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ABSTRACT. We use graphs to define sets of Salem and Pisot numbers, and prove that the union
of these sets is closed, supporting a conjecture of Boyd that the set of all Salem and Pisot numbers
is closed. We find all trees that define Salem numbers. We show that for all integers n the smallest
known element of the n-th derived set of the set of Pisot numbers comes from a graph. We define
the Mahler measure of a graph, and find all graphs of Mahler measure less than 1

2

�
1 ��� 5 � . Finally,

we list all small Salem numbers known to be definable using a graph.

1. INTRODUCTION

The work described in this paper arose from the following idea: that one way of studying
algebraic integers might be by associating combinatorial objects with them. Here, we try to
do this for two particular classes of algebraic integers, Salem numbers and Pisot numbers, the
associated combinatorial objects being graphs. We also find all graphs of small Mahler measure.
All but one of these measures turns out to be a Salem number.

A Pisot number is a real algebraic integer θ � 1, all of whose other Galois conjugates have
modulus strictly less than 1. A Salem number is a real algebraic integer τ � 1, whose other
conjugates all have modulus at most 1, with at least one having modulus exactly 1. It follows
that the minimal polynomial P � z � of τ is reciprocal (that is, zdeg PP � 1 � z �
	 P � z � ), that τ � 1 is a
conjugate of τ, that all conjugates of τ other than τ and τ � 1 have modulus exactly 1, and that P � z �
has even degree. The set of all Pisot numbers is traditionally (if a little unfortunately) denoted S,
with T being used for the set of all Salem numbers.

We call a graph G a Salem graph if either
� it is nonbipartite, has only one eigenvalue λ � 2 and no eigenvalues in �� ∞ �� 2 � ;

or� it is bipartite, has only one eigenvalue λ � 2 and only the eigenvalue  λ in �� ∞ �� 2 � .
We call a Salem graph trivial if it is nonbipartite and λ ��� , or it is bipartite and λ2 ��� . For a

nontrivial Salem graph, its associated Salem number τ � G � is then the larger root of z � 1 � z 	 λ
in the nonbipartite case, and of � z � 1 ��� z 	 λ in the bipartite case. (Proposition 6 shows that
τ � G � is indeed a Salem number.) We call τ � G � a graph Salem number, and denote by Tgraph the
set of all graph Salem numbers. (For a trivial Salem graph G, τ � G � is a reciprocal quadratic Pisot
number.)

Our first result is the following.
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Theorem 1. The set of limit points of Tgraph is some set Sgraph of Pisot numbers. Furthermore,
Tgraph � Sgraph is closed.

In [MRS, Corollary 9], a construction was given for certain subsets S � of S and T � of T , using
a restricted class of graphs (star-like trees). We showed that T � had its limit points in S � , and that
(like S) S � was closed in � . The main aim of this paper is to push these ideas as far as we can.

We call elements of Sgraph graph Pisot numbers. The proof of Theorem 1 reveals a way to
represent graph Pisot numbers by bi-vertex-coloured graphs, which we call Pisot graphs.

Since Boyd has long conjectured that S is the set of limit points of T , and that therefore S � T
is closed ([Bo]), our result is a step in the direction of a proof of his conjecture. However, we
can find elements in T  Tgraph (see Section 11) and elements in S  Sgraph (see Corollary 20), so
that graphs do not tell the whole story.

It is clearly desirable to describe all Salem graphs. While we have not been able to do this
completely, we are able in Proposition 7 to restrict the class of graphs that can be Salem graphs.
Naturally enough, we call a Salem graph that happens to be a tree a Salem tree. In Section 7 we
completely describe all Salem trees.

In Section 9 we show that the smallest known elements of the k-th derived set of S belong to
the k-th derived set of Sgraph. In Section 10, we find all graphs having Mahler measure at most
1
2 � 1 � � 5 � . Finally, in Section 11 we list some small Salem numbers coming from graphs.

Acknowledgments. We are very grateful to Peter Rowlinson for providing us with many
references on graph eigenvalues. We also thank the referees for helpful comments.

2. LEMMAS ON GRAPH EIGENVALUES

For a graph G, recall that its eigenvalues are defined to be those of its adjacency matrix A 	
� ai j � , where ai j 	 1 if the ith and jth vertices are joined by an edge (‘adjacent’), and 0 otherwise.
Because A is symmetric, all eigenvalues of G are real.

The following facts are essential ingredients in our proofs.

Lemma 2 (Interlacing Theorem. See [GR, Theorem 9.1.1]). If a graph G has eigenvalues λ1 �
����� � λn, and a vertex of G is deleted to produce a graph H with eigenvalues µ1 � ����� � µn � 1,
then the eigenvalues of G and H interlace, namely

λ1 � µ1 � λ2 � µ2 �������	� µn � 1 � λn �
We denote the largest eigenvalue of a graph G, called its index, by λ � G � . We call a graph that

has all its eigenvalues in the interval 
  2 � 2 � a cyclotomic graph. Connected graphs that have
index at most 2 have been classified, and in fact all are cyclotomic.

Lemma 3 ( [Smi], [Neu]—see also [CR, Theorem 2.1] ). The connected cyclotomic graphs are
precisely the induced subgraphs of the graphs Ẽ6 � Ẽ7 and Ẽ8, and those of the � n � 1 � -vertex
graphs Ãn � n � 2 � , D̃n � n � 4 � , as in Figure 1.

Clearly, general cyclotomic graphs are then graphs all of whose connected components are
cyclotomic.

An internal path of a graph G is a sequence of vertices x1 � ����� � xk of G such that all vertices
(except possibly x1 and xk) are distinct, xi is adjacent to xi  1 for i 	 1 � ����� � k  1, x1 and xk have
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FIGURE 1. The maximal connected cyclotomic graphs Ẽ6 � Ẽ7 � Ẽ8 � Ãn � n � 2 � and
D̃n � n � 4 � . The number of vertices is one more than the subscript.

degree at least 3, while x2 � ����� � xk � 1 have degree 2. An internal edge is an edge on an internal
path.

Lemma 4. (i) Suppose that the connected graph G has G � as a proper subgraph. Then
λ � G � � � λ � G � .

(ii) Suppose that G � is a graph obtained from a connected graph G by subdividing an internal
edge. Then λ � G � � � λ � G � , with equality if and only if G 	 D̃n for some n � 5.

For the proof, see [GR, Theorem 8.8.1(b)] and [HS, Proposition 2.4]. Note that on subdividing
a (noninternal) edge of Ãn, λ � G �
	 2 does not change. For any other connected graph G, if we
subdivide a noninternal edge of G to get a graph G � , then G is (isomorphic to) a subgraph of G � ,
so that, by (i), λ � G � � � λ � G � .
Lemma 5 (See [CR, Theorem 1.3] and references therein). Every vertex of a graph G has degree
at most λ � G � 2.

Proof. Suppose G has a vertex of degree d � 1 (the result is trivial if every vertex has degree 0)
Then the star subgraph G � of G on that vertex and its adjacent vertices has λ � G � � 	 � d. This
follows from the fact that its “quotient” (see Section 6) is � z � 1  zd � � z � 1 ��� � 1, so that it has
two distinct eigenvalues � λ satisfying λ2 	 � � z � 1 � � z � 2 	 d. (If d � 2, then 0 is also an
eigenvalue.) By Lemma 4(i), λ � G � � � λ � G � , giving the result. �

3. SALEM GRAPHS

Let G be a graph on n vertices, and let χG � x � be its characteristic polynomial (the characteristic
polynomial of the adjacency matrix of G).

When G is nonbipartite, we define the reciprocal polynomial of G, denoted RG � x � , by

RG � z � 	 znχG � z � 1 � z � �
By construction RG is indeed a reciprocal polynomial, its roots coming in pairs, each root β 	
α � 1 � α of χG corresponding to the (multiset) pair � α � 1 � α � of roots of RG.

When G is bipartite, the reciprocal polynomial RG � x � is defined by

RG � z � 	 zn � 2χG � � z � 1 � � z � �
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In this case χG �� x � 	 �  1 � nχG � x � : the characteristic polynomial is either even or odd. From this
one readily sees that RG � z � is indeed a polynomial, and the correspondence this time is between
the pairs � β �� β � and � α � 1 � α � , where β 	 � α � 1 � � α. (We may suppose that the branch of
the square root is chosen such that β � 0).

As the roots of χG are all real, in both cases the roots of RG are either real, or lie on the
unit circle: if β � 2 then the above correspondence is with a pair � α � 1 � α � , both positive; if
β � 
  2 � 2 � then it is with the pair � α � 1 � α 	 ᾱ � , both of modulus 1.

Proposition 6. For a cyclotomic graph G, RG is indeed a cyclotomic polynomial. For a nontrivial
Salem graph G, τ � G � is indeed a Salem number.

Proof. From the above discussion, for G a cyclotomic graph, RG has all its roots of modulus 1
and so is a cyclotomic polynomial, by Kronecker’s Theorem.

We now take G to be a Salem graph, with index λ 	 λ � G � . We can construct its reciprocal
polynomial, RG, and τ 	 τ � G � is a root of this. Moreover, λ is the only root of PG that is greater
than 2, so that apart from λ and possibly  λ all the roots of PG lie in the real interval 
  2 � 2 � . As
noted above, such roots of PG correspond to roots of RG that have modulus 1; λ (respectively the
pair � λ) corresponds to the pair of real roots τ, 1 � τ, with τ � 1. The minimal polynomial of τ,
call it mτ, is a factor of RG. Its roots include τ and 1 � τ. Were λ (respectively λ2) to be a rational
integer—cases excluded in the definition—then these would be the only roots of mτ, and τ would
be a reciprocal quadratic Pisot number. As this is not the case, mτ has at least one root with
modulus 1, and exactly one root (τ) with modulus greater than 1, so τ is a Salem number. �

Many of the results that follow are most readily stated using Salem graphs, although our real
interest is only in nontrivial Salem graphs. It is an easy matter, however, to check from the
definition whether or not a particular Salem graph is trivial.

While we are able in Section 7 to describe all Salem trees, we are not at present able to do the
same for Salem graphs. However, the following result greatly restricts the kinds of graphs that
can be Salem graphs. It is an essential ingredient in the proof of Theorem 1.

Proposition 7. Let G be a connected graph having index λ � 2 and second largest eigenvalue at
most 2. Then

(a) The vertices V � G � of G can be partitioned as V � G � 	 M � A � H, in such a way that� The induced subgraph G � M is one of the 18 graphs of [CR, Theorem 2.3] minimal
with respect to the property of having index greater than 2; it has only one eigenvalue
greater than 2;� The set A consists of all vertices of G  M adjacent in G to some vertex of M;� The induced subgraph G � H is cyclotomic.

(b) G has at most B : 	 10 � 3λ4 � λ2 � 1 � vertices of degree greater than 2, and at most λ2B
vertices of degree 1.

Proof. Such a graph G has a minimal vertex-deleted induced subgraph G � M with index greater
than 2, given by [CR, Theorem 2.3]; G � M can be one of 18 graphs, each with at most 10 vertices.
Note that G � M has only one eigenvalue greater than 2, as when a vertex is removed from G � M the
resulting graph has, by minimality, index at most 2. Hence, by Lemma 2, G � M cannot have more
than one eigenvalue greater than 2.
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Now let A be the set of vertices in V � G �  M adjacent in G to a vertex of M. Then, by
interlacing, the induced subgraph G � on V � G �  A has at most one eigenvalue greater than 2,
which must be the index of G � M. Hence the other components of G � must together form a
cyclotomic graph, H say. By definition, there are no edges in G having one endvertex in M
and the other in H.

As the index of G is λ, the maximum degree of a vertex of G is bounded by λ2, by Lemma 5.
Applying this to the vertices of M, we see that there are at most 10λ2 edges with one endvertex
in M and the other in A. Thus the size #A of A is at most 10λ2. Now, applying the degree bound
λ2 to the vertices of A, we similarly get the upper bound λ2#A for the number of edges with one
endvertex in A and the other in H. These edges are adjacent to at most λ2#A vertices in H of
degree � 2 in G. Now every connected cyclotomic graph contains at most two vertices of degree
greater than 2 (in fact only the type D̃n, as in Figure 1, having two). Also, since every connected
component of H has at least one such edge incident in it, the number of such components is at
most λ2#A. This gives at most another 2λ2#A vertices of degree � 2 in H that are not adjacent
to a vertex of A. Adding up, we see that the total number of vertices of degree � 2 is at most
#M � #A � λ2#A � 2λ2#A � 10 � 3λ4 � λ2 � 1 � .

To bound the number of vertices of degree 1, we associate to each such vertex the nearest (in
the obvious sense) vertex of degree greater than 2, and then use the fact that these latter vertices
have degree at most λ � G � 2, by Lemma 5. �

On the positive side, the next results enable us to construct many Salem graphs. Our first result
does this for bipartite Salem graphs.

Theorem 8. (a) Suppose that G is a noncyclotomic bipartite graph and such that the induced
subgraph on V � G �  � v � is cyclotomic. Then G is a Salem graph.

(b) Suppose that G is a noncyclotomic bipartite graph, with the property that for each
minimal induced subgraph M of G the complementary induced subgraph G � V � G � � V � M �
is cyclotomic. Then G is a Salem graph.

Here the “minimal” graph M is as in Proposition 7: a minimal vertex-deleted subgraph with
index greater than 2.

We can use part (a) of the theorem to construct Salem graphs. Take a forest of cyclotomic
bipartite graphs (that is, any graph of Lemma 3 except an odd cycle Ã2n), and colour the vertices
black or red, with adjacent vertices differently coloured. Join some (as few or as many as you
like) of the black vertices to a new red vertex. Of course, one may as well take enough such
edges to make G connected. This construction gives the most general bipartite, connected graph
such that removing the vertex v produces a graph with all eigenvalues in 
  2 � 2 � . This result is
an extension of Theorem 16(a) below, which is for trees. Theorem 16(b) gives a construction for
more Salem trees.

In 2001 Piroska Lakatos [L2] proved a special case of Theorem 8 where the components
G � V � G � ��� v � consisted of paths, joined in G at one or both endvertices to v.

Proof. The proof of (a) is immediate from Lemma 2.
Part (b) comes straight from a result of D. Powers—see [CS, p. 456]. This states that if

the vertices of a graph G are partitioned as V � G � 	 V1 � V2 with G � Vi � i 	 1 � 2 � having indices
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λ � i � � i 	 1 � 2 � , then the second-largest eigenvalue of G is at most maxV1 � V2 � V � G � min � λ � 1 � � λ � 2 � � .
It is clear that we may restrict consideration to G � V1 that are minimal, which gives the result. �

The next result gives a construction for some nonbipartite Salem graphs.

Theorem 9. Suppose that G is a noncyclotomic nonbipartite graph containing a vertex v such
that the induced subgraph on V � G �  � v � is cyclotomic. Suppose also that G is a line graph.
Then G is a Salem graph.

Proof. Recall that a line graph L is obtained from another graph H by defining the vertices of L
to be the edges of H, with two vertices of L adjacent if and only if the corresponding edges of H
are incident at a common vertex of H. It is known that line graphs have least eigenvalue at least
 2 ([GR, Chapter 12]). The proof of this follows easily from the fact that the adjacency matrix
A of L is given by A � 2I 	 BT B, where B is the incidence matrix of H. Further, by Lemma 2, G
has one eigenvalue λ � G � � 2. �

To use this result constructively, first note that all paths and cycles are line graphs, as well as
being cyclotomic. Then take any graph H consisting of one or two connected components, each
of which is a path or cycle, and add to H an extra edge joining any two distinct nonadjacent
vertices. Then the line graph of this augmented graph, if not again cyclotomic, will be a
nonbipartite Salem graph.

4. LEMMAS ON RECIPROCAL POLYNOMIALS OF GRAPHS

For the proof of Theorem 1, we shall need to consider special families of graphs, obtained by
adding paths to a graph. Here we establish the general structure of the reciprocal polynomials of
such families, and show how in certain cases one can retrieve a Pisot number from a sequence of
graph Salem numbers.

Throughout this section, reciprocal polynomials will be written as functions of a variable z,
and we conveniently treat the bipartite and nonbipartite cases together by writing y 	 � z if the
graph is bipartite, and y 	 z otherwise.

Lemma 10. Let G be a graph with a distinguished vertex v. For each m
�

0, let Gm be the
graph obtained by attaching one endvertex of an m-vertex path to the vertex v (so Gm has m
more vertices than G).

Let Rm � z � be the reciprocal polynomial of Gm. Then for m � 2 we have

� y2  1 � Rm � z � 	 y2mP � z �  P � � z � �
for some monic integer polynomial P � z � that depends on G and v but not on m, and with P � � z � 	
zdegPP � 1 � z � .
Proof. Let χm � λ � be the characteristic polynomial of Gm. Then expanding this determinant along
the row corresponding to the vertex at the “loose” endvertex of the attached path (that which is
not v) we get (for m � 2)

χm 	 λχm � 1  χm � 2 �
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Recognising this as a Chebyshev recurrence, or using induction, we get (on replacing λ by y � 1 � y
and multiplying through by the appropriate power of y)

Rm � z � 	 y2 � t  1 �  1
y2  1

Rm � t � z �  y2t  1
y2  1

y2Rm � t � 1 � z �

for any t between 1 and m  1. Taking t 	 m  1 gives

Rm � z � 	 y2m  1
y2  1

R1 � z �  y2 � m � 1 �  1
y2  1

y2R0 � z � �

Putting P � z � 	 R1 � z �  R0 � z � we are done. �
An easy induction extends this lemma to deal with any number of added pendant paths.

Lemma 11. Let G be a graph, and � v1 � ����� � vk � a list of (not necessarily distinct) vertices of
G. Let Gm1 ������� � mk be the graph obtained by attaching one endvertex of a new mi-vertex path to
vertex vi (so Gm1 ��������� mk has m1 � ����� � mk more vertices than G). Let Rm1 ��������� mk � z � be the reciprocal
polynomial of Gm1 ��������� mk . Then if all the mi are � 2 we have

� y2  1 � kRm1 ������� � mk � z � 	 ∑
ε1 ��������� εk

� � 0 � 1 �
y2∑ εimiP� ε1 ��������� εk � � z � �

for some integer polynomials P� ε1 ��������� εk � � z � that depend on G and � v1 � ����� � vk � but not on m1 � ����� � mk.

With notation as in the Lemma, we refer to P� 1 ��������� 1 � as the leading polynomial of Rm1 ������� � mk .
Given any ε � 0, if we then take all the mi large enough, the number of zeros of Rm1 ��������� mk in the
region � z � � 1 � ε is equal to the number of zeros of its leading polynomial in that region.

Lemma 12. Suppose that G is connected and that Gm (as in Lemma 10) is a Salem graph for all
sufficiently large m. Then Gm is a nontrivial Salem graph for all sufficiently large m. Furthermore
P � z � , the leading polynomial of Rm, is a product of a Pisot polynomial (with Pisot number θ as
its root, say), a power of z, and perhaps a cyclotomic polynomial. Moreover the Salem numbers
τm : 	 τ � Gm � converge to θ as m � ∞.

Proof. Preserving the notation of Lemma 10, we have � y2  1 � Rm � z � 	 y2mP � z �  P � � z � . We
suppose that m is large enough that the only roots of Rm � z � are τm, its conjugates, and perhaps
some roots of unity. By Lemma 4, the τm are strictly increasing, so in particular they have
modulus � 1 � ε for all sufficiently small positive ε. From the remark preceding this Lemma,
we deduce that P � z � has exactly one root outside the closed unit disc, θ say. Applying Rouché’s
Theorem on the boundary of an arbitrarily small disc centred on θ we deduce that, for all large
enough m, Rm and P have the same number of zeros (namely one) within that disc, and hence
τm � θ as m � ∞. Since the eigenvalues of trivial Salem graphs form a discrete set, we can
discard the at most finite number of trivial Salem graphs in our sequence, and so assume that all
our Salem graphs are nontrivial, so that the τm are Salem numbers.

It remains to prove that θ is a Pisot number. The only alternative would be that θ is a Salem
number. But then θ would also be a root of P � � z � , so would be a root of Rm � z � for all m, giving
τm 	 θ for all m. This contradicts the fact that the τm are strictly increasing as m increases. �
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It is interesting to note that the Pisot number θ in Lemma 12 cannot be a reciprocal quadratic
Pisot number, the proof showing that it is not conjugate to 1 � θ.

Corollary 13. With notation as in Lemma 11, suppose further that G is connected and that
Gm1 ��������� mk is a Salem graph for all sufficiently large m1 � ����� � mk. Then Gm1 ��������� mk is a nontrivial
Salem graph for but finitely many � m1 � ����� � mk � . Furthermore P� 1 ��������� 1 � � z � , the leading polynomial
of Rm1 ��������� mk � z � , is the product of the minimal polynomial of some Pisot number (θ, say), a power
of z, and perhaps a cyclotomic polynomial.

Moreover, if we all let the mi tend to infinity in any manner (one at a time, in bunches, or all
together, perhaps at varying rates), the Salem numbers τm1 ��������� mk 	 τ � Gm1 ��������� mk � tend to θ.

Proof. Throughout we suppose that the mi are all sufficiently large that all the graphs under
consideration are Salem graphs. As in the proof of the previous lemma, we may assume that
these are nontrivial, so that the τm1 ������� � mk are Salem numbers. Fixing m2 � ����� � mk (all large enough),
and letting m1 � ∞, we apply Lemma 12 to deduce that τm1 ��������� mk tends to a Pisot number, say
θ∞ � m2 ��������� mk , that is a root of

∑
ε2 ��������� εk

� � 0 � 1 �
y2∑i � 2 εimiP� 1 � ε2 ��������� εk � � z � �

Now we let m2 � ∞, and we get a sequence of Pisot numbers that converge to the unique root
of

∑
ε3 ��������� εk

� � 0 � 1 �
y2∑i � 3 εimiP� 1 � 1 � ε3 ��������� εk � � z � �

outside the closed unit disc. Since the set of Pisot numbers is closed ([Sa]), this number,
θ∞ � ∞ � m3 ��������� mk , must be a Pisot number.

Similarly we let the remaining mi � ∞, producing a Pisot number θ 	 θ∞ ��������� ∞ that is the unique
root of P� 1 � 1 ��������� 1 � outside the closed unit disc. Hence P� 1 � 1 ��������� 1 � has the desired form.

Finally we note that in whatever manner the mi tend to infinity, P� 1 � 1 ��������� 1 � eventually dominates
outside the unit circle, and a Rouché argument near θ shows that the Salem numbers converge to
θ. �
Lemma 14. Let G be a graph with two (perhaps equal) distinguished vertices v1 and v2. Let
G � m1 � m2 � be the graph obtained by identifying the endvertices of a new � m1 � m2 � 3 � -vertex path
with vertices v1 and v2 (so that G � m1 � m2 � has m1 � m2 � 1 more vertices than G). Let R � m1 � m2 � be
the reciprocal polynomial of G � m1 � m2 � .

Removing the appropriate vertex (w say) from the new path, we get the graph Gm1 � m2 (in the
notation of Lemma 11), with reciprocal polynomial Rm1 � m2 .

Then

R � m1 � m2 � 	 � y2  1 � Rm1 � m2 � z � � Qm1 � m2 � z � �
where Qm1 � m2 has negligible degree compared to Rm1 � m2 , in the sense that

deg � Qm1 � m2 ��� deg � Rm1 � m2 � � 0

as min � m1 � m2 � � ∞.
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With the natural extension of our previous notion of a leading polynomial, this Lemma implies
that R � m1 � m2 � has the same leading polynomial as Rm1 � m2 .

Proof. Expanding χ
G
�
m1 �m2 � 	 det � λI  adjacency matrix of G � m1 � m2 � � along the row corresponding

to the vertex w, we get

χ
G
�
m1 �m2 � 	 λχGm1 �m2

 χGm1 � 1 �m2
 χGm1 �m2 � 1

� Q1 � λ � �
where Q1, and also Q2 � Q3 � Q4 below, have negligible degree compared to the other polynomials
in the equation where they appear.

Substituting λ 	 y � 1 � y and multiplying by the appropriate power of y gives

R � m1 � m2 � 	 � y2 � 1 � Rm1 � m2 � z �  y2Rm1 � 1 � m2 � z �  y2Rm1 � m2 � 1 � z � � Q2 � z � �
Applying Lemma 11 for the case k 	 2, we get

� y2  1 � 2R � m1 � m2 � � z � 	 P� 1 � 1 � � z �
�
� y2 � 1 � y2 � m1  m2 �  y2  2 � m1 � 1  m2 �  y2  2 � m1  m2 � 1 ��� � Q3 � z �

	 y2 � m1  m2 � � y2  1 � P� 1 � 1 � � z � � Q3 � z � �
Comparing with

� y2  1 � 2Rm1 � m2 � z � 	 y2 � m1  m2 � P� 1 � 1 � � z � � Q4 � z � �
we get the advertised result. �

5. PROOF OF THEOREM 1

Proof. Consider an infinite sequence of nontrivial Salem graphs G, for which the Salem numbers
τ � G � tend to a limit. We are interested in limit points of the set Tgraph, so we may suppose, by
moving to a subsequence, that our sequence has no constant subsequence; moreover we can
suppose that the graphs are either all bipartite, or all nonbipartite. Indeed we shall suppose that
they are all nonbipartite, and leave the trivial modifications for the bipartite case to the reader.
These Salem numbers are bounded above, and hence so are the indices of their graphs. Hence
Proposition 7 gives an upper bound on the number of vertices of degree not equal to 2 of these
Salem graphs, and Lemma 5 gives an upper bound on the degrees of vertices that each such graph
can have. Now, the set of all multigraphs with at most B1 vertices each of which is of degree at
most B2 is finite. Thus, on associating to each Salem graph in the sequence the multigraph with
no vertices of degree 2 having that Salem graph as a subdivision (that is, placing extra vertices of
degree 2 along edges of the multigraph retrieves the Salem graph), we obtain only finitely many
different multigraphs. Hence, by replacing the sequence of Salem graphs by a subsequence,
if necessary, we can assume that all Salem graphs in the sequence are associated to the same
multigraph, M say. Now label the edges of M by e1 � ����� � em say. Each edge e j corresponds to a
path, of length � j � n say, on the n-th Salem graph of the sequence, joining two vertices of degree
not equal to 2.

Now consider the sequence ��� 1 � n � . If it is bounded, it has an infinite constant subsequence.
Otherwise, it has a subsequence tending monotonically to infinity. Hence, on taking a suitable
subsequence, we can assume that ��� 1 � n � has one or other of these properties. Furthermore, since
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any infinite subsequence of a sequence having one of these properties inherits that property,
we can take further infinite subsequences without losing that property. Thus we do the same
successively for ��� 2 � n � , then ��� 3 � n � � ��� 4 � n � � ����� � ��� m � n � . The effect is that we can assume that every
sequence ��� j � n � is either constant or tends to infinity monotonically. Those that are constant can
simply be incorporated into M (now allowing it to have vertices of degree 2), so that we can in
fact assume that they all tend to infinity monotonically.

Let us suppose that our sequence of Salem graphs, � Gr � has s increasingly-subdivided internal
edges, and t pendant-increasing edges. Form another set of graphs by removing a vertex from the
middle (or near middle) of each increasingly-subdivided edge of each Gr, leaving 2s � t pendant-
increasing edges. We shall use Kr to denote a graph in this sequence, with n1, . . . , n2s  t for the
lengths of its pendant-increasing edges.

Claim: for any sufficiently large n1, . . . , n2s  t , we have a Salem graph. For (i) we soon exclude
all cyclotomic graphs from the list given in Section 6; and (ii) we can never have more than one
eigenvalue that is � 2, otherwise, by adding vertices to reach one of our Gr we would find a
Salem graph with more than one eigenvalue � 2, using Lemma 2; and (iii) we can never have an
eigenvalue that is �  2, by similar reasoning.

Now we apply Corollary 13 to deduce that the limit of our sequence of Salem numbers coming
from the Kr is a Pisot number. (Note that Kr need not be connected. All but one component will
be cyclotomic, and the noncyclotomic component produces our Pisot number (the others merely
contribute cyclotomic factors to the leading polynomial).) Finally, by Lemma 14 this limiting
Pisot number is also the limit of the original sequence of Salem numbers.

The last sentence of Theorem 1 follows immediately. �
Examining the proof, we see that the number m of lengthening paths attached to the

noncyclotomic growing component tells us that the limiting Pisot number is in the m-th derived
set of Tgraph, and so in the � m  1 � -th derived set of Sgraph.

6. CYCLOTOMIC ROOTED TREES

If T is a rooted tree, by which we of course mean a tree with a distinguished vertex r say, its
root, then T � will denote the rooted forest (set of rooted trees) T  � r � , the root of each tree in T �
being its vertex that is adjacent (in T ) to r.

The quotient of a rooted tree is the rational function qT 	 ∏i Ri � z �
RT � z � , where RT is the reciprocal

polynomial of the tree, and the Ri are the reciprocal polynomials of its rooted subtrees, the trees
of T � . We define the ν-value ν � T � of a tree T to be qT � 1 � , allowing ν � T �
	 ∞ if qT has a pole at
1. Note that by Lemma 2, all zeros and poles of � z  1 � qT are simple. The poles correspond to a
subset of the distinct eigenvalues of T via λ 	 � z � 1 ��� z.

In this section we use Lemma 3 to list all rooted cyclotomic trees, along with their quotients
and ν-values. These will be used in the following section (Theorem 16) to show how to construct
all Salem trees.

In our list, each entry for a tree T contains the following: a name for T , based on Coxeter graph
notation; a picture of T , with the root circled; its quotient qT � z � and ν-values ν � T � 	 qT � 1 � . Here
Φn 	 Φn � z � is the n-th cyclotomic polynomial.

First, the rooted trees that are proper subtrees of Ẽ6 � Ẽ7 or Ẽ8, but not subtrees of any D̃n:
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E6 � 1 ���� ���
�
���

Φ2Φ8
Φ3Φ12

	 � z  1 � � z4  1 �
� z2  z  1 � � z4 � z2  1 � � ν 	 4

3

E6 � 2 ��� �� �
�
���

Φ2Φ5
Φ3Φ12

	 � z  1 � � z4  z3  z2  z  1 �
� z2  z  1 � � z4 � z2  1 � � ν 	 10

3

E6 � 3 � � ����
�
���

Φ2Φ3
Φ12

	 � z  1 � � z2  z  1 �
z4 � z2  1 � ν 	 6

E6 � 4 � � �
�
�
�
���

Φ2Φ6
Φ12

	 � z  1 � � z2 � z  1 �
z4 � z2  1 � ν 	 2

E7 � 1 ���� ���
�
�����

Φ2Φ10
Φ18

	 � z  1 � � z4 � z3  z2 � z  1 �
z6 � z3  1

� ν 	 2

E7 � 2 ��� �� �
�
�����

Φ2Φ3Φ6
Φ18

	 � z  1 � � z2  z  1 � � z2 � z  1 �
z6 � z3  1

� ν 	 6

E7 � 3 � � ����
�
�����

Φ2Φ3Φ4
Φ18

	 � z  1 � � z2  z  1 � � z2  1 �
z6 � z3  1

� ν 	 12

E7 � 4 � � � ��
�
�����

Φ3Φ5
Φ2Φ18

	 � z2  z  1 � � z4  z3  z2  z  1 �
� z  1 � � z6 � z3  1 � � ν 	 15

2

E7 � 5 � � ����
�
�����

Φ2Φ8
Φ18

	 � z  1 � � z4  1 �
z6 � z3  1 � ν 	 4

E7 � 6 � � � ��
�
�����

Φ3Φ12
Φ2Φ18

	 � z2  z  1 � � z4 � z2  1 �
� z  1 � � z6 � z3  1 � � ν 	 3

2

E7 � 7 � �
�
���
�
�����

Φ7
Φ2Φ18

	 z6  z5  z4  z3  z2  z  1� z  1 � � z6 � z3  1 � � ν 	 7
2

E8 � 1 � �� ���
�
�������

Φ2Φ4Φ12
Φ30

	 � z  1 � � z2  1 � � z4 � z2  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 4

E8 � 2 � � �� �
�
�������

Φ2Φ7
Φ30

	 � z  1 � � z6  z5  z4  z3  z2  z  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 14

E8 � 3 ��� ����
�
�������

Φ2Φ3Φ5
Φ30

	 � z  1 � � z2  z  1 � � z4  z3  z2  z  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 30,

E8 � 4 ��� � ��
�
�������

Φ2Φ4Φ5
Φ30

	 � z  1 � � z2  1 � � z4  z3  z2  z  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 20

E8 � 5 ��� ����
�
�������

Φ2Φ3Φ8
Φ30

	 � z  1 � � z2  z  1 � � z4  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 12

E8 � 6 ��� � ��
�
�������

Φ2Φ3Φ12
Φ30

	 � z  1 � � z2  z  1 � � z4 � z2  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 6

E8 � 7 � � ����
�
�������

Φ2Φ18
Φ30

	 � z  1 � � z6 � z3  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 2

E8 � 8 � � �
�
�
�
�������

Φ2Φ4Φ8
Φ30

	 � z  1 � � z2  1 � � z4  1 �
z8  z7 � z5 � z4 � z3  z  1

� ν 	 8

Next, the rooted versions of Ẽ6 � Ẽ7 and Ẽ8. Note that all their quotients have a pole at z 	 1,
so that ν 	 ∞ for all these trees.
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Ẽ6 � 1 � �� ���
�
�

���

Φ12
Φ2

1Φ2Φ3
	 z4 � z2  1� z � 1 � 2 � z  1 � � z2  z  1 �

Ẽ6 � 2 � � �� �
�
�

���

Φ2Φ6
Φ2

1Φ3
	 � z  1 � � z2 � z  1 �
� z � 1 � 2 � z2  z  1 �

Ẽ6 � 3 � � ����
�
�

���

Φ3
Φ2

1Φ2
	 z2  z  1� z � 1 � 2 � z  1 �

Ẽ7 � 1 ���� ���
�
�������

Φ18
Φ2

1Φ2Φ3Φ4
	 z6 � z3  1� z � 1 � 2 � z  1 � � z2  z  1 � � z2  1 �

Ẽ7 � 2 ��� �� �
�
�������

Φ2Φ10
Φ2

1Φ3Φ4
	 � z  1 � � z4 � z3  z2 � z  1 �
� z � 1 � 2 � z2  z  1 � � z2  1 �

Ẽ7 � 3 � � ����
�
�������

Φ3Φ6
Φ2

1Φ2Φ4
	 � z2  z  1 � � z2 � z  1 �
� z � 1 � 2 � z  1 � � z2  1 �

Ẽ7 � 4 � � � ��
�
�������

Φ2Φ4
Φ2

1Φ3
	 � z  1 � � z2  1 �
� z � 1 � 2 � z2  z  1 �

Ẽ7 � 5 ���
�

���
�
�������

Φ8
Φ2

1Φ2Φ3
	 z4  1� z � 1 � 2 � z  1 � � z2  z  1 �

Ẽ8 � 1 � �� ���
�
���������

Φ2Φ14
Φ2

1Φ3Φ5
	 � z  1 � � z6 � z5  z4 � z3  z2 � z  1 �
� z � 1 � 2 � z2  z  1 � � z4  z3  z2  z  1 �

Ẽ8 � 2 � � �� �
�
���������

Φ2Φ4Φ8
Φ2

1Φ3Φ5
	 � z  1 � � z2  1 � � z4  1 �
� z � 1 � 2 � z2  z  1 � � z4  z3  z2  z  1 �

Ẽ8 � 3 � � ����
�
���������

Φ2Φ3Φ6
Φ2

1Φ5
	 � z  1 � � z2  z  1 � � z2 � z  1 �

� z � 1 � 2 � z4  z3  z2  z  1 �

Ẽ8 � 4 � � � ��
�
���������

Φ5
Φ2

1Φ2Φ3
	 z4  z3  z2  z  1� z � 1 � 2 � z  1 � � z2  z  1 �

Ẽ8 � 5 ��� ����
�
���������

Φ2Φ4Φ8
Φ2

1Φ3Φ5
	 � z  1 � � z2  1 � � z4  1 �
� z � 1 � 2 � z2  z  1 � � z4  z3  z2  z  1 �

Ẽ8 � 6 ��� � ��
�
���������

Φ3Φ12
Φ2

1Φ2Φ5
	 � z2  z  1 � � z4 � z2  1 �
� z � 1 � 2 � z  1 � � z4  z3  z2  z  1 �

Ẽ8 � 7 � � ����
�
���������

Φ2Φ18
Φ2

1Φ3Φ5
	 � z  1 � � z6 � z3  1 �
� z � 1 � 2 � z2  z  1 � � z4  z3  z2  z  1 �

Ẽ8 � 8 � � � ��
�
���������

Φ30
Φ2

1Φ2Φ3Φ5
	 z8  z7 � z5 � z4 � z3  z  1� z � 1 � 2 � z  1 � � z2  z  1 � � z4  z3  z2  z  1 �

Ẽ8 � 9 ���
�
���
�
���������

Φ9
Φ2

1Φ2Φ5
	 z6  z3  1� z � 1 � 2 � z  1 � � z4  z3  z2  z  1 �
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Then, the five infinite families:

An � a � b � � ����� �� ����� � n 	 a � b  1 vertices, 1 � a � b
�

(ath from left, bth from right)

� za � 1 � � zb � 1 �
� z � 1 � � za � b � 1 � � ν 	 ab

a  b

Dn � a � b � � ����� �� ����� �
�

�

�
�

�
�

n 	 a � b vertices, a � 1, b � 2
�

(ath from left, bth from right)

� za � 1 � � zb � 1  1 �
� z � 1 � � za � b � 1  1 � � ν 	 a

Dn � 0 � � ��������� �
��

�

�
�

�
�

n vertices, n � 5 (note that D4 � 0 � 	 D4 � 1 � 3 � )
zn � 1� z � 1 � � z  1 � � zn � 1  1 � � ν 	 n

4

D̃n � a � b �
�

�

�
�
�

�
� ����� �� �	��� �

�

�

�
�

�
�

n � 1 	 a � b � 1 vertices, 2 � a � b
�

(ath from left, bth from right)

� za � 1  1 � � zb � 1  1 �
� z � 1 � � za � b � 2 � 1 � � ν 	 ∞

D̃n � 0 �
�

�

�
�
�

�
� ��������� �

��

�

�
�

�
�

n � 1 vertices, n � 4

zn � 1  1� z � 1 � � z  1 � � zn � 2 � 1 � � ν 	 ∞

We also note in passing the rooted even cycles:

Ã2n � 1
�� ��������� �

� ��������� �

2n vertices, n � 2

zn  1� z � 1 � � zn � 1 � � ν 	 ∞

As we have seen in Theorem 8, these can be used for constructing bipartite Salem graphs, but
obviously not Salem trees.

Note that, since Ẽ8 � 2 � and Ẽ8 � 5 � have the same quotient, we can readily construct different
Salem trees having the same quotient, and hence corresponding to the same Salem number.
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For each of the Salem quotients S � z � catalogued above, we observe in passing that � z  1 � S � z �
is an interlacing quotient, as defined in [MS2]. This is an easy consequence of the Interlacing
Theorem (Lemma 2).

7. A COMPLETE DESCRIPTION OF SALEM TREES

In this section we consider the case of those (of course bipartite) Salem graphs defined by
trees. As before, if T is a rooted tree, then T � will denote the rooted forest obtained by deleting
the root r of T , with the root of each subtree being the vertex that (in T ) is adjacent to r. The
quotient of a rooted forest is defined to be the sum of the quotients of its rooted trees. For rooted
trees T1 and T2, we define the rooted tree T1 � T2 to be the tree obtained by joining the roots of
T1 and T2 by an edge, and making the root of T1 its root.

Lemma 15. (i) [MRS, Corollary 4] For a rooted tree T with rooted subtrees T � 	 � Ti � , its
quotient qT is given recursively by

qT 	 1

z � 1  zqT �

	 1

z � 1  z∑i qTi

�

with q � 	 1 � � z � 1 � for the single-vertex tree � .
(ii) For the rooted tree T1 � T2 we have

qT1  T2
	 qT1

1  zqT1
qT2

	
z � 1  zqT �2

� z � 1  zqT �1
� � z � 1  zqT �2

�  z
�

Proof of (ii). Applying (i) to T1 � T2 and then to T1 gives

qT1  T2
	 1

z � 1  zqT �1
 zqT2

	 1

1 � qT1
 zqT2

	 qT1

1  zqT1
qT2

�

Now applying (i) again to both T1 and T2 gives the alternative formula. �
Note that (i) implies that ν � T �
	 1 � � 2  ν � T � ��� , with ν � T � �
	 ∑i ν � Ti � .
The next Theorem describes all Salem trees. For an alternative approach to a generalisation of

this topic, see Neumaier [Neu, Theorem 2.6].

Theorem 16. (a) Suppose that T is a rooted tree with ν � T � � � 2, for which the forest T � is a
collection of cyclotomic trees. Then T is a Salem tree. (If ν � T � � � 2 then T is again an
cyclotomic tree.)

(b) Suppose that T1 and T2 are Salem trees of type (a) with � ν � T �1 �  2 � � ν � T �2 �  2 � � 1. Then
T1 � T2 is a Salem tree. (If � ν � T �1 �  2 � � ν � T �2 �  2 � � 1 then the reciprocal polynomial of
T1 � T2 has two roots outside the unit circle.)

(c) Every Salem tree is of type (a) or type (b).

In case (a) of Theorem 16, there is a single central vertex joined to r cyclotomic subtrees H1,
. . . , Hr, while in case (b) we have a central edge with each endvertex joined to one or more
cyclotomic subtrees H1, . . . , Hr, K1, . . . , Ks:
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� � � � � �
�����

�
�������

�

� �
� �

� �
� �

� �
� �

H1

H2Hr � ��
�

�
��

�
�

�
��

�
�

�
� �

�
�

�
� �

�
�

�
�
�

�
�
�
�
�

� �
� �

� �
� �

� �
� �

� �
� �

H1

Hr

K1

Ks

Proof. (a) Take ε � 0 such that RT does not vanish on the interval I 	 � 1 � 1 � ε � . Since T �
is cyclotomic, RT � � 0 on � 1 � ∞ � , and hence in particular RT � � 0 on I. Since ν � T � � � 2,
qT � 1 �
	 1 � � 2  ν � T � ��� � 0, so RT � � RT

� 0 on I. Hence RT
� 0 on I. Since RT � z � � ∞

as z � ∞, RT has at least one root on � 1 � ∞ � . By interlacing, RT cannot have more than
one root on � 1 � ∞ � , since RT � has none. This gives the first result.

(b) Let T 	 T1 � T2. Take ε � 0 such that neither RT nor RT � vanish on I 	 � 1 � 1 � ε � . Now
T � is the forest � T �1 � T2 � , so that RT � has one root on � 1 � ∞ � , a root of RT2 . By interlacing,
RT has one or two roots on that interval.

On I, RT �
� 0, and z � 1  zqT �2

� 0, since T2 is a Salem tree of type (a). If � ν � T �1 � 
2 � � ν � T �2 �  2 � � 1, then RT � � RT � 0 on I, so RT

� 0 on I. Since RT � z � � ∞ as z � ∞,
RT has an odd number of roots, hence exactly one, on � 1 � ∞ � . (On the other hand, if
� ν � T �1 �  2 � � ν � T �2 �  2 � � 1, then RT � � RT

� 0 on I, so RT � 0 on I, and then RT has an
even number, and hence two, roots on � 1 � ∞ � .)

The only delicate case is if � ν � T �1 �  2 � � ν � T �2 �  2 �  1 	 0. Define the rational function
f � z � 	 � z � 1  zqT �1

� � z � 1  zqT �2
�  z, so that qT 	 � z � 1  zqT �2

��� f � z � . We need to

identify the sign of f � z � on I. Putting x 	 � z � 1 � � z, the equation f � z �
	 0 transforms
to ψ � x � : 	 � � zqT �1

 x � � � zqT �2
 x � 	 1. Interlacing implies that each � zqT �i

(which is

a function of x) is decreasing between successive poles, and hence so too is each factor
of ψ � x � . But since T1 and T2 are Salem trees of type (a), each factor of ψ � x � is positive
at x 	 2; hence ψ � x � � 1 as x approaches 2 from above; hence f � z � � 0 on I. Now, as
before, we have RT � � RT � 0 on I, so RT

� 0 on I, and the now familiar argument shows
that RT has exactly one root on � 1 � ∞ � .

(c) Suppose that T is a tree such that RT has one root � 1 but is not of type (a). Pick any
vertex t0 of T . Then, by interlacing, T  � t0 � has one component, T1 say, that is a Salem
tree, the other components being cyclotomic. Let t1 be the root of T1 (the vertex adjacent
to t0 in T ). Now replace t0 by t1 and repeat the argument, obtaining a new vertex t2. If
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t2 	 t0 then we are finished. Otherwise, we repeat the argument, obtaining a walk on T ,
using vertices t0 � t1 � t2 � ����� . Since T has no cycles, any walk in T must eventually double
back on itself, so that some ti equals ti � 2. Then T is of the form T1 � T2, where T1 and T2
are of type (a), with roots ti � 1 and ti.

�
Note that while in case (a) T is a rooted tree with the property that removal of a single vertex

gives a forest of cyclotomic trees, in case (b) the tree T1 � T2 has the property that removal of the
edge joining the roots of T1 and T2, with its incident vertices, also gives a forest of cyclotomic
trees.

Theorem 16 is a restriction of Theorem 8 (above) to trees. However, it is stronger, as we are
able to say precisely which trees are Salem trees. Theorem 16 also shows how to construct all
Salem trees. To construct trees of type (a), we take any collection of rooted cyclotomic trees,
as listed in Section 6, the sum of whose ν-values exceeds 2. For trees of type (b), we take two
such collections whose ν-values sum to s1 and s2 say, with s1 � s2 � 2, subject to the additional
constraint that � s1  2 � � s2  2 � � 1. A check on possible sums of ν-values reveals that the smallest
possible value for s2 � 2 is 85 � 42, coming from the tree T � 1 � 2 � 6 � , using the labelling of Figure
7. This implies the upper bound s1 � 44 for s1. Of course, when s2 � 85 � 42, the upper bound
for s1 will be smaller. Note too that the condition s1 � s2 implies that s2 � 3.

The first examples of Salem numbers of trace below  1 were obtained using the construction
in Theorem 16(a) (see [MS1]). The smallest known degree for a Salem number of trace below  1
coming from a graph is of degree 460, obtained when T � 	 � A70 � 1 � 69 � � D196 � 182 � 14 � � D232 � 220 � 12 � �
in Theorem 16(a). Much smaller degrees have been obtained by other means, and the minimal
degree is known to be 20 ([MS1]). It is also now known that all integers occur as traces of Salem
numbers ([MS2]).

7.1. Earlier results. Theorem 16(a) generalises [MRS, Corollary 9], which gave the same
construction, but only for starlike trees. In 1988 Floyd and Plotnick [FP, Theorem 5.1], without
using graphs but using an unpublished result of Cannon, showed how to construct Salem numbers
in a way equivalent to our construction using star-like trees. The same construction was also
published by Cannon and Wagreich [CW, Proposition 5.2] and Parry [P, Corollary 1.8] in
1992. In 1999 Piroska Lakatos [L1, Theorem 1.2] deduced essentially the same star-like tree
construction from results of A’Campo and Pena on Coxeter transformations. Also, in 2001 Eriko
Hironaka [Hi, Proposition 2.1] produced an equivalent construction, in the context of knot theory,
as the Alexander polynomial of a pretzel knot.

8. PISOT GRAPHS

As we have seen in Section 5, a graph Pisot number is a limit of graph Salem numbers whose
graphs may be assumed to come from a family obtained by taking a certain multigraph, and
assuming that some of its edges have an increasing number of subdivisions. We use this family
to define a graph having bi-coloured vertices: we start with the multigraph, with black vertices.
For every increasingly subdivided pendant edge, we change the colour of the pendant vertex to
white, while for an increasing internal edge we subdivide it with two white vertices. Thus a
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single white vertex represents a pendant-increasing edge, while a pair of adjacent white vertices
represents an increasing internal edge. These Pisot graphs in fact represent a sequence of Salem
numbers tending to the Pisot number. Now, we have seen in the proof of Theorem 1 that the
limit point of the Salem numbers corresponding to a Salem graph with an increasing internal
edge is the same as that of the graph when this edge is broken in the middle. Hence for any Pisot
graph we can remove any edge joining two white vertices without changing the corresponding
Pisot number. (Doing this may disconnect the graph, in which case only one of the connected
components corresponds to the Pisot number.) It follows that every graph Pisot number has a
graph all of whose white vertices are pendant (have degree 1).

For Pisot graphs that are trees (Pisot trees), and furthermore have all white vertices pendant,
we can define their quotients by direct extension of the quotient of an ordinary tree (that is, one
without white vertices, as in Section 7). Now from Section 6 the path An � 1 � n � has quotient
� zn  1 � � � zn  1  1 � , which, for z � 1 tends to 1 � z as n � ∞. Thus, following [MRS, p. 315], we
can take the quotient of a white vertex � to be 1 � z, and then calculate the quotient of these trees
in the same way as for ordinary trees. The irreducible factor of its denominator with a root in

� z � � 1 then gives the minimal polynomial of the Pisot number.

FIGURE 2. Pisot graphs of the smallest Pisot number (minimal polynomial z3 
z  1), and for the smallest limit point of Pisot numbers (minimal polynomial
z2  z  1). See end of Section 8.

For instance, for the two Pisot trees in Figure 2, take their roots to be the central vertex. Then
we can use Lemma 15(i) to compute the quotient of the left-hand one to be

1

z � 1  z
�

1
z � z � 1

z2 � 1 � z2 � 1
z3 � 1 � 	

� z � 1 � � z2 � z � 1 �
z � z3  z  1 � �

so that the corresponding Pisot number has minimal polynomial z3  z  1. Similarly, the right-
hand one has quotient z  1

z2 � z � 1 , with minimal polynomial z2  z  1.

9. SMALL ELEMENTS OF THE DERIVED SETS OF PISOT NUMBERS

In this section we give a proof of a graphical version of the following result of Bertin [Be].
Recall that the (1st) derived set of a given real set is the set of limit points of the set, while for
k � 2 its k-th derived set is the set of limit points of its � k  1 � -th derived set.

Theorem 17. Let k ��� . Then � k � � k2 � 4 ��� 2 belongs to the � 2k  1 � -th derived set of the set
Sgraph of graph Pisot numbers, while k � 1 belongs to the � 2k � -th derived set of Sgraph.

Bertin’s result was that these numbers belonged to the corresponding derived set of S, rather
than that of Sgraph. They are the smallest known elements of the relevant derived set of S.
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FIGURE 3. The subtrees used to make small elements of the derived sets of the set
of graph Pisot numbers. Their Pisot quotients are 1 � z and 1 � � z  1 � respectively.
They give such elements as a limit of increasing graph Pisot numbers. See
Theorem 17.

Proof. The proof consists simply of exhibiting two families of trees containing 2k and 2k � 1
white vertices respectively, and showing that their reciprocal polynomials are z2  kz  1 and
z  � k � 1 � . From the discussion above, this will show that their zeros in � z � � 1, namely those
given in the statement of the Theorem, are in the � 2k  1 � -th and � 2k � -th derived set of the set of
Pisot numbers, respectively. For the graph with 2k white vertices we take k of the 3-vertex graphs
shown in Figure 3 joined to a central vertex, while for the graph with 2k � 1 vertices we take the
same graph with one extra white vertex joined to the central vertex (the other graph shown in this
figure). The result is shown in Figure 4 for k 	 5. We can use Lemma 15, extended to include
trees containing an infinite path. This shows that the tree has quotient � z � 1  kz � � z  1 ��� � 1 	
� z  1 � � � z2  kz  1 � when it has 2k white vertices, and quotient � z � 1  z � k � � z  1 � � 1 � z ��� � 1 	
� z  1 ��� � z � z  � k � 1 ����� when it has 2k � 1 white vertices. The poles of these quotients give the
required Pisot numbers.

�

��������
����������������������	
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FIGURE 4. The infinite graphs showing that � k � � k2 � 4 ��� 2 belongs to the � 2k 
1 � -th derived set of the set of graph Pisot numbers (left, k 	 5 shown), and that
k � 1 belongs to the � 2k � -th derived set (right). Here increasing sequences are
produced—see Theorem 17.

The graphs of Figure 4 show how the elements of the derived sets are limits from below of
elements of Sgraph. We can also show that they are limits from above, using the 5- and 11-
vertex graphs of Figure 5 to construct Pisot graphs showing these numbers to be elements of
the relevant derived set by showing them to be limit points from above rather than below. The
graphs in Figure 6 are examples of this construction. Further, one could construct graphs using
a mixture of subgraphs from Figures 3 and 5. Thus, if we distinguished two types of limit point
depending on whether the point was a limit from below or from above, we could define two types
of derived set, and hence, by iteration, an � n � � n  � -derived set of Sgraph. This mixed construction
would produce elements of these sets.
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FIGURE 5. The subtrees used to make small elements of the derived sets of the
set of graph Pisot numbers. Their Pisot quotients are 1 � z (left) and 1 � � z  1 �
(right). They give such elements as a limit of decreasing graph Pisot numbers.
See the remarks after Theorem 17.
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FIGURE 6. The infinite graphs showing that � k � � k2 � 4 ��� 2 belongs to the � 2k 
1 � -th derived set of the set of graph Pisot numbers (left, k 	 5 shown), and that
k � 1 belongs to the � 2k � -th derived set (right). Here decreasing sequences are
produced—see the remarks after Theorem 17.

10. THE MAHLER MEASURE OF GRAPHS

In this section we find (Theorem 19) all the graphs of Mahler measure less than ρ : 	 1
2 � 1 �� 5 � . Our definition of Mahler measure for graphs—see below—seems natural. This is because

we then obtain as a corollary that the strong version of “Lehmer’s Conjecture”, which states that
τ1 is the smallest Mahler measure greater than 1 of any algebraic number, is true for graphs:

Corollary 18. The Mahler measure of a graph is either 1 or at least τ1 	 1 � 176280818 ����� , the
largest real zero of Lehmer’s polynomial L � z � 	 z10 � z9  z7  z6  z5  z4  z3 � z � 1. Among
connected graphs, this minimum Mahler measure is attained only for the graph T � 1 � 2 � 6 � defined
in Figure 7 ( 	 the Coxeter graph E10 � .

We define the Mahler measure M � G � of an n-vertex graph G to be M � znχG � z � 1 � z ��� , where
χG is the characteristic polynomial of its adjacency matrix, and M of a polynomial also denotes
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its Mahler measure. Recall that for a monic polynomial P � z � 	 ∏i � z  αi � its Mahler measure is
defined to be M � P � 	 ∏i max � 1 � � αi � � . When G is bipartite, M � G � is also the Mahler measure of
its reciprocal polynomial RG � z � 	 zn � 2χG � � z � 1 � � z � . This is because then M � znχG � z � 1 � z ��� 	
M � RG � z2 ��� .

The graphs having Mahler measure 1 are precisely the cyclotomic graphs.
It turns out that the connected graphs of smallest Mahler measure bigger than 1 are all trees.

Using the notation of [CR], define the trees T � a � b � c � and Q � a � b � c � as in Figure 7.

Theorem 19. If G is a connected graph whose Mahler measure M � G � lies in the interval � 1 � ρ �
then G is one of the following trees:

� G 	 T � a � b � c � for a � b � c and
a 	 1 � b 	 2 � c � 6
a 	 1 � b � 3 � c � 4
a 	 2 � b 	 2 � c � 3
a 	 2 � b 	 3 � c 	 3

or� G 	 Q � a � b � c � for a � c and
a 	 2 � b � 1 � c 	 3
a 	 2 � b � 3 � 4 � c � b � 1
a 	 3 � 4 � b � 13 � c 	 3
a 	 3 � 5 � b � 10 � c 	 4
a 	 3 � 7 � b � 9 � c 	 5
a 	 3 � 8 � b � 9 � c 	 6
a 	 4 � 7 � b � 8 � c 	 4.

All these graphs G are all Salem graphs, apart from Q � 3 � 13 � 3 � , whose polynomial has two zeros
on � 1 � 2 � , so that all M � G � apart from M � Q � 3 � 13 � 3 ��� are Salem numbers. Also, the set of limit
points of the set of all M � G � in � 1 � ρ � consists of the graph Pisot number ρ and the graph Pisot
numbers that are zeros of zk � z2  z  1 � � 1 for k 	 2 � 3 � ����� , which approach ρ as k � ∞.

Furthermore, the only M � G � � 1 � 3 are M � T � 1 � 2 � c ��� for c 	 6 � 7 � 8 � 9 � 10, these values
increasing with c. (Also M � T � 1 � 2 � 9 ��� 	 M � T � 1 � 3 � 4 ��� .)

In [Hi, Theorem 1.1], Hironaka shows essentially that Lehmer’s number τ1 	 M � T � 1 � 2 � 6 ��� is
the smallest Mahler measure of a starlike tree. The graph Pisot numbers in the Theorem have
been shown by Hoffman ([Ho]) in 1972 to be limit points of transformed graph indices, which is
equivalent to our representation of them as limits of graph Salem numbers.

It is clear how to extend the theorem to nonconnected graphs: since τ3
1 � ρ, for such a graph G

to have M � G � � � 1 � ρ � , one or two connected components must be as described in the theorem,
with all other connected components cyclotomic. Using the results of the Theorem, it is an easy
exercise to check the possibilities.

Proof. The proof depends heavily on results of Brouwer and Neumaier [BN] and Cvetković,
Doob and Gutman [CDG], as described conveniently by Cvetković and Rowlinson in their
survey paper [CR, Theorem 2.4]. These results tell us precisely whch connected graphs have
largest eigenvalue in the interval � 2 �

�
2 � � 5 � 	 � 2 � 2 � 058 ����� � . They are all trees of the form
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PSfrag replacements

a
� ��� �

b
� ��� �

c
� ��� �

T � a � b � c �

Q � a � b � c �

a � 1
� ��� �

b � 1
� ��� �

c � 1
� ��� �

FIGURE 7. The trees T � a � b � c � and Q � a � b � c �

T � a � b � c � or Q � a � b � c � . Those of the form T � a � b � c � are precisely those given in the statement of
the theorem. As they are starlike trees, they have, by [MRS, Lemma 8], one eigenvalue λ � 2,
and so their reciprocal polynomial RT � a � b � c � has a single zero β on � 1 � ∞ � with β1 � 2 � β � 1 � 2 	 λ,

and M � T � a � b � c ��� 	 β. Since ρ1 � 2 � ρ � 1 � 2 	
�

2 � � 5, we have β � � 1 � ρ � .
From the previous paragraph it is clear that

� all graphs G with exactly one eigenvalue in � 2 �
�

2 � � 5 � have M � G � � � 1 � ρ � ;
� only graphs G with largest eigenvalue in � 2 �

�
2 � � 5 � can have M � G � � � 1 � ρ � .

It remains to see which of the graphs Q � a � b � c � having largest eigenvalue in this interval
actually do have M � G � � � 1 � ρ � . The graphs of this type given in the Theorem are all those with

one eigenvalue in � 2 �
�

2 � � 5 � , along with Q � 3 � 13 � 3 � which, although having two eigenvalues
greater than 2, nevertheless does have M � G � � ρ. The other graphs with largest eigenvalue in

� 2 �
�

2 � � 5 � are, from the theorem cited above:
Q � 3 � b � 3 � for b � 14,
Q � 3 � b � 4 � for b � 11,
Q � 3 � b � 5 � for b � 10,
Q � 3 � b � 6 � for b � 10,
Q � 3 � b � c � for b � c � 2 � c � 7,
Q � 4 � b � 4 � for b � 9,
Q � 4 � b � 5 � for b � 8,
Q � 4 � b � c � for b � c � 4 � c � 6,
Q � a � b � c � for a � 5 � b � a � c � c � 5.
We must show that none of these trees G have M � G � � ρ. We can reduce this infinite list to a

small finite one by the following simple observation. Suppose we remove the k-th vertex from
the central path of the tree Q � a � b � c � , splitting it into T � 1 � a  1 � k  1 � and T � 1 � c  1 � b  1  k � .
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By interlacing we have, for k 	 2 � ����� � b  2,

M � Q � a � b � c � � � M � T � 1 � a  1 � k  1 ��� � M � T � 1 � c  1 � b  1  k ��� � (1)

Now

M � T � 1 � 2 � 6 � � 	 1 � 176280818 ����� �
M � T � 1 � 2 � 9 � � 	 M � T � 1 � 3 � 4 � � 	 1 � 280638156 ����� �
M � T � 1 � 3 � 6 � � 	 M � T � 1 � 4 � 4 � � 	 1 � 401268368 ����� �

from which we have that both of M � T � 1 � 2 � 6 ��� � M � T � 1 � 3 � 6 � � 	 M � T � 1 � 2 � 6 ��� � M � T � 1 � 4 � 4 � �
and M � T � 1 � 2 � 9 ��� 2 	 M � T � 1 � 3 � 4 ��� 2 are greater than ρ. Since M � T � a � b � c ��� is, when greater than
1, an increasing function of a, b and c separately, and, of course, independent of the order of
a � b � c, we can show that all but 18 of the above Q � a � b � c � have M � Q � a � b � c ��� � ρ. Applying (1),
we have

� M � Q � 3 � b � 3 ��� � M � T � 1 � 2 � 9 ��� � M � T � 1 � 2 � b  11 ��� � ρ for b � 20. Cases b 	 14 � ����� � 19
must be checked individually.� M � Q � 3 � b � 4 ��� � M � T � 1 � 2 � 6 � � � M � T � 1 � 3 � b  8 ��� � ρ for b � 14. Check b 	 11 � 12 � 13
individually.� M � Q � 3 � b � 5 ��� � M � T � 1 � 2 � 6 ��� � M � T � 1 � 4 � b  8 ��� � ρ for b � 12. Check b 	 10 � 11.� M � Q � 3 � b � 6 ��� � M � T � 1 � 2 � 6 ��� � M � T � 1 � 5 � b  8 ��� � M � T � 1 � 2 � 6 ��� � M � T � 1 � 4 � b  8 ���
�
ρ for b � 12. Check b 	 10 � 11.� M � Q � 3 � b � 7 ��� � M � T � 1 � 2 � 6 ��� � M � T � 1 � 6 � b  8 ��� � ρ for b � 11. Check b 	 9 � 10.� M � Q � 3 � b � 8 ��� � M � T � 1 � 2 � 6 ��� � M � T � 1 � 7 � b  8 ��� � M � T � 1 � 2 � 6 ��� � M � T � 1 � 6 � b  8 ���
�
ρ for b � 11. Check b 	 10.� For c � 9, M � Q � 3 � b � c ��� � M � T � 1 � 2 � 6 ��� � M � T � 1 � c  1 � b  8 ���
� ρ for b � 11.� M � Q � 4 � b � 4 ��� � M � T � 1 � 3 � 4 ��� � M � T � 1 � 3 � b  6 ��� � ρ for b � 10. Check b 	 9.� M � Q � 4 � b � 5 ��� � M � T � 1 � 3 � 4 ��� � M � T � 1 � 4 � b  6 ��� � ρ for b � 9. Check b 	 8.� For c � 6, M � Q � 4 � b � c � � � M � T � 1 � 3 � 4 ��� � M � T � 1 � c  1 � b  6 ��� � M � T � 1 � 3 � 4 ��� �

M � T � 1 � 4 � b  6 ��� � ρ for b � 9.� For a � 5, c � 5, M � Q � a � b � c ��� � M � T � 1 � a  1 � 3 ��� � M � T � 1 � c  1 � b  5 ��� � M � T � 1 � 4 � 3 ��� �

M � T � 1 � 4 � b  5 ��� � ρ for b � 8.

We remark that it is straightforward, with computer assistance, using Lemma 15, to make the
checks required in the proof. Denoting by qk � a � b � c � the quotient of Q � a � b � c � with root at the k-th
vertex of the central path, and by t � a � b � c � the quotient of T � a � b � c � having root at the endvertex
of the c-path, this lemma tells us that

qk � a � b � c � 	 � z � 1  z � t � 1 � a  1 � k  1 � � t � 1 � c  1 � b  1  k ��� � � 1 �
t � a � b � c � 	 � z � 1  zt � a � b � c  1 � � � 1

with t � a � b � 0 � 	 � za � 1 � 1 � � zb � 1 � 1 �
� z � 1 � � za � b � 2 � 1 � , the quotient of the rooted path Aa  b  1 � a � 1 � b � 1 � � Then the

denominator of qk � a � b � c � gives the reciprocal polynomial of Q � a � b � c � , at least up to a cyclotomic
factor (one can show using Lemma 4(i) and Lemma 15(i) that all roots � 1 of the reciprocal
polynomial of Q � a � b � c � are indeed poles of its quotient).
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Concerning the limit points of M � G ��� 
 1 � ρ � , one can check that

� M � T � 1 � b � c ��� � M � zb � z2  z  1 � � 1 � as c � ∞;� M � T � 2 � 2 � c ��� � ρ as c � ∞;� For c � 3, M � Q � 2 � b � c ��� � M � zc � 1 � z2  z  1 � � 1 � as b � ∞.

Of course, by Salem’s classical construction, M � zb � z2  z  1 ��� 1 � � ρ as b � ∞. Note too that
M � z2 � z2  z  1 � � 1 � 	 M � z3  z  1 � , the smallest Pisot number.

�

From the proof, and the fact that all Pisot numbers in 
 1 � ρ � are known (see Bertin et al
[BDGPS, p.133]) we have the following.

Corollary 20. The only graph Pisot numbers in 
 1 � ρ � are the roots of zn � z2  z  1 � � 1 for
n � 2. The other Pisot numbers in this interval, namely the roots of z6  2z5 � z4  z2 � z  1 and
of zn � z2  z  1 � � z2  1 for n � 2, are not graph Pisot numbers.

11. SMALL SALEM NUMBERS FROM GRAPHS

The notation τn indicates the nth Salem number in Mossinghoff’s table [M], listing all 47
known Salem numbers that are smaller than 1 � 3. (This is an update of that in [Bo].)

We have seen that the only numbers in this list that are elements of Tgraph are τ1, τ7, τ19,
τ23, and τ41. On the other hand, if we apply the construction in Theorem 16(b) with T1 	
T2, then from the explicit formula in Lemma 15(ii) we see that the Salem number produced
is automatically the square of a smaller Salem number. ( If qT1

	 q � p in lowest terms, then
from Lemma 15(ii) we have that the squarefree part of RT1  T1 is f � z � 	 q � z � 2  zp � z � 2. Now
f � z2 � 	 � q � z2 �  zp � z2 � � � q � z2 � � zp � z2 ��� , and the gcd of these two factors divides z. Hence, if
τ �	 0 and f � τ � 	 0, then � τ and  � τ are roots of the different factors of f � z2 � and are not
algebraic conjugates. In particular, if τ is a Salem number then so is � τ. We can apply this
construction regardless of the value of the quotient of T1.) In this way we can produce τ2

2, τ2
3, τ2

5,
τ2

12, τ2
21, τ2

23, and τ2
41 as elements of Tgraph.

These results, and a wider search for small powers of small Salem numbers, are recorded in the
following table. A list of cyclotomic graphs indicates the components of T � in the construction
of Theorem 16(a); two lists separated by a semi-colon indicate the components of T �1 and T �2 in
the construction of Theorem 16(b).
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Salem number Cyclotomic graphs
τ1 D9 � 0 �
τ2

1 D11 � 3 � 8 �
τ6

1 E7 � 1 � � D̃4 � 0 � ;A5 � 2 � 4 �
τ8

1 E6 � 1 � � A2 � 1 � 2 � ;E7 � 5 � � Ẽ6 � 3 �
τ2

2 E8 � 7 � ;E8 � 7 �
τ2

3 E7 � 6 � ;E7 � 6 �
τ5

3 A1 � 1 � 1 � � A9 � 2 � 8 � ;D15 � 8 � 7 �
τ5

4 E6 � 4 � � D7 � 1 � 6 � ;D13 � 3 � 10 �
τ2

5 E6 � 1 � ;E6 � 1 �
τ3

5 E6 � 1 � ; Ẽ8 � 7 �
τ4

5 E6 � 4 � � D18 � 12 � 6 �
τ5

5 A4 � 1 � 4 � � A4 � 1 � 4 � ;D4 � 1 � 3 � � D8 � 1 � 7 �
τ6

5 A1 � 1 � 1 � � A3 � 2 � 2 � ;D6 � 2 � 4 � � D8 � 4 � 4 �
τ7 D10 � 0 �
τ4

7 E6 � 1 � � A1 � 1 � 1 � ;E6 � 1 � � A1 � 1 � 1 �
τ5

7 A7 � 2 � 6 � ;D4 � 1 � 3 � � D̃10 � 5 � 5 �
τ6

7 E7 � 3 � � D7 � 4 � 3 � ;D9 � 1 � 8 �
τ3

10 E8 � 8 � ;D8 � 0 �
τ2

12 D5 � 0 � ;D5 � 0 �
τ3

12 E7 � 5 � ;E7 � 6 �
τ5

12 E7 � 4 � � Ẽ6 � 1 � ;A7 � 3 � 5 �
τ2

15 D18 � 6 � 12 �
τ4

15 A1 � 1 � 1 � � D10 � 0 � ;A1 � 1 � 1 � � D10 � 0 �
τ4

16 E7 � 1 � � D9 � 1 � 8 � � D8 � 2 � 6 �
τ19 D11 � 0 �
τ3

19 Ẽ8 � 8 � ;D4 � 2 � 2 �
τ4

19 E6 � 4 � � A1 � 1 � 1 � ;E6 � 4 � � A1 � 1 � 1 �
τ5

19 Ẽ6 � 2 � � A3 � 2 � 2 � ;A3 � 1 � 3 � � D6 � 1 � 5 �
τ2

21 E7 � 1 � ;E7 � 1 �
τ5

21 E6 � 3 � � A4 � 2 � 3 � ;A6 � 1 � 6 �
τ23 E8 � 1 �
τ2

23 Ẽ8 � 6 �
τ3

23 E7 � 2 � ;D6 � 1 � 5 �
τ4

23 Ẽ7 � 3 � � D12 � 9 � 3 �
τ4

35 E6 � 4 � � E7 � 1 � ;A2 � 1 � 2 � � A6 � 1 � 6 �
τ41 D13 � 0 �
τ2

41 D6 � 0 � ;D6 � 0 �
τ3

41 A7 � 2 � 6 � ;D10 � 5 � 5 �
τ4

41 A2 � 1 � 2 � � A2 � 1 � 2 � ;A6 � 2 � 5 � � D5 � 1 � 4 �
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