$, we are essentially solving the exponential Diophantine equation $x^{j} y=a^{x}-b^{x}$, since any solutions with $x \leq 0$ are readily found.
2. It is known that

$$
R_{a, b}^{(1)}=\left\{n \in \mathbb{N}: n \text { divides } \frac{a^{n}-b^{n}}{a-b}\right\}
$$

See [11, Proposition 12] (and also André-Jeannin [1, Theorem 2] for some special cases.) This result shows that $R_{a, b}^{(1)}=\left\{n \in \mathbb{N}: n\right.$ divides $\left.u_{n}\right\}$, where the u_{n} are the generalised Fibonacci numbers of the first kind defined by the recurrence $u_{0}=1$, $u_{1}=1$, and $u_{n+2}=(a+b) u_{n+1}-a b u_{n}(n \geq 0)$. This provides a link between Theorem 1 of the present paper and the results of [11].
The set $R_{a, b}^{(1)+}$ is a special case of a set $\left\{n \in \mathbb{N}: n\right.$ divides $\left.v_{n}\right\}$, also studied in [11]. Here $\left(v_{n}\right)$ is the sequence of generalised Fibonacci numbers of the second kind. For earlier work on this topic see Somer [13].
3. Earlier and related work. The study of factors of $a^{n}-b^{n}$ dates back at least to Euler, who proved that all primitive prime factors of $a^{n}-b^{n}$ were $\equiv 1(\bmod n)$. See [2, Theorem 1]. Chapter 16 of Dickson [4] (Vol 1) is devoted to the literature on factors of $a^{n} \pm b^{n}$.
More specifically, Kennedy and Cooper [8] studied the set $R_{10,1}^{(1)}$. André-Jeannin [1, Corollary 4] claimed (erroneously - see Theorem 18) that the congruence $a^{n}+b^{n} \equiv 0$ $(\bmod n)$ always has infinitely many solutions n for $\operatorname{gcd}(a, b)=1$.

References

[1] André-Jeannin, R. Divisibility of generalized Fibonacci and Lucas numbers by their subscripts. Fibonacci Quart. 29, 4 (1991), 364-366.
[2] Birkhoff, G. D., and Vandiver, H. S. On the integral divisors of $a^{n}-b^{n}$. Ann. of Math. (2) 5, 4 (1904), 173-180.
[3] Carmichael, R. D. On the Numerical Factors of Certain Arithmetic Forms. Amer. Math. Monthly 16, 10 (1909), 153-159.
[4] Dickson, L. E. History of the theory of numbers. Vol. I: Divisibility and primality. Chelsea Publishing Co., New York, 1966.
[5] Győry, K. Az $a^{n} \pm b^{n}$ alakú számok osztóiról két számelméleti feladat kapcsán [On divisors of numbers of the form $a^{n} \pm b^{n}$]. Középiskolai Matematikai Lapok [Mathematical Journal for Secondary Schools] 41 (1991), 193-201.
[6] Hoggatt, Jr., V. E., and Bergum, G. E. Divisibility and congruence relations. Fibonacci Quart. 12 (1974), 189-195.
[7] Jarden, D. Divisibility of Fibonacci and Lucas numbers by their subscripts. In Recurring sequences: A collection of papers, Second edition. Revised and enlarged. Riveon Lematematika, Jerusalem (Israel), 1966, pp. 68-75.
[8] Kennedy, R. E., and Cooper, C. N. Niven repunits and $10^{n} \equiv 1(\bmod n)$. Fibonacci Quart. 27, 2 (1989), 139-143.
[9] Lucas, E. Théorie des Fonctions Numériques Simplement Périodiques. Amer. J. Math., 1 (1878), 184-196, 197-240, 289-321.
[10] Ribenboim, P., and Walsh, G. The $A B C$ conjecture and the powerful part of terms in binary recurring sequences. J. Number Theory 74, 1 (1999), 134-147.
[11] Smyth, C. The terms in Lucas sequences divisible by their indices. J. Integer Sequences 13 (2010), article 10.2.4, 18pp.
[12] Somer, L. Divisibility of terms in Lucas sequences by their subscripts. In $A p$ plications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992). Kluwer Acad. Publ., Dordrecht, 1993, pp. 515-525.
[13] Somer, L. Divisibility of terms in Lucas sequences of the second kind by their subscripts. In Applications of Fibonacci numbers, Vol. 6 (Pullman, WA, 1994). Kluwer Acad. Publ., Dordrecht, 1996, pp. 473-486.
[14] Walsh, G. On integers n with the property $n \mid f_{n}$. 5pp., unpublished, 1986.
[15] Zsigmondy, K. Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3, 1 (1892), 265-284.

