
Euclid Meets Bézout: Intersecting Algebraic
Plane Curves with the Euclidean Algorithm

Jan Hilmar and Chris Smyth

1. INTRODUCTION. We can be quite sure that Euclid (ca. 325 to ca. 265 BC) and
Étienne Bézout (1730–1783) never met. But we show here how Euclid’s algorithm for
polynomials can be used to find, with their multiplicities, the points of intersection of
two algebraic plane curves. As a consequence, we obtain a simple proof of Bézout’s
Theorem, giving the total number of such intersections.

We would perhaps expect two such plane curves to be given by equations like∑
i, j ai j x i y j = 0 and

∑
i, j bi j x i y j = 0, with coefficients in some field K , and ask

for the points (x, y) in K 2 lying on both curves. However, this question has a nicer
answer if it is tweaked a bit, so we modify the question in several ways. First of all,
we seek points with coordinates in K , the algebraic closure of K , instead of just in K .
Secondly, we work with homogeneous polynomials A(x, y, z) = ∑

i, j ai j x i y j zm−i− j ,
where every term ai j x i y j zm−i− j has the same degree i + j + (m − i − j) = m, the
degree of A. Note that the point (0, 0, 0) always lies on A = 0, and that for every point
(x, y, z) on A = 0 and every λ the point (λx, λy, λz) also lies on A = 0. Thus we
would like to ignore (0, 0, 0) and also regard (x, y, z) and (λx, λy, λz) when λ �= 0 as
essentially the same point. This brings us to our third tweak: we say that two nonzero

points in K
3

are equivalent if each is a scalar multiple of the other. The equivalence
classes of the resulting equivalence relation give us the projective plane K P2. Then,
choosing equivalence class representatives, we can for our purposes regard K P2 as

consisting of the points in K
3

of the form (x, y, 1), (x, 1, 0) and (1, 0, 0).
Finally, we count our intersection points with multiplicity: just as the parabola

y = x2 intersects the y-axis with multiplicity 1 but the (tangential) x-axis with mul-
tiplicity 2, we attach a suitable positive integer as the multiplicity of every intersec-
tion point. Then take A(x, y, z) and another homogeneous polynomial B(x, y, z) =∑

i, j bi j x i y j zn−i− j , and ask our modified question:
How many intersection points are there of A(x, y, z) = 0 and B(x, y, z) = 0 in

K P2, counted with multiplicity, and how do we find them?
The number of points is given by Bézout’s Theorem:

Theorem 1 (Bézout’s Theorem). Let A, B ∈ K [x, y, z] be homogeneous of degrees
m, n respectively, with no nonconstant common factor. Then in K P2 the curves A = 0
and B = 0 intersect in exactly mn points, counting multiplicities.

We give a simple proof of this result in Section 4. The algorithm given in Section 3
calculates these points, and their multiplicities.

Bézout’s Theorem also gives us an answer to our original (untweaked) question:
we get rid of z by setting it to 1, and then the number of intersection points of∑

i, j ai j x i y j = 0 and
∑

i, j bi j x i y j = 0 is the number of points of the form (x, y, 1)

with x, y in K lying on both homogeneous curves. Thus there are at most mn of them.
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Bézout’s Theorem is a generalization of the Fundamental Theorem of Algebra,
telling us that a polynomial f (x) of degree n with complex coefficients has n com-
plex roots. (The curves y = f (x) and y = 0 are replaced by arbitrary ones, and in
projective space.)

The special case m = n = 1 of Bézout’s Theorem tells us that two (distinct) lines
in the projective plane always intersect at a point (no parallel lines in K P2!). But in
general finding the intersection points, and especially their multiplicities, is a nontrivial
business. It is this process which we aim to demystify here, by reducing the general
case to the case m = n = 1.

The intersection of two curves A = 0 and B = 0 can be expressed as a formal sum
A · B of their intersection points, called the intersection cycle, defined below. The idea
of the algorithm is to use the steps of the Euclidean algorithm to express A · B in terms
of intersection cycles of curves defined by polynomials of lower and lower x-degree. In
the end, we can write A · B in terms of intersection cycles of 2-variable homogeneous
polynomials. But these are simply products of lines, whose intersection points can be
written down immediately (see Proposition 2(d) below).

2. INTERSECTION CYCLES OF ALGEBRAIC CURVES. Let K be a field
and denote by KP2 the projective plane over K . For a homogeneous polynomial
A(x, y, z) ∈ K [x, y, z], we will abuse notation slightly by identifying it with the curve
A = 0 in KP2. Further, let ∂x A denote the x-degree of the polynomial A(x, y, z) and
∂ A its (total) degree. While the gcd of A and B is defined only up to multiplication by
a scalar, we write gcd(A, B) = 1 for two such curves A and B if they have no non-
constant common factor. Clearly A and any nonzero scalar multiple λA of A define
the same curve. From now on, all polynomials in upper case (A, B, C , . . . ) will be
assumed to be homogeneous.

For any point P in K P2, and curves A and B, we denote by iP(A, B) the intersection
multiplicity of the curves A and B at P. This is a nonnegative integer, positive if P lies
on both A and B, and otherwise zero. We seek the formal sum A · B = ∑

P iP(A, B)P,
the intersection cycle of A and B, which is simply an object for recording the inter-
section of these curves. Our algorithm does not need to use the definition of iP(A, B)

(for this, see the appendix), only the standard properties of intersection cycles in the
following proposition.

Proposition 2. Let A, B, and C be algebraic curves with gcd(A, B) = gcd(A, C) =
1. Then

(a) A · B = B · A;
(b) A · (BC) = A · B + A · C;
(c) A · (B + AC) = A · B if ∂ B = ∂(AC);
(d) If A and B are distinct lines, say A(x, y, z) = a1x + a2 y + a3z and B(x, y, z)

= b1x + b2 y + b3z, then their intersection cycle A · B is the single point P×
given by

P× =
(∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ ,
∣∣∣∣ a3 a1

b3 b1

∣∣∣∣ ,
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
)

. (1)

These properties are quite natural: part (a) just says that the intersection points don’t
depend on the order of the curves, while part (b) tells us that the points on A and BC
are the points on A and B plus the points on A and C , and that the multiplicities
add. For part (c), we clearly need the condition ∂ B = ∂(AC) to make B + AC ho-
mogeneous. Then any point on A and B will also lie on B + AC . The fact that the
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multiplicity at each intersection point is the same comes from the fact (see appendix)
that the multiplicity is defined in terms of an ideal generated by the two curves, and A
and B generate the same ideal as A and B + AC .

The proof of this Proposition follows straight from Lemma 3 in the appendix, where
we state and prove corresponding properties of the intersection multiplicity iP(A, B).

3. THE ALGORITHM.

3.1. The Euclidean Part. Let A, B ∈ K [x, y, z] be algebraic curves with gcd(A, B)

= 1 and, say, ∂x A ≥ ∂x B ≥ 1. By polynomial division we can find q, r ∈ K (y, z)[x]
with

A = q B + r

and 0 ≤ ∂xr < ∂x B and q, r �= 0. Since the coefficients of q and r are rational func-
tions of y and z, we can multiply through by the least common multiple H ∈ K [y, z]
of their denominators to get

H A = Q B + R,

where Q = q H , R = r H ∈ K [x, y, z] are both homogeneous. Since H A is homoge-
neous, too, ∂(Q B) = ∂ R. Suppose now that G = gcd(B, R). As gcd(A, B) = 1, it is
clear that also gcd(B, H) = G, so we can divide through by G to get

H ′ A = Q B ′ + R′, (2)

where B = B ′G, H = H ′G, R = R′G, and gcd(B ′, R′) = gcd(B ′, H ′) = 1. Now

A · B = A · (B ′G)

= A · B ′ + A · G (by Proposition 2(b))

= (H ′ A) · B ′ − H ′ · B ′ + A · G (by Proposition 2(b) again)

= (Q B ′ + R′) · B ′ − H ′ · B ′ + A · G (using (2))

= R′ · B ′ − H ′ · B ′ + A · G (by Proposition 2(c)). (3)

Note that as G and H ′ are both factors of H ∈ K [y, z], we have ∂x G = ∂x H ′ = 0
and ∂x B ′ = ∂x B. Also, because

∂x R′ = ∂xr < ∂x B ≤ ∂x A,

we see that the first intersection cycle R′ · B ′ on the right-hand side of (3) has the
property that the minimum of the x-degrees of its curves is less than the minimum of
the x-degrees of the curves of A · B, while the second and third intersection cycles both
have one curve with x-degree 0. Thus by next applying (3) to R′ · B ′, and proceeding
recursively, we can express A · B as a sum of terms ±(C · D), where C ∈ K [x, y, z]
and D ∈ K [y, z]. We have thus reduced the problem of computing A · B to computing
such simpler intersection cycles.

3.2. Intersecting a Curve with a Product of Lines. Given C ∈ K [x, y, z] and D ∈
K [y, z], we first note that, because of Proposition 2(b), we can assume that D is irre-
ducible over K . If D doesn’t contain the variable y, then, being irreducible, it must be
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z. Otherwise, over K it will factor as, say,

D(y, z) =
∏
β

(y − βz), (4)

where the β are the roots in K of D(y, 1). Thus D is a product of lines. Then since

C(x, y, z) = C(x, y, 0) + zC ′(x, y, z)

and also

C(x, y, z) = C(x, βz, z) + (y − βz)C ′′(x, y, z)

for some C ′, C ′′ in K [x, y, z] we have by Proposition 2(c) that

C · z = C(x, y, 0) · z

and

C · (y − βz) = C(x, βz, z) · (y − βz). (5)

Thus, either D = z and C · D = C(x, y, 0) · z, or, using (4), we have

C · D = C(x, y, z) ·
(∏

β

(y − βz)

)

=
∑

β

C(x, βz, z) · (y − βz) (by (5)).

Next, in the case D = z, by factorizing C(x, y, 0) first into irreducible factors over
K , and then over its algebraic closure K (as either y or a product

∏
α(x − αy) of lines),

we can reduce the problem of finding C · D to one of intersecting lines. Specifically,
for an irreducible factor C1(x, y) of C(x, y, 0) we get C1 · z = (1, 0, 0) if C1 = y, and

C1 · z =
∑

α

(x − αy) · z =
∑

α

(α, 1, 0) (using (1)) (6)

otherwise, where the α are the roots of C1(x, 1).
In the case D(y, z) = ∏

β(y − βz), we first factorize C(x, βz, z) over K (β). Taking
C2(x, z) as a typical factor, we have that either C2 = z and

C2 · D =
∑

β

z · (y − βz) = (∂ D)(1, 0, 0);

or that, over K , we have C2(x, z) = ∏
γ (x − γ z), where the γ are the roots in K of

C2(x, 1), and

C2 · D =
∑

β

∑
γ

(x − γ z) · (y − βz) =
∑

β

∑
γ

(γ, β, 1).

3.3. The Result. From our algorithm we see that the intersection cycle A · B is a sum
or difference of simpler sums of the following types:
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(1) The point (1, 0, 0);
(2) A sum

∑
α(α, 1, 0), the sum being taken over roots α of a monic polynomial

f ∈ K [x] irreducible over K ; let us denote this sum by C0( f (x));
(3) A double sum

∑
β

∑
γ (γ, β, 1), where

∑
β is taken over the roots β of some

monic polynomial g ∈ K [y] irreducible over K , and where
∑

γ is taken over
the roots γ of some monic polynomial hβ ∈ K (β)[x] irreducible over K (β).
Then we can write hβ as a 2-variable polynomial h(x, β) with coefficients in K ,
where the β-degree of h is less than the degree of g; denote our double sum by
C1(h(x, y), g(y)). Thus h and g will specify this intersection cycle canonically.

We note that (1, 0, 0) and the sums in (2) and (3) are Galois-invariant: they are
unchanged by the action of any automorphism of K that fixes K . Thus we call them
Galois cycles. Any point P ∈ K P2 can appear in only one such cycle: the cycles do
not overlap. Further, since A · B is a formal sum of positive integer multiples of the
intersection points of A and B, any negative multiple of Galois cycles in the sum of
sums the algorithm gives for A · B must be cancelled by positive multiples of the same
cycles. Writing Galois cycles in a canonical way as in (1), (2), and (3) above enables
us to actually carry out such cancellation by computer. Thus, in the end, the algorithm
will give A · B as a sum (no differences!) of Galois cycles.

Remarks.

1. If f is linear, then C0( f (x)) is a single point. Similarly, if g and h are linear,
then C1(h(x, y), g(y)) is a single point. For example, C0(x − 2) = (2, 1, 0), while
C1(x − 3, y − 4) = (3, 4, 1). More generally, C0( f (x)) is a formal sum of ∂ f points,
while C1(h(x, y), g(y)) is a sum of ∂x h ∂g points.

2. In the above analysis, we have in several places, in equation (6) for instance,
summed over the roots of a polynomial irreducible over K . If the polynomial has
multiple roots (i.e., is inseparable), then of course for each factor (x − αy)� we take �

copies of whatever is being summed. (This can in fact happen only over certain fields
of finite characteristic p, in which case � is a power of p. See [1, Prop. 3.8, p. 530].)

3. To obtain our expression for A · B as a sum of Galois cycles we needed to factor-
ize some polynomials over K , and some over certain fields K (β). For many fields there
are algorithms for doing this, depending on the particular field; for instance, factoriza-
tion over the field K = Q of rationals, and over finite extensions Q(β), is implemented
in Maple. And only at the end, when we want to write the Galois cycles in the answer
as sums of points, do we need to actually find the roots in K of these polynomials.

4. In Sections 3.1 and 3.2 we have brazenly taken for granted that certain polyno-
mials (Q, R, . . . ) are homogenous; so as not to interrupt the flow of the paper, we have
left verification of these facts to the careful reader.

3.4. Examples. As an illustration of the method, we now look at two examples of
using the Euclidean algorithm to compute the intersection cycle of two curves A and
B defined over the rationals:

Example 1. Take

A(x, y, z) = y2z − x3

B(x, y, z) = y2z − x2(x + z).

Thus the equations A = 0 and B = 0 are homogenized versions of the cubic curves
y2 = x3 and y2 = x2(x + 1), plotted in Figure 1. We see that they intersect at the origin
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2

1

0

–1

y

x
–0.5 1.510.50.0

Figure 1. The ‘slice’ z = 1 of the cubic curves y2z − x3 (solid line) and y2z − x2(x + z) (dotted line) near
(0, 0, 1), an intersection point of multiplicity 4. (These are the curves y2 = x3 and y2 = x2(x + 1).)

(0, 0, 1), but it is not immediately clear what the multiplicity of intersection there is.
And are there other intersection points?

Applying our (i.e., Euclid’s!) algorithm to A and B as polynomials in x , we first
have

A(x, y, z) = B(x, y, z) + x2z,

so that A · B = A · (x2z) = 2(A · x) + A · z, using Proposition 2(c) and then (b). Then
A · x = (y2z) · x = 2(y · x) + z · x = 2(0, 0, 1) + (0, 1, 0), using 2(d), while A · z =
(x3) · z = 3(0, 1, 0). Collecting the results together, we have A · B = 4(0, 0, 1) +
5(0, 1, 0). Thus A and B intersect at (0, 0, 1) with multiplicity 4 (see Figure 1) and at
(0, 1, 0) with multiplicity 5 (Figure 2). Since both curves have degree 3, and 4 + 5 =
3 × 3, we have checked out Bézout’s Theorem for this example. Note too that in our
standard notation for Galois cycles we have (0, 0, 1) = C1(x, y) and (0, 1, 0) = C0(x).

Example 2. Our second example has been cooked up to give an answer requiring
larger Galois cycles, as well as (1, 0, 0): take

A(x, y, z) = (y − z)x5 + (y2 − yz)x4 + (y3 − y2z)x3

+ (−y2z2 + yz3)x2 + (−y3z2 + y2z3)x − y4z2 + y3z3

B(x, y, z) = (y2 − 2z2)x2 + (y3 − 2yz2)x + y4 − y2z2 − 2z4.

Applying one step of Euclid’s algorithm to A and B as polynomials in x , we get

A = (y − z)x(x2 − z2)

y2 − 2z2
B + z2(y − z)(z2x − y3);

thus clearing the denominator y2 − 2z2 gives

(y2 − 2z2)A = (y − z)x(x2 − z2)B + (y2 − 2z2)z2(y − z)(z2x − y3).
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Figure 2. The ‘slice’ y = 1 of the same curves y2z − x3 (solid line) and y2z − x2(x + z) (dotted line) near
(0, 1, 0), an intersection point of multiplicity 5. (These are the curves z = x3 and z = x3/(1 − x2).)

Then application of (3) gives

A · B = R′ · B ′ + A · G, (7)

where

R′(x, y, z) = z2(y − z)(z2x − y3)

B ′(x, y, z) = x2 + xy + y2 + z2

G(y, z) = y2 − 2z2,

the H ′ · B ′ term not appearing as H ′ = 1 here.
Repeating the process with B ′ and R′, applying (3) again, and then using Proposi-

tion 2(b) and (c), we get

R′ · B ′ = (x2 + xy + y2 + z2) · (z2(y − z)) + (−y3 + xz2) · ((y2 + z2)(y4 + z4))

− z4 · (−y3 + xz2)

= 2((x2 + xy + y2) · z) + (x2 + xy + y2 + z2) · (y − z)

+ (−y3 + xz2) · (y2 + z2) + (−y3 + xz2) · (y4 + z4) − 12(z · y)

= 2
∑

α:α2+α+1=0

(x − αy) · z +
∑

γ :γ 2+γ+2=0

(x − γ y) · (y − z)

+
∑

β:β2+1=0

(−y3 + xz2) · (y − βz)

+
∑

β:β4+1=0

(−y3 + xz2) · (y − βz) − 12(1, 0, 0)
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= 2
∑

α:α2+α+1=0

(α, 1, 0) +
∑

γ :γ 2+γ+2=0

(γ, 1, 1)

+
∑

β:β2+1=0

(−(βz)3 + xz2) · (y − βz)

+
∑

β:β4+1=0

(−(βz)3 + xz2) · (y − βz) − 12(1, 0, 0).

Now

2
∑

α:α2+α+1=0

(α, 1, 0) +
∑

γ :γ 2+γ+2=0

(γ, 1, 1)

= 2C0(x2 + x + 1) + C1(x2 + x + 2, y − 1),

while we can readily show that∑
β:β2+1=0

(−(βz)3 + xz2) · (y − βz) = 4(1, 0, 0) + C1(x + y, y2 + 1),

and ∑
β:β4+1=0

(−(βz)3 + xz2) · (y − βz) = 8(1, 0, 0) + C1(x − y3, y4 + 1).

Thus

R′ · B ′ = 2C0(x2 + x + 1) + C1(x2 + x + 2, y − 1)

+ C1(x + y, y2 + 1) + C1(x − y3, y4 + 1).

So to compute A · B it remains only to evaluate A · G. Now

A(x, y, z) · G = A(x, y, z) · (y2 − 2z2)

=
∑

β:β2−2=0

A(x, βz, z) · (y − βz),

which we can show equals

C1(x3 − y, y2 − 2) + C1(x2 + yx + 2, y2 − 2) + 2(1, 0, 0).

Hence we obtain from (7) that A · B can be written as a sum of Galois cycles as

A · B = 2(1, 0, 0) + 2C0(x2 + x + 1) + C1(x2 + x + 2, y − 1) + C1(x + y, y2 + 1)

+ C1(x − y3, y4 + 1) + C1(x3 − y, y2 − 2) + C1(x2 + yx + 2, y2 − 2).

Once this final form has been obtained, the Galois cycles can be unpacked to
write them explicitly as sums of points. For instance, C0(x2 + x + 1) = (ω, 1, 0) +
(ω2, 1, 0) where ω = −1+√−3

2 , and C1(x3 − y, y2 − 2) = (γ, γ 3, 1) + (ωγ, γ 3, 1) +
(ω2γ, γ 3, 1) + (−γ, −γ 3, 1) + (−ωγ, −γ 3, 1) + (−ω2γ, −γ 3, 1), where γ = 21/6.
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The details of these examples have been given for illustrative purposes only. Of
course the algorithm, being deterministic and recursive, is readily automated. An im-
plementation in Maple for K the field of rationals is available on request from the
authors.

4. PROOF OF BÉZOUT’S THEOREM. We now show that the algorithm de-
scribed in Section 3 can be used to give a simple proof of Bézout’s Theorem (Theo-
rem 1).

Proof. We need to show that #(A · B) = ∑
P iP(A, B) = mn. We proceed by induc-

tion on the x-degree of B. First suppose that B has x-degree 0. Then B factors over K
into a product of n lines L , so that, by Proposition 2(b), A · B is a sum of n intersection
cycles A · L . From Section 3.2, each A · L is equal to A′ · L , where A′ is a polynomial
in two variables of degree m, and thus a product of m lines. Hence A · L can be writ-
ten as a sum of m intersections L ′ · L , giving mn such intersections in total. Since, by
Proposition 2(d), L ′ · L consists of a single point, we have #(A · B) = mn in this case.

Suppose now that B has x-degree k > 0 and that we know that the result holds for
all B with ∂x B < k and for all A. Then, in the notation of Section 3 we have, by (3),

#(A · B) = #(R′ · B ′) − #(H ′ · B ′) + #(A · G)

= (∂ R′ − ∂ H ′)∂ B ′ + ∂ A∂G,

recalling that ∂x R′ < ∂x B = k and ∂x H ′ = ∂x G = 0.
Using the fact that all polynomials involved are homogeneous, we have from (2)

that ∂ R′ − ∂ H ′ = ∂ A. Finally, since ∂ B ′ + ∂G = ∂ B from B = B ′G, the result
#(A · B) = ∂ A ∂ B = mn follows for ∂x B = k. This proves the inductive step.

5. APPENDIX: INTERSECTION MULTIPLICITY OF ALGEBRAIC CURVES.
In Section 2, we used the properties of intersection cycles A · B given in Proposition
2 without actually defining intersection multiplicity iP(A, B). In order to make this ar-
ticle completely self-contained, we now give this definition, and derive the properties
that we need to prove Proposition 2. This is standard material, which can be found, for
instance, in [2] or [3].

Let A, B ∈ K [x, y, z] be algebraic curves with gcd(A, B) = 1. Define the local
ring of rational functions of degree 0 at P ∈ K P2 to be

RP =
{

S

T
: S, T ∈ K [x, y, z], ∂S = ∂T , T (P) �= 0

}
,

where all polynomials are homogeneous. Further, define

(A, B)P =
{

S

T
∈ RP : S = M A + N B, M, N , T ∈ K [x, y, z], T (P) �= 0

}
,

the ideal generated by A and B in RP.
Following [2], we can now define the intersection multiplicity iP(A, B) of A and B

to be the dimension of the K -vector space RP/(A, B)P (and so equal to 0 if (A, B)P =
RP).

Lemma 3. Let P ∈ K P2 and A, B, C ∈ K [x, y, z] with gcd(A, B) = gcd(A, C) = 1.
Then
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(a) iP(A, B) > 0 if and only if P lies on both A and B;
(b) iP(A, B) = iP(B, A);
(c) iP(A, BC) = iP(A, B) + iP(A, C);
(d) iP(A, B + AC) = iP(A, B) if ∂(AC) = ∂ B;
(e) For distinct lines L , L ′, the only point on both lines is P× given by (1), and

iP×(L , L ′) = 1.

Proof. To prove (a), take S/T ∈ RP. If P is not on both A and B, then S/T =
AS/AT = BS/BT ∈ (A, B)P, since at least one of AT and BT is nonzero at P.
Hence RP = (A, B)P, so that iP(A, B) = 0. On the other hand, if P is on both A and
B, then all elements of (A, B)P are 0 at P, while the constant 1 = 1/1 clearly is not!
Hence RP/(A, B)P is at least one-dimensional.

Properties (b) and (d) are immediately obvious, since (A, B)P = (B, A)P and
(A, B + AC)P = (A, B)P.

For (c), we base our argument on that in [2, p. 77]. Define two maps

ψ : RP

(A, C)P
→ RP

(A, BC)P
, w 
→ bw

φ: RP

(A, BC)P
→ RP

(A, B)P
, w 
→ w,

where w denotes the residue of w ∈ RP in the corresponding quotient ring, and b =
B/V n , where n = ∂ B and V is one of x , y, or z, chosen so that it is nonzero at P.

It is easy to check that both maps φ and ψ are K -linear maps. We claim that the
sequence

0 −→ RP

(A, C)P

ψ−→ RP

(A, BC)P

φ−→ RP

(A, B)P
−→ 0

is exact.
Supposing that w ∈ ker ψ , we get bw ∈ (A, BC)P which, on multiplying by V nU ,

say, to clear denominators, gives S A = B(D − T C) for some D, S, T ∈ K [x, y, z],
with w = D/U . As A and B have no common factor, A must divide D − T C , so that,
on dividing by U , we have w = D/U ∈ (A, C)P, Hence w = 0, and ψ is injective.

It is easy to show that imψ = ker φ, by checking inclusion in both directions. Also,
it is clear that φ is surjective, completing the verification of exactness. By the rank-
nullity theorem from linear algebra, this then implies (c).

To prove (e), take A and B to be the lines of Proposition 2(d). We first note that,
by Cramer’s rule, the point P× is the (only) point common to both lines, so that, by
Lemma 3(a), A · B is a positive integer multiple of P×. We need to show that this
multiple is indeed 1.

Take a third line C = c1x + c2 y + c3z so that the matrix

J =
⎛
⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞
⎠

has nonzero determinant. (This is always possible, as K 3 is 3-dimensional!) Then

J −1

⎛
⎝A

B
C

⎞
⎠ =

⎛
⎝x

y
z

⎞
⎠ ,
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so that any polynomial in K [x, y, z] can be written as a polynomial in K [A, B, C].
Thus any element q of RP× can be written in the form

q = AS1(A, B, C) + BS2(B, C) + s0Ck

AT1(A, B, C) + BT2(B, C) + t0Ck

for s0, t0 ∈ K with t0 �= 0, some positive integer k, and polynomials S1, S2, T1, and T2.
Then, by putting the difference q − s0/t0 over a common denominator, we see that it
belongs to (A, B)P× . Hence RP×/(A, B)P× is spanned by 1, and so is one-dimensional;
thus iP×(A, B) = 1.
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